# Beyond Hypothesis Testing

## Abstract

**:**

## 1. Frequentistic Approaches

## 2. Bayesian Approaches

## 3. Conclusions

- Both tests require, typically, enormous simplification of belief to one or two possibilities.
- Both tests render results that invite users to err in their interpretation.
- Similarly, confidence intervals invite misinterpretation.
- By contrast, the Bayesian approach is simple, straight-forward, and is easy to interpret.

## Conflicts of Interest

## References

- Fisher, R. Statistical Methods for Research Workers, 3rd edition, revised and enlarged. p. 42 ed.; Hafner Press: New York, NY, USA, 1973. [Google Scholar]
- Tukey, J. Comparing individual means in the analysis of variance. Biometrics
**1949**, 5, 99–114. [Google Scholar] [CrossRef] [PubMed] - Scheffé, H. The Analysis of Variance; John Wiley and Sons: New York, NY, USA, 1959. [Google Scholar]
- Bonferroni, C. Teoria statistica delle classi e calcolo delle probabilità. Pubblicazioni del R Istituto Superiore di Scienze Economiche e Commerciali di Firenze
**1936**, 8, 1–62. [Google Scholar] [CrossRef] - Benjamini, Y.; Hochberg, Y. Controlling false discovery rate: A powerful and practical approach to multiple testing. JRSS B
**1995**, 57, 289–300. [Google Scholar] - Neyman, J.; Pearson, E. On the problem of the most efficient tests of statistical hypotheses. In Breakthroughs in Statistics; Springer New York: New York, NY, USA, 1933; pp. 289–337. [Google Scholar]
- DeGroot, M. Probability and Statistics, 2nd ed.; Addison-Wesley Publishing Company: Reading, MA, USA, 1989. [Google Scholar]
- Neyman, J. On the problem of confience intervals. Ann. Math. Stat.
**1935**, 6, 111–116. [Google Scholar] [CrossRef] - Buehler, R.; Federson, A. Note on a conditional property of student t. Ann. Math. Stat.
**1963**, 34, 1098–1100. [Google Scholar] [CrossRef] - Robinson, G. Some counterexamples to the theory of confidence intervals. Biometrika
**1975**, 62, 155–161. [Google Scholar] [CrossRef] - Robinson, G. Properties of Student’s t and of the Behrens-Fisher solution to the two means problem. Ann. Stat.
**1976**, 4, 963–971. [Google Scholar] [CrossRef] - Kadane, J. Principles of Uncertainty; Chapman and Hall: Boca Raton, FL, USA, 2011. [Google Scholar]

© 2016 by the author; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Kadane, J.B.
Beyond Hypothesis Testing. *Entropy* **2016**, *18*, 199.
https://doi.org/10.3390/e18050199

**AMA Style**

Kadane JB.
Beyond Hypothesis Testing. *Entropy*. 2016; 18(5):199.
https://doi.org/10.3390/e18050199

**Chicago/Turabian Style**

Kadane, Joseph B.
2016. "Beyond Hypothesis Testing" *Entropy* 18, no. 5: 199.
https://doi.org/10.3390/e18050199