# Fractional Scale Calculus: Hadamard vs. Liouville

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

**Remark**

**1.**

## 2. On the Linear Systems

**Definition**

**1.**

**Definition**

**2.**

- piecewise continuous,
- with bounded variation.

**Remark**

**2.**

## 3. Shift-Invariant Systems: The Liouville Derivatives

- 1.
- The exponentials are the eigenfunctions of LTIS$$y\left(t\right)=G\left(s\right){e}^{st},\phantom{\rule{1.em}{0ex}}t\in \mathbb{R},$$$$G\left(s\right)={\int}_{-\infty}^{+\infty}g\left(t\right){e}^{-st}dt$$
- 2.
- If the region of convergence (ROC) of $G\left(s\right)$ contains the imaginary axis, we can set $s=i\omega ,\phantom{\rule{0.277778em}{0ex}}\omega \in \mathbb{R}$, in such a way that the response of an LS to a sinusoid is also a sinusoid with the same frequency. In such a situation, the LT degenerates into the Fourier transform and we say that the system is stable.

**Definition**

**3.**

**Remark**

**3.**

**Remark**

**4.**

**Remark**

**5.**

## 4. On the Scale-Invariant Systems: Hadamard Derivatives

#### 4.1. From the System to the Derivative

**Remark**

**6.**

**Definition**

**4.**

**Theorem**

**1.**

**Proof.**

- 1.
- From (27), we obtain$${\mathfrak{D}}_{s+}x\left(\tau \right)=\underset{q\to {1}^{+}}{lim}\frac{x\left(\tau \right)-x\left(\tau {q}^{-1}\right)}{lnq}$$$${\mathfrak{D}}_{s+}^{-1}x\left(\tau \right)=\underset{q\to {1}^{+}}{lim}lnq\sum _{n=0}^{\infty}x\left(\tau {q}^{-n}\right),$$
- 2.
- Ref. (28) gives$${\mathfrak{D}}_{s-}x\left(\tau \right)=\underset{q\to {1}^{+}}{lim}\frac{x\left(\tau q\right)-x\left(t\right)}{lnq}$$$${\mathfrak{D}}_{s-}^{-1}x\left(\tau \right)=-\underset{q\to {1}^{+}}{lim}lnq\sum _{n=0}^{\infty}x\left(\tau {q}^{n}\right),$$

**Example**

**1.**

- 1.
- Power functions: ${\tau}^{a}$We have$${\mathfrak{D}}_{s+}{\tau}^{a}=\underset{q\to {1}^{+}}{lim}\frac{{\tau}^{a}-{\tau}^{a}{q}^{-a}}{lnq}={\tau}^{a}\underset{q\to {1}^{+}}{lim}\frac{1-\left(1-aln\left(q\right)+{a}^{2}a{ln}^{2}\left(q\right)/2-\cdots \right)}{lnq}=a{\tau}^{a}$$$${\mathfrak{D}}_{s-}{\tau}^{a}=\underset{q\to {1}^{+}}{lim}\frac{{\tau}^{a}{q}^{a}-{\tau}^{a}}{lnq}={\tau}^{a}\underset{q\to {1}^{+}}{lim}\frac{{q}^{a}-1}{lnq}=a{\tau}^{a}$$
- 2.
- Logarithm: ${ln}^{a}\left(\tau \right)$As above, we obtain$$\begin{array}{cc}\hfill {\mathfrak{D}}_{s+}{ln}^{a}\left(\tau \right)& =\underset{q\to {1}^{+}}{lim}\frac{{ln}^{a}\left(\tau \right)-{\left(ln\left(\tau \right)-ln\left(q\right)\right)}^{a}}{ln\left(q\right)}\hfill \\ & ={ln}^{a}\left(\tau \right)\underset{q\to {1}^{+}}{lim}{\displaystyle \frac{a\frac{ln\left(q\right)}{ln\left(\tau \right)}-\frac{{a}^{2}}{2}{\left(\frac{ln\left(q\right)}{ln\left(\tau \right)}\right)}^{2}+\cdots}{ln\left(q\right)}}=a{ln}^{a-1}\left(\tau \right)\hfill \end{array}$$$$\begin{array}{cc}\hfill {\mathfrak{D}}_{s-}{ln}^{a}\left(\tau \right)& =\underset{q\to {1}^{+}}{lim}\frac{{\left(ln\left(\tau \right)+ln\left(q\right)\right)}^{a}-{ln}^{a}\left(\tau \right)}{ln\left(q\right)}\hfill \\ & ={ln}^{a}\left(\tau \right)\underset{q\to {1}^{+}}{lim}{\displaystyle \frac{a\frac{ln\left(q\right)}{ln\left(\tau \right)}+\frac{{a}^{2}}{2}{\left(\frac{ln\left(q\right)}{ln\left(\tau \right)}\right)}^{2}+\cdots}{ln\left(q\right)}}=a{ln}^{a-1}\left(\tau \right)\hfill \end{array}$$

