Next Article in Journal
Sampled-Data Stabilization of Fractional Linear System under Arbitrary Sampling Periods
Next Article in Special Issue
On Sharp Estimate of Third Hankel Determinant for a Subclass of Starlike Functions
Previous Article in Journal
Collective Behaviors of Star-Coupled Harmonic Oscillators with Fluctuating Frequency in the Presence of Stochastic Resonance
Previous Article in Special Issue
Generalized Fractional Integral Inequalities for p-Convex Fuzzy Interval-Valued Mappings
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Some New Estimates on Coordinates of Generalized Convex Interval-Valued Functions

by
Muhammad Bilal Khan
1,
Adriana Cătaş
2,* and
Omar Mutab Alsalami
3
1
Department of Mathematics, COMSATS University Islamabad, Islamabad 44000, Pakistan
2
Department of Mathematics and Computer Science, University of Oradea, 1 University Street, 410087 Oradea, Romania
3
Department of Electrical Engineering, College of Engineering, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
*
Author to whom correspondence should be addressed.
Fractal Fract. 2022, 6(8), 415; https://doi.org/10.3390/fractalfract6080415
Submission received: 21 June 2022 / Revised: 22 July 2022 / Accepted: 26 July 2022 / Published: 28 July 2022
(This article belongs to the Special Issue Fractional Operators and Their Applications)

Abstract

:
The theory of convex and nonconvex mapping has a lot of applications in the field of applied mathematics and engineering. The Riemann integrals are the most significant operator of interval theory, which permits the generalization of the classical theory of integrals. This study considers the well-known coordinated interval-valued Hermite–Hadamard-type and associated inequalities. To full fill this mileage, we use the introduced coordinated interval left and right preinvexity (LR-preinvexity) and Riemann integrals for further extension. Moreover, we have introduced some new important classes of interval-valued coordinated LR-preinvexity (preincavity), which are known as lower coordinated preinvex (preincave) and upper preinvex (preincave) interval-valued mappings, by applying some mild restrictions on coordinated preinvex (preincave) interval-valued mappings. By using these definitions, we have acquired many classical and new exceptional cases that can be viewed as applications of the main results. We also present some examples of interval-valued coordinated LR-preinvexity to demonstrate the validity of the inclusion relations proposed in this paper.

1. Introduction

The extended convexity of mappings is a powerful tool for dealing with a wide range of challenges in nonlinear analysis and applied analysis, including several problems in mathematical physics. Excess molar volume, heat of mixing, and excess enthalpy are common thermodynamic features of non-ideal solutions and mixes that show generalized convexity. Inequalities and other forms of extended convex mappings have also been considered important in the study of differential and integral equations such as the Kudryashov–Sinelshchikov equations and the Euler equations. Their significant effect may be seen in electrical networks, quantum relative entropy, symmetry analysis, ergodic theory, dynamic systems, equilibrium, and repulsive perturbations. As a result, generalized convexity theory and inequalities play an important role in mathematics and physics. The study of inequalities and extended convex maps is becoming increasingly popular. From the standpoint of research and analysis addressing actual application difficulties, there is a considerable literature on generalized convexity and inequality. We will discuss some of the findings of [1,2,3,4,5,6,7] as well as the sources listed therein.
On the other hand, a number of scholars have contributed to the development of inequalities and properties associated with generalized convexity in a variety of directions, as evidenced by the published publications [8,9,10,11] and the bibliographies cited therein. The Hermite–Hadamard inequality, which is widely used in many different branches of applied analysis, particularly in the field of optimality analysis, is one of the exceptional mathematical inequalities in the context of convex mappings. The following section explains this inequality.
Suppose that the continuous mapping T : T is a convex mapping on an interval T = u ,   ν of real nembers, where u ν . Then, we acquire the following inequality:
T u + ν 2 1 ν u   u ν T ϰ d ϰ T u + T ν 2
If T is concave, then inequality (1) is reversed.
This inequality is notable because it provides error bounds for the mean value when considering a continuous convex mapping of T : T , which has attracted the attention of a large number of mathematicians. On the basis of other various groups of convex mappings, such as referring to Kórus [12] with s-convex mappings, Delavar and De La Sen [13] with h-convex mappings, Abramovich and Persson [14] with N-quasiconvex mappings, and so on, there have been many studies and surveys regarding the Hermite–Hadamard-type inequalities. The reader might see [15,16,17] and the references therein for current developments on this important issue.
Fractional calculus has shown to be a crucial cornerstone in both mathematics and applied sciences as a very useful tool. A number of scholars have been urged by academics to consider a number of fractional calculus application difficulties. For example, mass mathematicians have studied some delicate integral inequalities involving conformable fractional integral operators [18] in the study of the Hermite–Hadamard-type integral inequalities involving conformable fractional integral operators, [19] in the Fejér-type integral inequalities via Katugampola-type fractional integral operators, [20] in the Simpson-type integral inequalities via Riemann–Liouvi-type fractional integral operators, [21] in the generalizations of the trapezoidal-type integral inequalities in the presence of k-fractional integral operators, and [22] in the generalizations of the Ostrowski-type integral inequalities in the presence of Hadamard-type fractional integral operators. We urge that interested readers study the published publications [23,24,25,26,27,28] and the bibliographies cited in them for some significant discoveries in relation to various types of fractional integrals.
As a novel non-probabilistic approach, interval analysis is a special instance of set-valued analysis. There is no doubt that interval analysis is extremely important in both pure and practical research. One of the initial aims of the interval analysis process was to examine the error estimations of finite state machines’ numerical solutions. However, the interval analysis technique, which has been used in mathematical models in engineering for over fifty years as one of the ways to solve interval uncertain structural systems, is a critical cornerstone.
It is worth noting that applications in automatic error analysis [29], computer graphics [30], and neural network output optimization [31] have all been studied. Furthermore, [32,33,34,35] have a number of applications in optimization theory involving interval-valued mappings (I.V.Fs). We refer interested readers to [36,37] and the bibliographies cited in them for recent developments in the field of interval-valued mappings.
Breckner discussed the coming emerging idea of interval-valued convexity in [38].
An interval-valued mapping, T : T = u ,   ν X C , is called a convex interval-valued mapping if
T τ ϰ + 1 τ ω τ T ϰ + 1 τ T ω ,
for all ϰ ,   ω u ,   ν ,   τ 0 ,   1 , where X C is the collection of all real-valued intervals. If (2) is reversed, then T is called concave.
Sadowska expanded the conventional Hermite–Hadamard-type inequality to the subsequent intriguing form with reference to interval integrals in a prior paper [39].
Suppose that the continuous mapping T : T X C + X C is an interval-valued mapping on an interval, T = u ,   ν , of real numbers, where u ν . Then, we achieve the coming inequality:
T u + ν 2 1 ν u   u ν T ϰ d ϰ T u + T ν 2 .
If T is concave, then inequality (3) is reversed.
Ahmad et al. [39] and Khan et al. [40,41,42,43] extended these concepts and introduced different types of convexities, fuzz-numbered convexities, and constructed some new versions of inequalities in classical fractional calculus and fuzzy fractional calculus. Similarly, by considering the fractional integrals with exponential kernels for real-valued mappings proposed by Ahmad et al., in [44], Zhou et al., introduced the successive interval-valued fractional integrals with exponential kernels to obtain certain fractional integral inclusion relations for interval-valued convex mappings. We urge that interested readers study the published works [45,46,47,48,49,50,51,52,53,54,55,56] and the references therein for current developments in the field of coordinated mappings.
The current paper is motivated by the above-mentioned studies, in particular the findings developed in [50,57,58,59,60,61,62,63,64,65]. The interval-valued LR-preinvexity is used to create certain interval integral inclusion relations that are bound up with the extraordinary Hermite–Hadamard as well as Fejér–Hermite–Hadamard-type inequalities. We also use defined Riemann interval-valued integrals to create Pachpatte-type inclusion relations for interval-valued LR-preinvexity.

