#
Magnetic, Electric and Optical Properties of Ion Doped CuCr_{2}O_{4} Nanoparticles

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. The Model

## 3. Numerical Results and Discussion

## 4. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## References

- Prasad, R.; Singh, P. Applications and Preparation Methods of Copper Chromite Catalysts: A Review. Bull. Chem. React. Eng. Catal.
**2011**, 6, 63–113. [Google Scholar] [CrossRef] [Green Version] - Kanti, P.K.; Chereches, E.I.; Minea, A.A.; Sharma, K.V. Experiments on thermal properties of ionic liquid enhanced with alumina nanoparticles for solar applications. J. Therm. Anal. Calorim.
**2022**. [Google Scholar] [CrossRef] - Gurgel, T.T.; Buzinaro, M.A.; Moreno, N.O. Magnetization Study in CuCr
_{2}O_{4}Spinel Oxide. J. Supercond. Nov. Magn.**2013**, 26, 2557–2559. [Google Scholar] [CrossRef] - Tripathi, T.S.; Yadav, C.S.; Karppinen, M. Transparent ferrimagnetic semiconducting CuCr
_{2}O_{4}thin films by atomic layer deposition. APL Mater.**2016**, 4, 046106. [Google Scholar] [CrossRef] [Green Version] - Iwata, J.M.; Chopdekar, R.V.; Wong, F.; Nelson-Cheeseman, B.B.; Arenholz, E.; Suzuki, Y. Enhanced Magnetization of CuCr
_{2}O_{4}Thin Films by Substrate-Induced Strain. J. Appl. Phys.**2009**, 105, 07A905. [Google Scholar] [CrossRef] [Green Version] - Ali, A.; Singh, Y. A magnetocaloric study on the series of 3d-metal chromites ACr
_{2}O_{4}where A = Mn, Fe, Co, Ni, Cu and Zn. J. Magn. Magn. Mater.**2020**, 499, 166253. [Google Scholar] [CrossRef] [Green Version] - Ye, Z.-G.; Crottaz, O.; Vaudano, F.; Kubel, F.; Tissot, P.; Schmid, K. Single crystal growth, structure refinement, ferroelastic domains and phase transitions of the hausmannite CuCr
_{2}O_{4}. Ferroel.**1994**, 162, 103. [Google Scholar] [CrossRef] [Green Version] - Chatterjee, A.; Dey, J.K.; Majumdar, S.; Dippel, A.-C.; Gutowski, O.; Zimmermann, M.V.; Giri, S. Tuning of multiferroic order with Co doping in CuCr
_{2}O_{4}: Interplay between structure and orbital order. Phys. Rev. Mater.**2019**, 3, 104403. [Google Scholar] [CrossRef] [Green Version] - Rajeswari, G.; Prabavathi, N.; Tamizhdurai, P.; Prakasam, A.; Kumar, G. Enhancement of the structure, solar cells and vibrational studies of undoped CuCr
_{2O}4 and La-doped CuCr_{2}O_{4}semiconductor compounds. Heliyon**2022**, 8, e09233. [Google Scholar] [CrossRef] [PubMed] - Yadav, P.; Sharma, S.; Sau, T.; da Silva, I.; Lalla, N.P. Jahn-Teller and geometric frustration effects on the structural and magnetic ground states of substituted spinels (Ni,A)Cr
_{2}O_{4}(A = Mn/Cu). J. All. Compd.**2020**, 826, 154139. [Google Scholar] [CrossRef] - Singh, K.; Maignana, A.; Simon, C.; Martin, C. FeCr
_{2}O_{4}and CoCr_{2}O_{4}spinels: Multiferroicity in the collinear magnetic state? Appl. Phys. Lett.**2011**, 99, 172903. [Google Scholar] [CrossRef] - Habibi, M.H.; Fakhri, F. Fabrication and Characterization of CuCr
_{2}O_{4}Nanocomposite by XRD, FESEM, FTIR, and DRS. Synth. React. Inorg. Met.-Org. Nano-Met. Chem.**2016**, 46, 847. [Google Scholar] [CrossRef] - Beshkar, F.; Zinatloo-Ajabshir, S.; Salavati-Niasari, M. Preparation and characterization of the CuCr
_{2}O_{4}nanostructures via a new simple route. J. Mater. Sci. Mater. Electron.**2015**, 26, 5043. [Google Scholar] [CrossRef] - Krause, M.; Sonnenberg, J.; Munnik, F.; Grenzer, J.; Huebner, R.; Garcia-Valenzuela, A.; Gemming, S. Formation, structure, and optical properties of copper chromite thin films for high-temperature solar absorbers. Materialia
