Next Article in Journal
Mutations in Podospora anserina MCM1 and VelC Trigger Spontaneous Development of Barren Fruiting Bodies
Previous Article in Journal
Isolation and Identification of Pigment-Producing Endophytic Fungi from the Amazonian Species Fridericia chica
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Cladosporium—Insect Relationships

by
Rosario Nicoletti
1,2,*,
Elia Russo
2 and
Andrea Becchimanzi
2,3
1
Council for Agricultural Research and Economics, Research Center for Olive, Fruit and Citrus Crops, 81100 Caserta, Italy
2
Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
3
BAT Center—Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, 80055 Portici, Italy
*
Author to whom correspondence should be addressed.
J. Fungi 2024, 10(1), 78; https://doi.org/10.3390/jof10010078
Submission received: 14 December 2023 / Revised: 10 January 2024 / Accepted: 17 January 2024 / Published: 19 January 2024
(This article belongs to the Special Issue Exploring the Fascinating World of Fungal Symbioses)

Abstract

:
The range of interactions between Cladosporium, a ubiquitous fungal genus, and insects, a class including about 60% of the animal species, is extremely diverse. The broad case history of antagonism and mutualism connecting Cladosporium and insects is reviewed in this paper based on the examination of the available literature. Certain strains establish direct interactions with pests or beneficial insects or indirectly influence them through their endophytic development in plants. Entomopathogenicity is often connected to the production of toxic secondary metabolites, although there is a case where these compounds have been reported to favor pollinator attraction, suggesting an important role in angiosperm reproduction. Other relationships include mycophagy, which, on the other hand, may reflect an ecological advantage for these extremely adaptable fungi using insects as carriers for spreading in the environment. Several Cladosporium species colonize insect structures, such as galleries of ambrosia beetles, leaf rolls of attelabid weevils and galls formed by cecidomyid midges, playing a still uncertain symbiotic role. Finally, the occurrence of Cladosporium in the gut of several insect species has intriguing implications for pest management, also considering that some strains have proven to be able to degrade insecticides. These interactions especially deserve further investigation to understand the impact of these fungi on pest control measures and strategies to preserve beneficial insects.

1. Introduction

Fungi in the genus Cladosporium (Dothideomycetes, Cladosporiaceae) are ubiquitous and reported from any terrestrial and marine substrate, including all kinds of living organisms [1]. This is linked to their profuse sporulation, which allows the spread of conidia through atmospheric agents over long distances. Thus, the mere isolation of these fungi from plants and animals does not necessarily imply a symbiotic association. However, generality is not a rule, and in many cases, this pervasiveness subtends either occasional or more systematic biotic relationships that influence the fitness of the associated organisms in diverse ways [2,3,4].
The range of interactions is particularly broad in the case of insects, with a various case history of antagonism and mutualism described so far. The available information on the relationships between Cladosporium and insects is examined in this paper, with the aim of shedding light on their biological/ecological assumptions, as well as on the ways and circumstances by which they may affect pest control strategies.

2. Taxonomic Aspects and Occurrence

Classification of fungi of the genus Cladosporium is problematic because of the infrequency of the teleomorphic stage and the absence of outstanding morphological differences in the conidial structures. Indeed, culturing and microscope observations only allowed a poorly rigorous separation of taxa, some of which are assumed to represent collective species, or ‘species complexes’ (s.c.); namely, C. cladosporioides, C. herbarum and C. sphaerospermum. The introduction of biomolecular tools in fungal taxonomy has enabled mycologists to resolve these aggregates with the separation of new entities so that as many as 169 species were recognized in the fundamental revision by Bensch et al. [1]. However, this number is continuously increasing following the finding and classification of novel isolates from all sorts of substrates and environmental contexts.
In this paper, we consider the findings of Cladosporium according to the updated nomenclature as far as possible. In fact, studies reporting species identification based on the sequencing of DNA markers are still a minority, and most of them only consider rDNA-ITS sequences, which have proved to be insufficient for a correct classification [1]. In this respect, the approximate phylogenetic reconstruction provided in some reports (e.g., reference [5]) significantly illustrates how identifications based on ITS only are merely tentative.
Data on the occurrence of Cladosporium species in association with insects resulting from the examination of the available literature are summarized in Table 1. In total, 303 entries, corresponding to the finding of these fungi on 171 insect species belonging to 16 orders, are included in this long list. On the fungus side, the species was not identified for about 46% of the entries (Cladosporium sp.), confirming classification to be quite a problematic aspect within this genus. When identification was accomplished, a total of 32 Cladosporium species were recognized. Among them, the three classic species mentioned above stand out in numerical terms; particularly, there are 56 reports for C. cladosporioides from 55 insect taxa belonging to 11 orders. This is not surprising considering that this is a polymorphic s.c. in which the existence of additional cryptic species has been conjectured [6]. Hence, at least in part, these identifications should be revised with reference to the updated nomenclature and the use of valid DNA markers. Indeed, among the reported identifications at the species level, as little as 11 (underlined in Table 1) are reliably based on the DNA markers officially considered in Cladosporium taxonomy [1,2]; for the time being, this limited insight does not allow us to advance hypotheses on any definite relationships between Cladosporium and insect species. The prevalence of findings concerning Hemiptera and Coleoptera is evident (Figure 1), in clear connection with their higher agricultural relevance.
In addition to C. fulvum, which has been reclassified as Fulvia fulva since a long time [171], the species C. chlorocephalum, cited in references [18,98,172,173], has not been included since it is now synonymized with Graphiopsis chlorocephala following a taxonomic revision [174]. Moreover, a few cases were disregarded because the reported identification of the insect-associated fungi was clearly wrong and misleading. As an example, an isolate from the gut of the locust Oxya chinensis (Orthoptera, Acrididae), claimed to be C. oxysporum based on a 5.8S rDNA sequence [175], rather belongs to a species of Curvularia; this emendation unequivocally results from both a blast of the sequence in the GenBank database and a visual examination of the conidia shown in the image provided in the published paper.
With reference to the geographical distribution, there are reports from as many as 54 countries in all continents, without any implication in terms of associations possibly depending on local conditions. Especially for small-sized species, the isolations have been mainly carried out from the whole body of the insects (Figure 2); however, there are many reports considering the gut and mouth parts in relation to the possible ingestion connected to feeding habits. In this respect, isolations from frass have been considered only when this material was obtained in the laboratory without any possible interference of environmental contamination (as in references [9,21,127,136]).
The various findings of Cladosporium in shelters, tunnels or other structures inhabited by insects have not been exhaustively considered, since in many instances they may derive from environmental contamination rather than direct interaction with the insects. This is the case of reports of C. cladosporioides as the most frequent fungus found in tunnels dug by larvae of the longicorn Rosalia alpina (Coleoptera, Cerambycidae) in wych elm (Ulmus glabra) trees at a Polish conservation site [176] and in mines of lepidopteran leafminers on black locusts (Robinia pseudacacia) [139]. Reports on the occurrence of Cladosporium in food supplies of social insects (e.g., bee bread [177]) and as undesired contaminants in laboratory assays or rearing diets of insects (e.g., reference [178]) have also been disregarded.
It must be pointed out that most entries of Cladosporium sp. in Table 1 refer to multiple concomitant isolations or detections in the insect samples, which may imply a broad species assortment. Particularly, this connotes the many metagenomic-based studies exploring the diversity of the mycobiome of insects in specific ecological contexts. In this regard, an investigation on fungi associated with the olive fruit fly (Bactrocera oleae: Diptera, Tephritidae) in Calabria, Southern Italy, disclosed a striking dominance of Cladosporium, matching about 80% of OTU sequences. More in detail, this set was dominated by members of the C. cladosporioides s.c., while the C. herbarum s.c., C. velox and a couple of unidentified Cladosporium spp. were much less frequent [107,179]. In a similar study concerning the congeneric Queensland fruit fly (Bactrocera tryoni), Cladosporium were again among the dominant fungi in the gut mycobiome, with a higher frequency in females [108]. More recently, a systematic investigation has been carried out in the olive ecosystems of Tunisia to study the microbiome associated with this crop. However, the taxonomic remarks are reported as collective data considering the occurrence of fungi in soil and in association with insect pests, which does not allow us to infer specific associations with the latter [180]. Likewise, in an investigation concerning plant-feeding true bugs (Heteroptera: Cimicomorpha and Pentatomomorpha) carried out in China, data were summarized with reference to the family, not allowing us to infer the associations of Cladosporium with every single bug species [181].
Another broad-scale investigation carried out in a Canadian aspen forest showed that Cladosporium were the most frequent fungi associated with arthropods; again, C. cladosporioides was the most common species, accounting for 77% of the isolates ascribed to this genus, followed by C. sphaerospermum at about 20%, while C. herbarum and C. orchidis were occasional. Unfortunately, no details on the insect species representing the isolation sources were provided in this study [182].

3. Entomopathogenicity

Conventionally, Cladosporium species are not considered full-right representatives of the guild of entomopathogens, which is generally restricted to specialized fungi such as Beauveria, Metarhizium and Lecanicillium/Akanthomyces [183,184,185]. However, like other fungi that are widely associated with crops such as Trichoderma and Talaromyces [186,187], the evidence is increasing that Cladosporium may also infect insects and cause epizootics in pest populations or promote plant defense reactions.
Direct observations of the parasitic aptitude of insects are limited and essentially concern the case of C. cladosporioides on the sugarcane white wooly aphid (Ceratovacuna lanigera: Hemiptera, Aphididae); both light and electron microscopy at the host–parasite interface showed that nymphs and adults of the aphid were completely overgrown by the fungal mycelium, which penetrated and disrupted their powdery waxy coating [5].
However, circumstantial evidence of entomopathogenic aptitude in Cladosporium derives from several studies reporting on mortality induced by conidial suspensions administered at various concentrations and exposure times. In this regard, the available data concerning strains that proved to be effective against various targeted pests in experimental trials are summarized in Table 2.
Alternatively, the anti-insectan effect can be assessed through the addition of the fungi or their products to the laboratory diet. In this respect, when incorporated in the feed of larvae of the tobacco budworm (Chloridea virescens: Lepidoptera, Noctuidae), an isolate of C. cladosporioides was found to reduce larval and pupal weights by 56% and 7%, respectively; moreover, in preference tests, the caterpillars showed a marked tendency to avoid feed amended with the fungus [195]. Development of another noctuid moth, the tobacco cutworm (Spodoptera litura), was significantly prolonged when larvae were fed on a diet amended with ethyl acetate extract of C. uredinicola at concentrations of 1.25–2.00 μL g−1; moreover, at 2.00 μL g−1, a significantly higher number of adults emerged showing morphological deformities. At higher concentrations, significant reductions in adult emergence, longevity and reproductive potential were recorded. Finally, the toxicity of the ethyl acetate extract was further evidenced by a reduction in feed utilization by the larvae [196].
The ethyl acetate and methylene chloride extracts of a strain of C. cladosporioides were effective against nymphs and adults of the cotton aphid (Aphis gossypii: Hemiptera, Aphididae) [13,197]. Aphicidal effect was also displayed by formulations based on emulsions of culture filtrates of an endophytic strain of C. oxysporum endowed with proteolytic activity, which were more active than conidial suspensions against the black bean aphid (Aphis fabae: Hemiptera, Aphididae) [190]. In a subsequent experiment, formulations based on culture filtrates of this strain and two more endophytic isolates of C. echinulatum and Cladosporium sp. showed activity against the green peach aphid (Myzus persicae: Hemiptera, Aphididae), which increased at increasing concentrations. A significant reduction in the number of colonizing aphids and a relative increase in the number of winged adults were recorded. Moreover, the pretreatment of plants negatively influenced embryonic development, thus affecting fertility [198]. In the same study, consistent chitinolytic activity was determined in the culture filtrates of Cladosporium sp.; indeed, chitinases are considered a main factor in the bioactivity of fungal culture filtrates, as also documented for other strains of Cladosporium spp. [193], C. cladosporioides [27,48], C. tenuissimum and C. xanthocromaticum [48].
Even more, the anti-insectan effects of culture filtrates may depend on the presence of toxic compounds (Figure 3). Fungi in the genus Cladosporium are known as prolific producers of bioactive secondary metabolites [199], some of which have been detected as possible determinants of detrimental effects on insects. This is the case of bassianolide, a cycloligomer depsipeptide identified as a product of a strain related to the C. cladosporioides s.c. [200]. The alkaloid 3-(4β-hydroxy-6-pyranonyl)-5-isopropylpyrrolidin-2-one was identified in the ethyl acetate extracts of another strain of C. cladosporioides displaying aphicidal activity [13]. Another alkaloid, hydroxyquinoline, was identified as the potentially active product in the extracts of a strain of C. subuliforme [167]. The novel compound citreoviridin A was extracted from an isolate of C. herbarum from a marine sponge and found to inhibit the growth of larvae of the cotton leafworm (Spodoptera littoralis: Lepidoptera, Noctuidae) [201]. Chlorogenic acid, purified from an endophytic isolate of C. velox, displayed insecticidal activity by inducing significant mortality in the larvae of S. litura or adversely prolonging their developmental period. This phenolic compound, previously known to cause gut toxicity in lepidopterans [202], was characterized as an α-glucosidase inhibitor, performing a non-competitive type of inhibition in vitro; it also inhibited the activity of α-glycosidases in the gut of the larvae [203,204].
The importance of secondary metabolites for entomopathogenic aptitude in Cladosporium has been further affirmed after a study carried out on strains associated with the Chinese white wax scale (Ericerus pela: Hemiptera, Coccidae). This insect is known to be infected by Cladosporium spp. related to C. sphaerospermum and C. langeronii, which kill the scales after dramatically altering their microbiome [34]. However, the scales were later found to also harbor a non-infective Cladosporium. Genome sequencing showed that the non-infective strain is related to C. cladosporioides and has a larger genome size than a pathogenic one, which is more related to C. sphaerospermum. Particularly, the former has specific genes involved in nutrition pathways that are absent in the pathogen. Conversely, the latter possesses genes participating in the biosynthetic pathways of mycotoxins, such as asperfuranone, emericellamide and fumagillin. These genes were not found in the nonpathogenic strain, which, on the other hand, presented genes associated with reduced virulence [3].