#### 4.2. Properties of the Scale Derivatives

- LinearityIt is obvious from (26).
- Additivity and Commutativity of the orders$${\mathfrak{D}}_{s}^{\alpha}{\mathfrak{D}}_{s}^{\beta}x\left(\tau \right)={\mathfrak{D}}_{s}^{\alpha +\beta}x\left(\tau \right).$$This comes from (25).
- Neutral and inverse elementsLet $\alpha =-\beta .$ Then,$${\mathfrak{D}}_{s}^{\alpha}{\mathfrak{D}}_{s}^{-\alpha}x\left(\tau \right)={\mathfrak{D}}_{s-}^{0}x\left(\tau \right)=x\left(\tau \right).$$From (36), we conclude that there is always an inverse element—that is, for every $\alpha $ there is always the $-\alpha $ order that we call anti-derivative.
- The generalized Leibniz ruleThis rule gives the FD of the product of two functions and assumes the format of other fractional derivatives [31]$${\mathfrak{D}}_{s}^{\alpha}\left[x\left(\tau \right)y\left(\tau \right)\right]=\sum _{k=0}^{\infty}\left(\genfrac{}{}{0pt}{}{\alpha}{k}\right){\mathfrak{D}}_{s}^{k}x\left(\tau \right){\mathfrak{D}}_{s}^{\alpha -k}y\left(\tau \right).$$To prove this relation, we note first that$$\mathcal{M}\left[x\left(\tau \right)y\left(\tau \right)\right]=X\left(v\right)\u2605Y\left(v\right).$$Using the Bromwich inverse Mellin transform, we can write$${\mathfrak{D}}_{s}^{\alpha}\left[x\left(\tau \right)y\left(\tau \right)\right]={\displaystyle \frac{1}{2\pi i}}{\int}_{{\gamma}_{1}}{v}^{\alpha}{\int}_{{\gamma}_{2}}X\left(u\right)Y(v-u)du{\tau}^{v}dv,$$$${v}^{\alpha}={(v-u+u)}^{\alpha}={(v-u)}^{\alpha}{\left[1+{\displaystyle \frac{u}{v-u}}\right]}^{\alpha}=\sum _{k=0}^{\infty}\left(\genfrac{}{}{0pt}{}{\alpha}{k}\right){k}^{k}{(v-u)}^{\alpha -k},$$$${\mathfrak{D}}_{s}^{\alpha}\left[x\left(\tau \right)y\left(\tau \right)\right]=\sum _{k=0}^{\infty}\left(\genfrac{}{}{0pt}{}{\alpha}{k}\right){\displaystyle \frac{1}{2\pi i}}{\int}_{{\gamma}_{1}}{\int}_{{\gamma}_{2}}{u}^{k}X\left(u\right){(v-u)}^{\alpha -k}Y(v-u)du{\tau}^{v}dv,$$