**2021**, 18, 101156. [Google Scholar] [CrossRef] - Lahmar, H.; Kebir, M.; Nasrallah, N.; Trari, M. Photocatalytic reduction of Cr(VI) on the new hetero-system CuCr
_{2}O_{4}/ZnO. J. Mol. Catal. A Chem.**2012**, 353–354, 74–79. [Google Scholar] [CrossRef] - Ghorai, K.; Panda, A.; Hossain, A.; Bhattacharjee, M.; Chakraborty, M.; Bhattacharya, S.K.; Bera, P.; Kim, H.; Seikh, M.M.; Gayen, A. Anatase TiO
_{2}decorated CuCr_{2}O_{4}nanocomposite: A versatile photocatalyst under domestic LED light irradiation. Appl. Surf. Sc.**2021**, 568, 150838. [Google Scholar] [CrossRef] - Benrighi, Y.; Nasrallah, N.; Chaabane, T.; Belkacemi, H.; Bourkeb, K.W.; Kenfoud, H.; Baaloudj, O. Characterization and application of the spinel CuCr
_{2}O_{4}synthesized by sol–gel method for sunset yellow photodegradation. J. Sol.-Gel. Sc. Techn.**2022**, 101, 390. [Google Scholar] [CrossRef] - Soleimani, F.; Salehi, M.; Gholizadeh, A. Synthesis and characterization of new spinel Mn
_{0.5}Cu_{0.5}Cr_{2}O_{4}and degradation of Malachite Green from wastewater in comparison with CuCr_{2}O_{4}. Int. J. Nano Dimens.**2019**, 10, 260–271. [Google Scholar] - Nagaev, E.L. Spin Polaron Theory for Magnetic Semiconductors with Narrow Bands. Phys. Status Sol. B
**1974**, 65, 11. [Google Scholar] [CrossRef] - Nolting, W. Theory of ferromagnetic semiconductors. Phys. Status Sol. B
**1979**, 96, 11. [Google Scholar] [CrossRef] - Kochelaev, B.I. Spin-Phonon Interaction and the EPR Linewidth in La
_{2}CuO_{4}and Related Cuprates. J. Supercond.**1999**, 12, 53. [Google Scholar] [CrossRef] - Tserkovnikov, Y.A. Decoupling of chains of equations for two-time Green’s functions. Teor. Mat. Fiz.
**1971**, 7, 250. [Google Scholar] [CrossRef] - Apostolova, I.N.; Apostolov, A.T.; Wesselinowa, J.M. Multiferroic and phonon properties of pure and ion doped CoCr
_{2}O_{4}-Bulk and nanoparticles. J. All. Comp.**2021**, 852, 156885. [Google Scholar] [CrossRef] - Katsura, H.; Nagaosa, N.; Balatsky, A.V. Spin current and magnetoelectric effect in noncollinear magnets. Phys. Rev. Lett.
**2005**, 95, 057205. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Vaks, V.G. Introduction to the Microscopic Theory of Ferroelectrics; Nauka: Moscow, Russia, 1973; p. 158. (In Russian) [Google Scholar]
- Goryachev, E.; Kuzmin, E.V.; Ovchinnikov, S.G. Metal-insulator transition in the Hubbard model by the irreducible Green functions method. J. Phys. C
**1982**, 15, 1481. [Google Scholar] [CrossRef] - Lawes, G.; Melot, B.; Page, K.; Ederer, C.; Hayward, M.A.; Proffen, T.; Seshadri, R. Dielectric anomalies and spiral magnetic order in CoCr
_{2}O_{4}. Phys. Rev. B**2006**, 74, 024413. [Google Scholar] [CrossRef] [Green Version] - Kocsis, V.; Bordacs, S.; Varjas, D.; Penc, K.; Abouelsayed, A.; Kuntscher, C.A.; Ohgushi, K.K.; Tokura, Y.; Kezsmarki, I. Magnetoelasticity in ACr
_{2}O_{4}spinel oxides (A = Mn, Fe, Co, Ni, and Cu). Phys. Rev. B**2013**, 87, 064416. [Google Scholar] [CrossRef] [Green Version] - Wesselinowa, J.M.; Apostolov, A.T. Anharmonic effects in ferromagnetic semiconductors. J. Phys. Cond. Matter
**1996**, 8, 473–488. [Google Scholar] [CrossRef] - Xu, Y.; Liu, X.; Kan, X.; Feng, S.; Wang, W.; Liu, C.; Li, Y. Synthesis and Analysis of Zn-Substituted CoCr
_{2}O_{4}Spinel Oxide. J. Supercond. Novel Magn.**2022**, 35, 753–762. [Google Scholar] [CrossRef] - Hosseini, S.G.; Abazari, R.; Gavi, A. Pure CuCr
_{2}O_{4}nanoparticles: Synthesis, characterization and their morphological and size effects on the catalytic thermal decomposition of ammonium perchlorate. Solid State Sc.**2014**, 37, 72–79. [Google Scholar] - Ortuno-Lopez, M.B.; Sotelo-Lerma, M.; Mendoza-Galvana, A.; Ramirez-Bona, R. Optical band gap tuning and study of strain in CdS thin films. Vacuum
**2004**, 76, 181. [Google Scholar] [CrossRef]

