# Black Holes, Cosmological Solutions, Future Singularities, and Their Thermodynamical Properties in Modified Gravity Theories

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. $F\left(R\right)$ Theories of Gravity

## 3. Static and Spherically Symmetric Black Holes in $f\left(R\right)$ Gravities

#### 3.1. Spherically Symmetric and Static Constant Curvature Solutions: Generalities

#### 3.2. Spherically Symmetric and Static Constant Curvature Solutions

- Firstly, by comparison with Equation (19), one can see that the term with the power ${r}^{2-D}$ is absent. This fact will be studied in Section 3.3.
- Secondly, this solution has no constant curvature in the general case since, as we found above, the constant curvature requirement demands ${C}_{1}=1$. This issue just requires a constant fixing (or equivalently a time reparametrization) and does not affect the solution.

#### 3.3. $f\left(R\right)$ Solutions Combined with Electromagnetism

#### 3.4. Perturbations Around Schwarzschild–(anti)-de Sitter Solutions

## 4. Kerr–Newman Black Holes in $f\left(R\right)$ Theories

#### 4.1. Event Horizons

- ${r}_{-}$ is always a negative solution with no physical meaning,
- ${r}_{int}$ and ${r}_{ext}$ are the interior and exterior horizon respectively, and
- ${r}_{cosm}$ represents—provided that it arises—the cosmological event horizon for observers between ${r}_{ext}$ and ${r}_{cosm}$.

**Figure 1.**Graphics showing horizons positions as solutions of the equation ${\Delta}_{r}=0$ taken from [120,121]. On the left panel (${R}_{0}<0$) the presented cases are: $h>0$ (

**I**), BH with well-defined horizons, dashed with dots), $h=0$ (

**II**), extremal BH, continuous line) and $h<0$ (

**III**), naked singularity, dashed). On the right panel (${R}_{0}>0$) the represented cases are: $h<0$ (

**I**, BH with well-defined horizons, dashed with dots), $h=0$ (

**II**, $extremal$ BH and

**III**, $extremal$ $marginal$ BH, continuous line), and $h>0$ (

**IV**, naked singularity and

**V**, naked marginal singularity, dashed).

- Upper spin bound, $a={a}_{max}$ for which the BH turns $extremal$—the interior and exterior horizons have merged into a single horizon with a null surface gravity. This is the usual configuration for the BH to become extremal.
- Lower spin bound, $a={a}_{min}$, below which the BH turns into a marginal extremal BH. This value can be understood as the cosmological limit for which a BH preserves its exterior horizon without being “torn apart" due to the relative recession speed between two radially separated points induced by the cosmic expansion [120,121].

**Figure 2.**The shaded regions, delimited by the upper ${a}_{max}$ and lower ${a}_{min}$ curves, represent the values of $a/M$ for which the existence of BH is possible once ${R}_{0}\phantom{\rule{0.166667em}{0ex}}{M}^{2}$ value is fixed. Panels show for $\overline{Q}\phantom{\rule{0.166667em}{0ex}}/\phantom{\rule{0.166667em}{0ex}}M=0$ (left) and $\overline{Q}\phantom{\rule{0.166667em}{0ex}}/\phantom{\rule{0.166667em}{0ex}}M=0.75$ (right) on the left and right panels respectively. Note that ${R}_{0}$ has dimensions of [length]${}^{-2}$ when normalizing. Original plots at [120,121].

## 5. Black Holes Thermodynamics in $f\left(R\right)$ Theories

#### 5.1. BH Thermodynamics for AdS Configuration

#### 5.2. BH Thermodynamics for KN Configuration

- fast BH, without phase transitions and always positive heat capacity $C>0$.
- slow BH, presents two phase transitions for two determined values of ${r}_{ext}$.

**Figure 3.**For ${R}_{0}=-0.2$, we graphically display temperature (left) and heat capacity (right) of a BH as functions of the mass parameter M for the cases: (

**I**) $a=0.5$ y $Q=0$ : “slow” BH that shows a local maximum temperature ${T}_{max}$ and a local minimum temperature ${T}_{min}$ at the points where the heat capacity diverges, taking the latter negative values between ${T}_{max}$ y ${T}_{min}$; (

**II**) $a\approx 0.965$ y $Q=0$ : limit case where ${T}_{max}$ and ${T}_{min}$ merge, hence resulting in an inflection point in the temperature and an always positive heat capacity; (

**III**) $a=1.5$ y $Q=0$ : “fast” BH with both temperature and heat capacity monotonously growing (always positive too).

- Fast BH, with bigger values of the spin and the electric charge than the slow ones, shows a heat capacity always positive and a positive free energy up to a $M={M}^{\phantom{\rule{0.166667em}{0ex}}\mathit{\text{limit}}}$ value, and negative onwards. Thus, this BH is unstable against tunneling decay into radiation for mass parameter values of $M<{M}^{\phantom{\rule{0.166667em}{0ex}}\mathit{\text{limit}}}$. For $M>{M}^{\phantom{\rule{0.166667em}{0ex}}\mathit{\text{limit}}}$, free energy becomes negative, therefore smaller than that of pure radiation, that will tend to collapse to the BH configuration in equilibrium with thermal radiation.
- Slow BH shows a more complex thermodynamics, being necessary to distinguish between four regions delimited by the mass parameter values: ${M}^{min}<{M}^{\mathrm{I}}<{M}^{\mathrm{II}}<{M}^{\phantom{\rule{0.166667em}{0ex}}\mathit{\text{limit}}}$, as follows:
- −
- For ${M}^{min}<M<{M}^{\mathrm{I}}$ and for ${M}^{\mathrm{II}}<M<{M}^{\phantom{\rule{0.166667em}{0ex}}\mathit{\text{limit}}}$, both the heat capacity and the free energy are positive, which means that the BH is unstable and decays into radiation by tunneling.
- −
- If ${M}^{\mathrm{I}}<M<{M}^{\mathrm{II}}$, the heat capacity becomes negative but free energy remains positive, being therefore unstable and decays into pure thermal radiation or to larger values of mass.
- −
- Finally, for $M>{M}^{\phantom{\rule{0.166667em}{0ex}}\mathit{\text{limit}}}$ the heat capacity is positive whereas the free energy is now negative, thus tending pure radiation to tunnel to the BH configuration in equilibrium with thermal radiation.

## 6. Thermodynamics in AdS and Kerr–Newman: Particular Examples

#### 6.1. Thermodynamics in AdS

#### 6.1.1. Model I: $f\left(R\right)\phantom{\rule{0.166667em}{0ex}}=\phantom{\rule{0.166667em}{0ex}}\alpha {(-R)}^{\beta}$

**Figure 4.**Thermodynamical regions in the $\left(\right|\alpha |,|\beta \left|\right)$ plane for Model I in $D=4$ (left) and $D=5$ (right).