#### 4.3. Relation with Classic and Quantum Derivatives

#### 4.4. Scale Conversion: Logarithmic Series

**Theorem**

**2.**

**Proof.**

**Example**

**2.**

**Corollary**

**1.**

#### 4.5. Hadamard Derivatives

**Theorem**

**3.**

**Proof.**

**Corollary**

**2.**

**Theorem**

**4.**

- 1.
- 2.
- 3.
- Hadamard–Liouville right derivative$${\mathfrak{D}}_{s+}^{\alpha}x\left(\tau \right)={\displaystyle \frac{1}{\Gamma (N-\alpha )}}{\int}_{1}^{\infty}\left[{\mathfrak{D}}_{s+}^{N}x\left(\tau \right)\right]{ln}^{N-\alpha -1}(\tau /u){\displaystyle \frac{du}{u}}$$
- 4.
- Hadamard–Liouville left derivative$${\mathfrak{D}}_{s-}^{\alpha}x\left(\tau \right)={\displaystyle \frac{1}{\Gamma (N-\alpha )}}{\int}_{0}^{1}\left[{\mathfrak{D}}_{s-}^{N}x\left(\tau \right)\right]{ln}^{N-\alpha -1}(u/\tau ){\displaystyle \frac{du}{u}}$$

**Remark**

**7.**

**Definition**

**5.**

#### 4.6. Tempered Scale-Invariant Derivatives

- 1.
- Forward Grünwald–Letnikov$${D}_{\lambda ,f}^{\alpha}f\left(t\right)=\underset{h\to {0}^{+}}{lim}{h}^{-\alpha}\sum _{n=0}^{\infty}\frac{{(-\alpha )}_{n}}{n!}{e}^{-n\lambda h}f(t-nh),$$
- 2.
- Forward regularized derivative$${D}_{\lambda ,f}^{\alpha}f\left(t\right)={\int}_{0}^{\infty}\left[f(t-\tau )-\sum _{0}^{N-1}\frac{{(-1)}^{m}{f}^{\left(m\right)}\left(t\right)}{m!}{\tau}^{m}\right]{e}^{-\lambda \tau}\frac{{\tau}^{-\alpha -1}}{\Gamma (-\alpha )}d\tau $$