2. Preliminaries

Let X C be the space of all closed and bounded intervals of and Q X C be defined by
Q = Q * ,   Q * = ϰ |   Q * ϰ Q * , Q * ,   Q * .
If Q * = Q * , then Q is said to be degenerate. In this article, all intervals will be non-degenerate intervals. If Q * 0 , then Q * ,   Q * is called positive interval. The set of all positive intervals is denoted by X C + and defined as X C + = Q * ,   Q * : Q * ,   Q * X C   and   Q * 0 .
Let λ and λ Q be defined by
λ Q = λ Q * ,   λ Q *   if   λ > 0 , 0   if   λ = 0 , λ Q * , λ Q *   if   λ < 0 .
Then, the Minkowski difference, Z Q ; addition, Q + Z ; and Q × Z for Q , Z X C are defined by
Z * ,   Z * + Q * ,   Q * = Z * + Q * ,   Z * + Q * ,
Z * ,   Z * × Q * ,   Q * = min Z * Q * ,   Z * Q * ,   Z * Q * ,   Z * Q * ,   max Z * Q * ,   Z * Q * ,   Z * Q * ,   Z * Q *
Z * ,   Z * Q * ,   Q * = Z * Q * ,   Z * Q * ,
For given Z * ,   Z * ,   Q * ,   Q * I , the relation is defined on I by
Q * ,   Q * Z * ,   Z *   if   and   only   if   Q * Z * ,   Z * Q * ,
For all Z * ,   Z * ,   Q * ,   Q * I , it is a partial interval inclusion relation or an up-and-down (UD) relation.
On the other hand, for given Z * ,   Z * ,   Q * ,   Q * I , the relation p is defined on I by
Q * ,   Q * Z * ,   Z *   if   and   only   if   Q * Z * ,   Z * Q * ,
For all Z * ,   Z * ,   Q * ,   Q * I , it is a pseudo-order relation or left-and-right (LR) relation, see [60].
Moreover, for Z * ,   Z * ,   Q * ,   Q * X C , the Hausdorff–Pompeiu distance between intervals Z * ,   Z * and Q * ,   Q * is defined by
d H Z * ,   Z * ,   Q * ,   Q * = m a x Z * Q * ,   Z * Q * .
It is a familiar fact that X C , d H is a complete metric space [65].
Theorem 1
([46]). If T : u ,   ν I  is an IVF given by T X = T * x ,   T * x , then T is Riemann-integrable over u ,   ν if and only if T * and T * both are Riemann-integrable over u ,   ν such that
I R u ν T x d x = R u ν T * x d x ,   R u   ν T * x d x
Khan et al., expanded the conventional Hermite–Hadamard-type inequality to the subsequent intriguing form with reference to interval integrals in a prior paper [65].
Suppose that the continuous mapping T : T X C + X C is an LR-preinvex interval-valued mapping on an interval T = u ,   u + φ ν , u of real nembers, where u u + φ ν , u . Then, we achieve the coming inequality:
T 2 u + φ ν , u 2 p 1 φ ν , u   u u + φ ν , u T ϰ d ϰ p T u + T ν 2 .
If T is LR-preincave, then inequality (3) is reversed.
Theorem 2
([65]). Let  T , H   : u ,   u + φ ν , u I + be two LR-preinvex I.V.Fs such that T x = T * x ,   T * x and H x = H * x ,   H * x for all x u ,   ν . If   T × H is interval-Riemann-integrable, then
1 φ ν , u   I R u u + φ ν , u T x × H x d x p 1 3 M u ,   ν + 1 6 N u ,   ν ,
and
2   T 2 u + φ ν , u 2 × H 2 u + φ ν , u 2 p 1 φ ν , u   I R u u + φ ν , u T x × H x d x + 1 6 M u ,   ν + 1 3 N u ,   ν .
where   M u ,   ν = T u × H u + T ν × H ν ,   N u ,   ν = T u × H ν + T ν × H u , , M u ,   ν = M * u ,   ν ,   M * u ,   ν , and N u ,   ν = N * u ,   ν ,   N * u ,   ν .
Theorem 3
([65]). Let T : u ,   u + φ ν , u I +  be an LR-preinvex I.V.F with u < u + φ ν , u such that T x = T * x ,   T * x for all x u ,   ν . If T is interval-Riemann-integrable and Ω : u ,   u + φ ν , u ,   Ω x 0 , symmetric with respect to 2 u + φ ν , u 2 , and u u + φ ν , u Ω x d x > 0 , then
T 2 u + φ ν , u 2 p 1 u u + φ ν , u Ω x d x   I R u u + φ ν , u T x Ω x d x p T u + T ν 2 .
If T is an LR-preincave I.V.F, then inequality (13) is reversed.
Definition 1
([62]). The IVF T : Δ = ρ ,   ς × u ,   ν + is said to be a coordinated convex function on   Δ if
T τ ρ + 1 τ ς ,   s u + 1 s ν τ s T ρ , u + τ 1 s T ρ , ν + 1 τ s T ς , u + 1 τ 1 s T ς , ν ,
for all   ρ ,   ς ,   u ,   ν Δ ,   τ and τ , s 0 ,   1 . If inequality (17) is reversed, then T is called a coordinated concave IVF on Δ .
Definition 2
([64]). The I.V.F T : Δ I + is said to be a coordinated LR-convex I.V.F on   Δ if
T τ ρ + 1 τ ς ,   s u + 1 s ν p τ s T ρ , u + τ 1 s T ρ , ν + 1 τ s T ς , u + 1 τ 1 s T ς , ν ,
for all   ρ ,   ς ,   u ,   ν Δ ,   and τ , s 0 ,   1 . If inequality (15) is reversed, then T is called a coordinate LR-concave I.V.F on Δ .
Now, we recall the concept of interval-double-integrable functions.
Definition 3
([63]). A function T : Δ = ρ ,   ς × u ,   ν I is called interval-double-integrable ( I D -integrable) on Δ if there exists B I such that, for each ϵ , there exists δ > 0 such that
d S T , P ,   δ , Δ ,   B < ϵ ,
for every Riemann sum of T corresponding to P P δ ,   Δ and for the arbitrary choice of η i , w j x i 1 ,   x i × ω j 1 ,   ω j for 1 i k and 1 j n . Then, we say that B is the I R -integral of T on Δ , and it is denoted by B = I D ρ ς u ν T x , ω d ω d x or B = I D Δ   T d A .
Note that Theorem 4 is also true for interval double integrals. The collection of all double-integrable IVFs is denoted   T O Δ .
Theorem 4
([63]). Let Δ = ρ ,   ς × u ,   ν . If T : Δ I is I D -integrable on Δ , then we have
I D ρ ς u ν T x , ω d ω d x = I R ρ ς I R u ν T x , ω d ω d x .  
Coordinated LR-Preinvex Interval-Valued Functions
Definition 4.
The I.V.F T : Δ I + is said to be a coordinated LR-preinvex I.V.F on   Δ if
T ρ + 1 τ φ 1 ς , ρ ,   u + 1 s φ 2 ν , u   p τ s T ρ , u + τ 1 s T ρ , ν + 1 τ s T ς , u + 1 τ 1 s T ς , ν ,
for all   ρ ,   ς ,   u ,   ν Δ ,   and τ , s 0 ,   1 where T x I 0 . If inequality (18) is reversed, then T is a called coordinate LR-preincave I.V.F on Δ .
The proof of Lemma 1 is straightforward and is omitted here.
Lemma 1.
Let T : Δ I + be a coordinated I.V.F on Δ . Then, T is a coordinated LR-preinvex I.V.F on Δ if and only if there exist two coordinated LR-preinvex I.V.Fs,   T x : u ,   ν I + , T x w = T x , w and T ω : ρ , ς I + , T ω y = T y , ω .
Proof. 
From the definition of a coordinated LR-preinvex I.V.F, it can be easily proven.
From Lemma 1, we can easily note each LR-preinvex I.V.F is a coordinated preinvex I.V.F, but the converse is not true (see Example 1). □
Theorem 5.
Let T : Δ I + be an I.V.F on Δ such that
T x , ω = T * x , ω ,   T * x , ω ,  
for all x , ω Δ . Then, T is a coordinated LR-preinvex I.V.F on Δ if and only if T * x , ω and T * x , ω are coordinated preinvex and preinvex functions, respectively.
Proof. 
Assume that T * x , ω and T * x , ω are coordinated preinvex functions on Δ . Then, from (18), for all   ρ ,   ς ,   u ,   ν Δ ,   τ and s 0 ,   1 we have
T * ρ + 1 τ φ 1 ς , ρ ,   u + 1 s φ 2 ν , u τ s T * ρ , u + t 1 s T * ρ , ν + s 1 t T * ρ , u + 1 τ 1 s T * ρ , ν ,
and
T * ρ + 1 τ φ 1 ς , ρ ,   u + 1 s φ 2 ν , u τ s T * ρ , u + t 1 s T * ρ , ν + s 1 t T * ρ , u + 1 τ 1 s T * ρ , ν ,
Then, by (19), (4), and (5), we obtain
T ρ + 1 τ φ 1 ς , ρ ,   u + 1 s φ 2 ν , u = [ T * ρ + 1 τ φ 1 ς , ρ ,   u + 1 s φ 2 ν , u ,   T * ρ + 1 τ φ 1 ς , ρ ,   u + 1 s φ 2 ν , u ] , p τ s T * ρ , u ,   T * ρ , u + t 1 s [ T * ρ , ν ,   T ( ρ , ν ) ] + s 1 τ T * ρ , u ,   T * ρ , u + 1 τ 1 s T * ρ , ν ,   T * ρ , ν .
That is
T ρ + 1 τ φ 1 ς , ρ ,   u + 1 s φ 2 ν , u p τ s T ρ , u + τ 1 s T ρ , ν + 1 τ s T ς , u + 1 τ 1 s T ς , ν ,
Hence, T is a coordinated LR-preinvex I.V.F on Δ .
Conversely, let T be a coordinated LR-preinvex I.V.F on Δ . Then, for all   ρ ,   ς ,   u ,   ν Δ ,   τ and s 0 ,   1 , we have
T ρ + 1 τ φ 1 ς , ρ ,   u + 1 s φ 2 ν , u p τ s T ρ , u + τ 1 s T ρ , ν + 1 τ s T ς , u + 1 τ 1 s T ς , ν .
Therefore, again from (19), we have
T ρ + 1 τ φ 1 ς , ρ ,   u + 1 s φ 2 ν , u = T * ρ + 1 τ φ 1 ς , ρ ,   u + 1 s φ 2 ν , u ,   T * ρ + 1 τ ς ,   u + 1 s φ 2 ν , u .  
Again, from (4) and (5), we obtain
τ s T ρ , u + τ 1 s T ρ , ν + 1 τ s T ς , u + 1 τ 1 s T ς , ν = τ s T * ρ , u ,   T * ρ , u + t 1 s T * ρ , ν ,   T * ρ , ν + s 1 τ T * ρ , u ,   T * ρ , u + 1 τ 1 s T * ρ , ν ,   T * ρ , ν ,
for all x , ω Δ and τ 0 ,   1 . Then, by the coordinated LR-preinvexity of T , we have for all x , ω Δ and τ 0 ,   1   such that
T * ρ + 1 τ φ 1 ς , ρ ,   u + 1 s φ 2 ν , u τ s T * ρ , u + τ 1 s T * ρ , ν + 1 τ s T * ς , u + 1 τ 1 s T * ς , ν ,
and
T * ρ + 1 τ φ 1 ς , ρ ,   u + 1 s φ 2 ν , u τ s T * ρ , u + τ 1 s T * ρ , ν + 1 τ s T * ς , u + 1 τ 1 s T * ς , ν ,
Hence, the result follows.
Example 1.We consider the I.V.Fs T : 0 ,   1 × 0 ,   1 I + defined by,
T x = x ω , 6 + e x 6 + e ω
Since end point functions T * x , ω and T * x , ω are coordinated preinvex and preinvex functions with respect to φ 1 ς , ρ = ς ρ and φ 2 ν , u = ν u , respectively, T x , ω is a coordinated LR-preinvex I.V.F.
From Example 1, it can be easily seen that each coordinated LR-preinvex I.V.F is not a preinvex I.V.F.
Theorem 6.
Let Δ be a coordinated preinvex set, and let T : Δ I + be an I.V.F such that
T x , ω = T * x , ω ,   T * x , ω ,  
for all x , ω Δ . Then, T is a coordinated LR-preincave I.V.F on Δ if and only if T * x , ω and T * x , ω   are coordinated preincave functions.
Proof. 
The demonstration of proof of Theorem 6 is similar to the demonstration proof of Theorem 5. □
Example 2.We consider the I.V.Fs T : 0 ,   1 × 0 ,   1 I + , defined by
T x = 6 e x 6 e ω , 4 6 e x 6 e ω  
Since end point functions T * x , ω and T * x , ω are both coordinated preincave functions with respect to φ 1 ς , ρ = ς ρ and φ 2 ν , u = ν u , T x , ω is a coordinated LR-preincave I.V.F.
In the next results, to avoid confusion, we do not include the symbols R , I R , and I D before the integral sign.

