Next Issue
Volume 40, January
Previous Issue
Volume 38, October
 
 
cimb-logo

Journal Browser

Journal Browser
Current Issues in Molecular Biology is published by MDPI from Volume 43 Issue 1 (2021). Previous articles were published by another publisher in Open Access under a CC-BY (or CC-BY-NC-ND) licence, and they are hosted by MDPI on mdpi.com as a courtesy and upon agreement with Caister Press.

Curr. Issues Mol. Biol., Volume 39, Issue 1 (December 2020) – 3 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
1633 KiB  
Review
Acidophile Microbiology in Space and Time
by D. Barrie Johnson and Raquel Quatrini
Curr. Issues Mol. Biol. 2020, 39(1), 63-76; https://doi.org/10.21775/cimb.039.063 - 21 Feb 2020
Cited by 21 | Viewed by 1262
Abstract
The study of extreme acidophiles, broadly defined as microorganisms that grow optimally at pH values below 3, was initiated by the discovery by Waksman and Joffe in the early 1900s of a bacterium that was able to live in the dilute sulfuric acid [...] Read more.
The study of extreme acidophiles, broadly defined as microorganisms that grow optimally at pH values below 3, was initiated by the discovery by Waksman and Joffe in the early 1900s of a bacterium that was able to live in the dilute sulfuric acid it generated by oxidizing elemental sulfur. The number of known acidophiles remained relatively small until the second half of the 20th century, but since then has greatly expanded to include representatives of living organisms from within all three domains of life on earth, and notably within many of the major divisions and phyla of Bacteria and Archaea. Environments that are naturally acidic are found throughout the world, and others that are man-made (principally from mining metals and coal) are also widely distributed. These continue to be sites for isolating new species, (and sometimes new genera) which thrive in acidic liquor solutions that contain concentrations of metals and metalloids that are lethal to most life forms. The development and application of molecular techniques and, more recently, next generation sequencing technologies has, as with other areas of biology, revolutionized the study of acidophile microbiology. Not only have these studies provided greater understanding of the diversity of organisms present in extreme acidic environments and aided in the discovery of largely overlooked taxa (such as the ultra-small uncultivated archaea), but have also helped uncover some of the unique adaptations of life forms that live in extremely acidic environments. Thanks to the relatively low biological complexity of these ecosystems, systems-level spatio-temporal studies of model communities have been achieved, laying the foundations for 'multi-omic' exploration of other ecosystems. This article introduces the subject of acidophile microbiology, tracing its origins to the current status quo, and provides the reader with general information which provides a backdrop to the more specific topics described in Quatrini and Johnson (2016). Full article
480 KiB  
Review
Diversity of Viruses Infecting Eukaryotic Algae
by Steven M. Short, Michael A. Staniewski, Yuri V. Chaban, Andrew M. Long and Donglin Wang
Curr. Issues Mol. Biol. 2020, 39(1), 29-62; https://doi.org/10.21775/cimb.039.029 - 19 Feb 2020
Cited by 18 | Viewed by 1094
Abstract
Algae are photosynthetic organisms that drive aquatic ecosystems, e.g. fuelling food webs or forming harmful blooms. The discovery of viruses that infect eukaryotic algae has raised many questions about their influence on aquatic primary production and their role in algal ecology and evolution. [...] Read more.
Algae are photosynthetic organisms that drive aquatic ecosystems, e.g. fuelling food webs or forming harmful blooms. The discovery of viruses that infect eukaryotic algae has raised many questions about their influence on aquatic primary production and their role in algal ecology and evolution. Although the full extent of algal virus diversity is still being discovered, this review summarizes current knowledge of this topic. Where possible, formal taxonomic classifications are referenced from the International Committee on Taxonomy of Viruses (ICTV); since the pace of virus discovery has far surpassed the rate of formal classification, however, numerous unclassified viruses are discussed along with their classified relatives. In total, we recognized 61 distinct algal virus taxa with highly variable morphologies that include dsDNA, ssDNA, dsRNA, and ssRNA genomes ranging from approximately 4.4 to 560 kb, with virion sizes from approximately 20 to 210 nm in diameter. These viruses infect a broad range of algae and, although there are a few exceptions, they are generally lytic and highly species or strain specific. Dedicated research efforts have led to the appreciation of algal viruses as diverse, dynamic, and ecologically important members of the biosphere, and future investigations will continue to reveal the full extent of their diversity and impact. Full article
815 KiB  
Review
Genetic Diversity and Geographic Distribution of Bat-Borne Hantaviruses
by Satoru Arai and Richard Yanagihara
Curr. Issues Mol. Biol. 2020, 39(1), 1-28; https://doi.org/10.21775/cimb.039.001 - 30 Jan 2020
Cited by 19 | Viewed by 812
Abstract
The recent discovery that multiple species of shrews and moles (order Eulipotyphla, families Soricidae and Talpidae) from Europe, Asia, Africa and/or North America harbour genetically distinct viruses belonging to the family Hantaviridae (order Bunyavirales) has prompted a further exploration of their host [...] Read more.
The recent discovery that multiple species of shrews and moles (order Eulipotyphla, families Soricidae and Talpidae) from Europe, Asia, Africa and/or North America harbour genetically distinct viruses belonging to the family Hantaviridae (order Bunyavirales) has prompted a further exploration of their host diversification. In analysing thousands of frozen, RNAlater®-preserved and ethanol-fixed tissues from bats (order Chiroptera) by reverse transcription polymerase chain reaction (RT-PCR), ten hantaviruses have been detected to date in bat species belonging to the suborder Yinpterochiroptera (families Hipposideridae, Pteropodidae and Rhinolophidae) and the suborder Yangochiroptera (families Emballonuriade, Nycteridae and Vespertilionidae). Of these, six hantaviruses are from Asia (Xuân Sơn virus and Đakrông virus in Vietnam; Láibīn virus in China and Myanmar; Huángpí virus and Lóngquán virus in China; and Quezon virus in the Philippines); three are from Africa (Mouyassué virus in Côte d’Ivoire and Ethiopia; Magboi virus in Sierra Leone; and Makokou virus in Gabon); and one from Europe (Brno virus in the Czech Republic). Molecular identification of many more bat-borne hantaviruses is expected. However, thus far, none of these newfound viruses has been isolated in cell culture and it is unclear if they cause infection or disease in humans. Future research must focus on myriad unanswered questions about the genetic diversity and geographic distribution, as well as the pathogenic potential, of bat-borne viruses of the family Hantaviridae. Full article
Previous Issue
Next Issue
Back to TopTop