Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 9605 KiB  
Article
Cyclogenesis and Density Currents in the Middle East and the Associated Dust Activity in September 2015
by Diana Francis, Noor Alshamsi, Juan Cuesta, Ayse Gokcen Isik and Cihan Dundar
Geosciences 2019, 9(9), 376; https://doi.org/10.3390/geosciences9090376 - 29 Aug 2019
Cited by 46 | Viewed by 6947
Abstract
The first 10 days of September 2015 were marked by intense dust activity over the Middle East and the Arabian Peninsula. This study examines the atmospheric conditions at the origin of the large dust storms during this period. We particularly investigate the atmospheric [...] Read more.
The first 10 days of September 2015 were marked by intense dust activity over the Middle East and the Arabian Peninsula. This study examines the atmospheric conditions at the origin of the large dust storms during this period. We particularly investigate the atmospheric dynamics leading to the development of a large dry cyclone over Iraq on 31 August 2015 which in turn generated an intense dust storm that affected most of the countries around the Arabian Gulf and lasted for 5 days. We found that the cyclone developed over Northwest Iraq as a transfer to low levels of a cut-off low which had formed two days earlier at upper levels over Turkey. Large dust loads exceeding 250 tons were emitted and moved southeast in a cyclonic shape toward the Arabian sea. The second large dust storm on 6-8 September 2015 occurred over Syria and affected all the coastal countries on the eastern side of the Mediterranean Sea. It was associated with the occurrence of a series of density currents over northeast Syria emanating from deep convection over the mountainous border between Syria and Turkey. The unusual development of deep convection over this area was associated with a blocking high and interaction with orography. Both the cut-off high and the cut-off low occurred during a period characterized by a meandering polar jet and an enhanced subtropical jet causing unstable weather over mid-latitudes which in turn led to highly polluted atmosphere by natural dust in the affected countries. Full article
(This article belongs to the Special Issue Observing Atmospheric Dynamics and Dust Activity)
Show Figures

Figure 1

16 pages, 7598 KiB  
Article
Landslides Triggered by the 2016 Mw 7.8 Pedernales, Ecuador Earthquake: Correlations with ESI-07 Intensity, Lithology, Slope and PGA-h
by Kervin Chunga, Franz A. Livio, Carlos Martillo, Hernán Lara-Saavedra, Maria Francesca Ferrario, Ivan Zevallos and Alessandro Maria Michetti
Geosciences 2019, 9(9), 371; https://doi.org/10.3390/geosciences9090371 - 26 Aug 2019
Cited by 24 | Viewed by 6781
Abstract
We provide a dataset of the landslides induced by the 2016 Pedernales megathrust earthquake, Ecuador (Mw 7.8, focal depth of 20 km) and compare their spatial distribution with mapped bedrock lithology, horizontal peak ground acceleration (PGA-h) and the macroseismic intensity based on earthquake-induced [...] Read more.
We provide a dataset of the landslides induced by the 2016 Pedernales megathrust earthquake, Ecuador (Mw 7.8, focal depth of 20 km) and compare their spatial distribution with mapped bedrock lithology, horizontal peak ground acceleration (PGA-h) and the macroseismic intensity based on earthquake-induced environmental effects (ESI-07). We studied 192 coseismic landslides (classified as coherent, disrupted and lateral spreads) located in the epicentral area, defined by the VII to IXESI-07 isoseismals. Based on our findings, lahar deposits, tuffs and volcanoclastic units are the most susceptible to landslides occurrence. Alluvial plains with fluvial loose fine sand are the most susceptible setting for lateral spreading, with a maximum intensity of IXESI-07. The coherent landslides are frequently found in altered shale and siltstone geological units with moderate slopes (8°–16°), with typical intensity ranging between VII and VIIIESI-07. Our analysis draws a typical framework for slope movements triggered by subduction earthquakes in Ecuador. The most dangerous setting is the coastal region, a relatively highly urbanized area located near the epicenter and where liquefaction can trigger massive lateral spreading events. Coherent and disrupted landslides, dominating the more internal hilly region, can be triggered also in moderate slope settings (i.e., less than 10°). Indeed, the regression analysis between seismic intensity, PGA-h and landslide occurrence shows that most of the events occurred at PGA-h values between 0.4 g and 1.2 g, at a distance of 30 to 50 km from the rupture plane. Our database suggests that lithology and hillslope geometry are the main geological/geomorphological factors controlling coseismic landslides occurrence; while the distance from the rupture plane plays a significant role on determining the landslide size. Finally, we underline that coseismically-triggered landslides are among the most common environmental effects occurring during large subduction events that can be effectively used to properly evaluate the earthquake macroseismic field. The landslide inventory we compiled is suitable for assessing the vulnerability of physical environment from subduction earthquakes in Ecuador, and offers a primary data source for future worldwide analysis. Full article
Show Figures

Figure 1

31 pages, 51301 KiB  
Article
Mechanistic Morphogenesis of Organo-Sedimentary Structures Growing Under Geochemically Stressed Conditions: Keystone to Proving the Biogenicity of Some Archaean Stromatolites?
by Keyron Hickman-Lewis, Pascale Gautret, Laurent Arbaret, Stéphanie Sorieul, Rutger De Wit, Frédéric Foucher, Barbara Cavalazzi and Frances Westall
Geosciences 2019, 9(8), 359; https://doi.org/10.3390/geosciences9080359 - 16 Aug 2019
Cited by 17 | Viewed by 5473
Abstract
Morphologically diverse organo-sedimentary structures (including microbial mats and stromatolites) provide a palaeobiological record through more than three billion years of Earth history. Since understanding much of the Archaean fossil record is contingent upon proving the biogenicity of such structures, mechanistic interpretations of well-preserved [...] Read more.
Morphologically diverse organo-sedimentary structures (including microbial mats and stromatolites) provide a palaeobiological record through more than three billion years of Earth history. Since understanding much of the Archaean fossil record is contingent upon proving the biogenicity of such structures, mechanistic interpretations of well-preserved fossil microbialites can reinforce our understanding of their biogeochemistry and distinguish unambiguous biological characteristics in these structures, which represent some of the earliest records of life. Mechanistic morphogenetic understanding relies upon the analysis of geomicrobiological experiments. Herein, we report morphological-biogeochemical comparisons between micromorphologies observed in growth experiments using photosynthetic mats built by the cyanobacterium Coleofasciculus chthonoplastes (formerly Microcoleus) and green anoxygenic phototrophic Chloroflexus spp. (i.e., ColeofasciculusChloroflexus mats), and Precambrian organo-sedimentary structures, demonstrating parallels between them. In elevated ambient concentrations of Cu (toxic to Coleofasciculus), ColeofasciculusChloroflexus mats respond by forming centimetre-scale pinnacle-like structures (supra-lamina complexities) associated with large quantities of EPS at their surfaces. µPIXE mapping shows that Cu and other metals become concentrated within surficial sheath-EPS-Chloroflexus-rich layers, producing density-differential micromorphologies with distinct fabric orientations that are detectable using X-ray computed micro-tomography (X-ray µCT). Similar micromorphologies are also detectable in stromatolites from the 3.481 Ga Dresser Formation (Pilbara, Western Australia). The cause and response link between the presence of toxic elements (geochemical stress) and the development of multi-layered topographical complexities in organo-sedimentary structures may thus be considered an indicator of biogenicity, being an indisputably biological and predictable morphogenetic response reflecting, in this case, the differential responses of Coleofasciculus and Chloroflexus to Cu. Growth models for microbialite morphogenesis rely upon linking morphology to intrinsic (biological) and extrinsic (environmental) influences. Since the pinnacles of ColeofasciculusChloroflexus mats have an unambiguously biological origin linked to extrinsic geochemistry, we suggest that similar micromorphologies observed in ancient organo-sedimentary structures are indicative of biogenesis. An identical ColeofasciculusChloroflexus community subjected to salinity stress also produced supra-lamina complexities (tufts) but did not produce identifiable micromorphologies in three dimensions since salinity seems not to negatively impact either organism, and therefore cannot be used as a morphogenetic tool for the interpretation of density-homogeneous micro-tufted mats—for example, those of the 3.472 Ga Middle Marker horizon. Thus, although correlative microscopy is the keystone to confirming the biogenicity of certain Precambrian stromatolites, it remains crucial to separately interrogate each putative trace of ancient life, ideally using three-dimensional analyses, to determine, where possible, palaeoenvironmental influences on morphologies. Widespread volcanism and hydrothermal effusion into the early oceans likely concentrated toxic elements in early biomes. Morphological diversity in fossil microbialites could, therefore, reflect either (or both of) differential exposure to ambient fluids enriched in toxic elements and/or changing ecosystem structure and tolerance to elements through evolutionary time—for example, after incorporation into enzymes. Proof of biogenicity by deducing morphogenesis (i.e., a process preserved in the fossil record) overcomes many of the shortcomings inherent to the proof of biogenicity by descriptions of morphology alone. Full article
Show Figures