3. Interval Hermite–Hadamard Inequalities

In this section, we propose 𝐻𝐻 and 𝐻𝐻-Fejér inequalities for coordinated LR-preinvex I.V.Fs and verify them with the help of some nontrivial examples.
Theorem 7.
Let T : Δ = ρ ,   ρ + φ 1 ς , ρ × u ,   u + φ 2 ν , u I + I be a coordinate LR-preinvex IVF on Δ such that T x , ω = T * x , ω ,   T * x , ω for all x , ω Δ , and let condition C hold for φ 1 and φ 2 . Then, the following inequality holds:
T 2 ρ + φ 1 ς , ρ 2 ,   2 u + φ 2 ν , u 2 p   1 2 1 φ 1 ς , ρ ρ ρ + φ 1 ς , ρ T x , 2 u + φ 2 ν , u 2 d x + 1 φ 2 ν , u u u + φ 2 ν , u T 2 ρ + φ 1 ς , ρ 2 , ω d ω   p 1 φ 1 ς , ρ φ 2 ν , u   ρ ρ + φ 1 ς , ρ u u + φ 2 ν , u T x , ω d ω d x p   1 4 φ 1 ς , ρ ρ ρ + φ 1 ς , ρ T x , u d x + ρ ρ + φ 1 ς , ρ T x , ν d x +   1 4 φ 2 ν , u u u + φ 2 ν , u T ρ , ω d ω + u u + φ 2 ν , u T ς , ω d ω p T ρ , u + T ς , u + T ρ , ν + T ς , ν 4 .
If T x is an LR-preincave I.V.F then,
T 2 ρ + φ 1 ς , ρ 2 ,   2 u + φ 2 ν , u 2 p   1 2 1 φ 1 ς , ρ ρ ρ + φ 1 ς , ρ T x , 2 u + φ 2 ν , u 2 d x + 1 φ 2 ν , u u u + φ 2 ν , u T 2 ρ + φ 1 ς , ρ 2 , ω d ω   p 1 φ 1 ς , ρ φ 2 ν , u   ρ ρ + φ 1 ς , ρ u u + φ 2 ν , u T x , ω d ω d x p   1 4 φ 1 ς , ρ ρ ρ + φ 1 ς , ρ T x , u d x + ρ ρ + φ 1 ς , ρ T x , ν d x +   1 4 φ 2 ν , u u u + φ 2 ν , u T ρ , ω d ω + u u + φ 2 ν , u T ς , ω d ω p T ρ , u + T ς , u + T ρ , ν + T ς , ν 4
Proof. 
Let T : Δ I + be a coordinated LR-preinvex I.V.F. Then, by this hypothesis, we have
4 T 2 ρ + φ 1 ς , ρ 2 , 2 u + φ 2 ν , u 2 p T ρ + 1 τ φ 1 ς , ρ ,   u + 1 s φ 2 ν , u + T ς + τ φ 1 ς , ρ ,   ν + s φ 2 ν , u .
By using Theorem 5, we have
4 T * 2 ρ + φ 1 ς , ρ 2 , 2 u + φ 2 ν , u 2     T * ρ + 1 τ φ 1 ς , ρ ,   u + 1 s φ 2 ν , u + T * ς + τ φ 1 ς , ρ ,   ν + s φ 2 ν , u ,   4 T * 2 ρ + φ 1 ς , ρ 2 , 2 u + φ 2 ν , u 2     T * ρ + 1 τ φ 1 ς , ρ ,   u + 1 s φ 2 ν , u + T * ς + τ φ 1 ς , ρ ,   ν + s φ 2 ν , u .
By using Lemma 1, we have
2 T * x , 2 u + φ 2 ν , u 2 T * x ,   u + 1 s φ 2 ν , u + T * x ,   ν + s φ 2 ν , u ,   2 T * x , 2 u + φ 2 ν , u 2 T * x ,   u + 1 s φ 2 ν , u + T * x ,   ν + s φ 2 ν , u ,
and
2 T * 2 ρ + φ 1 ς , ρ 2 , ω T * ρ + 1 τ φ 1 ς , ρ ,   ω + T * 1 τ ρ + t ς ,   ω ,   2 T * 2 ρ + φ 1 ς , ρ 2 , ω T * ρ + 1 τ φ 1 ς , ρ ,   ω + T * 1 τ ρ + t ς ,   ω .
From (25) and (26), we have
2 T * x , 2 u + φ 2 ν , u 2 , T * x , 2 u + φ 2 ν , u 2 p T * x ,   u + 1 s φ 2 ν , u , T * x ,   u + 1 s φ 2 ν , u + T * x ,   ν + s φ 2 ν , u , T * x ,   ν + s φ 2 ν , u ,
and
2 T * 2 ρ + φ 1 ς , ρ 2 , ω , T * 2 ρ + φ 1 ς , ρ 2 , ω p T * ρ + 1 τ φ 1 ς , ρ ,   ω , T * ρ + 1 τ φ 1 ς , ρ ,   ω + T * ρ + 1 τ φ 1 ς , ρ ,   ω , T * ρ + 1 τ φ 1 ς , ρ ,   ω ,
It follows that
T x , 2 u + φ 2 ν , u 2 p T x ,   u + 1 s φ 2 ν , u + T x ,   ν + s φ 2 ν , u
and
T 2 ρ + φ 1 ς , ρ 2 , ω p T ρ + 1 τ φ 1 ς , ρ ,   ω + T ς + τ φ 1 ς , ρ ,   ω
Since T x , . and T . , ω are both coordinated LR-preinvex-IVFs, then from inequalities (10), (27), and (28), we have
T x , 2 u + φ 2 ν , u 2 p 1 φ 2 ν , u   u u + φ 2 ν , u T x , ω d ω p     T x , u + T x , ν 2 .
and
T 2 ρ + φ 1 ς , ρ 2 , ω p 1 φ 1 ς , ρ ρ ρ + φ 1 ς , ρ T x , ω d x p   T ρ , ω + T ς , ω 2 .
Dividing double inequality (29) by φ 1 ς , ρ and integrating with respect to x over ρ ,   ρ + φ 1 ς , ρ , we have
1 φ 1 ς , ρ ρ ρ + φ 1 ς , ρ T x , 2 u + φ 2 ν , u 2 d x p 1 φ 1 ς , ρ φ 2 ν , u   ρ ρ + φ 1 ς , ρ u u + φ 2 ν , u T x , ω d ω d x p     1 2 φ 1 ς , ρ ρ ρ + φ 1 ς , ρ T x , u d x + ρ ρ + φ 1 ς , ρ T x , ν d x .  
Similarly, dividing double inequality (30) by φ 2 ν , u and integrating with respect to x over u ,   u + φ 2 ν , u , we have
1 φ 2 ν , u u u + φ 2 ν , u T 2 ρ + φ 1 ς , ρ 2 , ω d ω p 1 φ 1 ς , ρ φ 2 ν , u   ρ ρ + φ 1 ς , ρ u u + φ 2 ν , u T x , ω d ω d x p     1 2 φ 2 ν , u u u + φ 2 ν , u T ρ , ω d ω + u u + φ 2 ν , u T ς , ω d ω
By adding (31) and (32), we have
  1 2 1 φ 1 ς , ρ ρ ρ + φ 1 ς , ρ T x , 2 u + φ 2 ν , u 2 d x + 1 φ 2 ν , u u u + φ 2 ν , u T 2 ρ + φ 1 ς , ρ 2 , ω d ω   p 1 φ 1 ς , ρ φ 2 ν , u   ρ ρ + φ 1 ς , ρ u u + φ 2 ν , u T x , ω d ω d x p   1 4 φ 1 ς , ρ ρ ρ + φ 1 ς , ρ T x , u d x + ρ ρ + φ 1 ς , ρ T x , ν d x +   1 4 φ 2 ν , u u u + φ 2 ν , u T ρ , ω d ω + u u + φ 2 ν , u T ς , ω d ω .
Since T is an I.V.F, then with inequality (33), we have
  1 2 1 φ 1 ς , ρ ρ ρ + φ 1 ς , ρ T x , 2 u + φ 2 ν , u 2 d x + 1 φ 2 ν , u u u + φ 2 ν , u T 2 ρ + φ 1 ς , ρ 2 , ω d ω   p 1 φ 1 ς , ρ φ 2 ν , u   ρ ρ + φ 1 ς , ρ u u + φ 2 ν , u T x , ω d ω d x p   1 4 φ 1 ς , ρ ρ ρ + φ 1 ς , ρ T x , u d x + ρ ρ + φ 1 ς , ρ T x , ν d x +   1 4 φ 2 ν , u u u + φ 2 ν , u T ρ , ω d ω + u u + φ 2 ν , u T ς , ω d ω .  
From the left side of inequality (10), we have
T 2 ρ + φ 1 ς , ρ 2 ,   2 u + φ 2 ν , u 2 p 1 φ 1 ς , ρ   ρ ρ + φ 1 ς , ρ T x , 2 u + φ 2 ν , u 2 d x ,
T 2 ρ + φ 1 ς , ρ 2 ,   2 u + φ 2 ν , u 2 p 1 φ 2 ν , u   u u + φ 2 ν , u T 2 ρ + φ 1 ς , ρ 2 , ω d ω .
Taking the addition of inequality (35) with inequality (36), we have
T 2 ρ + φ 1 ς , ρ 2 ,   2 u + φ 2 ν , u 2 p   1 2 1 φ 1 ς , ρ ρ ρ + φ 1 ς , ρ T x , 2 u + φ 2 ν , u 2 d x + 1 φ 2 ν , u u u + φ 2 ν , u T 2 ρ + φ 1 ς , ρ 2 , ω d ω .  
Now, from right side of inequality (10), we have
1 φ 1 ς , ρ ρ ρ + φ 1 ς , ρ T x , u d x p T ρ , u + T ς , u 2
1 φ 1 ς , ρ ρ ρ + φ 1 ς , ρ T x , ν d x p T ρ , ν + T ς , ν 2
1 φ 2 ν , u u u + φ 2 ν , u T ρ , ω d ω p T ρ , ν + T ρ , u 2 ,  
1 φ 2 ν , u u u + φ 2 ν , u T ς , ω d ω p T ς , ν + T ς , u 2 .  
By adding inequalities (38)–(41), we have
  1 4 φ 1 ς , ρ ρ ρ + φ 1 ς , ρ T x , u d x + ρ ρ + φ 1 ς , ρ T x , ν d x +   1 4 φ 2 ν , u u u + φ 2 ν , u T ρ , ω d ω + u u + φ 2 ν , u T ς , ω d ω p T ρ , u + T ς , u + T ρ , ν + T ς , ν 4
By combining inequalities (34), (37), and (42), we obtain the desired result. □
Example 3.We consider the I.V.Fs T : 0 ,   1 × 0 ,   1 I + , defined by
T x = 2 6 + e x 6 + e ω , 8 6 + e x 6 + e ω  
Since end point functions T * x , ω ,   T * x , ω are coordinate preinvex functions, T x , ω is a coordinate LR-preinvex I.V.F.
T 2 ρ + φ 1 ς , ρ 2 ,   2 u + φ 2 ν , u 2 = [ 2 6 + e 1 2 2 , 8 6 e 1 2   2   ] ,   1 2 1 φ 1 ς , ρ ρ ρ + φ 1 ς , ρ T x , 2 u + φ 2 ν , u 2 d x + 1 φ 2 ν , u u u + φ 2 ν , u T 2 ρ + φ 1 ς , ρ 2 , ω d ω   = 2 6 + e 1 2 5 + e , 8 6 + e 1 2 5 + e ,
1 φ 1 ς , ρ φ 2 ν , u   ρ ρ + φ 1 ς , ρ u u + φ 2 ν , u T x , ω d ω d x = 2 5 + e 2 , 8 5 + e 2   1 4 φ 1 ς , ρ ρ ρ + φ 1 ς , ρ T x , u d x + ρ ρ + φ 1 ς , ρ T x , ν d x +   1 4 φ 2 ν , u [ u u + φ 2 ν , u T ρ , ω d ω + u u + φ 2 ν , u T ς , ω d ω ] = 5 + e 13 + e , 4 5 + e 13 + e ,
T ρ , u + T ς , u + T ρ , ν + T ς , ν 4 = 6 + e 20 + e + 49 2 , 2 6 + e 20 + e + 49 ,  
that is
2 6 + e 1 2   2 , 8 6 + e 1 2   2   p 2 6 + e 1 2 5 + e , 8 6 + e 1 2 5 + e p 2 5 + e 2 , 8 5 + e 2   p 5 + e 13 + e , 4 5 + e 13 + e p 6 + e 20 + e + 49 2 , 2 6 + e 20 + e + 49 .