**Figure 1.**Dependence of the magnetization ${M}_{s}$ on the size in CCO for T = 300 K, ${J}_{s1,2,3}$ = 1.2 ${J}_{b1,2,3}$ (1) and 1.3 ${J}_{b1,2,3}$ (2).

**Figure 2.**(Color online) Dependence of the magnetization ${M}_{s}$ on the ion doping concentration x in CCO NP, N = 10, ${J}_{s1,2,3}$ = 1.2 ${J}_{b1,2,3}$ for (1) Co - for $0\le x\le 0.6$${J}_{d1}$ = 1.2 ${J}_{b1}$ for x> 0.6 ${J}_{d1}$ = 0.8 ${J}_{b1}$; (2) Pr - ${J}_{d3}$ = 0.8 ${J}_{b3}$. All other interaction constants in the doped states are assumed to be nearly the same as in the undoped ones.

**Figure 3.**(Color online) Ion doping dependence of the polarization P in CCO NP, N = 10, ${J}_{s1,2,3}$ = 1.2 ${J}_{b1,2,3}$ for (1) Co - for $0\le x\le 0.6$${J}_{d1}$ = 1.2 ${J}_{b1}$, for x> 0.6 ${J}_{d1}$ = 0.8 ${J}_{b1}$; (2) Pr - ${J}_{d3}$ = 0.8 ${J}_{b3}$. All other interaction constants in the doped states are assumed to be nearly the same as in the undoped ones.

**Figure 4.**(Color online) The real (curve 1) and imaginary part (curve 2) of the dielectric constant $\u03f5$ as function of the Pr doping concentration in CCO NP, N = 10.

**Figure 6.**(Color online) Dependence of the band gap energy ${E}_{g}$ on the ion doping concentration x in CCO NP, N = 10, ${J}_{s1,2,3}$ = 1.2 ${J}_{b1,2,3}$ for (1) Co - ${J}_{d1}$ = 1.2 ${J}_{b1}$; (2) Pr - ${J}_{d3}$ = 0.8 ${J}_{b3}$. All other interaction constants in the doped states are assumed to be nearly the same as in the undoped ones.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Apostolov, A.T.; Apostolova, I.N.; Wesselinova, J.M.
Magnetic, Electric and Optical Properties of Ion Doped CuCr_{2}O_{4} Nanoparticles. *Magnetochemistry* **2022**, *8*, 122.
https://doi.org/10.3390/magnetochemistry8100122

**AMA Style**

Apostolov AT, Apostolova IN, Wesselinova JM.
Magnetic, Electric and Optical Properties of Ion Doped CuCr_{2}O_{4} Nanoparticles. *Magnetochemistry*. 2022; 8(10):122.
https://doi.org/10.3390/magnetochemistry8100122

**Chicago/Turabian Style**

Apostolov, Angel Todorov, Iliana Naumova Apostolova, and Jilia Mihailowa Wesselinova.
2022. "Magnetic, Electric and Optical Properties of Ion Doped CuCr_{2}O_{4} Nanoparticles" *Magnetochemistry* 8, no. 10: 122.
https://doi.org/10.3390/magnetochemistry8100122