Figure 1

21 pages, 28234 KiB  
Article
The Potential of Low-Cost UAVs and Open-Source Photogrammetry Software for High-Resolution Monitoring of Alpine Glaciers: A Case Study from the Kanderfirn (Swiss Alps)
by Alexander R. Groos, Thalia J. Bertschinger, Céline M. Kummer, Sabrina Erlwein, Lukas Munz and Andreas Philipp
Geosciences 2019, 9(8), 356; https://doi.org/10.3390/geosciences9080356 - 12 Aug 2019
Cited by 25 | Viewed by 7622
Abstract
Unmanned Aerial Vehicles (UAV) are a rapidly evolving tool in geosciences and are increasingly deployed for studying the dynamic processes of the earth’s surface. To assess the potential of autonomous low-cost UAVs for the mapping and monitoring of alpine glaciers, we conducted multiple [...] Read more.
Unmanned Aerial Vehicles (UAV) are a rapidly evolving tool in geosciences and are increasingly deployed for studying the dynamic processes of the earth’s surface. To assess the potential of autonomous low-cost UAVs for the mapping and monitoring of alpine glaciers, we conducted multiple aerial surveys on the Kanderfirn in the Swiss Alps in 2017 and 2018 using open hardware and software of the Paparazzi UAV project. The open-source photogrammetry software OpenDroneMap was tested for the generation of high-resolution orthophotos and digital surface models (DSMs) from aerial imagery and cross-checked with the well-established proprietary software Pix4D. Accurately measured ground control points served for the determination of the geometric accuracy of the orthophotos and DSMs. A horizontal (xy) accuracy of 0.7–1.2 m and a vertical (z) accuracy of 0.7–2.1 m was achieved for OpenDroneMap, compared to a xy-accuracy of 0.3–0.5 m and a z-accuracy of 0.4–0.5 m obtained for Pix4D. Based on the analysis and comparison of different orthophotos and DSMs, surface elevation, roughness and brightness changes from 3 June to 29 September 2018 were quantified. While the brightness of the glacier surface decreased linearly over the ablation season, the surface roughness increased. The mean DSM-based elevation change across the glacier tongue was 8 m, overestimating the measured melting and surface lowering at the installed ablation stakes by about 1.5 m. The presented results highlight that self-built fixed-wing UAVs in tandem with open-source photogrammetry software are an affordable alternative to commercial remote-sensing platforms and proprietary software. The applied low-cost approach also provides great potential for other regions and geoscientific disciplines. Full article
(This article belongs to the Special Issue Cryosphere II)
Show Figures

Figure 1

23 pages, 8189 KiB  
Article
Groundwater Quality Assessment Using Fuzzy-AHP in An Giang Province of Vietnam
by Huynh Vuong Thu Minh, Ram Avtar, Pankaj Kumar, Dat Q. Tran, Tran Van Ty, Hari Charan Behera and Masaaki Kurasaki
Geosciences 2019, 9(8), 330; https://doi.org/10.3390/geosciences9080330 - 27 Jul 2019
Cited by 41 | Viewed by 5848
Abstract
Along with rapid population growth in Vietnam, there is an increasing dependence on groundwater for various activities. An Giang province is known to be one of the agricultural intensification areas of The Vietnamese Mekong Delta (VMD). This study aimed to evaluate the spatiotemporal [...] Read more.
Along with rapid population growth in Vietnam, there is an increasing dependence on groundwater for various activities. An Giang province is known to be one of the agricultural intensification areas of The Vietnamese Mekong Delta (VMD). This study aimed to evaluate the spatiotemporal variation of groundwater quality for a period of ten years from 2009 to 2018 in An Giang. The weighted groundwater quality index (GWQI) was developed based on the fuzzy analytic hierarchy process (Fuzzy-AHP) for assigning weighted parameters. The results show that that shallow wells in the Northeast and Southeast regions of An Giang were mostly categorized under “bad water” quality with high arsenic (As) concentration over the years partly due to huge amounts of sediment deposition in monsoon season. Overall, the reason for the poor groundwater quality in An Giang was the combined effect of both natural and human activities. On the other hand, we detected high values of GWQI links with high As concentration in areas where people extract more groundwater for irrigation. Temporal variation of GWQI suggested that groundwater quality at eight wells has improved from 2009 to 2018 in the wet season as compared to the dry season. The reason behind the improvement of groundwater quality during wet season was the decrease in river discharge, which causes less deposition of suspended solids near the flood plains. Moreover, the filling of unused wells can reduce the movement of pollutants from unused wells to groundwater aquifers. Although there was not sufficient evidence to show the relationship between As and sediment concentration, the temporal reduction trend in river discharge and suspended solids was detected in An Giang. The understanding of groundwater quality can help policymakers protect and manage limited water resources in the long-term. Full article
(This article belongs to the Special Issue Hydrogeochemistry and Groundwater Management)
Show Figures

Figure 1

25 pages, 10019 KiB  
Article
A Multidisciplinary Approach to the Study of the Temple of Athena in Poseidonia-Paestum (Southern Italy): New Geomorphological, Geophysical and Archaeological Data
by Marilena Cozzolino, Fausto Longo, Natascia Pizzano, Maria Luigia Rizzo, Ottavia Voza and Vincenzo Amato
Geosciences 2019, 9(8), 324; https://doi.org/10.3390/geosciences9080324 - 24 Jul 2019
Cited by 15 | Viewed by 5895
Abstract
The Temple of Athena is one of the main sacred areas of the Greek–Roman settlement of Poseidonia-Paestum (southern Italy). Several archaeological excavations were carried out here between the late nineteenth and early twentieth century. Unfortunately, the locations of these excavations are only approximately [...] Read more.
The Temple of Athena is one of the main sacred areas of the Greek–Roman settlement of Poseidonia-Paestum (southern Italy). Several archaeological excavations were carried out here between the late nineteenth and early twentieth century. Unfortunately, the locations of these excavations are only approximately known, as are the geomorphology and stratigraphy of the temple area. A multidisciplinary study, including stratigraphic, geomorphological, archaeological, and sedimentological investigations, remote sensing, and electromagnetic and geoelectrical tests, was therefore carried out, shedding new light on the geomorphology and stratigraphy of the SW and W temple sectors. The geophysical data obtained revealed anomalies in the subsoil that probably correspond to ancient structures and the cutting of the travertine deposits around the temple. The position and extension of the trenches of the early archaeological excavations were also established. Full article
(This article belongs to the Special Issue Geoarchaeology: A Review of Case Studies in the Mediterranean Sea)
Show Figures

Figure 1

20 pages, 2116 KiB  
Review
A Review of Brittleness Index Correlations for Unconventional Tight and Ultra-Tight Reservoirs
by Kim S. Mews, Mustafa M. Alhubail and Reza Gh. Barati
Geosciences 2019, 9(7), 319; https://doi.org/10.3390/geosciences9070319 - 19 Jul 2019
Cited by 53 | Viewed by 7080
Abstract
Rock brittleness is pivotal in the development of the unconventional reservoirs. However, the existence of various methods of calculating the brittleness index (BI) such as the mineral-based brittleness index (MBI), the log-based brittleness index (LBI), and the elastic-based brittleness index (EBI) lead to [...] Read more.
Rock brittleness is pivotal in the development of the unconventional reservoirs. However, the existence of various methods of calculating the brittleness index (BI) such as the mineral-based brittleness index (MBI), the log-based brittleness index (LBI), and the elastic-based brittleness index (EBI) lead to inconclusive estimations of the brittleness index. Hence, in this work, the existing correlations are applied on prolific unconventional plays in the U.S. such as the Marcellus, Bakken, Niobrara, and Chattanooga Formation to examine the various BI methods. A detailed comparison between the MBI, LBI, and EBI has also been conducted. The results show that a universal correlation cannot be derived in order to define brittleness since it is a function of lithology. Correlation parameters vary significantly from one shale play to another. Nevertheless, an overall trend shows that abundant quartz and carbonates content yield high brittleness values, while the high clay content and porosity lower the rock brittleness. Full article
(This article belongs to the Special Issue Digital Petroleum Geomechanics)
Show Figures

Figure 1

61 pages, 37292 KiB  
Review
Paleoliquefaction Studies and the Evaluation of Seismic Hazard
by Martitia P. Tuttle, Ross Hartleb, Lorraine Wolf and Paul W. Mayne
Geosciences 2019, 9(7), 311; https://doi.org/10.3390/geosciences9070311 - 13 Jul 2019
Cited by 40 | Viewed by 9318
Abstract
Recent and historical studies of earthquake-induced liquefaction, as well as paleoliquefaction studies, demonstrate the potential usefulness of liquefaction data in the assessment of the earthquake potential of seismic sources. Paleoliquefaction studies, along with other paleoseismology studies, supplement historical and instrumental seismicity and provide [...] Read more.
Recent and historical studies of earthquake-induced liquefaction, as well as paleoliquefaction studies, demonstrate the potential usefulness of liquefaction data in the assessment of the earthquake potential of seismic sources. Paleoliquefaction studies, along with other paleoseismology studies, supplement historical and instrumental seismicity and provide information about the long-term behavior of earthquake sources. Paleoliquefaction studies focus on soft-sediment deformation features, including sand blows and sand dikes, which result from strong ground shaking. Most paleoliquefaction studies have been conducted in intraplate geologic settings, but a few such studies have been carried out in interplate settings. Paleoliquefaction studies provide information about timing, location, magnitude, and recurrence of large paleoearthquakes, particularly those with moment magnitude, M, greater than 6 during the past 50,000 years. This review paper presents background information on earthquake-induced liquefaction and resulting soft-sediment deformation features that may be preserved in the geologic record, best practices used in paleoliquefaction studies, and application of paleoliquefaction data in earthquake source characterization. The paper concludes with two examples of regional paleoliquefaction studies—in the Charleston seismic zone and the New Madrid seismic zone in the southeastern and central United States, respectively—which contributed to seismic source models used in earthquake hazard assessment. Full article
Show Figures