3.1. Interactions with Biocontrol Agents

Reports on the occurrence of an association with predatory and parasitoid insects introduce the question of whether the insecticidal properties of Cladosporium may also affect the performances of biocontrol agents employed in crop protection. Indeed, this association can be more than merely occasional, considering that Cladosporium were the most abundant fungi detected in the gut of the multicolored Asian lady beetle (Harmonia axyridis: Coleoptera, Coccinellidae) feeding on the pea aphid (Acyrthosiphon pisum: Hemiptera, Aphididae) [129]. Concerning this issue, a previously mentioned strain of Cladosporium sp. from H. armigera was found not to induce significant harmful effects on a panel of beneficial predatory insects, including the red and blue beetle (Dicranolaius bellulus: Coleoptera, Melyridae), the transverse ladybird (Coccinella transversalis: Coleoptera, Coccinellidae), the green lacewing (Mallada signatus: Neuroptera, Chrysopidae) and the damsel bug (Nabis kinbergii: Hemiptera, Nabidae) [130]. Conversely, laboratory assays carried out in Egypt showed that treatment with C. uredinicola affected the biocontrol of the silverleaf whitefly (Bemisia tabaci: Hemiptera, Aleyrodidae) by the eleven-spotted ladybird (Coccinella undecimpunctata: Coleoptera, Coccinellidae) and the parasitoid Eretmocerus mundus (Hymenoptera, Aphelinidae) in various ways. In fact, all larval stages of the coccinellid were sensitive to the fungus and tended to avoid feeding on the infected whiteflies. As for the parasitoid, although mortality of the exposed individuals was low, most females avoided laying eggs on treated nymphs; nevertheless, the combined use of C. uredinicola and E. mundus was found to synergistically increase the suppression of nymphs [205].
Olfactory experiments carried out in the laboratory indicated that the parasitoid wasp Lysiphlebus fabarum (Hymenoptera, Braconidae) can detect cues from aphids (A. fabae) infected by a pathogenic strain of Cladosporium sp. and avoid them; hence, the employment of this strain in the field could not affect the performance of the parasitoid, implying compatibility between these, and possibly more, biological control agents of aphids [157].

3.2. Plant-Mediated Interactions

In addition to arising after direct contact or ingestion of conidia, the entomopathogenic effects of Cladosporium can also be exerted in planta, as promoted by strains able to develop endophytically. Indeed, it is known that endophytic fungi may improve plant resistance to biotic adversities through various mechanisms, including general effects on fitness and growth promotion eventually exerted in synergistic relationships with other components of the plant microbiome [206,207]. The belief is gaining ground that these valuable properties could be exploited for improving yields while reducing the input of chemicals in crop management [208,209].
Cauliflower plants artificially infected with an endophytic strain of C. uredinicola did not show any disease symptoms, and the vigor of endophyte-infected plants also did not differ from untreated plants. Interestingly, larvae of S. litura feeding on leaves from treated plants were sluggish and underwent significantly higher mortality than the control. Most of the larvae died at the time of molting to the last instar, while the survivors took a significantly longer time to pupate and further suffered significantly higher mortality at the pupal stage. In the end, fewer adults emerged from larvae on endophyte-supplemented plants; some adults exhibited morphological deformities, such as crumpled and unequal wings, and survived for a very short time. Inhibitory effects were also observed on the reproductive potential and the hatchability of eggs. The life span of females that emerged from larvae fed on plants hosting C. uredinicola reduced significantly, while male longevity remained unaffected [210]. All these effects were assumed to depend on physiological changes induced by the endophyte. In fact, further studies disclosed cytotoxic effects on hemocytes of S. litura fed on endophyte-supplemented cauliflower plants, which showed changes in shape, extensive vacuolization and necrosis. Moreover, these abnormalities increased along with the feeding duration and ultimately resulted in adverse consequences on the fitness and survival of the insect [211].
However, it is quite intuitive to consider that plant-mediated relationships should be examined case by case, as the outcome of the interaction is not necessarily unfavorable to the insects. When inoculated in perennial thistle (Cirsium arvense), where it is known to develop endophytically, C. cladosporioides increased feeding of the thistle tortoise beetle (Cassida rubiginosa: Coleoptera, Chrysomelidae), while it had no effect on the cabbage moth (Mamestra brassicae: Lepidoptera, Noctuidae). Nevertheless, dual infection with C. cladosporioides and Trichoderma viride greatly reduced beetle feeding [212]. These findings indicate that the promoting effects of C. cladosporioides, as well as of other endophytes, depend on both the degree of specialization of the herbivore and the species assortment in the plant microbiome, which in turn may induce chemical changes in the host. Undoubtedly, these fungi deserve higher attention in the study of insect–plant interactions, considering that their endophytic occurrence could remarkably influence insect growth and even pest population dynamics.

4. Other Ecological Relationships

Mycophagy somehow represents the reverse condition of entomopathogenicity, in which insects perform a suppressive role on Cladosporium by feeding on the mycelium. However, this relationship may still imply an ecological advantage for the fungus, deriving from the use of insects as carriers for its propagation [213]. Springtails (Collembola) are especially known for feeding on soil fungi, including Cladosporium [214,215], and C. cladosporioides has been used as feed to preserve laboratory stocks of the species Hypogastrura tullbergi (Poduromorpha, Hypogastruridae) and Proisotoma minuta (Entomobryomorpha, Isotomidae) [216]. This species was also found to support the development of the minute brown scavenger beetle (Dienerella argus: Coleoptera, Latridiidae) [217]; moreover, it is part of the diet of the sap beetle Brachypeplus glaber (Coleoptera, Nitidulidae), as demonstrated by gut content analyses and observations of adult and larval feeding [19].
Several insect pests of stored grains belonging to different orders and families have been reported to feed and even reproduce on Cladosporium grown in axenic cultures. More in detail, a strain of C. cladosporioides was found to support the development of the reticulate-winged booklouse (Lepinotus reticulatus: Psocoptera, Atropidae) and a series of Coleoptera, including the narrownecked grain beetle (Anthicus floralis: Anthicidae), the sigmoid fungus beetle (Cryptophagus varus: Cryptophagidae), the lesser grain borer (Rhyzopertha dominica: Bostrichidae), the wheat weevil (Sitophilus granarius: Curculionidae), the bean weevil (Acanthoscelides obtectus: Bruchidae), the larger black flour beetle (Cynaeus angustus: Tenebrionidae), the square-nosed fungus beetle (Lathridius minutus) and Microgramma arga (Lathrididae) [218]. One of them, C. angustus, was even attracted by fresh-milled corn flour amended with Cladosporium [219]. Moreover, the ability to develop in vitro on pure cultures of an unidentified Cladosporium strain was reported for the foreign grain beetle (Ahasversus advena: Coleoptera, Sylvanidae), which females also demonstrated to prefer Cladosporium in oviposition tests [220].
Some contrast is evident in reports concerning the interaction of C. cladosporioides with R. dominica. In fact, after the above supporting effect [218], induction of mortality has recently been documented in this borer insect [56]. This contradiction could be easily explained considering that different strains of the same species may have different biological properties, particularly with reference to secondary metabolite production. Moreover, after the recent adjustments in Cladosporium taxonomy, it is quite possible that, actually, these isolates belong to different species, which further underlines the importance of a correct identification. Rather than being a mere hypothesis, this inference was verified in the case of the Cladosporium associates of the fruit fly Drosophila suzukii (Diptera, Drosophilidae) in raspberries; in fact, it transpired that isolates preliminarily identified as C. cladosporioides belonged to at least two more species (C. anthropophilum and C. pseudocladosporioides) after a more accurate taxonomic identification based on biomolecular markers [9].
The ambrosia beetles (Coleoptera, Curculionidae, Scolytinae) are known to spread fungi that develop in the galleries they dig in the host trees [221]. Although experimental evidence leans for selected fungi, such as species of Fusarium, Geosmithia, Penicillium and Raffaelea, to be more systematically involved in these mutualistic relationships [36,52,222,223], Cladosporium is often isolated both from the insects and their galleries [52,94,133,134]. Particularly, isolation and identification based on biomolecular methods demonstrated the association of C. perangustum with Xylosandrus compactus after female beetles were found carrying the fungus on their body [77]; previously, Cladosporium had been regarded as the principal food source of this species [224].
Likewise, the coffee berry borer (Hypothenemus hampei: Coleoptera, Curculionidae) was found to be associated with C. oxysporum and an unidentified Cladosporium sp. [76]. Another unidentified Cladosporium sp. was found to systematically occur in leaf rolls inhabited by larvae of the weevil Euops lespedezae (Coleoptera, Attelabidae) on the leafy bush clover (Lespedeza cyrtobotrya); however, this fungus was not found in mycangia of the weevil females, indicating that it is not a vertically transmitted symbiont unlike other leaf roll-associated fungi [225]. Cladosporium spp. were also dominant in leaf rolls of another Attelabidae, Heterapoderopsis bicallosicollis, on the Chinese tallow tree (Triadica sebifera); this is considered not to be a specific association, as the authors hypothesize that these and other cellulolytic fungi, providing nutritional support to the larvae, colonize the leaf rolls once they fall to the soil [226].
In addition to the above findings, not surprisingly, our fungi have been reported to colonize galls formed on plants by insects of various taxonomic assortment. This is the case of aphids of the genus Pemphigus (Hemiptera, Pemphigidae), commonly associated with poplars (Populus spp.), in which galls C. cladosporioides and other unidentified Cladosporium spp. can be found among other fungi [227]. Moreover, C. sphaerospermum was found to frequently occur in galls of the eastern spruce adelgid (Adelges abietis: Hemiptera, Adelgidae), even if no circumstantial relationship could be documented [228]. Also very common is the occurrence of Cladosporium in galls formed on a multitude of plants by Asphondylia spp. and other midges in the Cecidomyidae (Diptera) [103,104,105,132,229]. Again, this association does not seem to entail any functional symbiotic relationships, considering that on Greek savory (Micromeria graeca), these fungi were also found in ungalled flower buds. Moreover, the isolates did not belong to a single species, which could have implied an ecological specialization; rather, they were representative of a wide taxonomic assortment, including two novel species [16].
Connected with the feeding aptitude is the isolation of Cladosporium spp. from the gut of larvae of aquatic shredders of the genera Phylloicus (Trichoptera, Calamoceratidae) and Stenochironomus (Diptera, Chironomidae); these strains displayed cellulolytic and xylanolytic properties in laboratory assays, supporting the hypothesis that they might improve the digestibility of leaves by the insects [63,73,150]. Likewise, Cladosporium spp. were reported as prevalent in the gut of males of the Asian tiger mosquito (Aedes albopictus: Diptera, Culicidae) and are considered to play a role in the assimilation of fructose, which is a relevant component in their nectarivorous diet [86]. As part of an extensive array of microorganisms that play a crucial role in the digestion of feed, in the absorption of nutrients and in the protection against pathogens, the occurrence of Cladosporium in the digestive tract has been documented in many unrelated insect species, both after direct isolation [3,15,19,24,26,47,50,51,58,59,78,79,100,101,118,125,127] and as a result of studies based on biochemical (e.g., denaturing gradient gel electrophoresis) and metagenomic analyses [3,40,47,88,90,101,107,108,109,117,118,125,133,138,141,144,146,151,154,161,230]. In addition to descriptive aims, these studies have addressed various aspects that more or less influence the gut microbiome species assortment, such as age, instar, gender, caste, diet, pesticides, antibiotics and various environmental factors. Increasing evidence indicates that disturbances in the gut microbiota can compromise the host’s health and that its diversity has a far-reaching impact on the insect’s fitness. This is also closely related to the issue of pesticide resistance; in fact, the capacity to degrade chlorpyrifos and endosulfan has been documented by strains of C. cladosporioides [231,232,233]. Indeed, a better understanding of the role played by these fungi and the interacting microbial communities in the insects’ gut is essential in view of increasing opportunities for their possible exploitation [230,234,235].
The helper role of Cladosporium towards pests can be reciprocated in the cases where insects act as vectors of plant pathogenic strains. In this respect, D. suzukii was found to act as a carrier of Cladosporium spp., enabling these fungi to proliferate in raspberries [9,127]. The dark-winged fungus gnat Bradysia impatiens (=B. agrestis: Diptera, Sciaridae) has also been reported to spread Cladosporium conidia [78]. Clearly, the possible epidemiological role of some insects as occasional vectors of plant pathogenic species must be taken into careful consideration, even if the impact of Cladosporium spp. as plant pathogens is generally lower than other insect-associated fungi such as Fusarium [236].
A particular kind of interaction with Cladosporium has been documented for two wasps (Dolichovespula sylvestris and Paravespula vulgaris: Hymenoptera, Vespidae) that act as pollinators for the orchid Epipactis helleborine. In fact, the wasps were found to spread conidia of Cladosporium while visiting the flowers; these fungi are presumed to produce ethanol contained in the nectar, which in turn is thought to attract the wasps [126]. This finding could be indicative of a more widespread and relevant role of Cladosporium in the interaction with pollen vectors for angiosperms.
Cypripedium fargesii is a nectarless endangered orchid that requires cross-pollination to produce the maximum number of viable embryos. The flat-footed fly (Agathomyia sp.: Diptera, Platypezidae) is used to visit flowers of this orchid, and individuals examined after entering or leaving the labellum sac were found to carry Cladosporium conidia on their legs and mouthparts, suggesting mycophagy. Quite intriguingly, the upper surface of foliage presents blackish hairy spots that mimic the mold spots of Cladosporium, thereby serving as visual lures. Moreover, the floral scent composition includes some volatile compounds, such as 3-methyl-1-butanol, 2-ethyl-1-hexanol and 1-hexanol, which have also been detected in Cladosporium cultures [89]. Based on these remarks, it can be inferred that the endophytic adaptation of Cladosporium has led this fungus to play a fundamental intermediary role in the reproduction of these plants, which deserves to be further investigated.

