# Theoretical Prediction of the Anti-Icing Activity of Two-Dimensional Ice I

^{*}

## Abstract

**:**

## 1. Introduction

^{+}ions on the graphene surface. The Li

^{+}ions were placed on the surface with different distances. It was found that the system was stable at the position of 1.84 Å [22]. Nakada systematically calculated the energy of the chemical element from Z = 1 to 84 at three adsorption sites on 3 × 3 graphene using the PAW method of DFT calculation [23]. Boukhvalov used the DFT method to model different types of graphene. Their static (substrate, shape, curvature, strain, and doping) and dynamic (starting point of functionalization, migration barriers, and stability of configurations) aspects were investigated, which provided model parameters for the adsorption on graphene substrates [24].

## 2. Results and Discussion

## 3. Simulation Strategy

## 4. Conclusions

## Supplementary Materials

_{2}O monomer on 2D ice surface. Video S2: Adsorption of HF monomer on 2D ice surface. Video S3: The interfacial effect between 3D ice and 2D ice. Video S4: The interfacial effect between two 3D ice films.

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## Sample Availability

## References

- Millot, M.; Coppari, F.; Rygg, J.R.; Correa Barrios, A.; Hamel, S.; Swift, D.C.; Eggert, J.H. Nanosecond X-ray diffraction of shock-compressed superionic water ice. Nature
**2019**, 569, 251–255. [Google Scholar] [CrossRef] [PubMed] - Gasser, T.M.; Thoeny, A.V.; Fortes, A.D.; Loerting, T. Structural characterization of ice XIX as the second polymorph related to ice VI. Nat. Commun.
**2021**, 12, 1128. [Google Scholar] [CrossRef] [PubMed] - Koga, K.; Zeng, X.C.; Tanaka, H. Freezing of confined water: A bilayer ice phase in hydrophobic nanopores. Phys. Rev. Lett.
**1997**, 79, 5262. [Google Scholar] [CrossRef] - Moore, E.B.; Molinero, V. Is it cubic? Ice crystallization from deeply supercooled water. Phys. Chem. Chem. Phys.
**2011**, 13, 20008–20016. [Google Scholar] [CrossRef] [PubMed] - Ma, R.; Cao, D.; Zhu, C.; Tian, Y.; Peng, J.; Guo, J.; Chen, J.; Li, X.-Z.; Francisco, J.S.; Zeng, X.C. Atomic imaging of the edge structure and growth of a two-dimensional hexagonal ice. Nature
**2020**, 577, 60–63. [Google Scholar] [CrossRef] - Guo, J.; Meng, X.; Chen, J.; Peng, J.; Sheng, J.; Li, X.-Z.; Xu, L.; Shi, J.-R.; Wang, E.; Jiang, Y. Real-space imaging of interfacial water with submolecular resolution. Nat. Mater.
**2014**, 13, 184–189. [Google Scholar] [CrossRef] - Zhu, Y.; Wang, F.; Bai, J.; Zeng, X.C.; Wu, H. Compression limit of two-dimensional water constrained in graphene nanocapillaries. ACS Nano
**2015**, 9, 12197–12204. [Google Scholar] [CrossRef] - Bragg, W. The crystal structure of ice. Proc. Phys. Soc. Lond.
**1921**, 34, 98. [Google Scholar] [CrossRef] - Whalley, E. A detailed assignment of the O–H stretching bands of ice I. Can. J. Chem.
**1977**, 55, 3429–3441. [Google Scholar] [CrossRef] - Perakis, F.; Hamm, P. Two-dimensional infrared spectroscopy of neat ice Ih. Phys. Chem. Chem. Phys.
**2012**, 14, 6250–6256. [Google Scholar] [CrossRef] - Ghasemi, S.; Alihosseini, M.; Peymanirad, F.; Jalali, H.; Ketabi, S.; Khoeini, F.; Neek-Amal, M. Electronic, dielectric, and optical properties of two-dimensional and bulk ice: A multiscale simulation study. Phys. Rev. B
**2020**, 101, 184202. [Google Scholar] [CrossRef] - Chen, J.; Schusteritsch, G.; Pickard, C.J.; Salzmann, C.G.; Michaelides, A. Two dimensional ice from first principles: Structures and phase transitions. Phys. Rev. Lett.
**2016**, 116, 025501. [Google Scholar] [CrossRef] [PubMed] - Kiselev, A.; Bachmann, F.; Pedevilla, P.; Cox, S.J.; Michaelides, A.; Gerthsen, D.; Leisner, T. Active sites in heterogeneous ice nucleation—The example of K-rich feldspars. Science
**2017**, 355, 367–371. [Google Scholar] [CrossRef] [PubMed] - Zheng, S.; Li, C.; Fu, Q.; Hu, W.; Xiang, T.; Wang, Q.; Du, M.; Liu, X.; Chen, Z. Development of stable superhydrophobic coatings on aluminum surface for corrosion-resistant, self-cleaning, and anti-icing applications. Mater. Des.