**Figure 5.**Thermodynamical regions in the $\left(\right|\alpha |,|\beta \left|\right)$ plane for Model I in $D=10$.

#### 6.1.2. Model II: $f\left(R\right)\phantom{\rule{0.166667em}{0ex}}=\phantom{\rule{0.166667em}{0ex}}-\alpha \phantom{\rule{0.166667em}{0ex}}\frac{{\displaystyle \kappa {\left(\frac{R}{\alpha}\right)}^{n}}}{{\displaystyle 1+\beta {\left(\frac{R}{\alpha}\right)}^{n}}}$

#### 6.2. KN–AdS Thermodynamics

#### 6.2.1. Model I: $f\left(R\right)\phantom{\rule{0.166667em}{0ex}}=\phantom{\rule{0.166667em}{0ex}}\alpha {(-R)}^{\beta}$

- Region 3 $\left\{\alpha <0,\phantom{\rule{0.166667em}{0ex}}\beta >2\right\}$. For this region, the value of ${a}_{max}$ decreases suddenly from its normal value to 0 near the frontier of the region, i.e., $\alpha \approx 0$ and $\beta \approx 2$; other values of α and β display a relatively low curvature and the existence of BH is assured.
- Region 4 $\left\{\alpha >0,\phantom{\rule{0.166667em}{0ex}}\beta <1\right\}$. This region only shows problems when $0<\beta <1$, where ${a}_{max}\to 0$, but, as β becomes more negative, the surface of ${a}_{max}$ slowly acquires higher values, recovering its usual value for $\beta =-2$.

**Figure 6.**

**Model I**: Region 3: $\left\{\alpha <0,\phantom{\rule{0.166667em}{0ex}}\beta >2\right\}$, and Region 4: $\left\{\alpha >0,\phantom{\rule{0.166667em}{0ex}}\beta <1\right\}$. BH with a well defined horizon structure will only exist if they have a spin parameter below the upper surface ${a}_{max}$. For the presented regions 3 and 4, the surface ${a}_{min}$ does not exist.

**Figure 7.**Thermodynamical regions for Model I. We distinguish between three different regions: (

**i**) $C<0$ and $F>0$, in black; (

**ii**) $C>0$ and $F>0$, in gray; (

**iii**) $C>0$ and $F<0$, in white.

#### 6.2.2. Model II: $f\left(R\right)\phantom{\rule{0.166667em}{0ex}}=\phantom{\rule{0.166667em}{0ex}}-\alpha \phantom{\rule{0.166667em}{0ex}}\frac{{\displaystyle \kappa {\left(\frac{R}{\alpha}\right)}^{n}}}{{\displaystyle 1+\beta {\left(\frac{R}{\alpha}\right)}^{n}}}$

**Figure 8.**

**Model II**. Region 1: $\left\{\kappa >1,\phantom{\rule{0.166667em}{0ex}}\gamma >0\right\}$, and Region 2: $\left\{\kappa >1,\phantom{\rule{0.166667em}{0ex}}\gamma <0\right\}$. BH with a well-defined horizon structure will only exist if they have a spin parameter below the upper surface ${a}_{max}$, and above a second surface ${a}_{min}$ (in case it exists, only in region 1 for this model) for certain values of κ and γ.

**Figure 9.**Thermodynamical regions with negative scalar curvature ${R}_{0}<0$ of model I. We distinguish between three different regions: (

**i**) $C<0$ and $F>0$, in black; (

**ii**) $C>0$ and $F>0$, in gray; (

**iii**) $C>0$ and $F<0$, in white.

## 7. Cosmological Solutions in Modified Gravity

## 8. First Law of Thermodynamics and FLRW Equations

## 9. Generalization of Cardy–Verlinde Formula

#### 9.1. Multicomponent Universe

#### 9.2. Inhomogeneous EoS Fluid and Modified Gravity

## 10. On the Cosmological Bounds Near Future Singularities

- Type I (“Big Rip”): For $t\to {t}_{s}$, $a\to \infty $ and $\rho \to \infty $, $\left|p\right|\to \infty $.
- Type II (“Sudden”): For $t\to {t}_{s}$, $a\to {a}_{s}$ and $\rho \to {\rho}_{s}$, $\left|p\right|\to \infty $.
- Type III: For $t\to {t}_{s}$, $a\to {a}_{s}$ and $\rho \to \infty $, $\left|p\right|\to \infty $.
- Type IV: For $t\to {t}_{s}$, $a\to {a}_{s}$ and $\rho \to {\rho}_{s}$, $p\to {p}_{s}$ but higher derivatives of Hubble parameter diverge (see [164]).