**Definition**

**6.**

**Theorem**

**5.**

## 5. Scale-Invariant Systems

**Definition**

**7.**

**Example**

**3.**

**Remark**

**8.**

**Example**

**4.**

## 6. Conclusions

## Author Contributions

## Funding

## Data Availability Statement

## Conflicts of Interest

## References

- Cohen, L. The scale representation. IEEE Trans. Signal Process.
**1993**, 41, 3275–3292. [Google Scholar] [CrossRef] - Nottale, L. The theory of scale relativity. Int. J. Mod. Phys. A
**1992**, 7, 4899–4936. [Google Scholar] [CrossRef] - Nottale, L. Non-differentiable space-time and scale relativity. In Proceedings of the International Colloquium Geometrie au XXe Siecle, Paris, France, 24–29 September 2001. [Google Scholar]
- Nottale, L. The Theory of Scale Relativity: Non-Differentiable Geometry and Fractal Space-Time. In Computing Anticipatory Systems. CASYS’03—Sixth International Conference. American Institute of Physics Conference Proceedings; Dubois, D.M., Ed.; American Institute of Physics: College Park, MA, USA, 2004; Volume 718, pp. 68–75. [Google Scholar]
- Cresson, J. Scale relativity theory for one-dimensional non-differentiable manifolds. Chaos Solitons Fractals
**2002**, 14, 553–562. [Google Scholar] [CrossRef] - Cresson, J. Scale calculus and the Schrödinger equation. J. Math. Phys.
**2003**, 44, 4907–4938. [Google Scholar] [CrossRef] - Proekt, A.; Banavar, J.R.; Maritan, A.; Pfaff, D.W. Scale invariance in the dynamics of spontaneous behavior. Proc. Natl. Acad. Sci. USA
**2012**, 109, 10564–10569. [Google Scholar] [CrossRef] - Khaluf, Y.; Ferrante, E.; Simoens, P.; Huepe, C. Scale invariance in natural and artificial collective systems: A review. J. R. Soc. Interface
**2017**, 14, 20170662. [Google Scholar] [CrossRef] - Lamperti, J. Semi-stable stochastic processes. Trans. Am. Math. Soc.
**1962**, 104, 62–78. [Google Scholar] [CrossRef] - Borgnat, P.; Amblard, P.O.; Flandrin, P. Scale invariances and Lamperti transformations for stochastic processes. J. Phys. A Math. Gen.
**2005**, 38, 2081. [Google Scholar] [CrossRef] - Belbahri, K. Scale invariant operators and combinatorial expansions. Adv. Appl. Math.
**2010**, 45, 548–563. [Google Scholar] [CrossRef] - Grossmann, A.; Morlet, J. Decomposition of Hardy Functions into Square Integrable Wavelets of Constant Shape. SIAM J. Math. Anal.
**1984**, 15, 723–736. [Google Scholar] [CrossRef] - Meyer, Y. Orthonormal wavelets. In Wavelets: Time-Frequency Methods and Phase Space Proceedings of the International Conference, Marseille, France, 14–18 December 1987; Springer: Berlin/Heidelberg, Germany, 1989; pp. 21–37. [Google Scholar]
- Mallat, S.G. Multiresolution Representations and Wavelets; University of Pennsylvania: Philadelphia, PA, USA, 1988. [Google Scholar]
- Mallat, S. A theory for multiresolution signal decomposition: The wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell.
**1989**, 11, 674–693. [Google Scholar] [CrossRef] - Daubechies, I. The wavelet transform, time-frequency localization and signal analysis. IEEE Trans. Inf. Theory
**1990**, 36, 961–1005. [Google Scholar] [CrossRef] - Heil, C.E.; Walnut, D.F. Continuous and discrete wavelet transforms. SIAM Rev.
**1989**, 31, 628–666. [Google Scholar] [CrossRef] - Edwards, T. Discrete Wavelet Transforms: Theory and Implementation; Stanford University: Stanford, CA, USA, 1991; pp. 28–35. [Google Scholar]
- Van Fleet, P.J. Discrete Wavelet Transformations: An Elementary Approach with Applications; John Wiley & Sons: Hoboken, NJ, USA, 2019. [Google Scholar]
- Poularikas, A.D. The Transforms and Applications Handbook; CRC Press LLC: Boca Raton, FL, USA, 2000. [Google Scholar]
- Hadamard, J. Essai sur L’étude des Fonctions, Données par leur Développement de Taylor; Gallica: Tokyo, Japan, 1892; pp. 101–186. [Google Scholar]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives; Gordon and Breach: Yverdon, Switzerland, 1993. [Google Scholar]