5. Conclusions

Within the diverse ecological relationships connecting insects and fungi [237], evidence from the available experimental data is mostly indicative of an antagonistic role of Cladosporium against insects deserving higher attention for practical exploitation in pest control. In this respect, the reported infectious aptitude of C. cladosporioides against spider mites [238,239] and the known mycoparasitic ability against several plant pathogens, such as rusts [240], candidate these fungi as multipurpose biocontrol agents. Clearly, this opportunity requires an assessment of whether these useful roles can be simultaneously performed by single selected strains. The recent observation that phylogenetically diverse species of Cladosporium display concurrent effects supports the conjecture that these functional traits are rooted in ancestry in this genus, providing a favorable indication in this respect [241].
A final aspect connected with the Cladosporium–insect association to be taken into careful consideration refers to the recent trend of introducing insects into the human diet [242,243]. Indeed, the high frequency with which these fungi can be found infecting or coating insects should be particularly monitored in the rearing conditions, which can be conducive to their spread and the ensuing possible mycotoxin contamination [199,244,245,246].

Author Contributions

Conceptualization, R.N.; resources, E.R. and A.B.; writing—original draft preparation, R.N.; writing—review and editing, R.N., E.R. and A.B. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Conflicts of Interest

The authors declare no conflicts of interest.