#### 10.1. Big Rip Singularity

#### 10.2. Sudden Singularity

#### 10.3. Type III Singularity

#### 10.4. Type IV Singularity

#### 10.5. Big Bang Singularity

## 11. Conclusions

## Acknowledgments

## References

- Riess, A.G.; Filippenko, A.V.; Challis, P.; Clocchiattia, A.; Diercks, A.; Garnavich, P.M.; Gilliland, R.L.; Hogan, C.J.; Jha, S.; Kirshner, R.P.; et al. Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J.
**1998**, 116, 1009–1039. [Google Scholar] [CrossRef] - Perlmutter, S.; Aldering, G.; Goldhaber, G.; Knop, R.A.; Nugent, P.; Castro, P.G.; Deustua, S.; Fabbro, S.; Goobar, A.; Groom, D.E.; et al. Measurements of Omega and Lambda from 42 high redshift supernovae. Astrophys. J.
**1999**, 517, 565–586. [Google Scholar] [CrossRef] - Tonry, J.L.; Schmidt, B.P.; Barris, B.; Candia, P.; Challis, P.; Clocchiatti, A.; Coil, A.L.; Filippenko, A.V.; Garnavich, P.; Hogan, C.; et al. Cosmological results from high-z supernovae. Astrophys. J.
**2003**, 594, 1–24. [Google Scholar] [CrossRef] - Guth, A.H. The inflationary universe: A possible solution to the horizon and flatness problems. Phys. Rev. D
**1981**, 23, 347–356. [Google Scholar] [CrossRef] - Peebles, P.J.E. Principles of Physical Cosmology; Princeton University Press: Princeton, NJ, USA, 1993. [Google Scholar]
- Komatsu, E.; Smith, K.M.; Dunkley, J.; Bennett, C.L.; Gold, B.; Hinshaw, G.; Jarosik, N.; Larson, D.; Nolta, M.R.; Page, L.; et al. Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Cosmological interpretation. Astrophys. J. Suppl.
**2011**, 192. [Google Scholar] [CrossRef] - Percival, W.J.; Reid, B.A.; Eisenstein, D.J.; Bahcall, N.A.; Budavari, T.; Frieman, J.A.; Fukugita, M.; Gunn, J.E.; Ivezic, Z.; Knapp, G.R.; et al. Baryon acoustic oscillations in the sloan digital sky survey data release 7 galaxy sample. Mon. Not. Roy. Astron. Soc.
**2010**, 401, 2148–2168. [Google Scholar] [CrossRef] [Green Version] - Riess, A.G.; Macri, L.; Casertano, S.; Sosey, M.; Lampeitl, H.; Ferguson, H.C.; Filippenko, A.V.; Jha, S.W.; Li, W.; Chornock, R.; et al. A redetermination of the hubble constant with the hubble space telescope from a differential distance ladder. Astrophys. J.
**2009**, 6, 539–563. [Google Scholar] [CrossRef] - Biswas, T.; Cembranos, J.A.R.; Kapusta, J.I. Thermal duality and hagedorn transition from p-adic strings. Phys. Rev. Lett.
**2010**, 104, 021601. [Google Scholar] [CrossRef] [PubMed] - Biswas, T.; Cembranos, J.A.R.; Kapusta, J.I. Thermodynamics and cosmological constant of non-local field theories from p-adic strings. J. High Energy Phys.
**2010**, 1010. [Google Scholar] [CrossRef] - Biswas, T.; Cembranos, J.A.R.; Kapusta, J.I. Finite temperature solitons in non-local field theories from p-adic strings. Phys. Rev. D
**2010**, 82. [Google Scholar] [CrossRef] - Weinberg, S. The cosmological constant problem. Rev. Mod. Phys.
**1989**, 61, 1–23. [Google Scholar] [CrossRef] - Nojiri, S.; Odintsov, S.D. Modified gravity with ln R terms and cosmic acceleration. Gen. Rel. Grav.
**2004**, 36, 1765–1780. [Google Scholar] [CrossRef] - Carroll, S.M.; Duvvuri, V.; Trodden, M.; Turner, M.S. Is cosmic speed-up due to new gravitational physics? Phys. Rev. D
**2004**, 70. [Google Scholar] [CrossRef] - Dvali, G.; Gabadadze, G.; Porrati, M. 4-D gravity on a brane in 5-D Minkowski space. Phys. Lett. B
**2000**, 485, 208–214. [Google Scholar] [CrossRef] - Cembranos, J.A.R. Dark matter from R2-gravity. Phys. Rev. Lett.
**2009**, 102. [Google Scholar] [CrossRef] [PubMed] - Cembranos, J.A.R. QCD effects in cosmology. AIP Conf. Proc.
**2009**, 1182, 288–291. [Google Scholar] - Cembranos, J.A.R. R
^{2}dark matter. J. Phys. Conf. Ser.**2011**, 315. [Google Scholar] [CrossRef] - Cembranos, J.A.R. The Newtonian limit at intermediate energies. Phys. Rev. D
**2006**, 73. [Google Scholar] [CrossRef] - Cembranos, J.A.R.; Olive, K.A.; Peloso, M.; Uzan, J.P. Quantum corrections to the cosmological evolution of conformally coupled fields. J. Cosmol. Astropart. Phys.
**2009**, 0907. [Google Scholar] [CrossRef] - Beltrán, J.; Maroto, A.L. Cosmic vector for dark energy. Phys. Rev. D
**2008**, 78. [Google Scholar] [CrossRef] - Beltrán, J.; Maroto, A.L. Cosmological electromagnetic fields and dark energy. J. Cosmol. Astropart. Phys.
**2009**, 0903. [Google Scholar] [CrossRef] - Beltrán, J.; Maroto, A.L. Cosmological evolution in vector-tensor theories of gravity. Phys. Rev. D
**2009**, 80, 063512. [Google Scholar] [CrossRef] - Beltrán, J.; Maroto, A.L. Dark energy: The Absolute electric potential of the universe. Int. J. Mod. Phys. D
**2009**, 18, 2243–2248. [Google Scholar] - De la Cruz-Dombriz, A.; Sáez-Gómez, D. On the stability of the cosmological solutions in f(R,G) gravity.
**2011**. [Google Scholar] - Clifton, T.; Ferreira, P.G.; Padilla, A.; Skordis, C. Modified gravity and cosmology. Phys. Rept.
**2012**, 513, 1–189. [Google Scholar] [CrossRef] - Nojiri, S.; Odintsov, S.D. Introduction to modified gravity and gravitational alternative for dark energy. Int. J. Geom. Meth. Mod. Phys.
**2007**, 4, 115–146. [Google Scholar] [CrossRef] - Nojiri, S.; Odintsov, S.D. Dark energy, inflation and dark matter from modified F(R) gravity.
**2008**. [Google Scholar] - Capozziello, S.; Francaviglia, M. Extended theories of gravity and their cosmological and astrophysical applications. Gen. Rel. Grav.
**2008**, 40, 357–420. [Google Scholar] [CrossRef] - Sotiriou, T.P.; Faraoni, V. f(R) theories of gravity.
**2010**. [Google Scholar] - Lobo, F.S.N. The dark side of gravity: Modified theories of gravity.
**2008**. [Google Scholar] - Capozziello, S.; Faraoni, V. Beyond Einstein Gravity. In Fundamental Theories of Physics Volume 170; Springer: Dordrecht, The Netherlands, 2011. [Google Scholar]
- Sáez-Gómez, D. On Friedmann-Lemaître-Robertson-Walker cosmologies in non-standard gravity. PhD Thesis, University of Barcelona, Barcelona, Spain, 2011. [Google Scholar]