Hence, Theorem 7 has been verified.
Remark 1.If T * x , ω   T * x , ω with φ 1 ς , ρ = ς ρ and φ 2 ν , u = ν u ,   then from (23), we acquire the following inequality (see [64]):
T c + d 2 , μ + x 2 p 1 2 [   1 d c c d T x , μ + x 2 d x +   1 x μ μ x T c + d 2 , ω d ω ] p 1 d c x μ c d μ x T x , ω d ω d x p   1 4 x μ μ x T c , ω d ω + μ x T d , ω d ω +   1 4 d c c d T x , μ d x + c d T x , x d x T c , μ + T c ,   x 2 + T d , μ + T d ,   x 2 + T c , μ + T d , μ 2 + T c , x + T d , x 2
If T * x , ω = T * x , ω with φ 1 ς , ρ = ς ρ and φ 2 ν , u = ν u , then from (23) we acquire the following inequality (see [62]):
T c + d 2 , μ + x 2 1 2   1 d c c d T x , μ + x 2 d x +   1 x μ μ x T c + d 2 , ω d ω 1 d c x μ c d μ x T x , ω d ω d x   1 4 x μ μ x T c , ω d ω + μ x T d , ω d ω +   1 4 d c c d T x , μ d x + c d T x , x d x T c , μ + T c ,   x 2 + T d , μ + T d ,   x 2 + T c , μ + T d , μ 2 + T c , x + T d , x 2 .
We now give an𝐻𝐻-Fejér inequality for coordinated LR-preinvex I.V.Fs by an inclusion relation in the following result.
Theorem 8.
Let T : Δ = ρ ,   ρ + φ 1 ς , ρ × u ,   u + φ 2 ν , u I + be a coordinated LR-preinvex IVF with ρ < ς and u < ν such that T x , ω = T x , ω ,   T x , ω for all x , ω Δ , and let condition C hold for φ 1 and φ 2 . Let Ω : ρ ,   ρ + φ 1 ς , ρ with x 0 ,   ρ ρ + φ 1 ς , ρ Ω x d x > 0 , and W : u ,   u + φ 2 ν , u   with W ω 0 and u u + φ 2 ν , u W ω d ω > 0 as two symmetric functions with respect to 2 ρ + φ 1 ς , ρ 2 and 2 u + φ 2 ν , u 2 , respectively. Then, the following inequality holds:
T 2 ρ + φ 1 ς , ρ 2 , 2 u + φ 2 ν , u 2 p 1 2 1 ρ ρ + φ 1 ς , ρ Ω x d x   ρ ρ + φ 1 ς , ρ T x , 2 u + φ 2 ν , u 2 Ω x d x + 1 u u + φ 2 ν , u W ω d ω   u u + φ 2 ν , u T 2 ρ + φ 1 ς , ρ 2 , ω W ω d ω p 1 ρ ρ + φ 1 ς , ρ Ω x d x u u + φ 2 ν , u W ω d ω ρ ρ + φ 1 ς , ρ u u + φ 2 ν , u T x , ω Ω x W ω d ω d x p   1 4 ρ ρ + φ 1 ς , ρ Ω x d x ρ ρ + φ 1 ς , ρ T x , u Ω x d x + ρ ρ + φ 1 ς , ρ T x , ν Ω x d x +   1 4 u u + φ 2 ν , u W ω d ω u u + φ 2 ν , u T ρ , ω W ω d ω + u u + φ 2 ν , u T ς , ω W ω d ω p T ρ , u + T ς , u + T ρ , ν + T ς , ν 4
Proof. 
Since T is a coordinated LR-preinvex I.V.F on Δ and it follows these functions, then by Lemma 1, there exist
T x : u ,   u + φ 2 ν , u I + ,   T x ω = T x , ω ,   T ω : ρ ,   ρ + φ 1 ς , ρ I + ,   T ω x = T x , ω .
Thus, from inequality (13), for each , we have
T x 2 u + φ 2 ν , u 2 p   1 u u + φ 2 ν , u W ω d ω u u + φ 2 ν , u T x ω W ω d ω p T x u + T x ν 2 ,
and
T ω 2 ρ + φ 1 ς , ρ 2 p   1 ρ ρ + φ 1 ς , ρ Ω x d x ρ ρ + φ 1 ς , ρ T ω x Ω x d x p T ω ρ + T ω ς 2 .
The above inequalities can be written as
T x , 2 u + φ 2 ν , u 2 p   1 u u + φ 2 ν , u W ω d ω u u + φ 2 ν , u T x , ω W ω d ω p T x , u + T x ,   ν 2 ,
and
T 2 ρ + φ 1 ς , ρ 2 , ω p   1 ρ ρ + φ 1 ς , ρ Ω x d x ρ ρ + φ 1 ς , ρ T x , ω Ω x d x p T ρ , ω + T ς , ω 2
Multiplying (47) by Ω x and then integrating the resultant with respect to x over ρ ,   ρ + φ 1 ς , ρ , we have
ρ ρ + φ 1 ς , ρ T x , 2 u + φ 2 ν , u 2 Ω x d x p   1 u u + φ 2 ν , u W ω d ω ρ ρ + φ 1 ς , ρ u u + φ 2 ν , u T x , ω Ω x W ω d ω d x p ρ ρ + φ 1 ς , ρ T x , u + T x ,   ν 2 Ω x d x .
Now, multiplying (48) by W ω and then integrating the resultant with respect to ω over u ,   u + φ 2 ν , u , we have
u u + φ 2 ν , u T 2 ρ + φ 1 ς , ρ 2 , ω W ω d ω p   1 ρ ρ + φ 1 ς , ρ Ω x d x ρ ρ + φ 1 ς , ρ u u + φ 2 ν , u T x , ω Ω x W ω d x d ω p u u + φ 2 ν , u T ρ , ω + T ς , ω 2 W ω d ω .
Since ρ ρ + φ 1 ς , ρ Ω x d x > 0 and u u + φ 2 ν , u W ω d ω > 0 , then by dividing (49) and (50) by ρ ρ + φ 1 ς , ρ Ω x d x > 0 and u u + φ 2 ν , u W ω d ω > 0 , respectively, we obtain
1 2 [ 1 ρ ρ + φ 1 ς , ρ Ω x d x   ρ ρ + φ 1 ς , ρ T x , 2 u + φ 2 ν , u 2 Ω x d x + 1 u u + φ 2 ν , u W ω d ω   u u + φ 2 ν , u T 2 ρ + φ 1 ς , ρ 2 , ω W ω d ω ] p 1 ρ ρ + φ 1 ς , ρ Ω x d x ρ u + φ 2 ν , u W ω d ω ρ ρ + φ 1 ς , ρ u u + φ 2 ν , u T x , ω Ω x W ω d ω d x ,   p 1 ρ ρ + φ 1 ς , ρ Ω x d x ρ ρ + φ 1 ς , ρ T x , u + T x ,   ν 4 Ω x d x +   1 u u + φ 2 ν , u W ω d ω u u + φ 2 ν , u T ρ , ω + T ς , ω 4 W ω d ω .
Now, from the left part of double inequalities (47) and (48), we obtain
T 2 ρ + φ 1 ς , ρ 2 , 2 u + φ 2 ν , u 2 p   1 u u + φ 2 ν , u W ω d ω u u + φ 2 ν , u T 2 ρ + φ 1 ς , ρ 2 , ω W ω d ω ,
and
T 2 ρ + φ 1 ς , ρ 2 , 2 u + φ 2 ν , u 2 p   1 ρ ρ + φ 1 ς , ρ Ω x d x ρ ρ + φ 1 ς , ρ T x , u + ν 2 Ω x d x
Summing inequalities (52) and (53), we obtain
T 2 ρ + φ 1 ς , ρ 2 , 2 u + φ 2 ν , u 2 p 1 2   1 ρ ρ + φ 1 ς , ρ Ω x d x ρ ρ + φ 1 ς , ρ T x , 2 u + φ 2 ν , u 2 Ω x d x +   1 u u + φ 2 ν , u W ω d ω u u + φ 2 ν , u T 2 ρ + φ 1 ς , ρ 2 , ω W ω d ω .
Similarly, from the right part of (47) and (48), we can obtain
  1 u u + φ 2 ν , u W ω d ω u u + φ 2 ν , u T ρ , ω W ω d ω p T ρ , u + T ρ ,   ν 2 ,
  1 u u + φ 2 ν , u W ω d ω u u + φ 2 ν , u T ς , ω W ω d ω p T ς , u + T ς ,   ν 2 ,
and
  1 ρ ρ + φ 1 ς , ρ Ω x d x ρ ρ + φ 1 ς , ρ T x , u Ω x d x p T ρ , u + T ς , u 2
  1 ρ ρ + φ 1 ς , ρ Ω x d x ρ ρ + φ 1 ς , ρ T x , ν Ω x d x p T ρ , ν + T ς , ν 2
Adding (55)–(58) and dividing by 4, we obtain
  1 4 u u + φ 2 ν , u W ω d ω u u + φ 2 ν , u T ρ , ω W ω d ω + u u + φ 2 ν , u T ς , ω W ω d ω +   1 4 ρ ρ + φ 1 ς , ρ Ω x d x ρ ρ + φ 1 ς , ρ T x , u Ω x d x + ρ ρ + φ 1 ς , ρ T x , ν Ω x d x p T ρ , u + T ρ ,   ν + T ς , u + T ς ,   ν 4
Combining inequalities (51), (54), and (59), we obtain
T 2 ρ + φ 1 ς , ρ 2 , 2 u + φ 2 ν , u 2 p 1 2   1 ρ ρ + φ 1 ς , ρ Ω x d x ρ ρ + φ 1 ς , ρ T x , 2 u + φ 2 ν , u 2 Ω x d x +   1 u u + φ 2 ν , u W ω d ω u u + φ 2 ν , u T 2 ρ + φ 1 ς , ρ 2 , ω W ω d ω p 1 ρ ρ + φ 1 ς , ρ Ω x d x u u + φ 2 ν , u W ω d ω ρ ρ + φ 1 ς , ρ u u + φ 2 ν , u T x , ω Ω x W ω d ω d x p   1 4 u u + φ 2 ν , u W ω d ω u u + φ 2 ν , u T ρ , ω W ω d ω + u u + φ 2 ν , u T ς , ω W ω d ω +   1 4 ρ ρ + φ 1 ς , ρ Ω x d x ρ ρ + φ 1 ς , ρ T x , u Ω x d x + ρ ρ + φ 1 ς , ρ T x , ν Ω x d x p T ρ , u + T ρ ,   ν 2 + T ς , u + T ς ,   ν 2 + T ρ , u + T ς , u 2 + T ρ , ν + T ς , ν 2
Hence, this concludes the proof. □
Remark 2.If one takes W ω = 1 = Ω x , then from (46) we achieve (23).
If T * x , ω   T * x , ω with φ 1 ς , ρ = ς ρ and φ 2 ν , u = ν u ,   then from (46) we acquire the following inequality (see [64]):
T c + d 2 , μ + x 2 p 1 2 [   1 c d Ω x d x c d T x , μ + x 2 Ω x d x +   1 μ x W ω d ω μ x T c + d 2 , ω W ω d ω ] p 1 c d Ω x d x μ x W ω d ω c d μ x T x , ω Ω x W ω d ω d x p   1 4 μ x W ω d ω μ x T c , ω W ω d ω + μ x T d , ω W ω d ω +   1 4 c d Ω x d x c d T x , μ Ω x d x + c d T x , x Ω x d x p T c , μ + T c ,   x 2 + T d , μ + T d ,   x 2 + T c , μ + T d , μ 2 + T c , x + T d , x 2 .
If T * x , ω = T * x , ω , then from (46) we acquire the following inequality (see [62]):