References

  1. Bensch, K.; Braun, U.; Groenewald, J.Z.; Crous, P.W. The genus Cladosporium. Stud. Mycol. 2012, 72, 1–401. [Google Scholar] [CrossRef] [PubMed]
  2. Bensch, K.; Groenewald, J.Z.; Braun, U.; Dijksterhuis, J.; de Jesús Yáñez-Morales, M.; Crous, P.W. Common but different: The expanding realm of Cladosporium. Stud. Mycol. 2015, 82, 23–74. [Google Scholar] [CrossRef] [PubMed]
  3. Liu, W.; Yu, S.H.; Zhang, H.P.; Fu, Z.Y.; An, J.Q.; Zhang, J.Y.; Yang, P. Two Cladosporium fungi with opposite functions to the Chinese white wax scale insect have different genome characters. J. Fungi 2022, 8, 286. [Google Scholar] [CrossRef] [PubMed]
  4. Chen, H.; Chen, J.; Qi, Y.; Chu, S.; Ma, Y.; Xu, L.; Lv, S.; Zhang, H.; Yang, D.; Zhu, Y.; et al. Endophytic fungus Cladosporium tenuissimum DF11, an efficient inducer of tanshinone biosynthesis in Salvia miltiorrhiza roots. Phytochemistry 2022, 194, 113021. [Google Scholar] [CrossRef] [PubMed]
  5. Kishore Varma, P.; Chandra Sekhar, V.; Bhavani, B.; Upendhar, S. Cladosporium cladosporioides: A new report of parasitism on sugarcane woolly aphid, Ceratovacuna lanigera Zehntner. J. Entomol. Zool. Stud. 2019, 7, 1122–1126. [Google Scholar]
  6. Becchimanzi, A.; Zimowska, B.; Nicoletti, R. Cryptic diversity in Cladosporium cladosporioides resulting from sequence-based species delimitation analyses. Pathogens 2021, 10, 1167. [Google Scholar] [CrossRef] [PubMed]
  7. Morales-Rodriguez, C.; Sferrazza, I.; Aleandri, M.; Dalla Valle, M.; Mazzetto, T.; Speranza, S.; Contarini, M.; Vannini, A. Fungal community associated with adults of the chestnut gall wasp Dryocosmus kuriphilus after emergence from galls: Taxonomy and functional ecology. Fungal Biol. 2019, 123, 905–912. [Google Scholar] [CrossRef]
  8. Morales-Rodríguez, C.; Sferrazza, I.; Aleandri, M.P.; Dalla Valle, M.; Speranza, S.; Contarini, M.; Vannini, A. The fungal community associated with the ambrosia beetle Xylosandrus compactus invading the mediterranean maquis in central Italy reveals high biodiversity and suggests environmental acquisitions. Fungal Biol. 2021, 125, 12–24. [Google Scholar] [CrossRef]
  9. Swett, C.L.; Hamby, K.A.; Hellman, E.M.; Carignan, C.; Bourret, T.B.; Koivunen, E.E. Characterizing members of the Cladosporium cladosporioides species complex as fruit rot pathogens of red raspberries in the mid-Atlantic and co-occurrence with Drosophila suzukii (spotted wing drosophila). Phytoparasitica 2019, 47, 415–428. [Google Scholar] [CrossRef]
  10. Abdel-Galil, F.A.K.; Amro, M.A.R.; Mahmoud, M.B. Species composition of phytophagous, entomophagous insects and prevalent aphid fungi species inhabiting cabbage plantations. Egypt. Acad. J. Biol. Sci. A Entomol. 2021, 14, 11–18. [Google Scholar] [CrossRef]
  11. Luz, C.; Netto, M.C.B.; Rocha, L.F.N. In vitro susceptibility to fungicides by invertebrate-pathogenic and saprobic fungi. Mycopathologia 2007, 164, 39–47. [Google Scholar] [CrossRef] [PubMed]
  12. Watson, M.; May, G.; Bushley, K.E. Sources of fungal symbionts in the microbiome of a mobile insect host, Spodoptera frugiperda. Microb. Ecol. 2023, 86, 900–913. [Google Scholar] [CrossRef] [PubMed]
  13. Shaker, N.O.; Ahmed, G.M.M.; El-Sayed Ibrahim, H.Y.; El-Sawy, M.M.; El-Hoseiny Mostafa, M.; Abd El-Rahman Ismail, H.N. Secondary metabolites of the entomopathogenic fungus, Cladosporium cladosporioides and its relation to toxicity of cotton aphid, Aphis gossypii Glov.). Int. J. Entomol. Nematol. 2019, 5, 115–120. [Google Scholar]
  14. Yamoah, E.; Jones, E.E.; Weld, R.J.; Suckling, D.M.; Waipara, N.; Bourdôt, G.W.; Hee, A.K.W.; Stewart, A. Microbial population and diversity on the exoskeletons of four insect species associated with gorse (Ulex europaeus L.). Aus. J. Entomol. 2008, 47, 370–379. [Google Scholar] [CrossRef]
  15. Moubasher, A.H.; Abdel-Sater, M.A.; Soliman, Z. Yeasts and filamentous fungi inhabiting guts of three insect species in Assiut, Egypt. Mycosphere 2017, 8, 1297–1316. [Google Scholar] [CrossRef]
  16. Zimowska, B.; Becchimanzi, A.; Krol, E.D.; Furmanczyk, A.; Bensch, K.; Nicoletti, R. New Cladosporium species from normal and galled flowers of Lamiaceae. Pathogens 2021, 10, 369. [Google Scholar] [CrossRef]
  17. Pagnocca, F.C.; Rodrigues, A.; Nagamoto, N.S.; Bacci, M. Yeasts and filamentous fungi carried by the gynes of leaf-cutting ants. Antonie Van Leeuwenhoek 2008, 94, 517–526. [Google Scholar] [CrossRef] [PubMed]
  18. Abdel-Baky, N.F.; Arafat, N.S.; Abdel-Salam, A.H. Three Cladosporium spp. as promising biological control candidates for controlling whiteflies (Bemisia spp.) in Egypt. Pak. J. Biol. Sci. 1998, 1, 188–195. [Google Scholar] [CrossRef]
  19. Cline, A.R.; Skelley, P.E.; Kinnee, S.A.; Rooney-Latham, S.; Winterton, S.L.; Borkent, C.J.; Audisio, P. Interactions between a sap beetle, sabal palm, scale insect, filamentous fungi and yeast, with discovery of potential antifungal compounds. PLoS ONE 2014, 9, e89295. [Google Scholar] [CrossRef]
  20. Ibrahim, H.Y. Biodiversity of entomopathogenic fungi naturally infecting cabbage aphid, Brevicoryne brassicae. L. J. Plant Prot. Pathol. Mansoura Univ. 2017, 8, 631–634. [Google Scholar] [CrossRef]
  21. Monk, K.A.; Samuels, G.J. Mycophagy in grasshoppers (Orthoptera: Acrididae) in Indo-Malayan rain forests. Biotropica 1990, 22, 16–21. [Google Scholar] [CrossRef]
  22. Ezz, N. Entomopathogenic fungi associated with certain scale insects (Hemiptera: Coccoidea) in Egypt. Egypt. Acad. J. Biol. Sci. 2012, 5, 211–221. [Google Scholar]
  23. Singh, S.; Poornesha, B.; Sandhu, R.K.; Ramanujam, B. Natural occurrence of entomopathogenic fungus, Cladosporium cladosporioides on blow fly, Chrysomya megacephala (Fabricius) (Diptera: Calliphoridae) on ber in Punjab, India. J. Biol. Control 2020, 34, 140–143. [Google Scholar] [CrossRef]
  24. Woolfolk, S.W.; Inglis, G.D. Microorganisms associated with field-collected Chrysoperla rufilabris (Neuroptera: Chrysopidae) adults with emphasis on yeast symbionts. Biol. Control 2004, 29, 155–168. [Google Scholar] [CrossRef]
  25. Jacobsen, R.M.; Kauserud, H.; Sverdrup-Thygeson, A.; Bjorbækmo, M.M.; Birkemoe, T. Wood-inhabiting insects can function as targeted vectors for decomposer fungi. Fungal Ecol. 2017, 29, 76–84. [Google Scholar] [CrossRef]
  26. Jayasimha, P.; Henderson, G. Fungi isolated from integument and guts of Coptotermes formosanus and their antagonistic effect on Gleophyllum trabeum. Ann. Entomol. Soc. Am. 2007, 100, 703–710. [Google Scholar] [CrossRef]
  27. Badran, R.A.; Aly, M.Z.Y. Studies on the mycotic inhabitants of Culex pipiens collected from fresh water ponds in Egypt. Mycopathologia 1995, 132, 105–110. [Google Scholar] [CrossRef]
  28. Turky, W.; Hassoon, A.; Al-Taee, M. Isolation and diagnosis of fungi associated with the larvae of the mosquitoes Culex quinquefasciatus and its biological control. J. Multidiscip. Engin. Sci. Technol. 2018, 5, 9028–9035. [Google Scholar]
  29. Pherson, D.A.; Beattie, A.J. Fungal loads of invertebrates in beech leaf litter. Rev. Ecol. Biol. Sol. 1979, 16, 325–335. [Google Scholar]
  30. Meyer, J.M.; Hoy, M.A. Removal of fungal contaminants and their DNA from the surface of Diaphorina citri (Hemiptera: Psyllidae) prior to a molecular survey of endosymbionts. Fla. Entomol. 2008, 91, 702–705. [Google Scholar]
  31. Trovão, J.; Mesquita, N.; Paiva, D.S.; de Carvalho, H.P.; Avelar, L.; Portugal, A. Can arthropods act as vectors of fungal dispersion in heritage collections? A case study on the archive of the University of Coimbra, Portugal. Int. Biodeter. Biodegr. 2013, 79, 49–55. [Google Scholar] [CrossRef]
  32. Bing, X.L.; Winkler, J.; Gerlach, J.; Loeb, G.; Buchon, N. Identification of natural pathogens from wild Drosophila suzukii. Pest Manag. Sci. 2021, 77, 1594–1606. [Google Scholar] [CrossRef] [PubMed]
  33. Özdal, M.; İncekara, Ü.; Polat, A.; Gür, Ö.; Kurbanoğlu, E.; Taşar, G. Isolatıon of fılamentous fungı assocıated wıth two common edıble aquatıc ınsects Hydrophılus pıceus and Dytıscus margınalıs. J. Microbiol. Biotechnol. Food Sci. 2012, 2, 95–105. [Google Scholar]
  34. Sun, T.; Wang, X.Q.; Zhao, Z.L.; Yu, S.H.; Yang, P.; Chen, X.M. A lethal fungus infects the Chinese white wax scale insect and causes dramatic changes in the host microbiota. Sci. Rep. 2018, 8, 5324. [Google Scholar] [CrossRef] [PubMed]
  35. Marques, E.J.; França, I.W.B.; Menezes, M. Ocorrência de Cladosporium cladosporioides (Fres.) De Vries em Euphalerus clitoriae Burckhardt & Guajará, 2000 (Hemiptera: Psyllidae) em Clitoria fairchildiana no Estado de Pernambuco. In Proceedings of the Anais do XIX Congresso Brasileiro de Entomologia, Manaus, Brazil, 16–21 June 2002; p. 78. [Google Scholar]
  36. Jiang, Z.R.; Masuya, H.; Kajimura, H. Novel symbiotic association between Euwallacea ambrosia beetle and Fusarium fungus on fig trees in Japan. Front. Microbiol. 2021, 12, 725210. [Google Scholar] [CrossRef] [PubMed]
  37. Sun, B.D.; Liu, X.Z. Occurrence and diversity of insect-associated fungi in natural soils in China. Appl. Soil Ecol. 2008, 39, 100–108. [Google Scholar] [CrossRef]
  38. Sun, B.D.; Yu, H.Y.; Chen, A.J.; Liu, X.Z. Insect-associated fungi in soils of field crops and orchards. Crop Prot. 2008, 27, 1421–1426. [Google Scholar] [CrossRef]
  39. Yoder, J.A.; Glenn, B.D.; Benoit, J.B.; Zettler, L.W. The giant Madagascar hissing-cockroach (Gromphadorhina portentosa) as a source of antagonistic moulds: Concerns arising from its use in a public setting. Mycoses 2008, 51, 95–98. [Google Scholar] [CrossRef]
  40. Tegtmeier, D.; Hurka, S.; Klüber, P.; Brinkrolf, K.; Heise, P.; Vilcinskas, A. Cottonseed press cake as a potential diet for industrially farmed black soldier fly larvae triggers adaptations of their bacterial and fungal gut microbiota. Front. Microbiol. 2021, 12, 634503. [Google Scholar] [CrossRef]
  41. Visser, S.; Parkinson, D.; Hassall, M. Fungi associated with Onychiurus subtenuis (Collembola) in an aspen woodland. Can. J. Bot. 1987, 65, 635–642. [Google Scholar] [CrossRef]
  42. Ettinger, C.L.; Wu-Woods, J.; Kurbessoian, T.; Brown, D.J.; de Souza Pacheco, I.; Vindiola, B.G.; Walling, L.L.; Atkinson, P.W.; Byrne, F.J.; Redak, R.; et al. Geographical survey of the mycobiome and microbiome of Southern California glassy-winged sharpshooters. Msphere 2023, 8, e00267-23. [Google Scholar] [CrossRef] [PubMed]
  43. Wrigley, S.K.; Ainsworth, A.M.; Kau, D.A.; Martin, S.M.; Bahl, S.; Tang, J.S.; Hardick, D.J.; Rawlins, P.; Sadheghi, R.; Moore, M. Novel reduced benzo [j] fluoranthen-3-ones from Cladosporium cf. cladosporioides with cytokine production and tyrosine kinase inhibitory properties. J. Antibiot. 2001, 54, 479–488. [Google Scholar] [CrossRef] [PubMed]
  44. Davydenko, K.; Vasaitis, R.; Elfstrand, M.; Baturkin, D.; Meshkova, V.; Menkis, A. Fungal communities vectored by Ips sexdentatus in declining Pinus sylvestris in Ukraine: Focus on occurrence and pathogenicity of ophiostomatoid species. Insects 2021, 12, 1119. [Google Scholar] [CrossRef] [PubMed]
  45. Pan, W.Y.; Chen, S.L.; Lian, J.H.; Qiu, H.Z.; Lan, G. A preliminary report on control of Hemiberlesia pitysophila using Cladosporium cladosporioides. Forest Pest Dis. 1989, 3, 22–23. [Google Scholar]
  46. Adam, J.; Overton, B. Forgotten fungi that could be used to control the spread of the spotted lanternfly (Hemiptera: Fulgoridae). Fungi 2023, 15, 41–50. [Google Scholar]