Figure 1

9 pages, 1592 KiB  
Article
Determination of Rainfall Thresholds for Landslide Prediction Using an Algorithm-Based Approach: Case Study in the Darjeeling Himalayas, India
by Togaru Surya Teja, Abhirup Dikshit and Neelima Satyam
Geosciences 2019, 9(7), 302; https://doi.org/10.3390/geosciences9070302 - 10 Jul 2019
Cited by 46 | Viewed by 5356
Abstract
Landslides are one of the most devastating and commonly recurring natural hazards in the Indian Himalayas. They contribute to infrastructure damage, land loss and human casualties. Most of the landslides are primarily rainfall-induced and the relationship has been well very well-established, having been [...] Read more.
Landslides are one of the most devastating and commonly recurring natural hazards in the Indian Himalayas. They contribute to infrastructure damage, land loss and human casualties. Most of the landslides are primarily rainfall-induced and the relationship has been well very well-established, having been commonly defined using empirical-based models which use statistical approaches to determine the parameters of a power-law equation. One of the main drawbacks using the traditional empirical methods is that it fails to reduce the uncertainties associated with threshold calculation. The present study overcomes these limitations by identifying the precipitation condition responsible for landslide occurrence using an algorithm-based model. The methodology involves the use of an automated tool which determines cumulated event rainfall–rainfall duration thresholds at various exceedance probabilities and the associated uncertainties. The analysis has been carried out for the Kalimpong Region of the Darjeeling Himalayas using rainfall and landslide data for the period 2010–2016. The results signify that a rainfall event of 48 hours with a cumulated event rainfall of 36.7 mm can cause landslides in the study area. Such a study is the first to be conducted for the Indian Himalayas and can be considered as a first step in determining more reliable thresholds which can be used as part of an operational early-warning system. Full article
Show Figures

Figure 1

17 pages, 3033 KiB  
Article
A Validation of ERA5 Reanalysis Data in the Southern Antarctic Peninsula—Ellsworth Land Region, and Its Implications for Ice Core Studies
by Dieter Tetzner, Elizabeth Thomas and Claire Allen
Geosciences 2019, 9(7), 289; https://doi.org/10.3390/geosciences9070289 - 29 Jun 2019
Cited by 117 | Viewed by 9933
Abstract
Climate reanalyses provide key information to calibrate proxy records in regions with scarce direct observations. The climate reanalysis used to perform a proxy calibration should accurately reproduce the local climate variability. Here we present a regional scale evaluation of meteorological parameters using ERA-Interim [...] Read more.
Climate reanalyses provide key information to calibrate proxy records in regions with scarce direct observations. The climate reanalysis used to perform a proxy calibration should accurately reproduce the local climate variability. Here we present a regional scale evaluation of meteorological parameters using ERA-Interim and ERA5 reanalyses compared to in-situ observations from 13 automatic weather stations (AWS), located in the southern Antarctic Peninsula and Ellsworth Land, Antarctica. Both reanalyses seem to perform better in the escarpment area (>1000 m a.s.l) than on the coast. A significant improvement is observed in the performance of ERA5 over ERA-Interim. ERA5 is highly accurate, representing the magnitude and variability of near-surface air temperature and wind regimes. The higher spatial and temporal resolution provided by ERA5 reduces significantly the cold coastal biases identified in ERA-Interim and increases the accuracy representing the wind direction and wind speed in the escarpment. The slight underestimation in the wind speed obtained from the reanalyses could be attributed to an interplay of topographic factors and the effect of local wind regimes. Three sites in this region are highlighted for their potential for ice core studies. These sites are likely to provide accurate proxy calibrations for future palaeoclimatic reconstructions. Full article
Show Figures

Figure 1

78 pages, 5953 KiB  
Article
History of the Terminal Cataclysm Paradigm: Epistemology of a Planetary Bombardment That Never (?) Happened
by William K. Hartmann
Geosciences 2019, 9(7), 285; https://doi.org/10.3390/geosciences9070285 - 28 Jun 2019
Cited by 37 | Viewed by 11170
Abstract
This study examines the history of the paradigm concerning a lunar (or solar-system-wide) terminal cataclysm (also called “Late Heavy Bombardment” or LHB), a putative, brief spike in impacts at ~3.9 Ga ago, preceded by low impact rates. We examine origin of the ideas, [...] Read more.
This study examines the history of the paradigm concerning a lunar (or solar-system-wide) terminal cataclysm (also called “Late Heavy Bombardment” or LHB), a putative, brief spike in impacts at ~3.9 Ga ago, preceded by low impact rates. We examine origin of the ideas, why they were accepted, and why the ideas are currently being seriously revised, if not abandoned. The paper is divided into the following sections: Overview of paradigm. Pre-Apollo views (1949–1969). Initial suggestions of cataclysm (ca. 1974). Ironies. Alternative suggestions, megaregolith evolution (1970s). Impact melt rocks “establish” cataclysm (1990). Imbrium redux (ca. 1998). Impact melt clasts (early 2000s). Dating of front-side lunar basins? Dynamical models “explain” the cataclysm (c. 2000s). Asteroids as a test case. Impact melts predating 4.0 Ga ago (ca. 2008–present.). Biological issues. Growing doubts (ca. 1994–2014). Evolving Dynamical Models (ca. 2001–present). Connections to lunar origin. Dismantling the paradigm (2015–2018). “Megaregolith Evolution Model” for explaining the data. Conclusions and new directions for future work. Full article
(This article belongs to the Special Issue Recent Advances in Lunar Studies)
Show Figures

Figure 1

15 pages, 3149 KiB  
Article
Petrographic and Mechanical Characteristics of Concrete Produced by Different Type of Recycled Materials
by Petros Petrounias, Panagiota P. Giannakopoulou, Aikaterini Rogkala, Paraskevi Lampropoulou, Basilios Tsikouras, Ioannis Rigopoulos and Konstantin Hatzipanagiotou
Geosciences 2019, 9(6), 264; https://doi.org/10.3390/geosciences9060264 - 19 Jun 2019
Cited by 32 | Viewed by 4078
Abstract
This paper examined three different types of recycled materials, such as beer green glass, waste tile, and asphalt, which will be used in different mixtures in order to prepare concrete specimens and, more specifically, their effect on concrete strength and how the petrographic [...] Read more.
This paper examined three different types of recycled materials, such as beer green glass, waste tile, and asphalt, which will be used in different mixtures in order to prepare concrete specimens and, more specifically, their effect on concrete strength and how the petrographic characteristics of various recycled materials influenced the durability of C25/30 strength class concrete. Particular emphasis was placed on the effect of artificial microroughness of glassy and smooth surfaces of recycled materials on their final concrete strength. The concrete strength values do not show great variance, but their limited differences have been qualitatively interpreted by a new promising petrographic methodology, including the study of the surface texture of the used aggregate materials. Concretes are produced with constant volume proportions, workability, mixing, and curing conditions while using different sizes of each aggregate type. The aggregates were mixed both in dry and water saturated states in concretes. Concretes that are made by a mixture of beer green glass with quartz primer, as well as of tile with quartz primer, presented the optimum possible results of the compressive strength. Full article
(This article belongs to the Special Issue Geoscience of the Built Environment 2019 Edition)
Show Figures

Figure 1

12 pages, 1087 KiB  
Review
Variability and Trends in Dust Storm Frequency on Decadal Timescales: Climatic Drivers and Human Impacts
by Nick Middleton
Geosciences 2019, 9(6), 261; https://doi.org/10.3390/geosciences9060261 - 12 Jun 2019
Cited by 86 | Viewed by 8679
Abstract
Dust storms present numerous hazards to human society and are particularly significant to people living in the Dust Belt which stretches from the Sahara across the Middle East to northeast Asia. This paper presents a review of dust storm variability and trends in [...] Read more.
Dust storms present numerous hazards to human society and are particularly significant to people living in the Dust Belt which stretches from the Sahara across the Middle East to northeast Asia. This paper presents a review of dust storm variability and trends in frequency on decadal timescales from three Dust Belt settlements with long-term (>50 years) meteorological records: Nouakchott, Mauritania; Zabol, Iran, and Minqin, China. The inhabitants of each of these settlements have experienced a decline in dust storms in recent decades, since the late 1980s at Nouakchott, since 2004 at Zabol, and since the late 1970s at Minqin. The roles of climatic variables and human activities are assessed in each case, as drivers of periods of high dust storm frequency and subsequent declines in dust emissions. Both climatic and human variables have been important but overall the balance of research conclusions indicates natural processes (precipitation totals, wind strength) have had greater impact than human action, in the latter case both in the form of mismanagement (abandoned farmland, water management schemes) and attempts to reduce wind erosion (afforestation projects). Understanding the drivers of change in dust storm dynamics at the local scale is increasingly important for efforts to mitigate dust storm hazards as climate change projections suggest that the global dryland area is likely to expand in the twenty-first century, along with an associated increase in the risk of drought and dust emissions. Full article
(This article belongs to the Special Issue Observing Atmospheric Dynamics and Dust Activity)
Show Figures

Figure 1

23 pages, 8615 KiB  
Article
Understanding the Permafrost–Hydrate System and Associated Methane Releases in the East Siberian Arctic Shelf
by Natalia Shakhova, Igor Semiletov and Evgeny Chuvilin
Geosciences 2019, 9(6), 251; https://doi.org/10.3390/geosciences9060251 - 05 Jun 2019
Cited by 86 | Viewed by 41125
Abstract
This paper summarizes current understanding of the processes that determine the dynamics of the subsea permafrost–hydrate system existing in the largest, shallowest shelf in the Arctic Ocean; the East Siberian Arctic Shelf (ESAS). We review key environmental factors and mechanisms that determine formation, [...] Read more.
This paper summarizes current understanding of the processes that determine the dynamics of the subsea permafrost–hydrate system existing in the largest, shallowest shelf in the Arctic Ocean; the East Siberian Arctic Shelf (ESAS). We review key environmental factors and mechanisms that determine formation, current dynamics, and thermal state of subsea permafrost, mechanisms of its destabilization, and rates of its thawing; a full section of this paper is devoted to this topic. Another important question regards the possible existence of permafrost-related hydrates at shallow ground depth and in the shallow shelf environment. We review the history of and earlier insights about the topic followed by an extensive review of experimental work to establish the physics of shallow Arctic hydrates. We also provide a principal (simplified) scheme explaining the normal and altered dynamics of the permafrost–hydrate system as glacial–interglacial climate epochs alternate. We also review specific features of methane releases determined by the current state of the subsea-permafrost system and possible future dynamics. This review presents methane results obtained in the ESAS during two periods: 1994–2000 and 2003–2017. A final section is devoted to discussing future work that is required to achieve an improved understanding of the subject. Full article
(This article belongs to the Special Issue Gas and Gas Hydrate in Permafrost)
Show Figures

Figure 1

16 pages, 6831 KiB  
Article
Combined Close Range Photogrammetry and Terrestrial Laser Scanning for Ship Hull Modelling
by Pawel Burdziakowski and Pawel Tysiac
Geosciences 2019, 9(5), 242; https://doi.org/10.3390/geosciences9050242 - 26 May 2019
Cited by 29 | Viewed by 5479
Abstract
The paper addresses the fields of combined close-range photogrammetry and terrestrial laser scanning in the light of ship modelling. The authors pointed out precision and measurement accuracy due to their possible complex application for ship hulls inventories. Due to prescribed vitality of every [...] Read more.
The paper addresses the fields of combined close-range photogrammetry and terrestrial laser scanning in the light of ship modelling. The authors pointed out precision and measurement accuracy due to their possible complex application for ship hulls inventories. Due to prescribed vitality of every ship structure, it is crucial to prepare documentation to support the vessel processes. The presented methods are directed, combined photogrammetric techniques in ship hull inventory due to submarines. The class of photogrammetry techniques based on high quality photos are supposed to be relevant techniques of the inventories’ purpose. An innovative approach combines these methods with Terrestrial Laser Scanning. The process stages of data acquisition, post-processing, and result analysis are presented and discussed due to market requirements. Advantages and disadvantages of the applied methods are presented. Full article
(This article belongs to the Special Issue Geodesy and Geomatics Engineering)
Show Figures

Figure 1

24 pages, 7733 KiB  
Article
Some Investigations on a Possible Relationship between Ground Deformation and Seismic Activity at Campi Flegrei and Ischia Volcanic Areas (Southern Italy)
by Ciro Ricco, Simona Petrosino, Ida Aquino, Carlo Del Gaudio and Mariarosaria Falanga
Geosciences 2019, 9(5), 222; https://doi.org/10.3390/geosciences9050222 - 15 May 2019
Cited by 31 | Viewed by 4968
Abstract
In the present paper, we analyse ground tilt and seismicity at Campi Flegrei caldera and Ischia Island, two volcanic areas located in the south of Italy. These areas have been well studied for many years from a petrological, volcanological and geophysical view point. [...] Read more.
In the present paper, we analyse ground tilt and seismicity at Campi Flegrei caldera and Ischia Island, two volcanic areas located in the south of Italy. These areas have been well studied for many years from a petrological, volcanological and geophysical view point. Moreover, due to the high seismic and volcanic risk for the populations living there, they are continuously monitored by networks of geophysical and geochemical sensors. We summarize the most important results that we obtained so far, concerning the observations of relationships between seismic activity and ground tilt anomalies, focusing on the time interval 2015–2018. First, we present a detailed description of the tiltmeter and seismic networks in both the investigated areas, as well as their development and improvement over time that has enabled high quality data collection. From the joint analysis of the seismic and borehole tiltmeter signals, we often notice concurrence between tilt pattern variations and the occurrence of seismicity. Moreover, the major tilt anomalies appear to be linked with the rate and energy of volcano-tectonic earthquakes, as well as with exogenous phenomena like solid Earth tides and hydrological cycles. The analysis that we present has potential applicability to other volcanic systems. Our findings show how the joint use tilt and seismic data can contribute to better understanding of the dynamics of volcanoes. Full article
(This article belongs to the Special Issue Volcano Monitoring – Placing the Finger on the Pulse)
Show Figures

Figure 1

8 pages, 210 KiB  
Review
History of the Environmental Seismic Intensity Scale ESI-07
by Leonello Serva
Geosciences 2019, 9(5), 210; https://doi.org/10.3390/geosciences9050210 - 10 May 2019
Cited by 18 | Viewed by 3450
Abstract
This brief note aims to describe the history, from its early original idea, of the new macroseismic scale: The Environmental Seismic Intensity Scale 2007 (ESI 2007). It can be used together with other existing scales or alone when needed for measuring the intensity [...] Read more.
This brief note aims to describe the history, from its early original idea, of the new macroseismic scale: The Environmental Seismic Intensity Scale 2007 (ESI 2007). It can be used together with other existing scales or alone when needed for measuring the intensity of an earthquake on the basis of the primary and secondary effects of a seismic event on the natural environment. These effects could be the major sources of earthquake hazards, as recently proved. This note also aims to contribute to the understanding of processes that induced the researcher to develop an idea, to pursue it, and bring it to its end, first through the help of valuable Italian researchers and then through the constructive exchange of ideas with researchers of different cultural backgrounds operating almost everywhere in the world. This note is sponsored and approved by the International Union for Quaternary Research (INQUA), and the Environmental Seismic Intensity scale (ESI-07) was published in 2007 after a revision process of about eight years. Full article
15 pages, 2930 KiB  
Article
Landslides in the Mountain Region of Rio de Janeiro: A Proposal for the Semi-Automated Definition of Multiple Rainfall Thresholds
by Ascanio Rosi, Vanessa Canavesi, Samuele Segoni, Tulius Dias Nery, Filippo Catani and Nicola Casagli
Geosciences 2019, 9(5), 203; https://doi.org/10.3390/geosciences9050203 - 08 May 2019
Cited by 40 | Viewed by 6709
Abstract
In 2011 Brazil experienced the worst disaster in the country’s history. There were 918 deaths and thousands made homeless in the mountainous region of Rio de Janeiro State due to several landslides triggered by heavy rainfalls. This area constantly suffers high volumes of [...] Read more.
In 2011 Brazil experienced the worst disaster in the country’s history. There were 918 deaths and thousands made homeless in the mountainous region of Rio de Janeiro State due to several landslides triggered by heavy rainfalls. This area constantly suffers high volumes of rain and episodes of landslides. Due to these experiences, we used the MaCumBa (Massive CUMulative Brisk Analyser) software to identify rainfall intensity–duration thresholds capable of triggering landslides in the most affected municipalities of this region. More than 3000 landslides and rain data from a 10-year long dataset were used to define the thresholds and one year was used to validate the results. In this work, a set of three thresholds capable of defining increasing alert levels (moderate, high and very high) has been defined for each municipality. Results show that such thresholds may be used for early alerts. In the future, the same methodology can be replicated to other Brazilian municipalities with different datasets, leading to more accurate warning systems. Full article
Show Figures

Graphical abstract

19 pages, 1608 KiB  
Article
Assessment of CO2 Injectivity During Sequestration in Depleted Gas Reservoirs
by Hussein Hoteit, Marwan Fahs and Mohamad Reza Soltanian
Geosciences 2019, 9(5), 199; https://doi.org/10.3390/geosciences9050199 - 05 May 2019
Cited by 70 | Viewed by 8781
Abstract
Depleted gas reservoirs are appealing targets for carbon dioxide (CO 2 ) sequestration because of their storage capacity, proven seal, reservoir characterization knowledge, existing infrastructure, and potential for enhanced gas recovery. Low abandonment pressure in the reservoir provides additional voidage-replacement potential for CO [...] Read more.
Depleted gas reservoirs are appealing targets for carbon dioxide (CO 2 ) sequestration because of their storage capacity, proven seal, reservoir characterization knowledge, existing infrastructure, and potential for enhanced gas recovery. Low abandonment pressure in the reservoir provides additional voidage-replacement potential for CO 2 and allows for a low surface pump pressure during the early period of injection. However, the injection process poses several challenges. This work aims to raise awareness of key operational challenges related to CO 2 injection in low-pressure reservoirs and to provide a new approach to assessing the phase behavior of CO 2 within the wellbore. When the reservoir pressure is below the CO 2 bubble-point pressure, and CO 2 is injected in its liquid or supercritical state, CO 2 will vaporize and expand within the well-tubing or in the near-wellbore region of the reservoir. This phenomenon is associated with several flow assurance problems. For instance, when CO 2 transitions from the dense-state to the gas-state, CO 2 density drops sharply, affecting the wellhead pressure control and the pressure response at the well bottom-hole. As CO 2 expands with a lower phase viscosity, the flow velocity increases abruptly, possibly causing erosion and cavitation in the flowlines. Furthermore, CO 2 expansion is associated with the Joule–Thomson (IJ) effect, which may result in dry ice or hydrate formation and therefore may reduce CO 2 injectivity. Understanding the transient multiphase phase flow behavior of CO 2 within the wellbore is crucial for appropriate well design and operational risk assessment. The commonly used approach analyzes the flow in the wellbore without taking into consideration the transient pressure response of the reservoir, which predicts an unrealistic pressure gap at the wellhead. This pressure gap is related to the phase transition of CO 2 from its dense state to the gas state. In this work, a new coupled approach is introduced to address the phase behavior of CO 2 within the wellbore under different operational conditions. The proposed approach integrates the flow within both the wellbore and the reservoir at the transient state and therefore resolves the pressure gap issue. Finally, the energy costs associated with a mitigation process that involves CO 2 heating at the wellhead are assessed. Full article
Show Figures

Graphical abstract

26 pages, 11604 KiB  
Article
Post-Wildfire Landslide Hazard Assessment: The Case of The 2017 Montagna Del Morrone Fire (Central Apennines, Italy)
by Cristiano Carabella, Enrico Miccadei, Giorgio Paglia and Nicola Sciarra
Geosciences 2019, 9(4), 175; https://doi.org/10.3390/geosciences9040175 - 16 Apr 2019
Cited by 45 | Viewed by 6003
Abstract
This work focused on a post-wildfire landslide hazard assessment, applied to the 2017 Montagna del Morrone fire. This wildfire increased the possibility of landslides triggering, as confirmed by the occurrence of a debris flow, triggered by an intense, short duration rainfall event in [...] Read more.
This work focused on a post-wildfire landslide hazard assessment, applied to the 2017 Montagna del Morrone fire. This wildfire increased the possibility of landslides triggering, as confirmed by the occurrence of a debris flow, triggered by an intense, short duration rainfall event in August 2018. The study area was investigated through a detailed analysis incorporating morphometric analysis of the topography and hydrography and geomorphological field mapping, followed by the landslide hazard assessment. In detail, the analysis was performed following a heuristic or expert-based approach, integrated using GIS technology. This approach led to the identification of five instability factors. These factors were analyzed for the construction of thematic maps. Hence, each factor was evaluated by assigning appropriate expert-based ranks and weights and combined in a geomorphology-based matrix, that defines four landslide hazard classes (low, moderate, high, and very high). Moreover, the morphometric analysis allowed us to recognize basins prone to debris flows, which, in relevant literature, are those that show a Melton ratio of >0.6 and a watershed length of <2.7 km. Finally, all the collected data were mapped through a cartographic and weighted overlay process in order to realize a new zonation of landslide hazard for the study area, which can be used in civil protection warning systems for the occurrence of landslides in mountainous forested environments. Full article
(This article belongs to the Section Natural Hazards)
Show Figures

Figure 1

22 pages, 25554 KiB  
Article
Geological and Structural Control on Localized Ground Effects within the Heunghae Basin during the Pohang Earthquake (MW 5.4, 15th November 2017), South Korea
by Sambit Prasanajit Naik, Young-Seog Kim, Taehyung Kim and Jeong Su-Ho
Geosciences 2019, 9(4), 173; https://doi.org/10.3390/geosciences9040173 - 16 Apr 2019
Cited by 23 | Viewed by 6746
Abstract
On 15th November 2017, the Pohang earthquake (Mw 5.4) had strong ground shaking that caused severe liquefaction and lateral spreading across the Heunghae Basin, around Pohang city, South Korea. Such liquefaction is a rare phenomenon during small or moderate earthquakes (MW [...] Read more.
On 15th November 2017, the Pohang earthquake (Mw 5.4) had strong ground shaking that caused severe liquefaction and lateral spreading across the Heunghae Basin, around Pohang city, South Korea. Such liquefaction is a rare phenomenon during small or moderate earthquakes (MW < 5.5). There are only a few examples around the globe, but more so in the Korean Peninsula. In this paper, we present the results of a systematic survey of the secondary ground effects—i.e., soil liquefaction and ground cracks—developed during the earthquake. Most of the liquefaction sites are clustered near the epicenter and close to the Heunghae fault. Based on the geology, tectonic setting, distribution, and clustering of the sand boils along the southern part of the Heunghae Basin, we propose a geological model, suggesting that the Heunghae fault may have acted as a barrier to the propagation of seismic waves. Other factors like the mountain basin effect and/or amplification of seismic waves by a blind thrust fault could play an important role. Liquefaction phenomenon associated with the 2017 Pohang earthquake emphasizes that there is an urgent need of liquefaction potential mapping for the Pohang city and other areas with a similar geological setting. In areas underlain by extensive unconsolidated basin fill sediments—where the records of past earthquakes are exiguous or indistinct and there is poor implementation of building codes—future earthquakes of similar or larger magnitude as the Pohang earthquake are likely to occur again. Therefore, this represents a hazard that may cause significant societal and economic threats in the future. Full article
Show Figures

Figure 1

24 pages, 21882 KiB  
Article
A Detailed Reconstruction of the Roman Landscape and the Submerged Archaeological Structure at “Castel dell’Ovo islet” (Naples, Southern Italy)
by Gerardo Pappone, Pietro P.C. Aucelli, Gaia Mattei, Francesco Peluso, Michele Stefanile and Armando Carola
Geosciences 2019, 9(4), 170; https://doi.org/10.3390/geosciences9040170 - 13 Apr 2019
Cited by 26 | Viewed by 3937
Abstract
In this paper, we present the results of a multidisciplinary study aimed to reconstruct the Roman coastal landscape between Pizzofalcone hill and Megaris islet—the area of the ancient Parthenope, the first settlement along the Naples coast. This coastal sector was surveyed by a [...] Read more.
In this paper, we present the results of a multidisciplinary study aimed to reconstruct the Roman coastal landscape between Pizzofalcone hill and Megaris islet—the area of the ancient Parthenope, the first settlement along the Naples coast. This coastal sector was surveyed by a team of specialized divers (archaeologists and geomorphologists) and by using an Unmanned Surface Vessel (USV) equipped with acoustic and optical sensors. The indirect surveys provided a high-resolution dataset of morpho-acoustic and optical measurements, useful to obtain the geological, geomorphological and archaeological interpretations necessary to formulate hypotheses on the functionality of the complex submerged archaeological structure detected in the study area. In particular, the integration between the surveyed data, the high-resolution seafloor mapping and the previous knowledge deriving from the 1980s underwater research carried out by Centro Studi Subacquei, led us to interpret the submerged remains as a vivarium related to a 1st century BC Roman villa. Finally, by measuring the submersion of several channels and a well-preserved crepido, a relative sea level during the period of use at −2.2 m ± 0.2 m mean sea level (MSL) was deduced, in agreement with the previous geoarchaeological studies realized in the near coastal sectors. Full article
(This article belongs to the Special Issue Geoarchaeology: A Review of Case Studies in the Mediterranean Sea)
Show Figures

Figure 1

20 pages, 9394 KiB  
Article
Spatial and Temporal Variations in the Incidence of Dust Storms in Saudi Arabia Revealed from In Situ Observations
by Sarah Albugami, Steven Palmer, Jonathan Cinnamon and Jeroen Meersmans
Geosciences 2019, 9(4), 162; https://doi.org/10.3390/geosciences9040162 - 08 Apr 2019
Cited by 38 | Viewed by 8222
Abstract
Monthly meteorological data from 27 observation stations provided by the Presidency of Meteorology and Environment (PME) of Saudi Arabia were used to analyze the spatial and temporal distribution of atmospheric dust in Saudi Arabia between 2000 and 2016. These data were used to [...] Read more.
Monthly meteorological data from 27 observation stations provided by the Presidency of Meteorology and Environment (PME) of Saudi Arabia were used to analyze the spatial and temporal distribution of atmospheric dust in Saudi Arabia between 2000 and 2016. These data were used to analyze the effects of environmental forcing on the occurrence of dust storms across Saudi Arabia by considering the relationships between dust storm frequency and temperature, precipitation, and wind variables. We reveal a clear seasonality in the reported incidence of dust storms, with the highest frequency of events during the spring. Our results show significant positive relationships (p < 0.005) between dust storm occurrence and wind speed, wind direction, and precipitation. However, we did not detect a significant relationship with temperature. Our results reveal important spatial patterns, as well as seasonal and inter-annual variations, in the occurrence of dust storms in Saudi Arabia. For instance, the eastern part of the study area experienced an increase in dust storm events over time, especially in the region near Al-Ahsa. Similarly, an increasing trend in dust storms was also observed in the west of the study area near Jeddah. However, the occurrence of dust storm events is decreasing over time in the north, in areas such as Hail and Qaisumah. Overall, the eastern part of Saudi Arabia experiences the highest number of dust storms per year (i.e., 10 to 60 events), followed by the northern region, with the south and the west having fewer dust storm events (i.e., five to 15 events per year). In addition, our results showed that the wind speeds during a dust storm are 15–20 m/s and above, while, on a non-dust day, the wind speeds are approximately 10–15 m/s or lower. Findings of this study provide insight into the relationship between environmental conditions and dust storm occurrence across Saudi Arabia, and a basis for future research into the drivers behind these observed spatio-temporal trends. Full article
(This article belongs to the Special Issue Observing Atmospheric Dynamics and Dust Activity)
Show Figures

Figure 1

18 pages, 5357 KiB  
Article
A Hybrid Spatial Multi-Criteria Evaluation Method for Mapping Landslide Susceptible Areas in Kullu Valley, Himalayas
by Sansar Raj Meena, Brijendra Kumar Mishra and Sepideh Tavakkoli Piralilou
Geosciences 2019, 9(4), 156; https://doi.org/10.3390/geosciences9040156 - 03 Apr 2019
Cited by 37 | Viewed by 5155
Abstract
In this paper we report our results from analysing a hybrid spatial multi-criteria evaluation (SMCE) method for generating landslide susceptibility mapping (LSM). This study is the first of its kind in the Kullu valley, Himalayas. We used eight related geospatial conditioning factors from [...] Read more.
In this paper we report our results from analysing a hybrid spatial multi-criteria evaluation (SMCE) method for generating landslide susceptibility mapping (LSM). This study is the first of its kind in the Kullu valley, Himalayas. We used eight related geospatial conditioning factors from three main groups: geological, morphological and topographical factors. Our landslide inventory dataset has a total of 149 GPS points of landslide locations, collected based on a field survey in July 2018. The relationships between landslide locations and conditioning factors were determined using the GIS-based statistical methods of frequency ratio (FR), multi-criteria decision-making (MCDM) and the integration method of hybrid SMCE. We compared the performance of applied methods by dividing the inventory into testing (70%) and validation (30%) datasets. The area under the curve (AUC) was used to validate the results. The integration method of hybrid SMCE gave the highest accuracy rate (0.910) compared to the other two methods, with 0.797 and 0.907 accuracy rates for the analytical hierarchy process (AHP) and FR, respectively. The applied methodologies are easily transferable to other areas, and the resulting landslide susceptibility maps (LSMs) can be useful for risk mitigation and development planning purposes in the Kullu valley, Himalayas. Full article
(This article belongs to the Section Natural Hazards)
Show Figures

Graphical abstract

15 pages, 237 KiB  
Review
Satellite SAR Data-based Sea Ice Classification: An Overview
by Natalia Zakhvatkina, Vladimir Smirnov and Irina Bychkova
Geosciences 2019, 9(4), 152; https://doi.org/10.3390/geosciences9040152 - 31 Mar 2019
Cited by 96 | Viewed by 8910
Abstract
A review of the main approaches developed for sea ice classification using satellite imagery is presented. Satellite data are the main and very often only information source for sea ice classification and charting in the remote arctic regions. The main techniques used for [...] Read more.
A review of the main approaches developed for sea ice classification using satellite imagery is presented. Satellite data are the main and very often only information source for sea ice classification and charting in the remote arctic regions. The main techniques used for ice classification and ice charting in several national ice services are considered. Advantages and disadvantages of various SAR data-based methods for ice classification are analyzed. It is shown that an increase of SAR technical abilities contributes to the enhancement of sea ice classification reliability. The possible further development of satellite data-based methods for ice classification is discussed. Full article
(This article belongs to the Special Issue Cryosphere II)
19 pages, 2841 KiB  
Article
Estimation of Soil Erosion in Nepal Using a RUSLE Modeling and Geospatial Tool
by Pooja Koirala, Sudeep Thakuri, Subesh Joshi and Raju Chauhan
Geosciences 2019, 9(4), 147; https://doi.org/10.3390/geosciences9040147 - 29 Mar 2019
Cited by 130 | Viewed by 18473
Abstract
Soil erosion is a major issue, causing the loss of topsoil and fertility in agricultural land in mountainous terrain. Estimation of soil erosion in Nepal is essential because of its agriculture-dependent economy (contributing 36% to national GDP) and for preparing erosion control plans. [...] Read more.
Soil erosion is a major issue, causing the loss of topsoil and fertility in agricultural land in mountainous terrain. Estimation of soil erosion in Nepal is essential because of its agriculture-dependent economy (contributing 36% to national GDP) and for preparing erosion control plans. The present study, for the first time, attempts to estimate the soil loss of Nepal through the application of the Revised Universal Soil Loss Equation (RUSLE) model. In addition, it analyzes the effect of Land Use and Land Cover (LULC) and slope ( β ) exposition on soil erosion. Nation-wide mean annual soil loss of Nepal is estimated at 25 t ha−1 yr−1 with a total of 369 million tonnes (mT) of potential soil loss. Soil erosion based on the physiographic region of the country shows that the Middle Mountains, High Mountains, High Himal, Chure, and Terai have mean erosion rates of 38.0, 32.0, 28.0, 7.0, and 0.1 t ha−1 yr−1. The soil erosion rate by basins showed that the annual erosions of the Karnali, Gandaki, Koshi, and Mahakali River basins are 135, 96, 79, and 15 mT, respectively. The mean soil erosion rate was significantly high (34 t ha−1 yr−1) for steep slopes (β > 26.8%) and the low (3 t ha−1 yr−1) for gentle slopes (β < 5%). Based on LULC, the mean erosion rate for barren land was the highest (40 t ha−1 yr−1), followed by agricultural land (29 t ha−1 yr−1), shrubland (25 t ha−1 yr−1), grassland (23 t ha−1 yr−1), and forests (22 t ha−1 yr−1). The entire area had been categorized into 6 erosion classes based on the erosion severity, and 11% of the area was found to be under a very severe erosion risk (> 80 t ha−1 yr−1) that urgently required reducing the risk of erosion. Full article
(This article belongs to the Special Issue Soil Hydrology and Erosion)
Show Figures

Figure 1

11 pages, 2537 KiB  
Article
Geo-Heritage Specific Visibility as an Important Parameter in Geo-Tourism Resource Evaluation
by Anna V. Mikhailenko and Dmitry A. Ruban
Geosciences 2019, 9(4), 146; https://doi.org/10.3390/geosciences9040146 - 27 Mar 2019
Cited by 31 | Viewed by 4378
Abstract
Geological heritage (geo-heritage) is a resource for geoscience, geo-education, and geo-tourism. Geo-tourist attractions differ in their physical visibility, interpretation (clarity), and aesthetic attractiveness. These three characteristics determine perception of visitors and, thus, the importance of attractions. An integrative parameter, namely specific visibility, is [...] Read more.
Geological heritage (geo-heritage) is a resource for geoscience, geo-education, and geo-tourism. Geo-tourist attractions differ in their physical visibility, interpretation (clarity), and aesthetic attractiveness. These three characteristics determine perception of visitors and, thus, the importance of attractions. An integrative parameter, namely specific visibility, is proposed for qualitative geo-tourism resource evaluation. This parameter is examined for all geo-heritage types, and some relevant examples from southwest Russia are considered. The geo-heritage types differ in their specific visibility. For instance, when landforms like the Granite Gorge in the Western Caucasus (geomorphological type) are well-visible, geochemical processes like the heavy metal cycling in the Don River delta and the Pelenkino mud lake (geo-chemical type) are not as visible. Such a difference should be taken into account when geo-tourism resources of any area or a geopark are evaluated. The lower the specific visibility, the higher the costs for professional interpretation and demand for advanced infrastructure solutions. Full article
Show Figures

Graphical abstract

19 pages, 8012 KiB  
Article
Multispectral Multibeam Echo Sounder Backscatter as a Tool for Improved Seafloor Characterization
by Craig J. Brown, Jonathan Beaudoin, Mike Brissette and Vicki Gazzola
Geosciences 2019, 9(3), 126; https://doi.org/10.3390/geosciences9030126 - 12 Mar 2019
Cited by 67 | Viewed by 11949
Abstract
The establishment of multibeam echosounders (MBES), as a mainstream tool in ocean mapping, has facilitated integrative approaches towards nautical charting, benthic habitat mapping, and seafloor geotechnical surveys. The combined acoustic response of the seabed and the subsurface can vary with MBES operating frequency. [...] Read more.
The establishment of multibeam echosounders (MBES), as a mainstream tool in ocean mapping, has facilitated integrative approaches towards nautical charting, benthic habitat mapping, and seafloor geotechnical surveys. The combined acoustic response of the seabed and the subsurface can vary with MBES operating frequency. At worst, this can make for difficulties in merging the results from different mapping systems or mapping campaigns. However, at best, having observations of the same seafloor at different acoustic wavelengths allows for increased discriminatory power in seabed classification and characterization efforts. Here, we present the results from trials of a multispectral multibeam system (R2Sonic 2026 MBES, manufactured by R2Sonic, LLC, Austin, TX, USA) in the Bedford Basin, Nova Scotia. In this system, the frequency can be modified on a ping-by-ping basis, which can provide multi-spectral acoustic measurements with a single pass of the survey platform. The surveys were conducted at three operating frequencies (100, 200, and 400 kHz), and the resulting backscatter mosaics revealed differences in parts of the survey area between the frequencies. Ground validation surveys using a combination of underwater video transects and benthic grab and core sampling confirmed that these differences were due to coarse, dredge spoil material underlying a surface cover of mud. These innovations offer tremendous potential for application in the area of seafloor geological and benthic habitat mapping. Full article
(This article belongs to the Special Issue Geological Seafloor Mapping)
Show Figures

Figure 1

31 pages, 37496 KiB  
Article
Morphostructural, Meteorological and Seismic Factors Controlling Landslides in Weak Rocks: The Case Studies of Castelnuovo and Ponzano (North East Abruzzo, Central Italy)
by Monia Calista, Enrico Miccadei, Tommaso Piacentini and Nicola Sciarra
Geosciences 2019, 9(3), 122; https://doi.org/10.3390/geosciences9030122 - 09 Mar 2019
Cited by 26 | Viewed by 6320
Abstract
We investigated the role of the morphostructural setting and seismic and meteorological factors in the development of landslides in the piedmont of the Abruzzo Apennines. In February 2017, following a heavy snow precipitation event and a moderate seismic sequence (at the end of [...] Read more.
We investigated the role of the morphostructural setting and seismic and meteorological factors in the development of landslides in the piedmont of the Abruzzo Apennines. In February 2017, following a heavy snow precipitation event and a moderate seismic sequence (at the end of the Central Italy 2016–2017 seismic crisis), several landslides affected the NE-Abruzzo chain and piedmont area. This work is focused on the Ponzano landslide (Civitella del Tronto, Teramo) and the Castelnuovo landslide (Campli, Teramo) in the NE Abruzzo hilly piedmont. These landslides consist of: (1) a large translational slide-complex landslide, affecting the Miocene–Pliocene sandstone clay bedrock sequence of the piedmont hilly sector; and (2) a complex (topple/fall-slide) landslide, which occurred along a high and steep scarp on conglomerate rocks pertaining to terraced alluvial fan deposits of the Pleistocene superficial deposits. Both of the landslides are typical of the Abruzzo hilly piedmont and both of them largely affected houses and villages located on top of the scarp or within the slope. The landslides were studied by means of field geological and geomorphological mapping, borehole investigations, geostructural analysis and photogeological analysis. For the Ponzano landslide, a detail pre-post-landslide air photo interpretation allowed for defining the deformation pattern occurred on the slope. For the Castelnuovo landslide, the triggering factors and the stability of the slope were evaluated with FLAC3D numerical modelling, in pre- and post-landslide conditions. Through this integrated analysis, the triggering factors, the landslide mechanism and the stability conditions of the landslides and the characterization of two main types of landslides affecting the piedmont hilly area of the Abruzzo region were investigated. Full article
(This article belongs to the Special Issue Mountain Landslides: Monitoring, Modeling, and Mitigation)
Show Figures

Figure 1

41 pages, 1522 KiB  
Review
Heavy Metal Rules. I. Exoplanet Incidence and Metallicity
by Vardan Adibekyan
Geosciences 2019, 9(3), 105; https://doi.org/10.3390/geosciences9030105 - 27 Feb 2019
Cited by 57 | Viewed by 7059
Abstract
The discovery of only a handful of exoplanets required establishing a correlation between giant planet occurrence and metallicity of their host stars. More than 20 years have already passed from that discovery, however, many questions are still under lively debate: (1) What is [...] Read more.
The discovery of only a handful of exoplanets required establishing a correlation between giant planet occurrence and metallicity of their host stars. More than 20 years have already passed from that discovery, however, many questions are still under lively debate: (1) What is the origin of that relation?; (2) What is the exact functional form of the giant planet–metallicity relation (in the metal-poor regime)?; and (3) Does such a relation exist for terrestrial planets? All of these questions are very important for our understanding of the formation and evolution of (exo)planets of different types around different types of stars and are the subject of the present manuscript. Besides making a comprehensive literature review about the role of metallicity on the formation of exoplanets, I also revisited most of the planet–metallicity related correlations reported in the literature using a large and homogeneous data provided by the SWEET-Cat catalog. This study led to several new results and conclusions, two of which I believe deserve to be highlighted in the abstract: (i) the hosts of sub-Jupiter mass planets (∼0.6–0.9 M) are systematically less metallic than the hosts of Jupiter-mass planets. This result might be related to the longer disk lifetime and the higher amount of planet building materials available at high metallicities, which allow a formation of more massive Jupiter-like planets; (ii) contrary to the previous claims, our data and results do not support the existence of a breakpoint planetary mass at 4 M above and below which planet formation channels are different. However, the results also suggest that planets of the same (high) mass can be formed through different channels depending on the (disk) stellar mass i.e., environmental conditions. Full article
(This article belongs to the Special Issue Detection and Characterization of Extrasolar Planets)
Show Figures

Figure 1

37 pages, 8750 KiB  
Review
Marine Geohazards: A Bibliometric-Based Review
by João M. R. Camargo, Marcos V. B. Silva, Antônio V. Ferreira Júnior and Tereza C. M. Araújo
Geosciences 2019, 9(2), 100; https://doi.org/10.3390/geosciences9020100 - 21 Feb 2019
Cited by 30 | Viewed by 8674
Abstract
Marine geohazard research has developed during recent decades, as human activities intensified towards deeper waters. Some recent disastrous events (e.g., the 2004 Indian Ocean and 2011 Japan tsunamis) highlighted geohazards socioeconomic impacts. Marine geohazards encompass an extensive list of features, processes, and events [...] Read more.
Marine geohazard research has developed during recent decades, as human activities intensified towards deeper waters. Some recent disastrous events (e.g., the 2004 Indian Ocean and 2011 Japan tsunamis) highlighted geohazards socioeconomic impacts. Marine geohazards encompass an extensive list of features, processes, and events related to Marine Geology. In the scientific literature there are few systematic reviews concerning all of them. Using the search string ‘geohazard*’, this bibliometric-based review explored the scientific databases Web of Science and Scopus to analyze the evolution of peer-reviewed scientific publications and discuss trends and future challenges. The results revealed qualitative and quantitative aspects of 183 publications and indicated 12 categories of hazards, the categories more studied and the scientific advances. Interdisciplinary surveys focusing on the mapping and dating of past events, and the determination of triggers, frequencies, and current perspectives of occurrence (risk) are still scarce. Throughout the upcoming decade, the expansion and improvement of seafloor observatories’ networks, early warning systems, and mitigation plans are the main challenges. Hazardous marine geological events may occur at any time and the scientific community, marine industry, and governmental agencies must cooperate to better understand and monitor the processes involved in order to mitigate the resulting unpredictable damages. Full article
(This article belongs to the Special Issue Marine Geohazards: New Insights and Perspectives)
Show Figures

Figure 1

20 pages, 5902 KiB  
Benchmark
Signal Processing of GPR Data for Road Surveys
by Luca Bianchini Ciampoli, Fabio Tosti, Nikos Economou and Francesco Benedetto
Geosciences 2019, 9(2), 96; https://doi.org/10.3390/geosciences9020096 - 19 Feb 2019
Cited by 86 | Viewed by 9971
Abstract
Effective quality assurance and quality control inspections of new roads as well as assessment of remaining service-life of existing assets is taking priority nowadays. Within this context, use of ground penetrating radar (GPR) is well-established in the field, although standards for a correct [...] Read more.
Effective quality assurance and quality control inspections of new roads as well as assessment of remaining service-life of existing assets is taking priority nowadays. Within this context, use of ground penetrating radar (GPR) is well-established in the field, although standards for a correct management of datasets collected on roads are still missing. This paper reports a signal processing method for data acquired on flexible pavements using GPR. To demonstrate the viability of the method, a dataset collected on a real-life flexible pavement was used for processing purposes. An overview of the use of non-destructive testing (NDT) methods in the field, including GPR, is first given. A multi-stage method is then presented including: (i) raw signal correction; (ii) removal of lower frequency harmonics; (iii) removal of antenna ringing; (iv) signal gain; and (v) band-pass filtering. Use of special processing steps such as vertical resolution enhancement, migration and time-to-depth conversion are finally discussed. Key considerations about the effects of each step are given by way of comparison between processed and unprocessed radargrams. Results have proven the viability of the proposed method and provided recommendations on use of specific processing stages depending on survey requirements and quality of the raw dataset. Full article
(This article belongs to the Special Issue Advances in Ground Penetrating Radar Research)
Show Figures

Figure 1

44 pages, 3862 KiB  
Review
Gadolinium as an Emerging Microcontaminant in Water Resources: Threats and Opportunities
by Pooria Ebrahimi and Maurizio Barbieri
Geosciences 2019, 9(2), 93; https://doi.org/10.3390/geosciences9020093 - 17 Feb 2019
Cited by 73 | Viewed by 11710
Abstract
As a result of high doses of paramagnetic gadolinium (Gd) chelates administered in magnetic resonance imaging (MRI) exams, their unmetabolized excretion, and insufficient removal in wastewater treatment plants (WWTPs), large amounts of anthropogenic Gd (Gdanth) are released into surface water. The [...] Read more.
As a result of high doses of paramagnetic gadolinium (Gd) chelates administered in magnetic resonance imaging (MRI) exams, their unmetabolized excretion, and insufficient removal in wastewater treatment plants (WWTPs), large amounts of anthropogenic Gd (Gdanth) are released into surface water. The upward trend of gadolinium-based contrast agent (Gd-CA) administrations is expected to continue growing and consequently higher and higher anthropogenic Gd concentrations are annually recorded in water resources, which can pose a great threat to aquatic organisms and human beings. In addition, the feasibility of Gd retention in patients administered with Gd-CAs repeatedly, and even potentially fatal diseases, including nephrogenic systemic fibrosis (NSF), due to trace amounts of Gd have recently arisen severe health concerns. Thus, there is a need to investigate probable adverse health effects of currently marketed Gd-CAs meticulously and to modify the actual approach in using Gd contrast media in daily practice in order to minimize unknown possible health risks. Furthermore, the employment of enhanced wastewater treatment processes that are capable of removing the stable contrast agents, and the evaluation of the ecotoxicity of Gd chelates and human exposure to these emerging contaminants through dermal and ingestion pathways deserve more attention. On the other hand, point source releases of anthropogenic Gd into the aquatic environment presents the opportunity to assess surface water—groundwater interactions and trace the fate of wastewater plume as a proxy for the potential presence of other microcontaminants associated with treated wastewater in freshwater and marine systems. Full article
(This article belongs to the Special Issue Emerging contaminants (ECs) in Groundwater)
Show Figures

Figure 1

18 pages, 4998 KiB  
Article
Picking Up the Pieces—Harmonising and Collating Seabed Substrate Data for European Maritime Areas
by Anu Marii Kaskela, Aarno Tapio Kotilainen, Ulla Alanen, Rhys Cooper, Sophie Green, Janine Guinan, Sytze van Heteren, Susanna Kihlman, Vera Van Lancker, Alan Stevenson and the EMODnet Geology Partners
Geosciences 2019, 9(2), 84; https://doi.org/10.3390/geosciences9020084 - 13 Feb 2019
Cited by 28 | Viewed by 6314
Abstract
The poor access to data on the marine environment is a handicap to government decision-making, a barrier to scientific understanding and an obstacle to economic growth. In this light, the European Commission initiated the European Marine Observation and Data Network (EMODnet) in 2009 [...] Read more.
The poor access to data on the marine environment is a handicap to government decision-making, a barrier to scientific understanding and an obstacle to economic growth. In this light, the European Commission initiated the European Marine Observation and Data Network (EMODnet) in 2009 to assemble and disseminate hitherto dispersed marine data. In the ten years since then, EMODnet has become a key producer of publicly available, harmonised datasets covering broad areas. This paper describes the methodologies applied in EMODnet Geology project to produce fully populated GIS layers of seabed substrate distribution for the European marine areas. We describe steps involved in translating national seabed substrate data, conforming to various standards, into a uniform EMODnet substrate classification scheme (i.e., the Folk sediment classification). Rock and boulders form an additional substrate class. Seabed substrate data products at scales of 1:250,000 and 1:1 million, compiled using descriptions and analyses of seabed samples as well as interpreted acoustic images, cover about 20% and 65% of the European maritime areas, respectively. A simple confidence assessment, based on sample and acoustic coverage, is helpful in identifying data gaps. The harmonised seabed substrate maps are particularly useful in supraregional, transnational and pan-European marine spatial planning. Full article
(This article belongs to the Special Issue Geological Seafloor Mapping)
Show Figures

Figure 1

14 pages, 5319 KiB  
Article
Down-Sampling of Point Clouds for the Technical Diagnostics of Buildings and Structures
by Czesław Suchocki and Wioleta Błaszczak-Bąk
Geosciences 2019, 9(2), 70; https://doi.org/10.3390/geosciences9020070 - 30 Jan 2019
Cited by 32 | Viewed by 4260
Abstract
Terrestrial laser scanning (TLS) is a non-destructive testing method for the technical assessment of existing structures. TLS has been successfully harnessed for monitoring technical surface conditions and morphological characteristics of historical buildings (e.g., the detection of cracks and cavities). TLS measurements with very [...] Read more.
Terrestrial laser scanning (TLS) is a non-destructive testing method for the technical assessment of existing structures. TLS has been successfully harnessed for monitoring technical surface conditions and morphological characteristics of historical buildings (e.g., the detection of cracks and cavities). TLS measurements with very high resolution should be taken to detect minor defects on the walls of buildings. High-resolution measurements are mostly needed in certain areas of interest, e.g., cracks and cavities. Therefore, reducing redundant information on flat areas without cracks and cavities is very important. In this case, automatic down-sampling of datasets according to the aforementioned criterion is required. This paper presents the use of the Optimum Dataset (OptD) method to optimize TLS dataset. A Leica ScanStation C10 time-of-flight scanner and a Z+F IMAGER 5016 phase-shift scanner were used during the research. The research was conducted on a specially prepared concrete sample and real object, i.e., a brick citadel located on the Kościuszko Mound in Cracow. The reduction of dataset by the OptD method and random method from TLS measurements were compared and discussed. The results prove that the large datasets from TLS diagnostic measurements of buildings and structures can be successfully optimized using the OptD method. Full article
(This article belongs to the Special Issue Geodesy and Geomatics Engineering)
Show Figures

Figure 1

21 pages, 15083 KiB  
Article
Geo-Hazard-Based Approach for the Estimation of Seismic Vulnerability and Damage Scenarios of the Old City of Senerchia (Avellino, Italy)
by Nicola Chieffo and Antonio Formisano
Geosciences 2019, 9(2), 59; https://doi.org/10.3390/geosciences9020059 - 26 Jan 2019
Cited by 41 | Viewed by 4139
Abstract
The large-scale seismic risk assessment is a crucial point for safeguarding people and planning adequate mitigation plans in urban areas. The current research work aims at analysing a sector of the historic centre of Senerchia, located in the province of Avellino, in order [...] Read more.
The large-scale seismic risk assessment is a crucial point for safeguarding people and planning adequate mitigation plans in urban areas. The current research work aims at analysing a sector of the historic centre of Senerchia, located in the province of Avellino, in order to assess the seismic vulnerability and damage of old masonry building compounds. First, the typological classification of the inspected building aggregates is developed using the CARTIS form developed by the PLINIVS research centre in collaboration with the Italian Civil Protection Department. The global seismic vulnerability assessment of the building sample is carried out using the macroseismic method according to the EMS-98 scale in order to identify the buildings most susceptible to seismic damage. Furthermore, 12 damage scenarios are developed by means of an appropriate seismic attenuation law. Finally, the expected damage scenarios considering the local hazard effects induced are developed in order to evaluate the damage increment, averagely equal to 50%, due to the seismic amplification of different soil categories. Full article
Show Figures

Figure 1

21 pages, 1998 KiB  
Article
Climate Change-Induced Migration in Coastal Bangladesh? A Critical Assessment of Migration Drivers in Rural Households under Economic and Environmental Stress
by Amelie Bernzen, J. Craig Jenkins and Boris Braun
Geosciences 2019, 9(1), 51; https://doi.org/10.3390/geosciences9010051 - 18 Jan 2019
Cited by 63 | Viewed by 12786
Abstract
Discussions of climate migration have recognized the need for probabilistic, systematic, and empirical analyses. We examine the importance of environmental stressors in migration using a multi-leveled analysis of a household survey of the climate-stressed rural communities of coastal Bangladesh. We find that a [...] Read more.
Discussions of climate migration have recognized the need for probabilistic, systematic, and empirical analyses. We examine the importance of environmental stressors in migration using a multi-leveled analysis of a household survey of the climate-stressed rural communities of coastal Bangladesh. We find that a relatively small share (6.5%) of rural coastal people have migrated, overwhelmingly domestically and on a temporary basis. The main motives are better employment opportunities in urban areas, marriage/family reunification, and education. About a third are displaced by flooding that created loss of arable land. Being male, younger, and working outside of agriculture facilitate migration, and also those with greater human and horizontal social capital are more likely to migrate. Exposure to severe river erosion, residing closer to major waterways and in saltwater shrimp farming zones spur migration. Climate migration is in its first instance economic-induced with environmental stress contributing as a secondary factor. Full article
(This article belongs to the Section Natural Hazards)
Show Figures

Figure 1

26 pages, 10657 KiB  
Article
Use of Geogrids and Recycled Rubber in Railroad Infrastructure for Enhanced Performance
by Buddhima Indraratna, Yujie Qi, Trung Ngoc Ngo, Cholachat Rujikiatkamjorn, Tim Neville, Fernanda Bessa Ferreira and Amir Shahkolahi
Geosciences 2019, 9(1), 30; https://doi.org/10.3390/geosciences9010030 - 08 Jan 2019
Cited by 39 | Viewed by 4982
Abstract
Railway tracks are conventionally built on compacted ballast and structural fill layers placed above the natural (subgrade) foundation. However, during train operations, track deteriorations occur progressively due to ballast degradation. The associated track deformation is usually accompanied by a reduction in both load [...] Read more.
Railway tracks are conventionally built on compacted ballast and structural fill layers placed above the natural (subgrade) foundation. However, during train operations, track deteriorations occur progressively due to ballast degradation. The associated track deformation is usually accompanied by a reduction in both load bearing capacity and drainage, apart from imposing frequent track maintenance. Suitable ground improvement techniques involving plastic inclusions (e.g., geogrids) and energy absorbing materials (e.g., rubber products) to enhance the stability and longevity of tracks have become increasingly popular. This paper presents the outcomes from innovative research and development measures into the use of plastic and rubber elements in rail tracks undertaken at the University of Wollongong, Australia, over the past twenty years. The results obtained from laboratory tests, mathematical modelling and numerical modelling reveal that track performance can be improved significantly by using geogrid and energy absorbing rubber products (e.g., rubber crumbs, waste tire-cell and rubber mats). Test results show that the addition of rubber materials can efficiently improve the energy absorption of the structural layer and also reduce ballast breakage. Furthermore, by incorporating the work input parameters, the energy absorbing property of the newly developed synthetic capping layer is captured by correct modelling of dilatancy. In addition, the laboratory behavior of tire cells and geogrids has been validated by numerical modelling (i.e., Finite Element Modelling-FEM, Discrete Element—DEM), and a coupled DEM-FEM modelling approach is also introduced to simulate ballast deformation. Full article
(This article belongs to the Special Issue Advances in Computational Geomechanics)
Show Figures

Figure 1

Back to TopTop