**2016**, 93, 261–270. [Google Scholar] [CrossRef] - Murray, B.J.; Knopf, D.A.; Bertram, A.K. The formation of cubic ice under conditions relevant to Earth’s atmosphere. Nature
**2005**, 434, 202–205. [Google Scholar] [CrossRef] [PubMed] - Atkinson, J.D.; Murray, B.J.; Woodhouse, M.T.; Whale, T.F.; Baustian, K.J.; Carslaw, K.S.; Dobbie, S.; O’Sullivan, D.; Malkin, T.L. The importance of feldspar for ice nucleation by mineral dust in mixed-phase clouds. Nature
**2013**, 498, 355–358. [Google Scholar] [CrossRef] - Liou, Y.-C.; Tocilj, A.; Davies, P.L.; Jia, Z. Mimicry of ice structure by surface hydroxyls and water of a β-helix antifreeze protein. Nature
**2000**, 406, 322–324. [Google Scholar] [CrossRef] - Hetzel, R.; Hampel, A. Slip rate variations on normal faults during glacial–interglacial changes in surface loads. Nature
**2005**, 435, 81–84. [Google Scholar] [CrossRef] - Hohenberg, P.; Kohn, W. Inhomogeneous electron gas. Phys. Rev.
**1964**, 136, B864. [Google Scholar] [CrossRef] - Kohn, W.; Sham, L.J. Self-consistent equations including exchange and correlation effects. Phys. Rev.
**1965**, 140, A1133. [Google Scholar] [CrossRef] - Boukhvalov, D.W.; Dreyer, D.R.; Bielawski, C.W.; Son, Y.W. A computational investigation of the catalytic properties of graphene oxide: Exploring mechanisms by using DFT methods. ChemCatChem
**2012**, 4, 1844–1849. [Google Scholar] [CrossRef] - Zheng, J.; Ren, Z.; Guo, P.; Fang, L.; Fan, J. Diffusion of Li+ ion on graphene: A DFT study. Appl. Surf. Sci.
**2011**, 258, 1651–1655. [Google Scholar] [CrossRef] - Nakada, K.; Ishii, A. Migration of adatom adsorption on graphene using DFT calculation. Solid State Commun.
**2011**, 151, 13–16. [Google Scholar] [CrossRef] - Geim, A.K. Graphene: Status and prospects. Science
**2009**, 324, 1530–1534. [Google Scholar] [CrossRef] [PubMed] - Boukhvalov, D. DFT modeling of the covalent functionalization of graphene: From ideal to realistic models. Rsc Adv.
**2013**, 3, 7150–7159. [Google Scholar] [CrossRef] - Clark, S.J.; Segall, M.D.; Pickard, C.J.; Hasnip, P.J.; Probert, M.I.; Refson, K.; Payne, M.C. First principles methods using CASTEP. Z. Für Krist.-Cryst. Mater.
**2005**, 220, 567–570. [Google Scholar] [CrossRef] - Segall, M.; Lindan, P.J.; Probert, M.A.; Pickard, C.J.; Hasnip, P.J.; Clark, S.; Payne, M. First-principles simulation: Ideas, illustrations and the CASTEP code. J. Phys. Condens. Matter
**2002**, 14, 2717. [Google Scholar] [CrossRef] - Perdew, J.P.; Ziesche, P.; Eschrig, H. Electronic Structure of Solids’ 91; Akademie: Berlin, Germany, 1991. [Google Scholar]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett.
**1996**, 77, 3865. [Google Scholar] [CrossRef] - Yuan, X.-Q.; Yu, X.-H.; Zhu, X.-L.; Wang, X.-C.; Liu, X.-Y.; Cao, J.-W.; Qin, X.-L.; Zhang, P. Comparative analysis of the hydrogen bond vibrations of ice XII. ACS Omega
**2022**, 7, 2970–2974. [Google Scholar] [CrossRef] - Ning, S.-Y.; Cao, J.-W.; Liu, X.-Y.; Wu, H.-J.; Yuan, X.-Q.; Dong, X.-T.; Li, Y.-N.; Jiang, Y.; Zhang, P. Computational Analysis of Hydrogen Bond Vibrations of Ice III in the Far-Infrared Band. Crystals
**2022**, 12, 910. [Google Scholar] [CrossRef] - Liu, X.-Y.; Cao, J.-W.; Qin, X.-L.; Zhu, X.-L.; Yu, X.-H.; Wang, X.-C.; Yuan, X.-Q.; Liu, Y.-H.; Wang, Y.; Zhang, P. A Computational Validation of water Molecules Adsorption on an NaCl surface. Crystals
**2021**, 11, 610. [Google Scholar] [CrossRef] - Dong, X.-T.; Qin, X.-L.; Wang, X.-C.; Cao, J.-W.; Liu, X.-Y.; Yu, X.-H.; Yuan, X.-Q.; Guo, Q.; Sun, Y.; Zhang, P. Computer simulation of hypothetical hydrogen ordered structure of ice XIX. Phys. Chem. Chem. Phys.
**2022**, 24, 11023–11029. [Google Scholar] [CrossRef] [PubMed] - Xiao-Ling, Q.; Xu-Liang, Z.; Jing-Wen, C.; Hao-Cheng, W.; Peng, Z. Investigation of hydrogen bond vibrations of ice. Acta Phys. Sin.
**2021**, 70, 146301. [Google Scholar] [CrossRef] - Zhu, X.-L.; Cao, J.-W.; Qin, X.-L.; Jiang, L.; Gu, Y.; Wang, H.-C.; Liu, Y.; Kolesnikov, A.I.; Zhang, P. Origin of two distinct peaks of ice in the THz region and its application for natural gas hydrate dissociation. J. Phys. Chem. C
**2019**, 124, 1165–1170. [Google Scholar] [CrossRef]