  47. Ceriani-Nakamurakare, E.; Mc Cargo, P.; Gonzalez-Audino, P.; Ramos, S.; Carmarán, C. New insights into fungal diversity associated with Megaplatypus mutatus: Gut mycobiota. Symbiosis 2020, 81, 127–137. [Google Scholar] [CrossRef]
  48. Al-Shindah, R.S.; Hassan, A.A.; Mansour, M.S. Isolation and identification of entomopathogenic fungi from of green peach aphid Myzus persicae and evaluation of their activity for insect control. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2022; Volume 1060, p. 012093. [Google Scholar]
  49. Islam, T.; Gupta, D.R.; Surovy, M.Z.; Mahmud, N.U.; Mazlan, N.; Islam, T. Identification and application of a fungal biocontrol agent Cladosporium cladosporioides against Bemisia tabaci. Biotechnol. Biotechnol. Equipment 2019, 33, 1698–1705. [Google Scholar] [CrossRef]
  50. Xu, X.; Shao, M.; Yin, C.; Mao, Z.; Shi, J.; Yu, X.; Wang, Y.; Sun, F.; Zhang, Y. Diversity, bacterial symbionts, and antimicrobial potential of termite-associated fungi. Front. Microbiol. 2020, 11, 300. [Google Scholar] [CrossRef]
  51. Shao, M.W.; Lu, Y.H.; Miao, S.; Zhang, Y.; Chen, T.T.; Zhang, Y.L. Diversity, bacterial symbionts and antibacterial potential of gut-associated fungi isolated from the Pantala flavescens larvae in China. PLoS ONE 2015, 10, e0134542. [Google Scholar] [CrossRef]
  52. Jankowiak, R.; Rossa, R. Associations between Pityogenes bidentatus and fungi in young managed Scots pine stands in Poland. Forest Pathol. 2008, 38, 169–177. [Google Scholar] [CrossRef]
  53. Oliveira, I.; Pereira, J.A.; Quesada-Moraga, E.; Lino-Neto, T.; Bento, A.; Baptista, P. Effect of soil tillage on natural occurrence of fungal entomopathogens associated to Prays oleae Bern. Sci. Hortic. 2013, 159, 190–196. [Google Scholar] [CrossRef]
  54. Jaber, S.; Mercier, A.; Knio, K.; Brun, S.; Kambris, Z. Isolation of fungi from dead arthropods and identification of a new mosquito natural pathogen. Parasites Vectors 2016, 9, 491. [Google Scholar] [CrossRef]
  55. Masuya, H.; Kajimura, H.; Tomisawa, N.; Yamaoka, Y. Fungi associated with Scolytogenes birosimensis (Coleoptera: Curculionidae) infesting Pittosporum tobira. Environ. Entomol. 2012, 41, 255–264. [Google Scholar] [CrossRef] [PubMed]
  56. Khan, H.A.A.; Khan, T. Efficacy of entomopathogenic fungi against three major stored insect pests, Rhyzopertha dominica, Sitophilus zeamais and Trogoderma granarium. J. Stored Prod. Res. 2023, 104, 102188. [Google Scholar] [CrossRef]
  57. Jankowiak, R.; Bilański, P. Fungal flora associated with Tomicus piniperda L. in an area close to a timber yard in southern Poland. J. Appl. Entomol. 2007, 131, 579–584. [Google Scholar] [CrossRef]
  58. Moraes, A.M.L.; Junqueira, A.C.V.; Costa, G.L.; Celano, V.; Oliveira, P.C.; Coura, J.R. Fungal flora of the digestive tract of 5 species of triatomines vectors of Trypanosoma cruzi, Chagas 1909. Mycopathologia 2001, 151, 41–48. [Google Scholar] [CrossRef]
  59. Marti, G.A.; García, J.J.; Cazau, M.C.; López Lastra, C.C. Flora fúngica de tractos digestivos en Triatoma infestans (Hemiptera: Reduviidae) en Argentina. Bol. Soc. Argent. Bot. 2007, 42, 175–179. [Google Scholar]
  60. Gunde-Cimerman, N.; Zalar, P.; Jeram, S. Mycoflora of cave cricket Troglophilus neglectus cadavers. Mycopathologia 1998, 141, 111–114. [Google Scholar] [CrossRef]
  61. Yun, T.S.; Park, S.Y.; Yu, J.; Hwang, Y.; Hong, K.J. Isolation and identification of fungal species from the insect pest Tribolium castaneum in rice processing complexes in Korea. Plant Pathol. J. 2018, 34, 356–366. [Google Scholar] [CrossRef]
  62. Amirmijani, A.R.; Khodaparast, S.A.; Zare, R. Additions to the knowledge of the genus Cladosporium in Iran. Mycol. Iran. 2015, 2, 11–21. [Google Scholar]
  63. Souza, C.R.; Teixeira, M.F.N.P.; Morais, P.B. Diversity of cellulolytic and xylanolytic fungi associated with the digestive tract of aquatic insect larvae in streams of the Amazon Forest and Cerrado in Brazil. Braz. J. Biol. 2022, 82, e265681. [Google Scholar] [CrossRef] [PubMed]
  64. Větrovský, T.; Soukup, P.; Stiblik, P.; Votýpková, K.; Chakraborty, A.; Odriozola Larranaga, I.; Sillam-Dussés, D.; Lo, N.; Bourguignon, T.; Baldrian, P.; et al. Termites host specific fungal communities that differ from those in their ambient environments. Fungal Ecol. 2020, 48, 100991. [Google Scholar] [CrossRef]
  65. Di Napoli, M.; Silvestri, B.; Castagliuolo, G.; Carpentieri, A.; Luciani, G.; Di Maro, A.; Sorbo, S.; Pezzella, A.; Zanfardino, A.; Varcamonti, M. High density polyethylene (HDPE) biodegradation by the fungus Cladosporium halotolerans. FEMS Microbiol. Ecol. 2023, 99, fiac148. [Google Scholar] [CrossRef] [PubMed]
  66. Wu, H.; Rao, Z.C.; Cao, L.; De Clercq, P.; Han, R.C. Infection of Ophiocordyceps sinensis fungus causes dramatic changes in the microbiota of its Thitarodes host. Front. Microbiol. 2020, 11, 577268. [Google Scholar] [CrossRef]
  67. de Carvalho, M.B.; de Aquino, M.L.N.; de Oliveria, M.H.C.C. Considerations on the biological control of Aleurodicus cocois (Curtis) (Homoptera: Aleyrodidae), Cashew whitefly. An. Inst. Cienc. Biol. 1972, 2, 25–30. [Google Scholar]
  68. Rita, S.; Valentina, P.; Maija, J.; Liga, J. Studies on ecological and physiological host range of entomopathogenic Hyphomycetes. IOBC/WPRS Bull. 2008, 31, 198–203. [Google Scholar]
  69. Sales, M.D.S.N.; Costa, G.L.D.; Bittencourt, V.R.E.P. Isolation of fungi in Musca domestica Linnaeus, 1758 (Diptera: Muscidae) captured at two natural breeding grounds in the municipality of Seropédica, Rio de Janeiro, Brazil. Memórias Inst. Oswaldo Cruz 2002, 97, 1107–1110. [Google Scholar] [CrossRef]
  70. Phoku, J.; Barnard, T.; Potgieter, N.; Dutton, M. Fungal dissemination by housefly (Musca domestica L.) and contamination of food commodities in rural areas of South Africa. Int. J. Food Microbiol. 2016, 217, 177–181. [Google Scholar] [CrossRef]
  71. Klimaszewski, J.; Morency, M.-J.; Labrie, P.; Seguin, A.; Langor, D.; Work, T.; Bourdon, C.; Thiffault, E.; Pare, D.; Newton, A.F.; et al. Molecular and microscopic analysis of the gut contents of abundant rove beetle species (Coleoptera, Staphylinidae) in the boreal balsam fir forest of Quebec, Canada. Zookeys 2013, 353, 1–24. [Google Scholar] [CrossRef]
  72. Tsochatzis, E.; Berggreen, I.E.; Tedeschi, F.; Ntrallou, K.; Gika, H.; Corredig, M. Gut microbiome and degradation product formation during biodegradation of expanded polystyrene by mealworm larvae under different feeding strategies. Molecules 2021, 26, 7568. [Google Scholar] [CrossRef]
  73. Teixeira, M.F.N.P.; Souza, C.R.; Morais, P.B. Diversity and enzymatic capabilities of fungi associated with the digestive tract of larval stages of a shredder insect in Cerrado and Amazon Forest, Brazil. Braz. J. Biol. 2022, 82, e260039. [Google Scholar] [CrossRef] [PubMed]
  74. Samways, M.J.; Grech, N.M. Assessment of the fungus Cladosporium oxysporum (Berk. and Curt.) as a potential biocontrol agent against certain Homoptera. Agric. Ecosyst. Environ. 1986, 15, 231–239. [Google Scholar] [CrossRef]
  75. Samways, M.J. Interrelationship between an entomogenous fungus and two ant-homopteran (Hymenoptera: Formicidae-Hemiptera: Pseudococcidae & Aphididae) mutualisms on guava trees. Bull. Entomol. Res. 1983, 73, 321–331. [Google Scholar]
  76. Carrión, G.; Bonet, A. Mycobiota associated with the coffee berry borer (Coleoptera: Scolytidae) and its galleries in fruit. Ann. Entomol. Soc. Am. 2004, 97, 492–499. [Google Scholar] [CrossRef]
  77. Vitale, S.; Toccafondi, P.; Luongo, L.; Binazzi, F.; Petrucci, M.; Francardi, V.; Landi, S.; Giovannini, L.; Simoni, S.; Roversi, P.F.; et al. Fungi obtained from olive twig dieback and adults of the alien pest Xylosandrus compactus (Eichhoff) (Coleoptera Curculionidae Scolytinae). Redia 2022, 105, 197–204. [Google Scholar] [CrossRef]
  78. Park, J.M.; You, Y.H.; Back, C.G.; Kim, H.H.; Ghim, S.Y.; Park, J.H. Fungal load in Bradysia agrestis, a phytopathogen-transmitting insect vector. Symbiosis 2018, 74, 145–158. [Google Scholar] [CrossRef]
  79. Simpanya, M.F.; Allotey, J.; Mpuchane, S.F. A mycological investigation of phane, an edible caterpillar of an emperor moth, Imbrasia belina. J. Food Prot. 2000, 63, 137–140. [Google Scholar] [CrossRef]
  80. Nagam, V.; Aluru, R.; Shoaib, M.; Dong, G.R.; Li, Z.; Pallaval, V.B.; Ni, J.F. Diversity of fungal isolates from fungus-growing termite Macrotermes barneyi and characterization of bioactive compound from Xylaria escharoidea. Insect Sci. 2021, 28, 392–402. [Google Scholar] [CrossRef]
  81. Erdoğdu, M.; Öğütçü, H.; Koçak, Y.; Çağlar., Ü. Isolation of microfungi associated with the gut and the surface of Acmaeodera flavolineata (Coleoptera: Buprestidae). In Proceedings of the 2nd International Congress on the World of Technology and Advanced Materials, Kırşehir, Turkey, 28 September–2 October 2016; p. 94. [Google Scholar]
  82. Chen, B.; Du, K.; Sun, C.; Vimalanathan, A.; Liang, X.; Li, Y.; Wang, B.; Lu, X.; Li, L.; Shao, Y. Gut bacterial and fungal communities of the domesticated silkworm (Bombyx mori) and wild mulberry-feeding relatives. ISME J. 2018, 12, 2252–2262. [Google Scholar] [CrossRef]
  83. Smirnoff, W.A. Fungus diseases affecting Adelges piceae in the fir forest of the Gaspe Peninsula, Quebec. Can. Entomol. 1970, 102, 799–805. [Google Scholar] [CrossRef]
  84. Gouli, V.; Gouli, S.; Marcelino, J.A.; Skinner, M.; Parker, B.L. Entomopathogenic fungi associated with exotic invasive insect pests in Northeastern forests of the USA. Insects 2013, 4, 631–645. [Google Scholar] [CrossRef]
  85. Luis, P.; Vallon, L.; Tran, F.H.; Hugoni, M.; Tran-Van, V.; Mavingui, P.; Minard, G.; Valiente Moro, C. Aedes albopictus mosquitoes host a locally structured mycobiota with evidence of reduced fungal diversity in invasive populations. Fungal Ecol. 2019, 39, 257–266. [Google Scholar] [CrossRef]
  86. Guégan, M.; Tran Van, V.; Martin, E.; Minard, G.; Tran, F.H.; Fel, B.; Hay, A.E.; Simon, L.; Barakat, M.; Poitier, P.; et al. Who is eating fructose within the Aedes albopictus gut microbiota? Environ. Microbiol. 2020, 22, 1193–1206. [Google Scholar] [CrossRef] [PubMed]
  87. Edwards, C.C.; McConnel, G.; Ramos, D.; Gurrola-Mares, Y.; Arole, K.D.; Green, M.J.; Cañas-Carrell, J.E.; Brelsfoard, C.L. Microplastic ingestion perturbs the microbiome of Aedes albopictus (Diptera: Culicidae) and Aedes aegypti. J. Med. Entomol. 2023, 60, 884–898. [Google Scholar] [CrossRef]
  88. Muturi, E.J.; Bara, J.J.; Rooney, A.P.; Hansen, A.K. Midgut fungal and bacterial microbiota of Aedes triseriatus and Aedes japonicus shift in response to La Crosse virus infection. Mol. Ecol. 2016, 25, 4075–4090. [Google Scholar] [CrossRef]
  89. Ren, Z.X.; Li, D.Z.; Bernhardt, P.; Wang, H. Flowers of Cypripedium fargesii (Orchidaceae) fool flat-footed flies (Platypezidae) by faking fungus-infected foliage. Proc. Nat. Acad. Sci. USA 2011, 108, 7478–7480. [Google Scholar] [CrossRef]
  90. Zhang, Z.; Jiao, S.; Li, X.; Li, M. Bacterial and fungal gut communities of Agrilus mali at different developmental stages and fed different diets. Sci. Rep. 2018, 8, 15634. [Google Scholar] [CrossRef]
  91. Reddersen, J. Feeding biology of fungivorous insects from Danish cereal fields. Pedobiologia 1995, 39, 370–384. [Google Scholar]