- Capozziello, S. Curvature quintessence. Int. J. Mod. Phys. D
**2002**, 11. [Google Scholar] [CrossRef] - Capozziello, S.; Carloni, S.; Troisi, A. Quintessence without scalar fields. Recent Res. Dev. Astron. Astrophys.
**2003**, 1. [Google Scholar] - Nojiri, S.; Odintsov, D. Unified cosmic history in modified gravity: From F(R) theory to Lorentz non-invariant models. Phys. Rept.
**2011**, 505, 59–144. [Google Scholar] [CrossRef] - De la Cruz-Dombriz, A.; Dobado, A. A f(R) gravity without cosmological constant. Phys. Rev. D
**2006**, 74, 087501. [Google Scholar] [CrossRef] - Goheer, N.; Larena, J.; Dunsby, P.K.S. Power-law cosmic expansion in f(R) gravity models. Phys. Rev. D
**2009**, 80, 061301. [Google Scholar] [CrossRef] - Abdelwahab, M.; Goswami, R.; Dunsby, P.K.S. Cosmological dynamics of fourth order gravity: A compact view. Phys. Rev. D
**2012**, 85, 083511. [Google Scholar] [CrossRef] - Carloni, S.; Goswami, R.; Dunsby, P.K.S. A new approach to reconstruction methods in f(R) gravity. Class. Quant. Grav.
**2012**, 29. [Google Scholar] [CrossRef] - Capozziello, S.; de Laurentis, M. Extended theories of gravity. Phys. Rept.
**2011**, 509, 167–321. [Google Scholar] [CrossRef] - Nzioki, A.M.; Dunsby, P.K.S.; Goswami, R.; Carloni, S. Geometrical approach to strong gravitational lensing in f(R) gravity. Phys. Rev. D
**2011**, 83, 024030. [Google Scholar] [CrossRef] - Abebe, A.; Goswami, R.; Dunsby, P.K.S. On shear-free perturbations of f(R) gravity. Phys. Rev. D
**2011**, 84, 124027. [Google Scholar] [CrossRef] - Sotiriou, T.P. The Nearly Newtonian regime in non-linear theories of gravity. Gen. Rel. Grav.
**2006**, 38, 1407–1417. [Google Scholar] [CrossRef] - Faraoni, V. Solar system experiments do not yet veto modified gravity models. Phys. Rev. D
**2006**, 74, 023529. [Google Scholar] [CrossRef] - Nojiri, S.; Odintsov, S.D. Modified f(R) gravity consistent with realistic cosmology: From matter dominated epoch to dark energy universe. Phys. Rev. D
**2006**, 74, 086005. [Google Scholar] [CrossRef] - De la Cruz-Dombriz, A.; Dobado, A.; Maroto, A.L. On the evolution of density perturbations in f(R) theories of gravity Cosmological density perturbations in modified gravity theories. Phys. Rev. D
**2008**, 77, 123515. [Google Scholar] - De la Cruz-Dombriz, A.; Dobado, A.; Maroto, A.L. Cosmological Density Perturbations in Modified Gravity Theories. In Proceedings of the AIP Conference, Salamanca, Spain, September 2008; Volume 1122, p. 252.
- Abebe, A.; Abdelwahab, M.; de la Cruz-Dombriz, A.; Dunsby, P.K.S. Covariant gauge-invariant perturbations in multifluid f(R) gravity. Class. Quant. Grav.
**2012**, 29. [Google Scholar] [CrossRef] - De la Cruz-Dombriz, A.; Dobado, A.; Maroto, A.L. Comment on ‘Viable singularity-free f(R) gravity without a cosmological constant’. Phys. Rev. Lett. D
**2009**, 103, 179001. [Google Scholar] [CrossRef] [PubMed] - Cvetic, M.; Nojiri, S.; Odintsov, S.D. Black hole thermodynamics and negative entropy in de Sitter and anti-de Sitter Einstein-Gauss-Bonnet gravity. Nucl. Phys. B
**2002**, 628, 295–330. [Google Scholar] [CrossRef] - Cai, R.G. Gauss-Bonnet black holes in AdS spaces. Phys. Rev. D
**2002**, 65, 084014. [Google Scholar] [CrossRef] - Cho, Y.M.; Neupane, I.P. Antide Sitter black holes, thermal phase transition, and holography in higher curvature gravity. Phys. Rev. D
**2002**, 66, 024044. [Google Scholar] [CrossRef] - Cai, R.G. A note on thermodynamics of black holes in Lovelock gravity. Phys. Lett. B
**2004**, 582, 237–242. [Google Scholar] [CrossRef] - Matyjasek, J.; Telecka, M.; Tryniecki, D. Higher dimensional black holes with a generalized gravitational action. Phys. Rev. D
**2006**, 73, 124016. [Google Scholar] [CrossRef] - Park, M. The black hole and cosmological solutions in IR modified Hořava gravity. J. High. Energy Phys.
**2009**, 9. [Google Scholar] [CrossRef] - Lee, H.W.; Kim, Y.W.; Myung, Y.S. Extremal black holes in the Horava-Lifshitz gravity. Eur. Phys. J. C
**2010**, 68, 255–263. [Google Scholar] [CrossRef] - Castillo, A.; Larranaga, A. Entropy for black holes in the deformed Hořava-lifshitz gravity. Electron. J. Theor. Phys.
**2011**, 8, 1–10. [Google Scholar] - Wang, T. Static solutions with spherical symmetry in f(T) theories. Phys. Rev. D
**2011**, 84, 024042. [Google Scholar] [CrossRef] - Whitt, B. Fourth order gravity as general relativity plus matter. Phys. Lett. B
**1984**, 145, 176–178. [Google Scholar] [CrossRef] - Mignemi, S.; Wiltshire, D.L. Black holes in higher derivative gravity theories. Phys. Rev. D
**1992**, 46, 1475–1506. [Google Scholar] [CrossRef] - Multamaki, T.; Vilja, I. Spherically symmetric solutions of modified field equations in f(R) theories of gravity. Phys. Rev. D
**2006**, 74, 064022. [Google Scholar] [CrossRef] - Olmo, G.J. Limit to general relativity in f(R) theories of gravity. Phys. Rev. D
**2007**, 75, 023511. [Google Scholar] [CrossRef] - Nzioki, A.M.; Carloni, S.; Goswami, R.; Dunsby, P.K.S. A New framework for studying spherically symmetric static solutions in f(R) gravity. Phys. Rev. D
**2010**, 81, 084028. [Google Scholar] [CrossRef] - Moon, T.; Myung, Y.S.; Son, E.J. f(R) black holes. Gen. Rel. Grav.
