Spectral Ranking of Causal Influence in Complex Systems
Abstract
:1. Introduction
2. Applied Algorithms and Methods
2.1. Transfer Entropy
2.2. Eigenvector Centrality
Algorithm 1 FaultMap. 
Information Transfer Network Inference

2.3. Validation
3. Results and Discussion
3.1. Coupled Lorenz Systems
3.2. Technological Complex Systems
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
 Schreiber, T. Measuring Information Transfer. Phys. Rev. Lett. 2000, 85, 461–464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
 Bonacich, P. Factoring and weighting approaches to status scores and clique identification. J. Math. Sociol. 1972, 2, 113–120. [Google Scholar] [CrossRef]
 Barnett, L.; Barrett, A.B.; Seth, A.K. Granger Causality and Transfer Entropy Are Equivalent for Gaussian Variables. Phys. Rev. Lett. 2009, 103, 238701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
 Lizier, J.; Rubinov, M. Multivariate construction of effective computational networks from observational data, Preprint 25/2012. In Max Planck Institute for Mathematics in the Science; 2012; Available online: http://www.mis.mpg.de/preprints/2012/preprint2012_25.pdf (accessed on 14 April 2014).
 Benzi, M.; Klymko, C. On the Limiting Behavior of ParameterDependent Network Centrality Measures. SIAM J. Matrix Anal. Appl. 2015, 36, 686–706. [Google Scholar] [CrossRef] [Green Version]
 Katz, L. A new status index derived from sociometric analysis. Psychometrika 1953, 18, 39–43. [Google Scholar] [CrossRef]
 Kalavri, V.; Simas, T.; Logothetis, D. The shortest path is not always a straight line: Leveraging semimetricity in graph analysis. Proc. VLDB Endow. 2016, 9, 672–683. [Google Scholar] [CrossRef]
 Streicher, S.; Sandrock, C. Plantwide fault and disturbance screening using combined transfer entropy and eigenvector centrality analysis. arXiv 2019, arXiv:1904.04035. [Google Scholar]
 Wiener, N. The theory of prediction. In Modern Mathematics for the Engineer; Beckenbach, E.F., Ed.; McGrawHill: New York, NY, USA, 1956. [Google Scholar]
 Schreiber, T.; Schmitz, A. Surrogate time series. Phys. Nonlinear Phenom. 2000, 142, 346–382. [Google Scholar] [CrossRef] [Green Version]
 Page, L.; Brin, S.; Motwani, R.; Winograd, T. The PageRank Citation Ranking: Bringing Order to the Web; Technical Report; Stanford Digital Libraries: Stanford, CA, USA, 1998; pp. 1–17. [Google Scholar]
 Frobenius, G. Ueber Matrizen aus nicht negativen Elementen. Sitzungsberichte KöNiglich Preuss. Akad. Wiss. 1912, 26, 456–477. [Google Scholar]
 Perron, O. Zur theorie der matrices. Math. Ann. 1907, 2, 248–263. [Google Scholar] [CrossRef]
 Wills, R.S. Google’s PageRank: The Math Behind the Search Engine. Math. Intell. 2006, 28, 6–11. [Google Scholar] [CrossRef]
 von Mises, R.; PollaczekGeiringer, H. Praktische Verfahren der Gleichungsauflösung. ZAMM Z. Angew. Math. Mech. 1929, 9, 152–164. [Google Scholar] [CrossRef]
 Wibral, M.; Wollstadt, P.; Meyer, U.; Pampu, N.; Priesemann, V.; Vicente, R. Revisiting Wiener’s principle of causality–interactiondelay reconstruction using transfer entropy and multivariate analysis on delayweighted graphs. In Proceedings of the 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Diego, CA, USA, 28 August–1 September 2012; pp. 3676–3679. [Google Scholar]
 Flunkert, V. Pydelay: A Simulation Package, DelayCoupled Complex Systems and Applications to Lasers; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
 Runge, J. Causal Network Reconstruction from Time Series: From Theoretical Assumptions to Practical Estimation. Chaos Interdiscip. J. Nonlinear Sci. 2018, 28, 075310. [Google Scholar] [CrossRef] [PubMed]
 Lizier, J.T. JIDT: An InformationTheoretic Toolkit for Studying the Dynamics of Complex Systems. Front. Robot. AI 2014, 1, 1–11. [Google Scholar] [CrossRef] [Green Version]
 Bauer, M. DataDriven Methods for Process Analysis. Ph.D. Thesis, University of London, London, UK, 2005. [Google Scholar]
 Krich, C.; Runge, J.; Miralles, D.G.; Migliavacca, M.; PerezPriego, O.; ElMadany, T.; Carrara, A.; Mahecha, M.D. Estimating causal networks in biosphere–atmosphere interaction with the PCMCI approach. Biogeosciences 2020, 17, 1033–1061. [Google Scholar] [CrossRef] [Green Version]
 Gencaga, D.; Rossow, W.; Knuth, K. A Recipe for the Estimation of Information Flow in a Dynamical System. Entropy 2015, 17, 438–470. [Google Scholar] [CrossRef] [Green Version]
 Coufal, D.; Jakubík, J.; Jajcay, N.; Hlinka1, J.; Krakovská, A.; Paluš, M. Detection of coupling delay: A problem not yet solved. Chaos 2017, 27, 083109. [Google Scholar] [CrossRef] [PubMed]
 Rayleigh, L. On convecting currents in a horizontal layer of fluid when the higher temperature is on the under side. Philos. Mag. 1916, 32, 529–546. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. 
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zalmijn, E.; Heskes, T.; Claassen, T. Spectral Ranking of Causal Influence in Complex Systems. Entropy 2021, 23, 369. https://doi.org/10.3390/e23030369
Zalmijn E, Heskes T, Claassen T. Spectral Ranking of Causal Influence in Complex Systems. Entropy. 2021; 23(3):369. https://doi.org/10.3390/e23030369
Chicago/Turabian StyleZalmijn, Errol, Tom Heskes, and Tom Claassen. 2021. "Spectral Ranking of Causal Influence in Complex Systems" Entropy 23, no. 3: 369. https://doi.org/10.3390/e23030369