  92. Baoyu, H.; Zengzhi, L. Growing characteristics on Czapek medium of 8 kinds of entomogenous fungi from Aleurocanthus spiniferus and their infection ratios. Entomol. J. East China 2001, 10, 39–43. [Google Scholar]
  93. Nunes Farias, A.R.; Santos Filho, H.P. Ocorrencia de Cladosporium spp. infectando a masca branca Aleurothrixus aepim (Goeldi, 1886) em mandioca no Estado da Bahia. Rev. Bras. Mandioca 1987, 6, 79–80. [Google Scholar]
  94. Lee, G.Y.; Wertman, D.L.; Carroll, A.L.; Hamelin, R.C. Filamentous fungal associates of the alder bark beetle, Alniphagus aspericollis, including an undescribed species of Neonectria. PLoS ONE 2023, 18, e0284393. [Google Scholar] [CrossRef]
  95. Machota, R., Jr.; Bortoli, L.C.; Botton, M.; Grutzmacher, A.D. Fungi that cause rot in bunches of grape identified in adult fruit flies (Anastrepha fraterculus) (Diptera: Tephritidae). Chil. J. Agric. Res. 2013, 73, 196–201. [Google Scholar] [CrossRef]
  96. Krajacich, B.J.; Huestis, D.L.; Dao, A.; Yaro, A.S.; Diallo, M.; Krishna, A.; Xu, J.; Lehmann, T. Investigation of the seasonal microbiome of Anopheles coluzzii mosquitoes in Mali. PLoS ONE 2018, 13, e0194899. [Google Scholar] [CrossRef] [PubMed]
  97. Yoshihashi, Y.; Degawa, Y. Novel Metschnikowia yeasts from the gut of green lacewing in Japan. Antonie Van Leeuwenhoek 2023, 116, 1295–1304. [Google Scholar] [CrossRef] [PubMed]
  98. Abdel-Baky, N.F.; Abdel-Salam, A.H. Natural incidence of Cladosporium spp. as a bio-control agent against whiteflies and aphids in Egypt. J. Appl. Entomol. 2003, 127, 228–235. [Google Scholar] [CrossRef]
  99. Ptaszyńska, A.A.; Latoch, P.; Hurd, P.J.; Polaszek, A.; Michalska-Madej, J.; Grochowalski, Ł.; Strapagiel, D.; Gnat, S.; Załuski, D.; Gancarz, M.; et al. Amplicon sequencing of variable 16S rRNA from bacteria and ITS2 regions from fungi and plants, reveals honeybee susceptibility to diseases results from their forage availability under anthropogenic landscapes. Pathogens 2021, 10, 381. [Google Scholar] [CrossRef] [PubMed]
  100. Gilliam, M.; Prest, D.B. Fungi isolated from the intestinal contents of foraging worker honey bees, Apis mellifera. J. Invertebr. Pathol. 1972, 20, 101–103. [Google Scholar] [CrossRef]
  101. Callegari, M.; Crotti, E.; Fusi, M.; Marasco, R.; Gonella, E.; De Noni, I.; Romano, D.; Borin, S.; Tsiamis, G.; Cherif, A.; et al. Compartmentalization of bacterial and fungal microbiomes in the gut of adult honeybees. NPJ Biofilms Microbiomes 2021, 7, 42. [Google Scholar] [CrossRef]
  102. Al Naggar, Y.; Singavarapu, B.; Paxton, R.J.; Wubet, T. Bees under interactive stressors: The novel insecticides flupyradifurone and sulfoxaflor along with the fungicide azoxystrobin disrupt the gut microbiota of honey bees and increase opportunistic bacterial pathogens. Sci. Total Environ. 2022, 849, 157941. [Google Scholar] [CrossRef]
  103. Adair, R.J.; Burgess, T.; Serdani, M.; Barber, P. Fungal associations in Asphondylia (Diptera: Cecidomyiidae) galls from Australia and South Africa: Implications for biological control of invasive acacias. Fungal Ecol. 2009, 2, 121–134. [Google Scholar] [CrossRef]
  104. Bernardo, U.; Nugnes, F.; Gualtieri, L.; Nicoletti, R.; Varricchio, P.; Sasso, R.; Viggiani, G. A new gall midge species of Asphondylia (Diptera: Cecidomyiidae) inducing flower galls on Clinopodium nepeta (Lamiaceae) from Europe, its phenology, and associated fungi. Environ. Entomol. 2018, 47, 609–622. [Google Scholar] [CrossRef] [PubMed]
  105. Zimowska, B.; Viggiani, G.; Nicoletti, R.; Furmanczyk, A.; Becchimanzi, A.; Kot, I. First report of the gall midge Asphondylia serpylli on thyme (Thymus vulgaris), and identification of the associated fungal symbiont. Ann. Appl. Biol. 2017, 171, 89–94. [Google Scholar] [CrossRef]
  106. Duarte, A.P.M.; Ferro, M.; Rodrigues, A.; Bacci, M.; Nagamoto, N.S.; Forti, L.C.; Pagnocca, F.C. Prevalence of the genus Cladosporium on the integument of leaf-cutting ants characterized by 454 pyrosequencing. Antonie Van Leeuwenhoek 2016, 109, 1235–1243. [Google Scholar] [CrossRef] [PubMed]
  107. Malacrinò, A.; Schena, L.; Campolo, O.; Laudani, F.; Palmeri, V. Molecular analysis of the fungal microbiome associated with the olive fruit fly Bactrocera oleae. Fungal Ecol. 2015, 18, 67–74. [Google Scholar] [CrossRef]
  108. Majumder, R.; Sutcliffe, B.; Taylor, P.W.; Chapman, T.A. Microbiome of the Queensland fruit fly through metamorphosis. Microorganisms 2020, 8, 795. [Google Scholar] [CrossRef] [PubMed]
  109. Tang, Q.H.; Li, W.L.; Wang, J.P.; Li, X.J.; Li, D.; Cao, Z.; Huang, Q.; Li, J.L.; Zhang, J.; Wang, Z.W.; et al. Effects of spinetoram and glyphosate on physiological biomarkers and gut microbes in Bombus terrestris. Front. Physiol. 2023, 13, 1054742. [Google Scholar] [CrossRef]
  110. Park, J.M.; You, Y.H.; Park, J.H.; Kim, H.H.; Ghim, S.Y.; Back, C.G. Cutaneous microflora from geographically isolated groups of Bradysia agrestis, an insect vector of diverse plant pathogens. Mycobiology 2017, 45, 160–171. [Google Scholar] [CrossRef]
  111. Yoder, J.A.; Rausch, B.A.; Griffith, L.M.; Rosselot, A.E.; Jajack, A.J.; Gribbins, K.M.; Benoit, J.B.; Keeney, G.D. Rearing and storage in mung beans reduce medically significant molds by the seed beetle, Callosobruchus maculatus (Coleoptera: Chrysomelidae), utilized in science classrooms. Mycology 2013, 4, 169–177. [Google Scholar] [CrossRef]
  112. Heitmann, N.; Glemnitz, M.; Lentzsch, P.; Platen, R.; Müller, M.E. Quantifying the role of ground beetles for the dispersal of Fusarium and Alternaria fungi in agricultural landscapes. J. Fungi 2021, 7, 863. [Google Scholar] [CrossRef]
  113. Galíndez-Chicaíza, E.; Lagos-Mora, L.E.; Castillo-Belalcázar, G.; Salazar-González, C.; Betancourth-García, C. Fungi detected in insects associated to Espeletia pycnophylla. Rev. UDCA Actual. Divulg. Científica 2020, 23, e1497. [Google Scholar]
  114. Gomez-Polo, P.; Ballinger, M.J.; Lalzar, M.; Malik, A.; Ben-Dov, Y.; Mozes-Daube, N.; Perlman, S.J.; Iasur-Kruh, L.; Chiel, E. An exceptional family: Ophiocordyceps-allied fungus dominates the microbiome of soft scale insects (Hemiptera: Sternorrhyncha: Coccidae). Mol. Ecol. 2017, 26, 5855–5868. [Google Scholar] [CrossRef]
  115. Shabana, Y.M.; Ragab, M.E. Alternaria infectoria, a promising biological control agent for the fig wax scale, Ceroplastes rusci (Homoptera: Coccidae), in Egypt. Biocontrol Sci. Technol. 1997, 7, 553–564. [Google Scholar] [CrossRef]
  116. Çağlar, Ü.; Koçak, Y.; Öğütçü, H.; Erdoğdu, M. Fungal associates of the flatheaded wood borer beetle, Chalcophora detrita (Buprestidae: Chalcophorinae). In Proceedings of the 2nd International Congress on the World of Technology and Advanced Materials, Kırşehir, Turkey, 28 September–2 October 2016; p. 93. [Google Scholar]
  117. Hettiarachchi, A.; Cnockaert, M.; Joossens, M.; Gekière, A.; Meeus, I.; Vereecken, N.J.; Michez, D.; Smagghe, G.; Vandamme, P. The wild solitary bees Andrena vaga, Anthophora plumipes, Colletes cunicularius, and Osmia cornuta microbiota are host specific and dominated by endosymbionts and environmental microorganisms. Microb. Ecol. 2023, 86, 3013–3026. [Google Scholar] [CrossRef] [PubMed]
  118. Cui, P.; Liu, L.; Huang, Z.; Shi, S.; Kong, K.; Zhang, Y. Diversity, antibacterial activity and chemical analyses of gut-associated fungi isolated from the Crocothemis servilia. Front. Microbiol. 2022, 13, 970990. [Google Scholar] [CrossRef]
  119. Querner, P.; Sterflinger, K. Evidence of fungal spreading by the grey silverfish (Ctenolepisma longicaudatum) in Austrian museums. Restaurator. Int. J. Preserv. Libr. Archiv. Mater. 2021, 42, 57–65. [Google Scholar] [CrossRef]
  120. Chandler, J.A.; Liu, R.M.; Bennett, S.N. RNA shotgun metagenomic sequencing of northern California (USA) mosquitoes uncovers viruses, bacteria, and fungi. Front. Microbiol. 2015, 6, 185. [Google Scholar] [CrossRef]
  121. Thongsripong, P.; Chandler, J.A.; Green, A.B.; Kittayapong, P.; Wilcox, B.A.; Kapan, D.D.; Bennett, S.N. Mosquito vector-associated microbiota: Metabarcoding bacteria and eukaryotic symbionts across habitat types in Thailand endemic for dengue and other arthropod-borne diseases. Ecol. Evol. 2018, 8, 1352–1368. [Google Scholar] [CrossRef]
  122. Flores, G.A.; Lopez, R.P.; Cerrudo, C.S.; Consolo, V.F.; Berón, C.M. Culex quinquefasciatus holobiont: A fungal metagenomic approach. Front. Fungal Biol. 2022, 3, 918052. [Google Scholar] [CrossRef]
  123. Kleespies, R.G.; Huger, A.M.; Zimmermann, G. Microbial antagonists of the codling moth, Cydia pomonella L., diagnosed from 1955 to 2008. IOBC/WPRS Bull. 2009, 45, 509–512. [Google Scholar]
  124. Pyszko, P.; Višňovská, D.; Drgová, M.; Šigut, M.; Drozd, P. Effect of bacterial and fungal microbiota removal on the survival and development of bryophagous beetles. Environ. Entomol. 2020, 49, 902–911. [Google Scholar] [CrossRef]
  125. Molnár, O.; Wuczkowski, M.; Prillinger, H. Yeast biodiversity in the guts of several pests on maize; comparison of three methods: Classical isolation, cloning and DGGE. Mycol. Progr. 2008, 7, 111–123. [Google Scholar] [CrossRef]
  126. Ehlers, B.K.; Olesen, J.M. The fruit-wasp route to toxic nectar in Epipactis orchids? Flora 1997, 192, 223–229. [Google Scholar] [CrossRef]
  127. Lewis, M.T.; Koivunen, E.E.; Swett, C.L.; Hamby, K.A. Associations between Drosophila suzukii (Diptera: Drosophilidae) and fungi in raspberries. Environ. Entomol. 2019, 48, 68–79. [Google Scholar] [CrossRef] [PubMed]
  128. Jose, P.A.; Krishnamoorthy, R.; Gandhi, P.I.; Senthilkumar, M.; Janahiraman, V.; Kumutha, K.; Choudhury, A.R.; Samaddar, S.; Anandham, R.; Sa, T. Endomicrobial community profiles of two different mealybugs: Paracoccus marginatus and Ferrisia virgata. J. Microbiol. Biotechnol. 2020, 30, 1013–1017. [Google Scholar] [CrossRef]
  129. Huang, Z.; Zhu, L.; Lv, J.; Pu, Z.; Zhang, L.; Chen, G.; Hu, X.; Zhang, Z.; Zhang, H. Dietary effects on biological parameters and gut microbiota of Harmonia axyridis. Front. Microbiol. 2021, 12, 818787. [Google Scholar] [CrossRef] [PubMed]
  130. Bahar, M.H.; Backhouse, D.; Gregg, P.C.; Mensah, R. Efficacy of a Cladosporium sp. fungus against Helicoverpa armigera (Lepidoptera: Noctuidae), other insect pests and beneficial insects of cotton. Biocontrol Sci. Technol. 2011, 21, 1387–1397. [Google Scholar] [CrossRef]
  131. Pérez, J.; Infante, F.; Vega, F.E.; Holguín, F.; Macías, J.; Valle, J.; Nieto, G.; Peterson, S.W.; Kurtzman, C.P.; O’Donnell, K. Mycobiota associated with the coffee berry borer (Hypothenemus hampei) in Mexico. Mycol. Res. 2003, 107, 879–887. [Google Scholar] [CrossRef]
  132. Kobune, S.; Kajimura, H.; Masuya, H.; Kubono, T. Symbiotic fungal flora in leaf galls induced by Illiciomyia yukawai (Diptera: Cecidomyiidae) and in its mycangia. Microb. Ecol. 2012, 63, 619–627. [Google Scholar] [CrossRef]
  133. Chakraborty, A.; Modlinger, R.; Ashraf, M.Z.; Synek, J.; Schlyter, F.; Roy, A. Core mycobiome and their ecological relevance in the gut of five Ips bark beetles (Coleoptera: Curculionidae: Scolytinae). Front. Microbiol. 2020, 11, 568853. [Google Scholar] [CrossRef]
  134. Benvenuti, C.; Strangi, A.; Iovinella, I.; Barzanti, G.P.; Simoni, S.; Vitale, S.; Luongo, L.; Francardi, V.; Roversi, P.F. Xylosandrus compactus and Liparthrum colchicum (Coleoptera Scolytinae) in Tuscany: A preliminary screening of associated fungi. Redia 2021, 104, 139–146. [Google Scholar] [CrossRef]