**2011**, 43. [Google Scholar] [CrossRef] - Capozziello, S.; de Laurentis, M.; Stabile, A. Axially symmetric solutions in f(R)-gravity. Class. Quant. Grav.
**2010**, 27. [Google Scholar] [CrossRef] - Myung, Y.S. Instability of rotating black hole in a limited form of f(R) gravity. Phys. Rev. D
**2011**, 84, 024048. [Google Scholar] [CrossRef] - Vollick, D.N. Noether charge and black hole entropy in modified theories of gravity. Phys. Rev. D
**2007**, 76, 124001. [Google Scholar] [CrossRef] - Cognola, G.; Elizalde, E.; Nojiri, S.; Odintsov, S.D.; Zerbini, S. One-loop f(R) gravity in de Sitter universe. J. Cosmol. Astropart. Phys.
**2005**, 502. [Google Scholar] [CrossRef] - Hawking, S.W.; Page, D.N. Thermodynamics of black holes in anti-de sitter space. Commun. Math. Phys.
**1983**, 87, 577–588. [Google Scholar] [CrossRef] - Witten, E. Anti-de sitter space, thermal phase transition, and confinement in gauge theories. Adv. Theor. Math. Phys.
**1998**, 2, 505–532. [Google Scholar] - Briscese, F.; Elizalde, E. Black hole entropy in modified gravity models. Phys. Rev. D
**2008**, 77, 044009. [Google Scholar] [CrossRef] - Myung, Y.S.; Moon, T.; Son, E.J. Stability of f(R) black holes. Phys. Rev. D
**2011**, 83, 124009. [Google Scholar] [CrossRef] - Perez Bergliaffa, S.E.; de Oliveira Nunes, Y.E.C. Static and spherically symmetric black holes in f(R) theories. Phys. Rev. D
**2011**, 84, 084006. [Google Scholar] [CrossRef] - Moon, T.; Myung, Y.S.; Son, E.J. Stability analysis of f(R)-AdS black holes. Eur. Phys. J. C
**2011**, 71. [Google Scholar] [CrossRef] - Nelson, W. Static Solutions for 4th order gravity. Phys. Rev. D
**2010**, 82, 104026. [Google Scholar] [CrossRef] - Larranaga, A. A rotating charged black hole solution in f(R) gravity. Pramana
**2012**, 78, 697–703. [Google Scholar] [CrossRef] - Myung, Y.S. Instability of rotating black hole in a limited form of f(R) gravity. Phys. Rev. D
**2011**, 84, 024048. [Google Scholar] [CrossRef] - Hendi, S.H.; Momeni, D. Black hole solutions in F(R) gravity with conformal anomaly. Eur. Phys. J. C
**2011**, 71. [Google Scholar] [CrossRef] - Jacobson, T. Thermodynamics of space-time: The Einstein equation of state. Phys. Rev. Lett.
**1995**, 75, 1260–1263. [Google Scholar] [CrossRef] [PubMed] - Elizalde, E.; Silva, P.J. F(R) gravity equation of state. Phys. Rev. D
**2008**, 78, 061501. [Google Scholar] [CrossRef] - Hayward, S.A.; Mukohyama, S.; Ashworth, M.C. Dynamic black hole entropy. Phys. Lett. A
**1999**, 256, 347–350. [Google Scholar] [CrossRef] - Bak, D.; Rey, S.J. Cosmic holography. Class. Quant. Grav.
**2000**, 17. [Google Scholar] [CrossRef] - Cai, R.G.; Kim, S.P. First law of thermodynamics and Friedmann equations of Friedmann-Robertson-Walker universe. J. High Energy Phys.
**2005**, 0502. [Google Scholar] [CrossRef] - Akbar, M.; Cai, R.G. Friedmann equations of FLRW universe in scalar-tensor gravity, f(R) gravity and first law of thermodynamics. Phys. Lett. B
**2006**, 635, 7–10. [Google Scholar] [CrossRef] - Wu, S.F.; Wang, B.; Yang, G.H. Thermodynamics on the apparent horizon in generalized gravity theories. Nucl. Phys. B
**2008**, 799, 330–344. [Google Scholar] [CrossRef] - Bamba, K.; Geng, C.Q. Thermodynamics of cosmological horizons in f(T) gravity. J. Cosmol. Astropart. Phys.
**2011**, 1111. [Google Scholar] [CrossRef] [PubMed] - Radicella, N.; Pavon, D. The generalized second law in universes with quantum corrected entropy relations. Phys. Lett. B
**2010**, 691, 121–126. [Google Scholar] [CrossRef] - Cao, Q.J.; Chen, Y.X.; Shao, K.N. Clausius relation and Friedmann equation in FLRW universe model. J. Cosmol. Astropart. Phys.
**2010**, 1005. [Google Scholar] [CrossRef] - Cai, R.G.; Ohta, N. Horizon thermodynamics and gravitational field equations in Hořava-lifshitz gravity. Phys. Rev. D
**2010**, 81, 084061. [Google Scholar] [CrossRef] - Bamba, K.; Geng, C.Q. Thermodynamics in F(R) gravity with phantom crossing. Phys. Lett. B
**2009**, 679, 282–287. [Google Scholar] [CrossRef] - Sheykhi, A.; Wang, B. The Generalized second law of thermodynamics in Gauss-Bonnet braneworld. Phys. Lett. B
**2009**, 678, 434–437. [Google Scholar] [CrossRef] - Zhu, T.; Ren, J.R.; Li, M.F. Influence of generalized and extended uncertainty principle on thermodynamics of FLRW universe. Phys. Lett. B
**2009**, 674, 204–209. [Google Scholar] [CrossRef] - Cai, R.G. Thermodynamics of apparent horizon in brane world scenarios. Prog. Theor. Phys. Suppl.
**2008**, 172, 100–109. [Google Scholar] [CrossRef] - Akbar, M.; Cai, R.G. Friedmann equations of FLRW universe in scalar-tensor gravity, f(R) gravity and first law of thermodynamics. Phys. Lett. B
**2006**, 635, 7–10. [Google Scholar] [CrossRef] - Cai, R.G.; Cao, L.-M.; Hu, Y.P. Corrected entropy-area relation and modified friedmann equations. J. High Energy Phys.
**2008**, 808. [Google Scholar] [CrossRef] - Cardy, J.L. Operator content of two-dimensional conformally invariant. Nucl. Phys. B
**1986**, 270, 186–204. [Google Scholar] [CrossRef] - Verlinde, E. On the holographic principle in a radiation dominated universe.
**2000**. [Google Scholar] - Youm, D. A note on the Cardy-Verlinde formula. Phys. Lett. B
**2002**, 531, 276–280. [Google Scholar] [CrossRef] - Brevik, I.; Nojiri, S.; Odintsov, S.D.; Sáez-Gómez, D. Cardy-Verlinde formula in FLRW Universe with inhomogeneous generalized fluid and dynamical entropy bounds near the future singularity. Eur. Phys. J. C
**2010**, 69, 563–574. [Google Scholar] [CrossRef] - Nojiri and, S.; Odintsov, S.D. Modified gravity with negative and positive powers of the curvature: Unification of the inflation and of the cosmic acceleration. Phys. Rev. D
**2003**, 68, 123512. [Google Scholar] [CrossRef] - De la Cruz Dombriz, A. Some cosmological and astrophysical aspects of modified gravity theories. PhD Thesis, Complutense University of Madrid, Madrid, Spain, 2010. [Google Scholar]
- Khoury, J.; Weltman, A. Chameleon fields: Awaiting surprises for tests of gravity in space. Phys. Rev. Lett.