T c + d 2 , μ + x 2 1 2 [   1 c d Ω x d x c d T x , μ + x 2 Ω x d x +   1 μ x W ω d ω μ x T c + d 2 , ω W ω d ω ] 1 c d Ω x d x μ x W ω d ω c d μ x T x , ω Ω x W ω d ω d x   1 4 μ x W ω d ω μ x T c , ω W ω d ω + μ x T d , ω W ω d ω +   1 4 c d Ω x d x c d T x , μ Ω x d x + c d T x , x Ω x d x T c , μ + T c ,   x 2 + T d , μ + T d ,   x 2 + T c , μ + T d , μ 2 + T c , x + T d , x 2
We now obtain some𝐻𝐻inequalities for the product of coordinated LR-preinvex I.V.Fs. These inequalities are refinements of some known inequalities (see [62,64]).
Theorem 9.
Let T , H   : Δ = ρ ,   ρ + φ 1 ς , ρ × u ,   u + φ 2 ν , u 2 I + be two coordinated LR-preinvex IVFs on Δ such that T x , ω = T * x , ω ,   T * x , ω and H x , ω = H * x , ω ,   H * x , ω for all x , ω Δ , and let condition C hold for φ 1 and φ 2 . Then, the following inequality holds:
1 φ 1 ς , ρ φ 2 ν , u   ρ ρ + φ 1 ς , ρ u u + φ 2 ν , u T x , ω × H x , ω d ω d x p 1 9 P ρ , ς , u ,   ν + 1 18 M ρ , ς , u ,   ν + 1 36 N ρ , ς , u ,   ν .
where
P ρ , ς , u ,   ν = T ρ , u × H ρ , u + T ρ , ν × ˜ H ρ , ν + T ς , u × H ς , u + T ς , ν × H ς , ν , M ρ , ς , u ,   ν = T ρ , u × H ρ , ν + T ρ , ν × H ρ , u + T ς , u × H ς , ν + T ς , ν × H ς , u , + T ρ , u × H ς , u + T ς , ν × H ρ , ν + T ς , u × H ρ , u + T ρ , ν × H ς , ν , N ρ , ς , u ,   ν = T ρ , u × H ς , ν + T ς , u × H ρ , ν + T ς , ν × H ρ , u + T ς , u × H ρ , ν   .
and  P ρ , ς , u ,   ν , M ρ , ς , u ,   ν ,  and  N ρ , ς , u ,   ν  are defined as follows:
P ρ , ς , u ,   ν = P * ρ , ς , u ,   ν ,   P * ρ , ς , u ,   ν , M ρ , ς , u ,   ν = M * ρ , ς , u ,   ν ,   M * ρ , ς , u ,   ν , N ρ , ς , u ,   ν = N * ρ , ς , u ,   ν ,   N * ρ , ς , u ,   ν .
Proof. 
Let T and H both be coordinated LR-preinvex I.V.Fs on ρ ,   ρ + φ 1 ς , ρ × u ,   u + φ 2 ν , u . Then
T ρ + 1 τ φ 1 ς , ρ ,   u + 1 s φ 2 ν , u p τ s T ρ , u + τ 1 s T ρ , ν + 1 τ s T ς , u + 1 τ 1 s T ς , ν ,
and
H ρ + 1 τ φ 1 ς , ρ ,   u + 1 s φ 2 ν , u p τ s H ρ , u + τ 1 s H ρ , ν + 1 τ s H ς , u + 1 τ 1 s H ς , ν .
Since T and H are both coordinated LR-preinvex I.V.Fs, then by Lemma 1, there exist
T x : u ,   u + φ 2 ν , u I + ,   T x ω = T x , ω ,   H x : u ,   u + φ 2 ν , u I + ,   H x ω = H x , ω ,
and
T ω : ρ , ς I + ,   T ω x = T x , ω ,   H ω : ρ , ς I + ,   H ω x = H x , ω .
Since T x , H x ,   T ω , and H ω are I.V.Fs, then by inequality (11), we have
1 φ 1 ς , ρ   ρ ρ + φ 1 ς , ρ T ω x × H ω x d x p 1 3 T ω ρ × H ω ρ + T ω ς × H ω ς + 1 6 T ω ρ × H ω ς + T ω ς × H ω ρ ,
and
1 φ 2 ν , u   u u + φ 2 ν , u T x ω × H x ω d ω p 1 3 T x u × H x u + T x ν × H x ν + 1 6 T x u × H x ν + T x u × H x ν .
The above inequalities can be written as
1 φ 1 ς , ρ   ρ ρ + φ 1 ς , ρ T x , ω × H x , ω d x p 1 3 T ρ , ω × H ρ , ω + T ς , ω × H ς , ω + 1 6 T ρ , ω × H ς , ω + T ς , ω × H ρ , ω ,
and
1 φ 2 ν , u   u u + φ 2 ν , u T x , ω × H x , ω d ω p 1 3 T x , u × H x , u + T x , ν × H x , ν + 1 6 T x , u × H x , u + T x , ν × H x , ν .
First, we solve inequality (63). By taking the integration on both sides of the inequality with respect to ω over interval u ,   u + φ 2 ν , u and dividing both sides by   φ 2 ν , u , we have
1 φ 1 ς , ρ φ 2 ν , u   ρ ρ + φ 1 ς , ρ u u + φ 2 ν , u T x , ω × H x , ω d ω d x p 1 3 φ 2 ν , u u u + φ 2 ν , u T ρ , ω × H ρ , ω + T ς , ω × H ς , ω d ω + 1 6 φ 2 ν , u u u + φ 2 ν , u T ρ , ω × H ς , ω + T ς , ω × H ρ , ω d ω .
Now, again by inequality (11), we have
1 φ 2 ν , u u u + φ 2 ν , u T ρ , ω × H ρ , ω d ω p 1 3 u u + φ 2 ν , u T ρ , u × H ρ , u + T ρ , ν × H ρ , ν d ω + 1 6 u u + φ 2 ν , u T ρ , u × H ρ , ν + T ρ , u × H ρ , ν d ω .
1 φ 2 ν , u u u + φ 2 ν , u T ς , ω × H ς , ω d ω p 1 3 u u + φ 2 ν , u T ς , u × H ς , u + T ς , ν × H ς , ν d ω + 1 6 u u + φ 2 ν , u T ς , u × H ς , ν + T ς , u × H ρ , ν d ω .
1 φ 2 ν , u u u + φ 2 ν , u T ρ , ω × H ς , ω d ω p 1 3 u u + φ 2 ν , u T ρ , u × H ς , u + T ρ , ν × H ς , ν d ω + 1 6 u u + φ 2 ν , u T ρ , u × H ς , ν + T ρ , ν × H ς , u d ω .
1 φ 2 ν , u u u + φ 2 ν , u T ς , ω × H ρ , ω d ω p 1 3 u u + φ 2 ν , u T ς , u × H ρ , u + T ς , ν × H ρ , ν d ω + 1 6 u u + φ 2 ν , u T ς , u × H ρ , ν + T ς , ν × H ρ , u d ω .
From (64)–(69) and inequality (65), we have
1 φ 1 ς , ρ φ 2 ν , u   ρ ρ + φ 1 ς , ρ u u + φ 2 ν , u T x , ω × H x , ω d ω d x p 1 9 P ρ , ς , u ,   ν + 1 18 M ρ , ς , u ,   ν + 1 36 N ρ , ς , u ,   ν .
Hence, this concludes the proof of the theorem. □
Theorem 10.
Let T , H   : Δ = ρ ,   ρ + φ 1 ς , ρ × u ,   u + φ 2 ν , u 2 I + be two coordinated LR-preinvex I.V.Fs such that T x = T * x , ω ,   T * x , ω and H x = H * x , ω ,   H * x , ω for all x , ω Δ , and let condition C hold for φ 1 and φ 2 . Then, the following inequality holds:
4   T 2 ρ + φ 1 ς , ρ 2 , 2 u + φ 2 ν , u 2 × H 2 ρ + φ 1 ς , ρ 2 , 2 u + φ 2 ν , u 2 p 1 φ 1 ς , ρ φ 2 ν , u   ρ ρ + φ 1 ς , ρ u u + φ 2 ν , u T x , ω × H x , ω d ω d x + 5 36 P ρ , ς , u ,   ν + 7 36 M ρ , ς , u ,   ν + 2 9 N ρ , ς , u ,   ν .
where P ρ , ς , u ,   ν , M ρ , ς , u ,   ν , and N ρ , ς , u ,   ν are given in Theorem 9.
Proof. 
Since T , H   : Δ I + are two LR-preinvex I.V.Fs, then from inequality (12) we have
2 T 2 ρ + φ 1 ς , ρ 2 , 2 u + φ 2 ν , u 2 × H 2 ρ + φ 1 ς , ρ 2 , 2 u + φ 2 ν , u 2 p 1 φ 1 ς , ρ   ρ ρ + φ 1 ς , ρ T x , 2 u + φ 2 ν , u 2 × H x , 2 u + φ 2 ν , u 2 d x   + 1 6 T ρ , 2 u + φ 2 ν , u 2 × H ρ , 2 u + φ 2 ν , u 2 + T ς , 2 u + φ 2 ν , u 2 × H ς , 2 u + φ 2 ν , u 2 + 1 3 T ρ , 2 u + φ 2 ν , u 2 × H ς , 2 u + φ 2 ν , u 2 + T ς , 2 u + φ 2 ν , u 2 × H ρ , 2 u + φ 2 ν , u 2 ,
and
2 T 2 ρ + φ 1 ς , ρ 2 , 2 u + φ 2 ν , u 2 × H 2 ρ + φ 1 ς , ρ 2 , 2 u + φ 2 ν , u 2 p 1 φ 2 ν , u   u u + φ 2 ν , u T 2 ρ + φ 1 ς , ρ 2 , ω × H 2 ρ + φ 1 ς , ρ 2 , ω d ω + 1 6 T 2 ρ + φ 1 ς , ρ 2 , u × H 2 ρ + φ 1 ς , ρ 2 , u + T 2 ρ + φ 1 ς , ρ 2 , ν × H 2 ρ + φ 1 ς , ρ 2 , ν + 1 3 T 2 ρ + φ 1 ς , ρ 2 , u × H 2 ρ + φ 1 ς , ρ 2 , ν + T 2 ρ + φ 1 ς , ρ 2 , ν × H 2 ρ + φ 1 ς , ρ 2 , u .
By summing inequalities (71) and (72) then multiplying the resultant inequality by 2, we obtain
8 T 2 ρ + φ 1 ς , ρ 2 , 2 u + φ 2 ν , u 2 × H 2 ρ + φ 1 ς , ρ 2 , 2 u + φ 2 ν , u 2 p 2 φ 1 ς , ρ   ρ ρ + φ 1 ς , ρ T x , 2 u + φ 2 ν , u 2 × H x , 2 u + φ 2 ν , u 2 d x   + 2 φ 2 ν , u   u u + φ 2 ν , u T 2 ρ + φ 1 ς , ρ 2 , ω × H 2 ρ + φ 1 ς , ρ 2 , ω d ω   + 1 6 2 T ρ , 2 u + φ 2 ν , u 2 × H ρ , 2 u + φ 2 ν , u 2 + 2 T ς , 2 u + φ 2 ν , u 2 × H ς , 2 u + φ 2 ν , u 2 + 1 6 2 T 2 ρ + φ 1 ς , ρ 2 , u × H 2 ρ + φ 1 ς , ρ 2 , u + 2 T 2 ρ + φ 1 ς , ρ 2 , ν × H 2 ρ + φ 1 ς , ρ 2 , ν + 1 3 2 T ρ , 2 u + φ 2 ν , u 2 × H ς , 2 u + φ 2 ν , u 2 + 2 T ς , 2 u + φ 2 ν , u 2 × H ρ , 2 u + φ 2 ν , u 2 + 1 3 2 T 2 ρ + φ 1 ς , ρ 2 , u × H 2 ρ + φ 1 ς , ρ 2 , ν + 2 T 2 ρ + φ 1 ς , ρ 2 , ν × H 2 ρ + φ 1 ς , ρ 2 , u .