  135. Van Zandt, P.A.; Townsend Jr, V.R.; Carlton, C.E.; Blackwell, M.; Mopper, S. Loberus impressus (LeConte) (Coleoptera: Erotylidae) fungal associations and presence in the seed capsules of Iris hexagona. Coleopterists’ Bull. 2003, 57, 281–288. [Google Scholar] [CrossRef] [PubMed]
  136. Lim, Y.Z.; Poh, Y.H.; Lee, K.C.; Pointing, S.B.; Wainwright, B.J.; Tan, E.J. Influence of native and exotic plant diet on the gut microbiome of the Gray’s Malayan stick insect, Lonchodes brevipes. Front. Microbiol. 2023, 14, 1199187. [Google Scholar] [CrossRef] [PubMed]
  137. Vallejo, L.F.; Soto, S.U.; Bernal, T.D.V. Identification of pathogenic fungi for Lutzomyia sp. (Diptera: Psychodidae), vectors of leishmaniasis. Rev. Colomb. Entomol. 1996, 22, 13–17. [Google Scholar] [CrossRef]
  138. Zeng, J.Y.; Shi, J.H.; Shi, Z.B.; Guo, J.X.; Zhang, G.C.; Bi, B. Avermectin stress varied structure and function of gut microbial community in Lymantria dispar asiatica (Lepidoptera: Lymantriidae) larvae. Pestic. Biochem. Physiol. 2020, 164, 196–202. [Google Scholar] [CrossRef] [PubMed]
  139. Fodor, E.; Hâruţa, O. Niche partition of two invasive insect species, Parectopa robiniella (Lepidoptera; Gracillariidae) and Phyllonorycter robiniella (Clem.) (Lepidoptera: Gracillariidae). Res. J. Agric. Sci. 2009, 41, 261–269. [Google Scholar]
  140. Zhang, Y.; Liu, S.; Huang, X.Y.; Zi, H.B.; Gao, T.; Ji, R.J.; Sheng, J.; Zhi, D.; Zhang, Y.L.; Gong, C.M.; et al. Altitude as a key environmental factor shaping microbial communities of tea green leafhoppers (Matsumurasca onukii). Microbiol. Spectr. 2023, 11, e01009-23. [Google Scholar] [CrossRef]
  141. Minard, G.; Kahilainen, A.; Biere, A.; Pakkanen, H.; Mappes, J.; Saastamoinen, M. Complex plant quality—Microbiota–population interactions modulate the response of a specialist herbivore to the defence of its host plant. Funct. Ecol. 2022, 36, 2873–2888. [Google Scholar] [CrossRef]
  142. Zarrin, M.; Vazirianzadeh, B.; Solary, S.S.; Mahmoudabadi, A.Z.; Rahdar, M. Isolation of fungi from housefly (Musca domestica) in Ahwaz, Iran. Pakistan J. Med. Sci. 2007, 23, 917–919. [Google Scholar]
  143. Park, R.; Dzialo, M.C.; Spaepen, S.; Nsabimana, D.; Gielens, K.; Devriese, H.; Crauwels, S.; Tito, R.Y.; Raes, J.; Lievens, B.; et al. Microbial communities of the house fly Musca domestica vary with geographical location and habitat. Microbiome 2019, 7, 147. [Google Scholar] [CrossRef]
  144. Latella, L.; Castioni, A.; Bignotto, L.; Salvetti, E.; Torriani, S.; Felis, G.E. Exploring gut microbiota composition of the cave beetles Neobathyscia pasai Ruffo, 1950 and Neobathyscia mancinii Jeannel, 1924 (Leiodidae; Cholevinae). Boll. Mus. Civ. Stor. Nat. Verona 2017, 41, 3–24. [Google Scholar]
  145. Wang, Z.L.; Wang, T.Z.; Zhu, H.F.; Pan, H.B.; Yu, X.P. Diversity and dynamics of microbial communities in brown planthopper at different developmental stages revealed by high-throughput amplicon sequencing. Insect Sci. 2020, 27, 883–894. [Google Scholar] [CrossRef] [PubMed]
  146. Muratore, M.; Sun, Y.; Prather, C. Environmental nutrients alter bacterial and fungal gut microbiomes in the common meadow katydid, Orchelimum vulgare. Front. Microbiol. 2020, 11, 557980. [Google Scholar] [CrossRef] [PubMed]
  147. Malacrinò, A.; Rassati, D.; Schena, L.; Mehzabin, R.; Battisti, A.; Palmeri, V. Fungal communities associated with bark and ambrosia beetles trapped at international harbours. Fungal Ecol. 2017, 28, 44–52. [Google Scholar] [CrossRef]
  148. Maleki-Ravasan, N.; Oshaghi, M.A.; Hajikhani, S.; Saeidi, Z.; Akhavan, A.A.; Gerami-Shoar, M.; Shirazi, M.H.; Yakhchali, B.; Rassi, Y.; Afshar, D. Aerobic microbial community of insectary population of Phlebotomus papatasi. J. Arthropod-Borne Dis. 2014, 8, 69–81. [Google Scholar] [PubMed]
  149. Layouni, S.; Remadi, L.; Chaâbane-Banaoues, R.; Haouas, N.; Babba, H. Identification of cuticle and midgut fungal microflora of phlebotomine sandflies collected in Tunisia. Arch. Microbiol. 2023, 205, 64. [Google Scholar] [CrossRef] [PubMed]
  150. Belmont-Montefusco, E.L.; Nacif-Marcal, L.; Nogueira de Assunção, E.; Hamada, N.; Nunes-Silva, C.G. Cultivable cellulolytic fungi isolated from the gut of Amazonian aquatic insects. Acta Amazon. 2020, 50, 346–354. [Google Scholar] [CrossRef]
  151. Gloder, G.; Bourne, M.E.; Verreth, C.; Wilberts, L.; Bossaert, S.; Crauwels, S.; Dicke, M.; Poelman, E.H.; Jacquemyn, H.; Lievens, B. Parasitism by endoparasitoid wasps alters the internal but not the external microbiome in host caterpillars. Anim. Microbiome 2021, 3, 73. [Google Scholar] [CrossRef]
  152. Iasur-Kruh, L.; Taha-Salaime, L.; Robinson, W.E.; Sharon, R.; Droby, S.; Perlman, S.J.; Zchori-Fein, E. Microbial associates of the vine mealybug Planococcus ficus (Hemiptera: Pseudococcidae) under different rearing conditions. Microb. Ecol. 2015, 69, 204–214. [Google Scholar] [CrossRef]
  153. Devarajan, P.T.; Suryanarayanan, T.S. Evidence for the role of phytophagous insects in dispersal of non-grass fungal endophytes. Fungal Divers 2006, 23, 111–119. [Google Scholar]
  154. Martinez, A.J.; Onchuru, T.O.; Ingham, C.S.; Sandoval-Calderón, M.; Salem, H.; Deckert, J.; Kaltenpoth, M. Angiosperm to Gymnosperm host-plant switch entails shifts in microbiota of the Welwitschia bug, Probergrothius angolensis (Distant, 1902). Mol. Ecol. 2019, 28, 5172–5187. [Google Scholar] [CrossRef]
  155. Martin Jr, W.R.; Grisham, M.P.; Kenerley, C.M.; Sterling, W.L.; Morgan, P.W. Microorganisms associated with cotton fleahopper, Pseudatomoscelis seriatus (Heteroptera: Miridae). Ann. Entomol. Soc. Am. 1987, 80, 251–255. [Google Scholar] [CrossRef]
  156. Guo, L.; Tang, C.; Gao, C.; Li, Z.; Cheng, Y.; Chen, J.; Wang, T.; Xu, J. Bacterial and fungal communities within and among geographic samples of the hemp pest Psylliodes attenuata from China. Front. Microbiol. 2022, 13, 964735. [Google Scholar] [CrossRef] [PubMed]
  157. Mousavi, K.; Rajabpour, A.; Parizipour, M.H.G.; Yarahmadi, F. Biological and molecular characterization of Cladosporium sp. and Acremonium zeylanicum as biocontrol agents of Aphis fabae in a tri-trophic system. Entomol. Exp. Appl. 2022, 170, 877–886. [Google Scholar] [CrossRef]
  158. Abdel-Baky, N.F.; Abdel-Salarn, A.H.; EI Fadaly, H.A. Pulvinaria tenuivalvata (Newstead) and its natural enemies on ratoon sugarcane in Dakahlia Governorate. J. Agric. Sci. Mansoura Univ. 2003, 28, 5699–5712. [Google Scholar]
  159. Harris, R.J.; Harcourt, S.J.; Glare, T.R.; Rose, E.A.F.; Nelson, T.J. Susceptibility of Vespula vulgaris (Hymenoptera: Vespidae) to generalist entomopathogenic fungi and their potential for wasp control. J. Invertebr. Pathol. 2000, 75, 251–258. [Google Scholar] [CrossRef] [PubMed]
  160. Li, Y.; Liu, L.; Cai, X.; Yang, X.; Lin, J.; Shu, B. The bacterial and fungal communities of the larval midgut of Spodoptera frugiperda (Lepidoptera: Noctuidae) varied by feeding on two cruciferous vegetables. Sci. Rep. 2022, 12, 13063. [Google Scholar]
  161. Wang, Y.; Zhao, X.; Wang, J.; Weng, Y.; Wang, Y.; Li, X.; Han, X. Ingestion preference and efficiencies of different polymerization types foam plastics by Tenebrio molitor larvae, associated with changes of both core gut bacterial and fungal microbiomes. J. Environ. Chem. Engin. 2023, 11, 110801. [Google Scholar] [CrossRef]
  162. Corallo, B.; Simeto, S.; Martínez, G.; Gómez, D.; Abreo, E.; Altier, N.; Lupo, S. Entomopathogenic fungi naturally infecting the eucalypt bronze bug, Thaumastocoris peregrinus (Heteroptera: Thaumastocoridae), in Uruguay. J. Appl. Entomol. 2019, 143, 542–555. [Google Scholar] [CrossRef]
  163. Russo, E.; Becchimanzi, A.; Garonna, A.P.; Abate, G.; Nicoletti, R. Fungi associated with the pine tortoise scale Toumeyella parvicornis. In Proceedings of the XII International Congress of Plant Pathology, Lyon, France, 20–25 August 2023; p. 309. [Google Scholar]
  164. Rassati, D.; Marini, L.; Malacrinò, A. Acquisition of fungi from the environment modifies ambrosia beetle mycobiome during invasion. PeerJ 2019, 7, e8103. [Google Scholar] [CrossRef]
  165. Cruz, L.F.; Menocal, O.; Kendra, P.E.; Carrillo, D. Phoretic and internal transport of Raffaelea lauricola by different species of ambrosia beetle associated with avocado trees. Symbiosis 2021, 84, 151–161. [Google Scholar] [CrossRef]
  166. Bateman, C.; Šigut, M.; Skelton, J.; Smith, K.E.; Hulcr, J. Fungal associates of the Xylosandrus compactus (Coleoptera: Curculionidae, Scolytinae) are spatially segregated on the insect body. Environ. Entomol. 2016, 45, 883–890. [Google Scholar] [CrossRef] [PubMed]
  167. Wang, N.; Zhang, S.; Li, Y.J.; Song, Y.Q.; Lei, C.Y.; Peng, Y.Y.; Wang, J.J.; Lou, B.H.; Jiang, H.B. Novel isolate of Cladosporium subuliforme and its potential to control Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Liviidae). Egypt. J. Biol. Pest Control 2023, 33, 37. [Google Scholar] [CrossRef]
  168. Pereira, M.L.; Carvalho, J.L.; Lima, J.M.; Barbier, E.; Bernard, E.; Bezerra, J.D.; Souza-Motta, C.M. Richness of Cladosporium in a tropical bat cave with the description of two new species. Mycol. Prog. 2022, 21, 345–357. [Google Scholar] [CrossRef]
  169. Idrees, A.; Afzal, A.; Qadir, Z.A.; Li, J. Virulence of entomopathogenic fungi against fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae) under laboratory conditions. Front. Physiol. 2023, 14, 1107434. [Google Scholar] [CrossRef] [PubMed]
  170. Ragab, M.; Abdel-Baky, N.F. Cladosporium uredinicola Speg. and Alternaria infectoria EG Simmons, as promising biocontrol agents for Bemisia argentifolii Bellows & Perring and Aphis gossypii Glov. on tomatoes. J. Agric. Sci. Mansoura Univ. 2004, 29, 5897–5906. [Google Scholar]
  171. Braun, U.; Crous, P.W.; Dugan, F.; Groenewald, J.Z.; De Hoog, G.S. Phylogeny and taxonomy of Cladosporium-like hyphomycetes, including Davidiella gen. nov., the teleomorph of Cladosporium s. str. Mycol. Prog. 2003, 2, 3–18. [Google Scholar] [CrossRef]
  172. Abdel-Baky, N.F.; Hamed, K.E.; Al-Otaibi, N.D.; Aldeghairi, M.A. Bioassay of some indigenous entomopathogens for controlling Rhynchophorus ferrugineus, Olivier in Saudi Arabia. Pak. J. Biol. Sci. 2021, 24, 944–952. [Google Scholar] [CrossRef] [PubMed]
  173. Aldeghairi, M.A.; El-Meleigi, M.A.; Baky, N.F.A.; Ibrahim, G.H. The entomopathogenic fungus Cladosporium sp. as a candidate biocontrol agent against the sweetpotato whitefly, Bemisia tabaci in Saudi Arabia. In Recent Advances in Biofertilizers and Biofungicides (PGPR) for Sustainable Agriculture; Reddy, M.S., Ilao, R.I., Faylon, P.S., Dar, W.D., Sayyed, R., Sudini, H., Kumar, K.V.K., Armanda, A., Eds.; Cambridge Scholars Publishing: Newcastle, UK, 2013; pp. 532–563. [Google Scholar]
  174. Braun, U.; Crous, P.W.; Schubert, K. Taxonomic revision of the genus Cladosporium s. lat. 8. Reintroduction of Graphiopsis (=Dichocladosporium) with further reassessments of cladosporioid hyphomycetes. Mycotaxon 2008, 103, 207–216. [Google Scholar]
  175. Lu, Y.H.; Shuai, L.I.; Shao, M.W.; Xiao, X.H.; Kong, L.C.; Jiang, D.H.; Zhang, Y.L. Isolation, identification, derivatization and phytotoxic activity of secondary metabolites produced by Cladosporium oxysporum DH14, a locust-associated fungus. J. Integr. Agric. 2016, 15, 832–839. [Google Scholar] [CrossRef]
  176. Bartnik, C.; Michalcewicz, J.; Ledwich, D.; Ciach, M. Mycobiota of dead Ulmus glabra wood as breeding material for the endangered Rosalia alpina (Coleoptera: Cerambycidae). Polish J. Ecol. 2020, 68, 13–22. [Google Scholar] [CrossRef]