**Figure 1.**

**Side view of three models involving a water molecule on the 2D ice surface.**(

**a**,

**b**) are horizontal configuration models, (

**c**) is upright configuration model. The top row shows the constructed conformations, and the bottom row shows the corresponding optimized geometries. Red and grey balls represent oxygen and hydrogen atoms, respectively.

**Figure 2.**

**Comparisons of adsorption effect of HF and H2O on 2D ice surface.**(

**a**) The initial position of a HF molecule on the 2D ice surface and (

**b**) the optimized result of the HF model. (

**c**) The optimized result of an H2O molecule placed in the same position.

**Figure 3.**

**Interfacial effect between ice Ic (111) surface and 2D ice (001) surface.**(

**a**) Constructed model of 2D and 3D ice films and (

**b**) geometry optimization results. The surface of 3D ice reorganized to form more hydrogen bonds while the 2D ice remained stable.

**Figure 4.**

**Interfacial effect between two 3D ice films.**(

**a**) Constructed model of two 3D ice films and (

**b**) geometry optimization results.

**Figure 5.**

**Primitive cell of 2D ice I.**The left and right images show the top and side views, respectively.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Liu, S.; Liu, X.; Li, Y.; Guo, Q.; Yu, X.; Yin, Y.; Jing, H.; Zhang, P.
Theoretical Prediction of the Anti-Icing Activity of Two-Dimensional Ice I. *Molecules* **2023**, *28*, 6145.
https://doi.org/10.3390/molecules28166145

**AMA Style**

Liu S, Liu X, Li Y, Guo Q, Yu X, Yin Y, Jing H, Zhang P.
Theoretical Prediction of the Anti-Icing Activity of Two-Dimensional Ice I. *Molecules*. 2023; 28(16):6145.
https://doi.org/10.3390/molecules28166145

**Chicago/Turabian Style**

Liu, Sicheng, Xiaoyan Liu, Yining Li, Qing Guo, Xiangting Yu, Yi Yin, Haoze Jing, and Peng Zhang.
2023. "Theoretical Prediction of the Anti-Icing Activity of Two-Dimensional Ice I" *Molecules* 28, no. 16: 6145.
https://doi.org/10.3390/molecules28166145