- Garra, R.; Orsingher, E.; Polito, F. A Note on Hadamard Fractional Differential Equations with Varying Coefficients and Their Applications in Probability. Mathematics
**2018**, 6, 4. [Google Scholar] [CrossRef] - Tarasov, V.E. Fractional dynamics with non-local scaling. Commun. Nonlinear Sci. Numer. Simul.
**2021**, 102, 105947. [Google Scholar] [CrossRef] - Liouville, J. Memóire sur quelques questions de Géométrie et de Méchanique, et sur un nouveau genre de calcul pour résoudre ces questions. J. L’École Polytech. Paris
**1832**, 13, 1–69. [Google Scholar] - Liouville, J. Memóire sur le calcul des différentielles à indices quelconques. J. L’École Polytech. Paris
**1832**, 13, 71–162. [Google Scholar] - Dugowson, S. Les Différentielles Métaphysiques (Histoire et Philosophie de la Généralisation de L’ordre de Dérivation). Ph.D. Thesis, Université Paris Nord, Paris, France, 1994. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Mainardi, F. Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models; Imperial College Press: London, UK, 2010. [Google Scholar]
- Podlubny, I. Fractional Differential Equations; Academic Press: San Diego, CA, USA, 1999; Volume 198, p. 340. [Google Scholar]
- Ortigueira, M.D. Fractional Calculus for Scientists and Engineers; Lecture Notes in Electrical Engineering; Springer: Dordrecht, The Netherlands, 2011. [Google Scholar]
- Riemann, B. Versuch einer allgemeinen Auffassung der Integration und Differentiation (Jan. 14, 1847). In The Collected Works of Bernard Riemann Edited by Heinrich Weber with the Assistance of Richard Dedekind; Dover Publications: New York, NY, USA, 1953; pp. 353–366. [Google Scholar]
- Valério, D.; Ortigueira, M.D.; Lopes, A.M. How Many Fractional Derivatives Are There? Mathematics
**2022**, 10, 737. [Google Scholar] [CrossRef] - De Oliveira, E.C.; Tenreiro Machado, J.A. A review of definitions for fractional derivatives and integrals. Math. Probl. Eng.
**2014**, 2014, 238459. [Google Scholar] [CrossRef] - Teodoro, G.S.; Machado, J.T.; De Oliveira, E.C. A review of definitions of fractional derivatives and other operators. J. Comput. Phys.
**2019**, 388, 195–208. [Google Scholar] [CrossRef] - Kilbas, A.A. Hadamard-type fractional calculus. J. Korean Math. Soc.
**2001**, 38, 1191–1204. [Google Scholar] - Butzer, P.L.; Kilbas, A.A.; Trujillo, J.J. Compositions of Hadamard-type fractional integration operators and the semigroup property. J. Math. Anal. Appl.
**2002**, 269, 387–400. [Google Scholar] [CrossRef] - Klimek, M. Sequential fractional differential equations with Hadamard derivative. Commun. Nonlinear Sci. Numer. Simul.
**2011**, 16, 4689–4697. [Google Scholar] [CrossRef] - Garra, R.; Polito, F. On some operators involving Hadamard derivatives. Integral Transform. Spec. Funct.
**2013**, 24, 773–782. [Google Scholar] [CrossRef] - Kamocki, R. Necessary and sufficient conditions for the existence of the Hadamard-type fractional derivative. Integral Transform. Spec. Funct.
**2015**, 26, 442–450. [Google Scholar] [CrossRef] - Chen, H.; Katugampola, U.N. Hermite–Hadamard and Hermite–Hadamard–Fejér type inequalities for generalized fractional integrals. J. Math. Anal. Appl.
**2017**, 446, 1274–1291. [Google Scholar] [CrossRef] - Zheng, X. Logarithmic transformation between (variable-order) Caputo and Caputo–Hadamard fractional problems and applications. Appl. Math. Lett.
**2021**, 121, 107366. [Google Scholar] [CrossRef] - Liu, W.; Liu, L. Properties of Hadamard Fractional Integral and Its Application. Fractal Fract.
**2022**, 6, 670. [Google Scholar] [CrossRef] - Ortigueira, M.D.; Valério, D. Fractional Signals and Systems; De Gruyter: Berlin, Germany; Boston, MA, USA, 2020. [Google Scholar]
- Kailath, T. Linear Systems; Information and System Sciences Series; Prentice-Hall: Hoboken, NJ, USA, 1980. [Google Scholar]
- Bengochea, G.; Ortigueira, M.D. Fractional derivative of power type functions. Comput. Appl. Math.