Now, with the help of integral inequality (12) for each integral on the right-hand side of (73), we have
2 T ρ , 2 u + φ 2 ν , u 2 × H ρ , 2 u + φ 2 ν , u 2 p 1 φ 2 ν , u u u + φ 2 ν , u T ρ , ω × H ρ , ω d ω + 1 6 T ρ , u × H ρ , u + T ρ , ν × H ρ , ν + 1 3 T ρ , u × H ρ , ν + T ρ , ν × H ρ , u .
2 T ς , 2 u + φ 2 ν , u 2 × H ς , 2 u + φ 2 ν , u 2 p 1 φ 2 ν , u   u u + φ 2 ν , u T ς , ω × H ς , ω d ω + 1 6 T ς , u × H ς , u + T ς , ν × H ς , ν + 1 3 T ς , u × H ς , ν + T ς , ν × H ς , u .
2 T ρ , 2 u + φ 2 ν , u 2 × H ς , 2 u + φ 2 ν , u 2 p 1 φ 2 ν , u   u u + φ 2 ν , u T ρ , ω × H ς , ω d ω + 1 6 T ρ , u × H ς , u + T ρ , ν × H ς , ν + 1 3 T ρ , u × H ς , ν + T ρ , ν × H ς , u .
2 T ς , 2 u + φ 2 ν , u 2 × H ρ , 2 u + φ 2 ν , u 2 p 1 φ 2 ν , u   u u + φ 2 ν , u T ς , ω × H ρ , ω d ω + 1 6 T ς , u × H ρ , u + T ς , ν × H ρ , ν + 1 3 T ς , u × H ρ , ν + T ς , ν × H ρ , u .
2 T 2 ρ + φ 1 ς , ρ 2 , u × H 2 ρ + φ 1 ς , ρ 2 , u p 1 φ 1 ς , ρ   ρ ρ + φ 1 ς , ρ T x , u × H x , u d x + 1 6 [ T ρ , u × H ρ , u + T ς , u × H ς , u ] + 1 3 [ T 2 ρ + φ 1 ς , ρ 2 , u × H 2 ρ + φ 1 ς , ρ 2 , u + T 2 ρ + φ 1 ς , ρ 2 , u × H 2 ρ + φ 1 ς , ρ 2 , u ] .
2 T 2 ρ + φ 1 ς , ρ 2 , ν × H 2 ρ + φ 1 ς , ρ 2 , ν p 1 φ 1 ς , ρ   ρ ρ + φ 1 ς , ρ T x , ν × H x , ν d x + 1 6 T ρ , ν × H ρ , ν + T ς , ν × H ς , ν + 1 3 T 2 ρ + φ 1 ς , ρ 2 , ν × H 2 ρ + φ 1 ς , ρ 2 , ν + T 2 ρ + φ 1 ς , ρ 2 , ν × H 2 ρ + φ 1 ς , ρ 2 , ν .
2 T 2 ρ + φ 1 ς , ρ 2 , u × H 2 ρ + φ 1 ς , ρ 2 , ν p 1 φ 1 ς , ρ   ρ ρ + φ 1 ς , ρ T x , u × H x , ν d x + 1 6 T ρ , u × H ρ , ν + T ς , u × H ς , ν + 1 3 T 2 ρ + φ 1 ς , ρ 2 , u × H 2 ρ + φ 1 ς , ρ 2 , ν + T 2 ρ + φ 1 ς , ρ 2 , u × H 2 ρ + φ 1 ς , ρ 2 , ν .
2 T 2 ρ + φ 1 ς , ρ 2 , ν × H 2 ρ + φ 1 ς , ρ 2 , u p 1 φ 1 ς , ρ   ρ ρ + φ 1 ς , ρ T x , ν × H x , u d x + 1 6 T ρ , ν × H ρ , u + T ς , ν × H ς , u + 1 3 T 2 ρ + φ 1 ς , ρ 2 , ν × H 2 ρ + φ 1 ς , ρ 2 , u + T 2 ρ + φ 1 ς , ρ 2 , ν × H 2 ρ + φ 1 ς , ρ 2 , u
From (74)–(81), we have
8 T 2 ρ + φ 1 ς , ρ 2 , 2 u + φ 2 ν , u 2 × H 2 ρ + φ 1 ς , ρ 2 , 2 u + φ 2 ν , u 2 p 2 φ 1 ς , ρ   ρ ρ + φ 1 ς , ρ T x , 2 u + φ 2 ν , u 2 × H x , 2 u + φ 2 ν , u 2 d x   + 2 φ 2 ν , u   u u + φ 2 ν , u T 2 ρ + φ 1 ς , ρ 2 , ω × H 2 ρ + φ 1 ς , ρ 2 , ω d x   + 1 6 φ 2 ν , u   u u + φ 2 ν , u T ρ , ω × H ρ , ω d ω + 1 6 φ 2 ν , u   u u + φ 2 ν , u T ς , ω × H ς , ω d ω   + 1 6 φ 1 ς , ρ   ρ ρ + φ 1 ς , ρ T x , u × H x , u d x + 1 6 φ 1 ς , ρ   ρ ρ + φ 1 ς , ρ T x , ν × H x , ν d x     + 1 3 φ 2 ν , u u u + φ 2 ν , u T ρ , ω × H ς , ω d ω + 1 3 φ 2 ν , u u u + φ 2 ν , u T ς , ω × H ρ , ω d ω   + 1 3 φ 1 ς , ρ   ρ ρ + φ 1 ς , ρ T x , u × H x , ν d x + 1 3 φ 1 ς , ρ   ρ ρ + φ 1 ς , ρ T x , ν × H x , u d x ,   + 1 18 P ρ , ς , u ,   ν + 1 9 M ρ , ς , u ,   ν + 2 9 N ρ , ς , u ,   ν .  
Now, again with the help of integral inequality (12), for first two integrals on the right-hand side of (82) we have the following relation
2 φ 1 ς , ρ   ρ ρ + φ 1 ς , ρ T x , 2 u + φ 2 ν , u 2 × H x , 2 u + φ 2 ν , u 2 d x   p 1 φ 1 ς , ρ φ 2 ν , u   ρ ρ + φ 1 ς , ρ u u + φ 2 ν , u T x , ω × H x , ω d ω d x + 1 3 φ 1 ς , ρ ρ ρ + φ 1 ς , ρ T x , u × H x , u + T x , ν × H x , ν d x + 1 6 φ 1 ς , ρ ρ ρ + φ 1 ς , ρ T u , x × H x , ν + T x , ν × H x , u d x ,
2 φ 2 ν , u   u u + φ 2 ν , u T 2 ρ + φ 1 ς , ρ 2 , ω × H 2 ρ + φ 1 ς , ρ 2 , ω d x   p 1 φ 1 ς , ρ φ 2 ν , u   ρ ρ + φ 1 ς , ρ u u + φ 2 ν , u T x , ω × H x , ω d ω d x + 1 3 φ 2 ν , u u u + φ 2 ν , u T ρ , ω × H ρ , ω + T ς , ω × H ς , ω d ω + 1 6 φ 2 ν , u u u + φ 2 ν , u T ρ , ω × H ς , ω + T ς , ω × H ρ , ω d ω .
From (83) and (84), we have
8 T 2 ρ + φ 1 ς , ρ 2 , 2 u + φ 2 ν , u 2 × H 2 ρ + φ 1 ς , ρ 2 , 2 u + φ 2 ν , u 2 p 1 φ 1 ς , ρ φ 2 ν , u   ρ ρ + φ 1 ς , ρ u u + φ 2 ν , u T x , ω × H x , ω d ω d x + 1 3 φ 1 ς , ρ ρ ρ + φ 1 ς , ρ T x , u × H x , u + T x , ν × H x , ν d x + 1 6 φ 1 ς , ρ ρ ρ + φ 1 ς , ρ T x , u × H x , ν + T x , ν × H x , u d x + 1 φ 1 ς , ρ φ 2 ν , u   ρ ρ + φ 1 ς , ρ u u + φ 2 ν , u T x , ω × H x , ω d ω d x + 1 3 φ 2 ν , u u u + φ 2 ν , u T ρ , ω × H ρ , ω + T ς , ω × H ς , ω d ω + 1 6 φ 2 ν , u u u + φ 2 ν , u T ρ , ω × H ς , ω + T ς , ω × H ρ , ω d ω + 1 6 φ 2 ν , u   u u + φ 2 ν , u T ρ , ω × H ρ , ω d ω + 1 6 φ 2 ν , u   u u + φ 2 ν , u T ς , ω × H ς , ω d ω   + 1 6 φ 1 ς , ρ   ρ ρ + φ 1 ς , ρ T x , u × H x , u d x + 1 6 φ 1 ς , ρ   ρ ρ + φ 1 ς , ρ T x , ν × H x , ν d x     + 1 3 φ 2 ν , u u u + φ 2 ν , u T ρ , ω × H ς , ω d ω + 1 3 φ 2 ν , u u u + φ 2 ν , u T ς , ω × H ρ , ω d ω   + 1 3 φ 1 ς , ρ   ρ ρ + φ 1 ς , ρ T x , u × H x , ν d x + 1 3 φ 1 ς , ρ   ρ ρ + φ 1 ς , ρ T x , ν × H x , u d x     + 1 18 P ρ , ς , u ,   ν + 1 9 M ρ , ς , u ,   ν + 2 9 N ρ , ς , u ,   ν .
It follows that
8 T 2 ρ + φ 1 ς , ρ 2 , 2 u + φ 2 ν , u 2 × H 2 ρ + φ 1 ς , ρ 2 , 2 u + φ 2 ν , u 2 p 2 φ 1 ς , ρ φ 2 ν , u   ρ ρ + φ 1 ς , ρ u u + φ 2 ν , u T x , ω × H x , ω d ω d x + 2 3 φ 1 ς , ρ ρ ρ + φ 1 ς , ρ T x , u × H x , u + T x , ν × H x , ν d x + 1 3 φ 1 ς , ρ ρ ρ + φ 1 ς , ρ T x , u × H x , ν + T x , ν × H x , u d x + 2 3 φ 2 ν , u u u + φ 2 ν , u T ρ , ω × H ρ , ω + T ς , ω × H ς , ω d ω + 1 3 φ 2 ν , u u u + φ 2 ν , u T ρ , ω × H ς , ω + T ς , ω × H ρ , ω d ω + 1 18 P ρ , ς , u ,   ν + 1 9 M ρ , ς , u ,   ν + 2 9 N ρ , ς , u ,   ν .
Now, using integral inequality (11) for integrals on the right-hand side of (85), we have the following relation
1 φ 1 ς , ρ   ρ ρ + φ 1 ς , ρ T x , u × H x , u d x p 1 3 T ρ , u × H ρ , u + T ς , u × H ς , u + 1 6 T ρ , u × H ς , u + T ς , u × H ρ , u
1 φ 1 ς , ρ   ρ ρ + φ 1 ς , ρ T x , ν × H x , ν d x p 1 3 T ρ , ν × H ρ , ν + T ς , ν × H ς , ν + 1 6 T ρ , ν × H ς , ν + T ς , ν × H ρ , ν ,
1 φ 1 ς , ρ   ρ ρ + φ 1 ς , ρ T x , u × H x , ν d x p 1 3 T ρ , u × H ρ , ν + T ς , u × H ς , ν + 1 6 T ρ , u × H ς , ν + T ς , u × H ρ , ν ,
1 φ 1 ς , ρ   ρ ρ + φ 1 ς , ρ T x , ν × H x , u d x p 1 3 T ρ , ν × H ρ , u + T ς , ν × H ς , u + 1 6 T ρ , ν × H ς , u + T ς , ν × H ρ , u ,
1 φ 2 ν , u u u + φ 2 ν , u T ρ , ω × H ρ , ω d ω p 1 3 T ρ , u × H ρ , u + T ρ , ν × H ρ , ν + 1 6 T ρ , u × H ρ , ν + T ρ , ν × H ρ , u ,
1 φ 2 ν , u   u u + φ 2 ν , u T ς , ω × H ς , ω d ω p 1 3 T ς , u × H ς , u + T ς , ν × H ς , ν + 1 6 T ς , u × H ς , ν + T ς , ν × H ς , u ,
1 φ 2 ν , u   u u + φ 2 ν , u T ρ , ω × H ς , ω d ω p 1 3 T ρ , u × H ς , u + T ρ , ν × H ς , ν + 1 6 T ρ , u × H ς , ν + T ρ , ν × H ς , u ,
1 φ 2 ν , u   u u + φ 2 ν , u T ς , ω × H ρ , ω d ω p 1 3 T ς , u × H ρ , u + T ς , ν × H ρ , ν + 1 6 T ς , u × H ρ , ν + T ς , ν × H ρ , u .
From (82)–(93) and inequality (85), we have
4   T 2 ρ + φ 1 ς , ρ 2 , 2 u + φ 2 ν , u 2 × H 2 ρ + φ 1 ς , ρ 2 , 2 u + φ 2 ν , u 2 p 1 φ 1 ς , ρ φ 2 ν , u   ρ ρ + φ 1 ς , ρ u u + φ 2 ν , u T x , ω × H x , ω d ω d x + 5 36 P ρ , ς , u ,   ν + 7 36 M ρ , ς , u ,   ν + 2 9 N ρ , ς , u ,   ν .
This concludes the proof. □