  177. Sinpoo, C.; Williams, G.R.; Chantawannakul, P. Dynamics of fungal communities in corbicular pollen and bee bread. Chiang Mai J. Sci. 2017, 44, 1244–1256. [Google Scholar]
  178. Bell, J.V.; King, E.G.; Hamalle, R.J. Some microbial contaminants and control agents in a diet and larvae of Heliothis spp. J. Invertebr. Pathol. 1981, 37, 243–248. [Google Scholar] [CrossRef]
  179. Malacrinò, A.; Schena, L.; Campolo, O.; Laudani, F.; Mosca, S.; Giunti, G.; Strano, C.P.; Palmeri, V. A metabarcoding survey on the fungal microbiota associated to the olive fruit fly. Microb. Ecol. 2017, 73, 677–684. [Google Scholar] [CrossRef] [PubMed]
  180. Gharsallah, H.; Ksentini, I.; Frikha-Gargouri, O.; Hadj Taieb, K.; Ben Gharsa, H.; Schuster, C.; Chatti-kolsi, A.; Triki, M.A.; Ksantini, M.; Leclerque, A. Interactions Exploring bacterial and fungal biodiversity in eight Mediterranean olive orchards (Olea europaea L.) in Tunisia. Microorganisms 2023, 11, 1086. [Google Scholar] [CrossRef] [PubMed]
  181. Yang, Z.W.; Luo, J.Y.; Men, Y.; Liu, Z.H.; Zheng, Z.K.; Wang, Y.H.; Xie, Q. Different roles of host and habitat in determining the microbial communities of plant-feeding true bugs. Microbiome 2023, 11, 244. [Google Scholar] [CrossRef] [PubMed]
  182. Grief, M.D.; Currah, R.S. Patterns in the occurrence of saprophytic fungi carried by arthropods caught in traps baited with rotted wood and dung. Mycologia 2007, 99, 7–19. [Google Scholar] [CrossRef]
  183. McKinnon, A.C.; Saari, S.; Moran-Diez, M.E.; Meyling, N.V.; Raad, M.; Glare, T.R. Beauveria bassiana as an endophyte: A critical review on associated methodology and biocontrol potential. BioControl 2017, 62, 1–17. [Google Scholar] [CrossRef]
  184. Stone, L.B.; Bidochka, M.J. The multifunctional lifestyles of Metarhizium: Evolution and applications. Appl. Microbiol. Biotechnol. 2020, 104, 9935–9945. [Google Scholar] [CrossRef]
  185. Nicoletti, R.; Becchimanzi, A. Endophytism of Lecanicillium and Akanthomyces. Agriculture 2020, 10, 205. [Google Scholar] [CrossRef]
  186. Poveda, J. Trichoderma as biocontrol agent against pests: New uses for a mycoparasite. Biol. Control 2021, 159, 104634. [Google Scholar] [CrossRef]
  187. Nicoletti, R.; Becchimanzi, A. Talaromyces–insect relationships. Microorganisms 2021, 10, 45. [Google Scholar] [CrossRef] [PubMed]
  188. Amatuzzi, R.F.; Cardoso, N.; Poltronieri, A.S.; Poitevin, C.G.; Dalzoto, P.; Zawadeneak, M.A.; Pimentel, I.C. Potential of endophytic fungi as biocontrol agents of Duponchelia fovealis (Zeller) (Lepidoptera: Crambidae). Braz. J. Biol. 2017, 78, 429–435. [Google Scholar] [CrossRef]
  189. Ouidad, A.; Senoussi, M.M.; Oufroukh, A.; Birgücü, A.K.; Karaca, İ.; Kouadri, F.; Bensegueni, A. Pathogenicity of three entomopathogenic fungi, to the aphid species, Metopolophium dirhodum (Walker) (Hemiptera: Aphididae), and their alkaline protease activities. Egypt. J. Biol. Pest Control 2018, 28, 24. [Google Scholar]
  190. Bensaci, O.A.; Daoud, H.; Lombarkia, N.; Rouabah, K. Formulation of the endophytic fungus Cladosporium oxysporum Berk. and MA Curtis, isolated from Euphorbia bupleuroides subsp. luteola, as a new biocontrol tool against the black bean aphid (Aphis fabae Scop.). J. Plant Prot. Res. 2015, 55, 80–87. [Google Scholar] [CrossRef]
  191. Renuka, S.; Ramanujam, B. Fungal endophytes from maize (Zea mays L.): Isolation, identification and screening against maize stem borer, Chilo partellus (Swinhoe). J. Pure Appl. Microbiol. 2016, 10, 523–529. [Google Scholar]
  192. Saranya, S.; Ushakumari, R.; Jacob, S.; Philip, B.M. Efficacy of different entomopathogenic fungi against cowpea aphid, Aphis craccivora (Koch). J. Biopesticides 2010, 3, 138–142. [Google Scholar]
  193. Abdel-Baky, N.F.; Fadaly, H.A.; EI-Nagar, M.E.; Arafat, N.S.; Abd-Allah, R.H. Virulence and enzymatic activities of some entomopathogenic fungi against whiteflies and aphids. J. Agric. Sci. Mansoura Univ. 2005, 30, 1153–1167. [Google Scholar] [CrossRef]
  194. Idrees, A.; Qadir, Z.A.; Akutse, K.S.; Afzal, A.; Hussain, M.; Islam, W.; Waqas, M.S.; Bamisile, B.S.; Li, J. Effectiveness of entomopathogenic fungi on immature stages and feeding performance of fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae) larvae. Insects 2021, 12, 1044. [Google Scholar] [CrossRef]
  195. Abbas, H.K.; Mulrooney, J.E. Effect of some phytopathogenic fungi and their metabolites on growth of Heliothis virescens (F.) and its host plants. Biocontrol Sci. Technol. 1994, 4, 77–87. [Google Scholar] [CrossRef]
  196. Thakur, A.; Singh, V.; Kaur, A.; Kaur, S. Insecticidal potential of an endophytic fungus, Cladosporium uredinicola, against Spodoptera litura. Phytoparasitica 2013, 41, 373–382. [Google Scholar] [CrossRef]
  197. Shaker, N.O.; Ahmed, G.M.M.; El-Sawy, M.M.; El-Sayed Ibrahim, H.Y.; Abd El-Rahman Ismail, H.N. Isolation, characterization and insecticidal activity of methylene chloride extract of Cladosporium cladosporioides secondary metabolites against Aphis gossypii (Glov.). J. Plant Prot. Pathol. 2019, 10, 115–119. [Google Scholar] [CrossRef]
  198. Bensaci, O.A.; Rouabah, K.; Aliat, T.; Lombarkia, N.; Plushikov, V.G.; Kucher, D.E.; Dokukin, P.A.; Temirbekova, S.K.; Rebouh, N.Y. Biological pests management for sustainable agriculture: Understanding the influence of Cladosporium-bioformulated endophytic fungi application to control Myzus persicae (Sulzer, 1776) in potato (Solanum tuberosum L.). Plants 2022, 11, 2055. [Google Scholar] [CrossRef]
  199. Salvatore, M.M.; Andolfi, A.; Nicoletti, R. The genus Cladosporium: A rich source of diverse and bioactive natural compounds. Molecules 2021, 26, 3959. [Google Scholar] [CrossRef] [PubMed]
  200. Mousavi, K.; Rajabpour, A.; Parizipour, M.H.G.; Yarahmadi, F. Insecticidal bioactive compounds derived from Cladosporium cladosporioides (Fresen.) GA de Vries and Acremonium zeylanicum (Petch) W. Gams & HC Evans. J. Plant Dis. Prot. 2023, 130, 543–549. [Google Scholar]
  201. Jadulco, R.; Brauers, G.; Edrada, R.A.; Ebel, R.; Wray, V.; Sudarsono; Proksch, P. New metabolites from sponge-derived fungi Curvularia lunata and Cladosporium herbarum. J. Nat. Prod. 2002, 65, 730–733. [Google Scholar] [CrossRef] [PubMed]
  202. Summers, C.B.; Felton, G.W. Prooxidant effects of phenolic acids on the generalist herbivore Helicoverpa zea (Lepidoptera: Noctuidae): Potential mode of action for phenolic compoundsin plant anti-herbivore chemistry. Insect Biochem. Mol. Biol. 1994, 24, 943–953. [Google Scholar] [CrossRef]
  203. Singh, B.; Kaur, T.; Kaur, S.; Manhas, R.K.; Kaur, A. An alpha-glucosidase inhibitor from an endophytic Cladosporium sp. with potential as a biocontrol agent. Appl. Biochem. Biotechnol. 2015, 175, 2020–2034. [Google Scholar] [CrossRef]
  204. Singh, B.; Kaur, T.; Kaur, S.; Manhas, R.K.; Kaur, A. Insecticidal potential of an endophytic Cladosporium velox against Spodoptera litura mediated through inhibition of alpha glycosidases. Pestic. Biochem. Physiol. 2016, 131, 46–52. [Google Scholar] [CrossRef]
  205. Abdel-Baky, N.F. Interactions among the entomopathogenic fungus, Cladosporium uridenicolla Speg., and two whiteflies beneficial insects, Eretmocerus mundus Mercert and Coccienlla undecimpunctata L.: From an IPM prospective. J. Agric. Sci. Mansoura Univ. 2005, 30, 4217–4236. [Google Scholar] [CrossRef]
  206. Shankar Naik, B. Functional roles of fungal endophytes in host fitness during stress conditions. Symbiosis 2019, 79, 99–115. [Google Scholar] [CrossRef]
  207. Nicoletti, R.; Beccaro, G.L.; Sekara, A.; Cirillo, C.; Di Vaio, C. Endophytic fungi and ecological fitness of chestnuts. Plants 2021, 10, 542. [Google Scholar] [CrossRef] [PubMed]
  208. Bamisile, B.S.; Afolabi, O.G.; Siddiqui, J.A.; Xu, Y. Endophytic insect pathogenic fungi-host plant-herbivore mutualism: Elucidating the mechanisms involved in the tripartite interactions. World J. Microbiol. Biotechnol. 2023, 39, 326. [Google Scholar] [CrossRef] [PubMed]
  209. Picciotti, U.; Araujo Dalbon, V.; Ciancio, A.; Colagiero, M.; Cozzi, G.; De Bellis, L.; Finetti-Sialer, M.M.; Greco, D.; Ippolito, A.; Lahbib, N.; et al. “Ectomosphere”: Insects and microorganism interactions. Microorganisms 2023, 11, 440. [Google Scholar] [CrossRef] [PubMed]
  210. Thakur, A.; Kaur, S.; Kaur, A.; Singh, V. Enhanced resistance to Spodoptera litura in endophyte infected cauliflower plants. Environ. Entomol. 2013, 42, 240–246. [Google Scholar] [CrossRef] [PubMed]
  211. Thakur, A.; Singh, V.; Kaur, A.; Kaur, S. Suppression of cellular immune response in Spodoptera litura (Lepidoptera: Noctuidae) larvae by endophytic fungi Nigrospora oryzae and Cladosporium uredinicola. Ann. Entomol. Soc. Am. 2014, 107, 674–679. [Google Scholar] [CrossRef]
  212. Gange, A.C.; Eschen, R.; Wearn, J.A.; Thawer, A.; Sutton, B.C. Differential effects of foliar endophytic fungi on insect herbivores attacking a herbaceous plant. Oecologia 2012, 168, 1023–1031. [Google Scholar] [CrossRef]
  213. Santamaria, B.; Verbeken, A.; Haelewaters, D. Mycophagy: A global review of interactions between invertebrates and fungi. J. Fungi 2023, 9, 163. [Google Scholar] [CrossRef]
  214. Mills, J.T.; Sinha, R.N. Interactions between a springtail, Hypogastrura tullbergi, and soil-borne fungi. J. Econ. Entomol. 1971, 64, 398–401. [Google Scholar] [CrossRef]
  215. Walsh, M.I.; Bolger, T. Effects of diet on growth and reproduction of some Collembola in laboratory cultures. Pedobiologia 1990, 34, 161–171. [Google Scholar]
  216. Harasymek, L.; Sinha, R.N. Survival of springtails Hypogastrura tullbergi and Proisotoma minuta on fungal and bacterial diets. Environ. Entomol. 1974, 3, 965–968. [Google Scholar] [CrossRef]
  217. Imai, T.; Miyamoto, Y. The developmental parameters of the minute brown scavenger beetle Dienerella argus (Coleoptera: Latridiidae). Appl. Entomol. Zool. 2019, 54, 75–78. [Google Scholar] [CrossRef]
  218. Sinha, R.N. Fungus as food for some stored product insects. J. Econ. Entomol. 1971, 64, 3–6. [Google Scholar] [CrossRef]
  219. Kao, S.S.; Dunkel, F.V.; Harein, P.K. Behavioral response of the larger black flour beetle (Coleoptera: Tenebrionidae) to olfactory cues from food sources. J. Econ. Entomol. 1984, 77, 110–112. [Google Scholar] [CrossRef]
  220. David, M.H.; Mills, R.B.; Sauer, D.B. Development and oviposition of Ahasverus advena (Waltl) (Coleoptera, Silvanidae) on seven species of fungi. J. Stored Prod. Res. 1974, 10, 17–22. [Google Scholar] [CrossRef]
  221. Hulcr, J.; Stelinski, L.L. The ambrosia symbiosis: From evolutionary ecology to practical management. Annu. Rev. Entomol. 2017, 62, 285–303. [Google Scholar] [CrossRef]
  222. Kostovcik, M.; Bateman, C.; Kolarik, M.; Stelinski, L.; Jordal, B.; Hulcr, J. The ambrosia symbiosis is specific in some species and promiscuous in others: Evidence from community pyrosequencing. ISME J. 2015, 9, 126–138. [Google Scholar] [CrossRef]
  223. Joseph, R.; Keyhani, N.O. Fungal mutualisms and pathosystems: Life and death in the ambrosia beetle mycangia. Appl. Microbiol. Biotechnol. 2021, 105, 3393–3410. [Google Scholar] [CrossRef]
  224. Brown, E.S. Xyleborus morstatti Hag. (Coleoptera, Scolytidae) a shot-hole borer attacking avocado pear in the Seychelles. Bull. Entomol. Res. 1954, 45, 707–710. [Google Scholar] [CrossRef]
  225. Kobayashi, C.; