# Mapping Construction Costs at the National Level

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Materials and Methods

#### 2.1. Construction Cost Data Collection

#### 2.2. Interpolation Methods

_{j}, are estimated by:

_{ij}is the distance from known point i to unknown point j, Z

_{i}is the value for the known point i, and n is a user defined exponent, which controls how quickly a point’s influence decreases with distance [20]. According to the previous study, a value of 2 should be used for n, and the search radius should be limited to 10 neighboring points [16]. The output cell size (grid resolution) should be 1 km. Figure 4 shows an interpolated surface map produced by the IDW method.

#### 2.3. Selection of Interpolation Method for Mapping

#### 2.4. Mapping Construction Cost

## 3. Results and Discussion

## 4. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Dlamini, S. Relationship of Construction Sector to Economic Growth. In Working Paper; School of Construction Management and Engineering, University of Reading: Reading, UK, 2016; Available online: http://sitsabo.co.za/docs/misc/cib_paper2012.pdf (accessed on 5 April 2016).
- Gould, P.E.; Joyce, N. Construction Project Management, 4th ed.; Prentice Hall: Columbus, OH, USA, 2014. [Google Scholar]
- Sears, S.K.; Sears, G.A.; Clough, R.H.; Rounds, J.L.; Segner, R.O., Jr. Construction Project Management—A Practical Guide to Field Construction Management, 6th ed.; Wiley: New York, NY, USA, 2016. [Google Scholar]
- U.S. Bureau of Labor Statistics. The Employment Situation—November 2016. In News Release; U.S. Bureau of Labor Statistics: Washington, DC, USA, 2016. [Google Scholar]
- Dell’Isola, M.D. Architect’s Essentials of Cost Management; John Wiley & Sons, Inc.: New York, NY, USA, 2002. [Google Scholar]
- Lowe, D.J.; Emsley, M.W.; Harding, A. Predicting Construction Cost Using Multiple Regression Techniques. J. Constr. Eng. Manag.
**2006**, 132, 750–758. [Google Scholar] [CrossRef][Green Version] - Waier, P.R. Building Construction Cost Data 2014; Robert S. Means Co.: Norwell, MA, USA, 2013. [Google Scholar]
- Zhang, S.; Bogus, S.M.; Lippitt, C.D.; Migliaccio, G.C. Estimating Location-adjustment Factors for Conceptual Cost Estimating Based on Nighttime Satellite Imagery. J. Constr. Eng. Manag.
**2017**, 143, 04016087. [Google Scholar] [CrossRef] - Dransch, D.; Rotzoll, H.; Poser, K. The Contribution of Maps to the Challenges of Risk Communication to the Public. Int. J. Digit. Earth.
**2010**, 3, 292–311. [Google Scholar] [CrossRef] - Vexler, A.; Hutson, A.D.; Chen, X. Statistical Testing Strategies in the Health Science; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- MacEachren, A.M.; Kraak, M. Research Challenges in Geovisualization. Cartogr. Geogr. Inf. Sci.
**2001**, 28, 3–12. [Google Scholar] [CrossRef] - Jiang, B.; Li, Z. Geovisualization: Design, Enhanced Visual Tools and Application. Cartogr. J.
**2005**, 42, 3–4. [Google Scholar] [CrossRef][Green Version] - Craglia, M.; Shanley, L. Data Democracy—Increased Supply of Geospatial Information and Expanded Participatory Processes in the Production of Data. Int. J. Digit. Earth
**2015**, 8, 679–693. [Google Scholar] [CrossRef][Green Version] - MacEachren, A.M.; Gahegan, M.; Pike, W.; Brewer, I.; Cai, G.; Lengerich, E.; Hardistry, F. Geovisualization for Knowledge Construction and Decision Support. IEEE Comput. Graph.
**2004**, 24, 13–17. [Google Scholar] [CrossRef] [PubMed][Green Version] - Migliaccio, G.C.; Zandbergen, P.A.; Martinez, A.A. Empirical Comparison of Methods for Estimating Location Cost Adjustment Factors. J. Manag. Eng.
**2013**, 31, 04014037. [Google Scholar] [CrossRef] - Zhang, S.; Migliaccio, G.C.; Zandbergen, P.A.; Guindani, M. Empirical Assessment of Geographically Based Surface Interpolation for Adjusting Construction Cost Estimates by Project Location. J. Constr. Eng. Manag.
**2014**, 140, 04014015. [Google Scholar] [CrossRef] - Busygin, S.; Prokopyev, O.; Pardalos, P.M. Biculstering in Data Mining. J. Comput. Oper. Res.
**2008**, 35, 2964–2987. [Google Scholar] [CrossRef] - ESRI Data & Maps. Available online: https://www.esri.com/arcgis-blog/products/product/mapping/esri-data-maps/ (accessed on 5 April 2016).
- MacEachren, A.M.; Taylor, D.R.F. Visualization in Modern Cartography; Elsevier Science: Tarrytown, NY, USA, 1994. [Google Scholar]
- Bolstad, P. GIS Fundamentals, a First Text on Geographic Information Systems, 2nd ed.; Eider Press: White Bear Lake, MN, USA, 2005. [Google Scholar]
- Lu, G.; Wong, D. An Adaptive Inverse-Distance Weighting Spatial Interpolation Technique. J. Comput. Geosci.
**2008**, 34, 1044–1055. [Google Scholar] [CrossRef] - Rase, W. Visualization of Polygon-Based Data as a Continuous Surface; Federal Office for Building and Regional Planning: Bonn, Germany, 2009; Available online: http://www.wdrase.de/VisualPycnoInterEngl.pdf (accessed on 16 April 2016).
- Chiang, J.H.; Plotner, S.C. Building Construction Cost Data 2004; Robert S. Means Co.: Norwell, MA, USA, 2003. [Google Scholar]
- Balboni, B.; Bastoni, R.A. Building Construction Cost Data 2005; Robert S. Means Co.: Norwell, MA, USA, 2004. [Google Scholar]
- Waier, P.R. Building Construction Cost Data 2006; Robert S. Means Co.: Norwell, MA, USA, 2005. [Google Scholar]
- Waier, P.R. Building Construction Cost Data 2007; Robert S. Means Co.: Norwell, MA, USA, 2006. [Google Scholar]
- Waier, P.R. Building Construction Cost Data 2008; Robert S. Means Co.: Norwell, MA, USA, 2007. [Google Scholar]
- Waier, P.R. Building Construction Cost Data 2009; Robert S. Means Co.: Norwell, MA, USA, 2008. [Google Scholar]
- Waier, P.R.; Babbitt, C.; Baker, T.; Balboni, B.; Bastoni, R.A. Building Construction Cost Data 2010; Robert S. Means Co.: Norwell, MA, USA, 2009. [Google Scholar]
- Waier, P.R.; Babbitt, C.; Baker, T. Building Construction Cost Data 2011; Robert S. Means Co.: Norwell, MA, USA, 2010. [Google Scholar]
- Waier, P.R.; Charest, A.C.; Babbitt, C.; Baker, T.; Balboni, T. Building Construction Cost Data 2012; Robert S. Means Co.: Norwell, MA, USA, 2011. [Google Scholar]
- Waier, P.R.; Charest, A.C. Building Construction Cost Data 2013; Robert S. Means Co.: Norwell, MA, USA, 2012. [Google Scholar]
- Waier, P.R. Building Construction Cost Data 2015; Robert S. Means Co.: Norwell, MA, USA, 2014. [Google Scholar]
- Kiss, E.; Zichar, M.; Fazekas, I.; Karancsi, G.; Balla, D. Categorization and Geovisualization of Climate Change Strategies Using an Open-Access WebGIS Tool. Infocommun. J.
**2020**, 12, 32–37. [Google Scholar] [CrossRef] - Hoarau, C.; Christophe, S. Cartographic Continuum Rendering Based on Color and Texture Interpolation to Enhance Photo-Realism Perception. ISPRS J. Photogramm. Remote Sens.
**2017**, 127, 27–38. [Google Scholar] [CrossRef] - Balla, D.; Zichar, M.; Toth, R.; Kiss, E.; Karancsi, G.; Mester, T. Geovisualization Techniques of Spatial Environmental Data Using Different Visualization Tools. Appl. Sci.
**2020**, 10, 6701. [Google Scholar] [CrossRef] - Hildebrandt, D. A Software Reference Architecture for Service-Oriented 3D Geovisualization Systems. ISPRS Int. J. Geo-Inf.
**2014**, 3, 1445–1490. [Google Scholar] [CrossRef][Green Version]

**Figure 1.**The 649 CCI cities in the conterminous U.S. and their CCI (city cost index) values in 2015.

**Figure 2.**A 2015 construction cost map at the national level created by using the NN (nearest neighbor) method.

**Figure 3.**Construction cost map at the national level created by using the CNN (conditional nearest neighbor) method.

**Figure 4.**Construction cost map at the national level created by using the IDW (inverse distance weighted) method.

**Figure 5.**Multiple construction cost maps at the national level created using the IDW interpolation method.

**Figure 6.**Multiple construction cost maps at the national level showing construction cost difference; (

**a**) indicates construction cost difference in one year (2015 value minus 2014 value); (

**b**) indicates construction cost difference in two years (2015 value minus 2013 value); (

**c**) indicates construction cost difference in five years (2015 value minus 2010 value); (

**d**) indicates construction cost difference in ten years (2015 value minus 2005 value).

State | City | Material | Installation | Total |
---|---|---|---|---|

Alabama | Birmingham | 97.4 | 75.2 | 87.6 |

Tuscaloosa | 96.0 | 60.2 | 80.2 | |

Jasper | 96.3 | 58.5 | 79.6 | |

Decatur | 96.0 | 61.8 | 80.9 | |

Huntsville | 96.0 | 70.1 | 84.6 | |

Gadsden | 95.9 | 59.2 | 79.7 | |

Montgomery | 97.1 | 58.3 | 80.0 | |

Anniston | 95.2 | 67.0 | 82.8 | |

Dothan | 95.9 | 53.7 | 77.3 | |

Evergreen | 95.4 | 55.6 | 77.8 | |

Mobile | 97.1 | 67.4 | 84.0 | |

Selma | 95.6 | 53.5 | 77.0 | |

Phoenix City | 96.4 | 57.2 | 79.1 | |

Butler | 95.8 | 53.9 | 77.3 | |

Arizona | Phoenix | 99.9 | 74.6 | 88.7 |

Mesa/Tempe | 99.4 | 64.4 | 83.9 | |

Globe | 99.5 | 60.5 | 82.3 | |

Tucson | 98.2 | 69.9 | 85.7 | |

Show Low | 99.6 | 61.6 | 82.8 | |

Flagstaff | 101.6 | 70.4 | 87.9 | |

Prescott | 99.1 | 61.1 | 82.4 | |

Kingman | 97.2 | 67.9 | 84.3 | |

Chambers | 97.3 | 61.8 | 81.6 |

Methods | Advantages | Disadvantages |
---|---|---|

NN | Fast and easy to calculate | Less accurate |

Widely adopted by the construction industry to conduct cost estimates | Lack of variation within the polygon; no use of state boundary | |

Can estimate CCI values for all cities at the national level | Rough surfaces for the interpolated CCI values | |

CNN | More accurate | Slow and difficult to calculate |

Consider state policies’ and regulations’ impact on cost variation | Lack of variation within the polygon | |

Can estimate CCI values for all cities at the national level | Rough surfaces for the interpolated CCI values | |

IDW | More accurate | Slow and difficult to calculate |

Smooth surfaces for the interpolated CCI values which provide a more intuitive look to identify patterns | More parameters such as power to consider and test prior to deployment | |

Can estimate CCI values for all cities at the national level | Unable to consider state policies’ impact on cost variation |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Zhang, S.; Lippitt, C.D.; Bogus, S.M.; Taylor, T.D.; Haley, R.
Mapping Construction Costs at the National Level. *Geographies* **2022**, *2*, 132-144.
https://doi.org/10.3390/geographies2010009

**AMA Style**

Zhang S, Lippitt CD, Bogus SM, Taylor TD, Haley R.
Mapping Construction Costs at the National Level. *Geographies*. 2022; 2(1):132-144.
https://doi.org/10.3390/geographies2010009

**Chicago/Turabian Style**

Zhang, Su, Christopher D. Lippitt, Susan M. Bogus, Tammira D. Taylor, and Renee Haley.
2022. "Mapping Construction Costs at the National Level" *Geographies* 2, no. 1: 132-144.
https://doi.org/10.3390/geographies2010009