**2004**, 93, 171104. [Google Scholar] [CrossRef] [PubMed] - Khoury, J.; Weltman, A. Chameleon cosmology. Phys. Rev. D
**2004**, 69, 044026. [Google Scholar] [CrossRef] - Nojiri, S.; Odintsov, S.D. Unifying inflation with LambdaCDM epoch in modified f(R) gravity consistent with Solar System tests. Phys. Lett. B
**2007**, 657, 238–245. [Google Scholar] [CrossRef] - Hu, W.; Sawicki, I. Models of f(R) cosmic acceleration that evade solar-system tests. Phys. Rev. D
**2007**, 76, 064004. [Google Scholar] [CrossRef] - Nojiri, S.; Odintsov, S.D. Modified f(R) gravity unifying R**m inflation with Lambda CDM epoch. Phys. Rev. D
**2008**, 77, 026007. [Google Scholar] [CrossRef] - Pogosian, L.; Silvestri, A. The pattern of growth in viable f(R) cosmologies. Phys. Rev. D
**2008**, 77, 023503. [Google Scholar] [CrossRef] - Capozziello, S.; Tsujikawa, S. Solar system and equivalence principle constraints on f(R) gravity by chameleon approach. Phys. Rev. D
**2008**, 77, 107501. [Google Scholar] [CrossRef] - Starobinsky, A.A. Disappearing cosmological constant in f(R) gravity. J. Exp. Theor. Phys. Lett.
**2007**, 86, 157–163. [Google Scholar] [CrossRef] - Ortín, T. Gravity and Strings; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- De la Cruz-Dombriz, A.; Dobado, A.; Maroto, A.L. Black Holes in f(R) theories. Phys. Rev. D
**2009**, 80, 124011, [Erratum: Phys. Rev. D**2011**, 83, 029903(E).]. [Google Scholar] - De la Cruz-Dombriz, A.; Dobado, A.; Maroto, A.L. Black holes in modified gravity theories. J. Phys. Conf. Ser.
**2010**, 229. [Google Scholar] [CrossRef] - Pogosian, L.; Silvestri, A. Pattern of growth in viable f(R) cosmologies. Phys. Rev. D
**2008**, 77, 023503–023517. [Google Scholar] [CrossRef] - Birkhoff, G.D. Relativity and Modern Physics; Harvard University Press: Cambrigde, MA, USA, 1923. [Google Scholar]
- Jebsen, J.T. Über die allgemeinen kugelsymmetrischen Lösungen der Einsteinschen Gravitationsgleichungen im Vakuum. Ark. Mat. Astr. Fys.
**1921**, 15, 18. [Google Scholar] - Capozziello, S.; Sáez-Gómez, D. Scalar-tensor representation of f(R) gravity and Birkhoff’s theorem. Annalen Phys.
**2012**, 524, 279–285. [Google Scholar] [CrossRef] - Capozziello, S.; Sáez-Gómez, D. Conformal frames and the validity of Birkhoff’s theorem. AIP Conf. Proc.
**2011**, 1458, 347–350. [Google Scholar] - Carter, B. Les Astres Occlus; DeWitt, C.M., Ed.; Gordon and Breach: New York, NY, USA, 1973. [Google Scholar]
- Cembranos, J.A.R.; de la Cruz-Dombriz, A.; Jimeno-Romero, P. Kerr-Newman black holes in f(R) theories.
**2011**. [Google Scholar] - Cembranos, J.A.R.; de la Cruz-Dombriz, A.; Romero, P.J. Modified spinning black holes. AIP Conf. Proc.
**2011**, 1458, 439–442. [Google Scholar] - Hartle, J.B.; Hawking, S.W. Path integral derivation of black hole radiance. Phys. Rev. D
**1976**, 13, 2188–2203. [Google Scholar] [CrossRef] - Gibbons, G.W.; Perry, M.J. Black holes and thermal green functions. Proc. R. Soc. Lond. A
**1978**, 358, 467–494. [Google Scholar] [CrossRef] - Gibbons, G.W.; Hawking, S.W. Action integrals and partition functions in quantum gravity. Phys. Rev. D
**1977**, 15, 2752–2756. [Google Scholar] [CrossRef] - Gibbons, G.W.; Hawking, S.W. Euclidean Quantum Gravity; World Scientific Pub Co Inc: Singapore, 1993. [Google Scholar]
- Hawking, S.W. Particle creation by black holes. Commun. Math. Phys.
**1975**, 43, 199–220, [Erratum-ibid.**1976**, 46, 206]. [Google Scholar] [CrossRef] - Multamaki, T.; Putaja, A.; Vilja, I.; Vagenas, E.C. Energy-momentum complexes in f(R) theories of gravity. Class. Quant. Grav.
**2008**, 25. [Google Scholar] [CrossRef] - Bekenstein, J.D. Black holes and entropy. Phys. Rev. D
**1973**, 7, 2333–2346. [Google Scholar] [CrossRef] - Bardeen, J.M.; Carter, B.; Hawking, S.W. The four laws of Black Hole mechanics. Commun. Math. Phys.
**1973**, 31, 161–170. [Google Scholar] [CrossRef] - Caldarelli, M.M.; Cognola, G.; Klemm, D. Thermodynamics of Kerr-Newman-AdS black holes and conformal field theories. Class. Quant. Grav.
**2000**, 17, 399–420. [Google Scholar] [CrossRef] - Starobinsky, A.A. A new type of isotropic cosmological models without singularity. Phys. Lett. B
**1980**, 91, 99–102. [Google Scholar] [CrossRef] - Mijić, M.B.; Morris, M.S.; Suen, W.M. The R
^{2}cosmology: Inflation without a phase transition. Phys. Rev. D**1986**, 34, 2934–2946. [Google Scholar] [CrossRef] - Nojiri, S.; Odintsov, S.D. Modified gravity and its reconstruction from the universe expansion. J. Phys. Conf. Ser.