4. Conclusions

As an extension of convex interval-valued functions on coordinates, we proposed the idea of interval-valued LR-preinvex functions on coordinates in this paper. For coordinated LR-preinvex interval-valued functions, Hermite–Hadamard-type inclusions have been developed. In addition, the product of two coordinated LR-preinvex interval-valued functions is examined using some novel Hermite–Hadamard-type inclusions. Other types of interval-valued LR-preinvex functions on the coordinates can be used to expand the results gained in this study. In the future, we can use fuzzy interval-valued fractional integrals on coordinates to examine Fejér–Hermite–Hadamard-type inequalities for fuzzy interval-valued coordinated LR-preinvex functions. We hope that the concepts and findings presented in this article will inspire readers to pursue additional research.

Author Contributions

Conceptualization, M.B.K.; methodology, M.B.K., O.M.A. and A.C.; validation, O.M.A. and A.C.; formal analysis, O.M.A.; investigation, M.B.K., O.M.A. and A.C.; resources, O.M.A.; writing—original draft preparation, M.B.K. and A.C.; writing—review and editing, M.B.K. and O.M.A.; visualization, A.C.; supervision, M.B.K. and A.C.; project administration, M.B.K., O.M.A. and A.C. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Data Availability Statement

Not applicable.

Acknowledgments

The authors would like to thank the Rector, COMSATS University Islamabad, Islamabad, Pakistan, for providing excellent research.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Ali, M.R.; Sadat, R. Lie symmetry analysis, new group invariant for the (3+1)-di- mensional and variable coefficients for liquids with gas bubbles models. Chin. J. Phys. 2021, 71, 539–547. [Google Scholar] [CrossRef]
  2. Zhao, T.H.; He, Z.Y.; Chu, Y.M. Sharp bounds for the weighted Hölder mean of the zero-balanced generalized complete elliptic integrals. Comput. Methods Funct. Theory 2021, 21, 413–426. [Google Scholar] [CrossRef]
  3. Zhao, T.H.; Wang, M.K.; Chu, Y.M. Concavity and bounds involving generalized elliptic integral of the first kind. J. Math. Inequal. 2021, 15, 701–724. [Google Scholar] [CrossRef]
  4. Chu, H.H.; Zhao, T.H.; Chu, Y.M. Sharp bounds for the Toader mean of order 3 in terms of arithmetic, quadratic and contraharmonic means. Math. Slovaca 2020, 70, 1097–1112. [Google Scholar] [CrossRef]
  5. Zhao, T.H.; He, Z.Y.; Chu, Y.M. On some refinements for inequalities involving zero-balanced hyper geometric function. AIMS Math. 2020, 5, 6479–6495. [Google Scholar] [CrossRef]
  6. Sabir, Z.; Ali, M.R.; Raja, M.A.Z.; Shoaib, M.; Núñez, R.A.S.; Sadat, R. Computational intellgence approach using Levenberg–Marquardt back propagation neural networks to solve the fourth-order nonlinear system of Emden–Fowler model. Eng. Comput. 2021, 2021, 1–17. [Google Scholar]
  7. Sadat, R.; Agarwal, P.; Saleh, R.; Ali, M.R. Lie symmetry analysis and invariant solutions of 3d euler equations for axisymmetric, incompressible, and inviscid flow in the cylindrical coordinates. Adv. Differ. Equ. 2021, 2021, 486. [Google Scholar] [CrossRef]
  8. Zhao, T.H.; Wang, M.K.; Chu, Y.M. A sharp double inequality involving generalized complete elliptic integral of the first kind. AIMS Math. 2020, 5, 4512–4528. [Google Scholar] [CrossRef]
  9. Zhao, T.H.; Shi, L.; Chu, Y.M. Convexity and concavity of the modified Bessel functions of the first kind with respect to Hölder means. Rev. Real Acad. Cienc. Exactas Físicas Nat. Ser. A. Mat. RACSAM 2020, 114, 96. [Google Scholar] [CrossRef]
  10. Zhao, T.H.; Zhou, B.C.; Wang, M.K.; Chu, Y.M. On approximating the quasi-arithmetic mean. J. Inequal. Appl. 2019, 2019, 42. [Google Scholar] [CrossRef]
  11. Zhao, T.H.; Wang, M.K.; Zhang, W.; Chu, Y.M. Quadratic transformation inequalities for Gaussian hypergeometric function. J. Inequal. Appl. 2018, 2018, 251. [Google Scholar] [CrossRef] [Green Version]
  12. Kórus, P. An extension of the Hermite–Hadamard inequality for convex and s-convex functions. Aequ. Math. 2019, 93, 527–534. [Google Scholar] [CrossRef] [Green Version]
  13. Delavar, M.R.; De La Sen, M. A mapping associated to h-convex version of the Hermite–Hadamard inequality with applications. J. Math. Inequal. 2020, 14, 329–335. [Google Scholar] [CrossRef]
  14. Abramovich, S.; Persson, L.E. Fejér and Hermite–Hadamard type inequalities for n-quasiconvex functions. Math. Notes 2017, 102, 599–609. [Google Scholar] [CrossRef] [Green Version]
  15. Sun, H.; Zhao, T.H.; Chu, Y.M.; Liu, B.Y. A note on the Neuman-Sándor mean. J. Math. Inequal. 2014, 8, 287–297. [Google Scholar] [CrossRef] [Green Version]
  16. Chu, Y.M.; Zhao, T.H.; Liu, B.Y. Optimal bounds for Neuman-Sándor mean in terms of the convex combination of logarithmic and quadratic or contra-harmonic means. J. Math. Inequal. 2014, 8, 201–217. [Google Scholar] [CrossRef] [Green Version]
  17. Chu, Y.M.; Zhao, T.H.; Song, Y.Q. Sharp bounds for Neuman-Sándor mean in terms of the convex combination of quadratic and first Seiffert means. Acta Math. Sci. 2014, 34, 797–806. [Google Scholar] [CrossRef]
  18. Song, Y.Q.; Zhao, T.H.; Chu, Y.M.; Zhang, X.H. Optimal evaluation of a Toader-type mean by power mean. J. Inequal. Appl. 2015, 2015, 408. [Google Scholar] [CrossRef] [Green Version]
  19. Chen, H.; Katugampola, U.N. Hermite–Hadamard and Hermite–Hadamard–Fejér type inequalities for generalized fractional integrals. J. Math. Anal. Appl. 2017, 446, 1274–1291. [Google Scholar] [CrossRef] [Green Version]
  20. Set, E.; Akdemir, A.O.; Özdemir, M.E. Simpson type integral inequalities for convex functions via Riemann–Liouville integrals. Filomat 2017, 31, 4415–4420. [Google Scholar] [CrossRef]
  21. Du, T.S.; Awan, M.U.; Kashuri, A.; Zhao, S.S. Some k-fractional extensions of the trapezium inequalities through generalized relative semi- (m, h) -preinvexity. Appl. Anal. 2021, 100, 642–662. [Google Scholar] [CrossRef]
  22. Wang, J.R.; Deng, J.H.; Feckan, M. Exploring se-condition and applications to some Ostrowski type inequalities via Hadamard fractional integrals. Math. Slovaca 2014, 64, 1381–1396. [Google Scholar] [CrossRef]
  23. Zhao, T.H.; Chu, Y.M.; Jiang, Y.L.; Li, Y.M. Best possible bounds for Neuman-Sándor mean by the identric, quadratic and contraharmonic means. Abstr. Appl. Anal. 2013, 2013, 348326. [Google Scholar] [CrossRef] [Green Version]
  24. Zhao, T.H.; Chu, Y.M.; Liu, B.Y. Optimal bounds for Neuman-Sándor mean in terms of the convex combinations of harmonic, geometric, quadratic, and contraharmonic means. Abstr. Appl. Anal. 2012, 2012, 9. [Google Scholar] [CrossRef]
  25. Wang, M.K.; Hong, M.Y.; Xu, Y.F.; Shen, Z.H.; Chu, Y.M. Inequalities for generalized trigonometric and hyperbolic functions with one parameter. J. Math. Inequal. 2020, 14, 1–21. [Google Scholar] [CrossRef]
  26. Xu, H.Z.; Qian, W.M.; Chu, Y.M. Sharp bounds for the lemniscatic mean by the one-parameter geometric and quadratic means. Rev. Real Acad. Cienc. Exactas Físicas Nat. Ser. A. Mat. RACSAM 2022, 116, 21. [Google Scholar] [CrossRef]
  27. Karthikeyan, K.; Karthikeyan, P.; Baskonus, H.M.; Venkatachalam, K.; Chu, Y.M. Almost sectorial operators on Ψ-Hilfer derivative fractional impulsive integro-differential equations. Math. Methods Appl. Sci. 2021, 2021, 7954. [Google Scholar] [CrossRef]
  28. Chu, Y.M.; Zhao, T.H. Convexity and concavity of the complete elliptic integrals with respect to Lehmer mean. J. Inequal. Appl. 2015, 2015, 396. [Google Scholar] [CrossRef] [Green Version]