**2022**, 41, 1–18. [Google Scholar] - Ortigueira, M.D.; Machado, J.A.T. Fractional Derivatives: The Perspective of System Theory. Mathematics
**2019**, 7, 150. [Google Scholar] [CrossRef] - Ortigueira, M.D. The complex order fractional derivatives and systems are non hermitian. In Proceedings of the International Conference on Fractional Differentiation and Its Applications (ICFDA’21), Online, 6–8 September 2021; Springer: Berlin/Heidelberg, Germany, 2022; pp. 38–44. [Google Scholar]
- Herrmann, R. Fractional Calculus, 3rd ed.; World Scientific: Singapore, 2018. [Google Scholar]
- Rudolf, H. Applications of Fractional Calculus in Physics; World Scientific: Singapore, 2000. [Google Scholar]
- Ortigueira, M.; Bengochea, G. A new look at the fractionalization of the logistic equation. Phys. A Stat. Mech. Its Appl.
**2017**, 467, 554–561. [Google Scholar] [CrossRef] - Butzer, P.L.; Jansche, S. A direct approach to the Mellin transform. J. Fourier Anal. Appl.
**1997**, 3, 325–376. [Google Scholar] [CrossRef] - Luchko, Y.; Kiryakova, V. The Mellin integral transform in fractional calculus. Fract. Calc. Appl. Anal.
**2013**, 16, 405–430. [Google Scholar] [CrossRef] - Kac, V.G.; Cheung, P. Quantum Calculus; Springer: New York, NY, USA, 2002; Volume 113. [Google Scholar]
- Ernst, T. A Comprehensive Treatment of q-Calculus; Birkhäuser: Basel, Switzerland, 2012. [Google Scholar]
- Ortigueira, M.D. The fractional quantum derivative and its integral representations. Commun. Nonlinear Sci. Numer. Simul.
**2010**, 15, 956–962. [Google Scholar] [CrossRef] - Ortigueira, M.D. On the Fractional Linear Scale Invariant Systems. IEEE Trans. Signal Process.
**2010**, 58, 6406–6410. [Google Scholar] [CrossRef] - Jarad, F.; Abdeljawad, T.; Baleanu, D. Caputo-type modification of the Hadamard fractional derivatives. Adv. Differ. Equ.
**2012**, 2012, 1–8. [Google Scholar] [CrossRef] - Ma, L.; Li, C. On Hadamard fractional calculus. Fractals
**2017**, 25, 1750033. [Google Scholar] [CrossRef] - Almeida, R. Caputo–Hadamard fractional derivatives of variable order. Numer. Funct. Anal. Optim.
**2017**, 38, 1–19. [Google Scholar] [CrossRef] - Ma, L.; Li, C. On finite part integrals and Hadamard-type fractional derivatives. J. Comput. Nonlinear Dyn.
**2018**, 13, 090905. [Google Scholar] [CrossRef] - Butzer, P.L.; Kilbas, A.A.; Trujillo, J.J. Fractional calculus in the Mellin setting and Hadamard-type fractional integrals. J. Math. Anal. Appl.
**2002**, 269, 1–27. [Google Scholar] [CrossRef] - Ortigueira, M.D.; Bengochea, G.; Machado, J.A.T. Substantial, tempered, and shifted fractional derivatives: Three faces of a tetrahedron. Math. Methods Appl. Sci.
**2021**, 44, 9191–9209. [Google Scholar] [CrossRef] - Ortigueira, M.D.; Magin, R.L. On the Equivalence between Integer-and Fractional Order-Models of Continuous-Time and Discrete-Time ARMA Systems. Fractal Fract.
**2022**, 6, 242. [Google Scholar] [CrossRef] - Bengochea, G.; Ortigueira, M.; Verde-Star, L. Operational calculus for the solution of fractional differential equations with noncommensurate orders. Math. Methods Appl. Sci.
**2021**, 44, 8088–8096. [Google Scholar] [CrossRef] - Ortigueira, M.D.; Machado, J.T. Revisiting the 1D and 2D Laplace transforms. Mathematics
**2020**, 8, 1330. [Google Scholar] [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Ortigueira, M.D.; Bohannan, G.W. Fractional Scale Calculus: Hadamard vs. Liouville. *Fractal Fract.* **2023**, *7*, 296.
https://doi.org/10.3390/fractalfract7040296

**AMA Style**

Ortigueira MD, Bohannan GW. Fractional Scale Calculus: Hadamard vs. Liouville. *Fractal and Fractional*. 2023; 7(4):296.
https://doi.org/10.3390/fractalfract7040296

**Chicago/Turabian Style**

Ortigueira, Manuel D., and Gary W. Bohannan. 2023. "Fractional Scale Calculus: Hadamard vs. Liouville" *Fractal and Fractional* 7, no. 4: 296.
https://doi.org/10.3390/fractalfract7040296