**2007**, 66. [Google Scholar] [CrossRef] - Nojiri, S.; Odintsov, S.D. Modified gravity as an alternative for Lambda-CDM cosmology. J. Phys. A
**2007**, 40. [Google Scholar] [CrossRef] - Capozziello, S.; Nojiri, S.; Odintsov, S.D.; Troisi, A. Cosmological viability of f(R)-gravity as an ideal fluid and its compatibility with a matter dominated phase. Phys. Lett. B
**2006**, 639, 135–143. [Google Scholar] [CrossRef] - Elizalde, E.; Sáez-Gómez, D. F(R) cosmology in presence of a phantom fluid and its scalar-tensor counterpart: Towards a unified precision model of the universe evolution. Phys. Rev. D
**2009**, 80, 044030. [Google Scholar] [CrossRef] - Brevik, I.H. Crossing of the w = -1 barrier in two-fluid viscous modified gravity. Gen. Rel. Grav.
**2006**, 38, 1317–1328. [Google Scholar] [CrossRef] - Granda, L.N. Reconstructing the f(R) gravity from the holographic principle.
**2009**. [Google Scholar] - Setare, M.R. Holographic modified gravity. Int. J. Mod. Phys. D
**2008**, 17. [Google Scholar] [CrossRef] - Wu, X.; Zhu, Z.H. Reconstructing f(R) theory according to holographic dark energy. Phys. Lett. B
**2008**, 660, 293–298. [Google Scholar] [CrossRef] - Bamba, K.; Geng, C.Q.; Nojiri, S.; Odintsov, S.D. Crossing of the phantom divide in modified gravity. Phys. Rev. D
**2009**, 79, 083014. [Google Scholar] [CrossRef] - Elizalde, E.; Myrzakulov, R.; Obukhov, V.V.; Sáez-Gómez, D. LambdaCDM epoch reconstruction from F(R,G) and modified Gauss-Bonnet gravities. Class. Quant. Grav.
**2010**, 27. [Google Scholar] [CrossRef] - Myrzakulov, R.; Sáez-Gómez, D.; Tureanu, A. On the ΛCDM Universe in f(G) gravity. Gen. Rel. Grav.
**2011**, 43. [Google Scholar] [CrossRef] - Carroll, S.M.; Duvvuri, V.; Trodden, M.; Turner, M.S. Is cosmic speed-up due to new gravitational physics? Phys. Rev. D
**2004**, 70, 043528. [Google Scholar] [CrossRef] - Dobado, A.; Maroto, A.L. Inflatonless inflation. Phys. Rev. D
**1995**, 52, 1895–1901. [Google Scholar] [CrossRef] - Cembranos, J.A.R. The Newtonian limit at intermediate energies. Phys. Rev. D
**2006**, 73, 064029. [Google Scholar] [CrossRef] - Sáez-Gómez, D. Modified f(R) gravity from scalar-tensor theory and inhomogeneous EoS dark energy. Gen. Rel. Grav.
**2009**, 41, 1527–1538. [Google Scholar] [CrossRef] - Nojiri, S.; Odintsov, S.D.; Sáez-Gómez, D. Cosmological reconstruction of realistic modified F(R) gravities. Phys. Lett. B
**2009**, 681, 74–80. [Google Scholar] [CrossRef] - Nojiri, S.; Odintsov, S.D.; Sáez-Gómez, D. Cyclic, ekpyrotic and little rip universe in modified gravity. AIP Conf. Proc.
**2011**, 1458, 207–221. [Google Scholar] - Dunsby, P.K.S.; Elizalde, E.; Goswami, R.; Odintsov, S.; Sáez-Gómez, D. On the LCDM Universe in f(R) gravity. Phys. Rev. D
**2010**, 82, 023519. [Google Scholar] [CrossRef] - Sáez-Gómez, D. Cosmological evolution, future singularities and Little Rip in viable f(R) theories and their scalar-tensor counterpart.
**2012**. [Google Scholar] - Hayward, S.A. Unified first law of black hole dynamics and relativistic thermodynamics. Class. Quant. Grav.
**1998**, 15. [Google Scholar] [CrossRef] - Brevik, I.; Odintsov, S.D. On the Cardy-Verlinde entropy formula in viscous cosmology. Phys. Rev. D
**2002**, 65, 067302. [Google Scholar] [CrossRef] - Brevik, I. Cardy-verlinde entropy formula in the presence of a general state equation. Phys. Rev. D
**2002**, 65, 127302. [Google Scholar] [CrossRef] - Brevik, I. Viscous cosmology and the Cardy-Verlinde formula. Int. J. Mod. Phys. A
**2003**, 18. [Google Scholar] [CrossRef] - Brevik, I.; Gorbunova, O.; Sáez-Gómez, D. Casimir effects near the big rip singularity in viscous cosmology. Gen. Rel. Grav.
**2010**, 42, 1513–1522. [Google Scholar] [CrossRef] - Gorbunova, O.; Sáez-Gómez, D. The Oscillating dark energy and cosmological Casimir effect. Open Astron. J.
**2010**, 3, 73–75. [Google Scholar] [CrossRef] - Nojiri, S.; Odintsov, S.D. Inhomogeneous equation of state of the universe: Phantom era, singularity and crossing the phantom barrier. Phys. Rev. D
**2005**, 72, 023003. [Google Scholar] [CrossRef] - Nojiri, S.; Odintsov, S.D. The New form of the equation of state for dark energy fluid and accelerating universe. Phys. Lett. B
**2006**, 639, 144–150. [Google Scholar] [CrossRef] - Brevik, I.; Nojiri, S.; Odintsov, S.D.; Vanzo, L. Entropy and universality of Cardy-Verlinde formula in dark energy universe. Phys. Rev. D
**2004**, 70, 043520. [Google Scholar] [CrossRef] - Cai, R.G. Cardy-Verlinde formula and thermodynamics of black holes in de spaces. Nucl. Phys. B
**2002**, 628, 375–386. [Google Scholar] [CrossRef] - Cai, R.G. Cardy-Verlinde formula and asymptotically de Sitter spaces. Phys. Lett. B
**2002**, 525, 331–336. [Google Scholar] [CrossRef] - Nojiri, S.; Odintsov, S.D.; Tsujikawa, S. Properties of singularities in (phantom) dark energy universe. Phys. Rev. D
**2005**, 71, 063004. [Google Scholar] [CrossRef] - Shtanov, Y.; Sahni, V. Unusual cosmological singularities in brane world models. Class. Quant. Grav.
**2002**, 19, L101–L107. [Google Scholar] [CrossRef] - Nojiri, S.; Odintsov, S.D. The future evolution and finite-time singularities in unifying the inflation and cosmic acceleration. Phys. Rev. D
**2008**, 78, 046006. [Google Scholar] [CrossRef] - Bamba, K.; Nojiri, S.; Odintsov, S.D. The future of universe in modified gravity theories: Approaching the finite-time future singularity. J. Cosmol. Astropart. Phys.
**2008**, 0810. [Google Scholar] [CrossRef] - Capozziello, S.; de Laurentis, M.; Nojiri, S.; Odintsov, S.D. Classifying and avoiding singularities in the alternative gravity. Phys. Rev. D
**2009**, 79, 124007. [Google Scholar] [CrossRef] - Bamba, K.; Odintsov, S.D.; Sebastiani, L.; Zerbini, S. Finite-time future singularities in modified Gauss-Bonnet and F(R,G) gravity and singularity avoidance. Eur. Phys. J. C
**2010**, 67, 295–310. [Google Scholar] [CrossRef] - Abdalla, M.C.B.; Nojiri, S.; Odintsov, S.D. Consistent modified gravity: Dark energy, acceleration and the cosmic doomsday. Class. Quant. Grav.
**2005**, 22, L35–L42. [Google Scholar] [CrossRef] - Elizalde, E.; Nojiri, S.; Odintsov, S.D. Late-time cosmology in (phantom) scalar-tensor theory: Dark energy cosmic speed-up. Phys. Rev. D
**2004**, 70, 043539. [Google Scholar] [CrossRef] - Caldwell, R.R. A phantom menace? Cosmological consequences of a dark energy component with super-negative equation of state. Phys. Lett. B
**2002**, 545, 23–29. [Google Scholar] - Caldwell, R.R.; Kamionkowski, M.; Weinberg, N.N. Phantom energy and cosmic doomsday. Phys. Rev. Lett.
**2003**, 91, 071301. [Google Scholar] [CrossRef] [PubMed] - McInnes, B. The dS/CFT correspondence and the big smash. J. High. Energy Phys.
**2002**, 208. [Google Scholar] [CrossRef] - Nojiri, S.; Odintsov, S.D. Quantum deSitter cosmology and phantom matter. Phys. Lett. B
**2003**, 562, 147–152. [Google Scholar] [CrossRef] - Nojiri, S.; Odintsov, S.D. Effective equation of state and energy conditions in phantom inflationary cosmology perturbed by quantum effects. Phys. Lett. B
**2003**, 571, 1–10. [Google Scholar] [CrossRef] - Gonzalez-Diaz, P.F. K-essential phantom energy: Doomsday around the corner? Phys. Lett. B
**2004**, 586, 1–4. [Google Scholar] [CrossRef] - Gonzalez-Diaz, P.F. On tachyon and sub-quantum phantom cosmologies.
**2004**. [Google Scholar] - Sami, M.; Toporensky, A. Phantom field and the fate of universe. Mod. Phys. Lett. A
**2004**, 19. [Google Scholar] [CrossRef] - Stefancic, H. Generalized phantom energy. Phys. Lett. B
**2004**, 586, 5–10. [Google Scholar] [CrossRef] - Chimento, L.P.; Lazkoz, R. Constructing Phantom Cosmologies from Standard Scalar Field Universes. Phys. Rev. Lett.
**2003**, 91, 211301. [Google Scholar] [CrossRef] [PubMed] - Chimento, L.P.; Lazkoz, R. On big rip singularities. Mod. Phys. Lett. A
**2004**, 19. [Google Scholar] [CrossRef] - Hao, J.G.; Li, X.Z. Generalized quartessence cosmic dynamics: Phantom or quintessence Sitter attractor. Phys. Lett. B
**2005**, 606, 7–11. [Google Scholar] [CrossRef] - Babichev, E.; Dokuchaev, V.; Eroshenko, Yu. Dark energy cosmology with generalized linear equation of state. Class. Quant. Grav.
**2005**, 22. [Google Scholar] [CrossRef] - Zhang, X.F.; Li, H.; Piao, Y.S.; Zhang, X.M. Two-field models of dark energy with equation of state across. Mod. Phys. Lett. A
**2006**, 21. [Google Scholar] [CrossRef] - Elizalde, E.; Nojiri, S.; Odintsov, S.D.; Wang, P. Dark energy: Vacuum fluctuations, the effective phantom phase,and holography. Phys. Rev. D
**2005**, 71, 103504. [Google Scholar] [CrossRef] - Dabrowski, M.P.; Stachowiak, T. Phantom Friedmann cosmologies and higher-order characteristics of expansion. Ann. Phys.
**2006**, 321, 771–812. [Google Scholar] [CrossRef] - Lobo, F.S.N. Phantom energy traversable wormholes. Phys. Rev. D
**2005**, 71, 084011. [Google Scholar] [CrossRef] - Cai, R.G.; Zhang, H.S.; Wang, A. Crossing w = -1 in Gauss-Bonnet brane world with induced. Commun. Theor. Phys.
**2005**, 44. [Google Scholar] [CrossRef] - Arefeva, I.Y.; Koshelev, A.S.; Vernov, S.Y. Exactly solvable SFT inspired phantom model. Theor. Math. Phys.
**2006**, 148. [Google Scholar] - Elizalde, E.; Nojiri, S.; Odintsov, S.D.; Sáez-Gómez, D.; Faraoni, V. Reconstructing the universe history, from inflation to phantom and canonical scalar fields. Phys. Rev. D
**2008**, 77, 106005. [Google Scholar] [CrossRef] - Nojiri, S.; Odintsov, S.D. AdS/CFT correspondence, conformal anomaly and quantum corrected bounds. Int. J. Mod. Phys. A
**2001**, 16. [Google Scholar] [CrossRef] - Sahni, V.; Shtanov, Y. Brane world models of dark energy. J. Cosmol. Astropart. Phys.
**2003**, 311. [Google Scholar] [CrossRef] - Frampton, P.H.; Ludwick, K.J.; Scherrer, R.J. The little rip. Phys. Rev. D
**2011**, 84, 063003. [Google Scholar] [CrossRef] - Lopez-Revelles, A.J.; Myrzakulov, R.; Sáez-Gómez, D. Ekpyrotic universes in F(R) Hořava-Lifshitz gravity. Phys. Rev. D
**2012**, 85, 103521. [Google Scholar] [CrossRef] - Houndjo, M.J.S.; Alvarenga, F.G.; Rodrigues, M.E.; Jardim, D.F. Thermodynamics in Little Rip cosmology in the framework of a type of f(R; T) gravity.
**2012**. [Google Scholar] - Bamba, K.; Geng, C.Q.; Lee, C.C. Phantom crossing in viable f(R) theories. Int. J. Mod. Phys. D
**2011**, 20. [Google Scholar] [CrossRef] - Padmanabhan, T. Thermodynamical aspects of gravity: New insights. Rept. Prog. Phys.
**2010**, 73. [Google Scholar] [CrossRef] - Verlinde, E.P. On the origin of gravity and the laws of newton. J. High Energy Phys.
**2011**, 1104. [Google Scholar] [CrossRef] - Bourhrous, H.; de la Cruz-Dombriz, A.; Dunsby, P. CMB tensor anisotropies in metric f(R) gravity. AIP Conf. Proc.
**2011**, 1458, 343–346. [Google Scholar] - Cembranos, J.A.R.; de la Cruz-Dombriz, A.; Nunez, B.M. Gravitational collapse in f(R) theories. J. Cosmol. Astropart. Phys.
**2012**, 1204. [Google Scholar] [CrossRef] - Cembranos, J.A.R.; de la Cruz-Dombriz, A.; Nunez, B.M. On the collapse in fourth order gravities. AIP Conf. Proc.
**2011**, 1458, 491–494. [Google Scholar] - Albareti, F.D.; Cembranos, J.A.R.; de la Cruz-Dombriz, A. Focusing of geodesic congruences in an accelerated expanding Universe.
**2012**. [Google Scholar] - Oyaizu, H.; Lima, M.; Hu, W. Nonlinear evolution of f(R) cosmologies. 2. Power spectrum. Phys. Rev. D
**2008**, 78, 123524. [