  29. Rothwell, E.J.; Cloud, M.J. Automatic error analysis using intervals. IEEE Trans. Ed. 2012, 55, 9–15. [Google Scholar] [CrossRef]
  30. Snyder, J.M. Interval analysis for computer graphics. ACM SIGGRAPH Comput. Graph. 1992, 26, 121–130. [Google Scholar] [CrossRef]
  31. Weerdt, E.; Chu, Q.P.; Mulder, J.A. Neural network output optimization using interval analysis. IEEE Trans. Neural Netw. 2009, 20, 638–653. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  32. Ghosh, D.; Debnath, A.K.; Pedrycz, W. A variable and a fixed ordering of intervals and their application in optimization with interval-valued functions. Internat. J. Approx. Reason. 2020, 121, 187–205. [Google Scholar] [CrossRef]
  33. Moore, R.E.; Kearfott, R.B.; Cloud, M.J. Introduction to Interval Analysis; Society for Industrial and Applied Mathematics (SIAM): Philadelphia, PA, USA, 2009. [Google Scholar]
  34. Singh, D.; Dar, B.A.; Kim, D.S. KKT optimality conditions in interval valued mul- tiobjective programming with generalized differentiable functions. Eur. J. Oper. Res. 2016, 254, 29–39. [Google Scholar] [CrossRef]
  35. Younus, A.; Nisar, O. Convex optimization of interval valued functions on mixed domains. Filomat 2019, 33, 1715–1725. [Google Scholar] [CrossRef] [Green Version]
  36. Román-Flores, H.; Chalco-Cano, Y.; Lodwick, W.A. Some integral inequalities for interval-valued functions. Comp. Appl. Math. 2018, 37, 1306–1318. [Google Scholar] [CrossRef]
  37. Sha, Z.H.; Ye, G.J.; Zhao, D.F.; Liu, W. On interval-valued k-Riemann integral and Hermite–Hadamard type inequalities. AIMS Math. 2020, 6, 1276–1295. [Google Scholar] [CrossRef]
  38. Breckner, W.W. Continuity of generalized convex and generalized concave set–valued functions. Rev. Anal. Numér Théor. Approx. 1993, 22, 39–51. [Google Scholar]
  39. Sadowska, E. Hadamard inequality and a refinement of Jensen inequality for set-valued functions. Result Math. 1997, 32, 332–337. [Google Scholar] [CrossRef]
  40. Khan, M.B.; Mohammed, P.O.; Noor, M.A.; Hamed, Y.S. New Hermite–Hadamard Inequalities in Fuzzy-Interval Fractional Calculus and Related Inequalities. Symmetry 2021, 13, 673. [Google Scholar] [CrossRef]
  41. Khan, M.B.; Noor, M.A.; Noor, K.I.; Chu, Y.M. New Hermite-Hadamard type inequalities for -convex fuzzy-interval-valued functions. Adv. Differ. Equ. 2021, 2021, 6–20. [Google Scholar] [CrossRef]
  42. Zhao, T.H.; Yang, Z.H.; Chu, Y.M. Monotonicity properties of a function involving the psi function with applications. J. Inequal. Appl. 2015, 2015, 193. [Google Scholar] [CrossRef] [Green Version]
  43. Chu, Y.M.; Wang, H.; Zhao, T.H. Sharp bounds for the Neuman mean in terms of the quadratic and second Seiffert means. J. Inequal. Appl. 2014, 2014, 299. [Google Scholar] [CrossRef] [Green Version]
  44. Ahmad, B.; Alsaedi, A.; Kirane, M.; Torebek, B.T. Hermite–Hadamard, Hermite–Hadamard–Fejér, Dragomir–Agarwal and Pachpatte type inequalities for convex functions via new fractional integrals. J. Comput. Appl. Math. 2019, 353, 120–129. [Google Scholar] [CrossRef] [Green Version]
  45. Akkurt, A.; Sarikaya, M.Z.; Budak, H.; Yildirim, H. On the Hadamard’s type inequali- ties for co-ordinated convex functions via fractional integrals. J. King. Saud. Univ. Sci. 2017, 29, 380–387. [Google Scholar] [CrossRef] [Green Version]
  46. Zhao, D.F.; An, T.Q.; Ye, G.J.; Liu, W. New Jensen and Hermite-Hadamard type inequalities for h-convex interval-valued functions. J. Inequal. Appl. 2018, 2018, 1–14. [Google Scholar] [CrossRef] [Green Version]
  47. Budak, H.; Tunç, T. Generalized Hermite–Hadamard type inequalities for products of co-ordinated convex functions. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2020, 69, 863–879. [Google Scholar] [CrossRef]
  48. Budak, H.; Ali, M.A.; Tarhanaci, M. Some new quantum Hermite–Hadamard–like inequalities for coordinated convex functions. J. Optim. Theory Appl. 2020, 186, 899–910. [Google Scholar] [CrossRef]
  49. Budak, H.; Kara, H.; Ali, M.A.; Khan, S.; Chu, Y.M. Fractional Hermite–Hadamard–type inequalities for interval-valued co-ordinated convex functions. Open Math. 2021, 19, 1081–1097. [Google Scholar] [CrossRef]
  50. Allahviranloo, T.; Salahshour, S.; Abbasbandy, S. Explicit solutions of fractional differential equations with uncertainty. Soft Comput. 2012, 16, 297–302. [Google Scholar] [CrossRef]
  51. Diamond, P.; Kloeden, P.E. Metric Spaces of Fuzzy Sets: Theory and Applications; World Scientific: Singapore, 1994. [Google Scholar]
  52. Kulish, U.; Miranker, W. Computer Arithmetic in Theory and Practice; Academic Press: New York, NY, USA, 2014. [Google Scholar]
  53. Bede, B. Volume 295 of studies in fuzziness and soft computing. In Mathematics of Fuzzy Sets and Fuzzy Logic; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
  54. Kaleva, O. Fuzzy differential equations. Fuzzy Sets Syst. 1987, 24, 301–317. [Google Scholar] [CrossRef]
  55. Aubin, J.P.; Cellina, A. Differential inclusions: Set-valued maps and viability theory. In Grundlehren der Mathematischen Wissenschaften; Springer: Berlin/Heidelberg, Germany, 1984. [Google Scholar]
  56. Aubin, J.P.; Frankowska, H. Set-Valued Analysis; Birkhäuser: Boston, MA, USA, 1990. [Google Scholar]
  57. Budak, H.; Tunç, T.; Sarikaya, M.Z. Fractional Hermite–Hadamard–type inequalities for interval-valued functions. Proc. Am. Math. Soc. 2020, 148, 705–718. [Google Scholar] [CrossRef] [Green Version]
  58. Costa, T.M.; Roman-Flores, H. Some integral inequalities for fuzzy-interval-valued functions. Inform. Sci. 2017, 420, 110–125. [Google Scholar] [CrossRef]
  59. Costa, T.M. Jensen’s inequality type integral for fuzzy-interval-valued functions. Fuzzy Sets Syst. 2017, 327, 31–47. [Google Scholar] [CrossRef]
  60. Zhang, D.; Guo, C.; Chen, D.; Wang, G. Jensen’s inequalities for set-valued and fuzzy set-valued functions. Fuzzy Sets Syst. 2020, 2020, 1–27. [Google Scholar] [CrossRef] [Green Version]
  61. Nanda, N.; Kar, K. Convex fuzzy mappings. Fuzzy Sets Syst. 1992, 48, 129–132. [Google Scholar] [CrossRef]
  62. Dragomir, S. On the Hadamard’s inequality for convex functions on the co-ordinates in a rectangle from the plane. Taiwan. J. Math. 2001, 5, 775–788. [Google Scholar] [CrossRef]
  63. Zhao, D.; An, T.; Ye, G.; Liu, W. Chebyshev type inequalities for interval-valued functions. Fuzzy Sets Syst. 2020, 396, 82–101. [Google Scholar] [CrossRef]
  64. Khan, M.B.; Srivastava, H.M.; Mohammed, P.O.; Nonlaopon, K.; Hamed, Y.S. Some New Estimates on Coordinates of Left and Right Convex Interval-Valued Functions Based on Pseudo Order Relation. Symmetry 2022, 14, 473. [Google Scholar] [CrossRef]
  65. Khan, M.B.; Treanțǎ, S.; Soliman, M.S.; Nonlaopon, K.; Zaini, H.G. Some New Versions of Integral Inequalities for Left and Right Preinvex Functions in the Interval-Valued Settings. Mathematics 2022, 10, 611. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Khan, M.B.; Cătaş, A.; Alsalami, O.M. Some New Estimates on Coordinates of Generalized Convex Interval-Valued Functions. Fractal Fract. 2022, 6, 415. https://doi.org/10.3390/fractalfract6080415

AMA Style

Khan MB, Cătaş A, Alsalami OM. Some New Estimates on Coordinates of Generalized Convex Interval-Valued Functions. Fractal and Fractional. 2022; 6(8):415. https://doi.org/10.3390/fractalfract6080415

Chicago/Turabian Style

Khan, Muhammad Bilal, Adriana Cătaş, and Omar Mutab Alsalami. 2022. "Some New Estimates on Coordinates of Generalized Convex Interval-Valued Functions" Fractal and Fractional 6, no. 8: 415. https://doi.org/10.3390/fractalfract6080415

Article Metrics

Back to TopTop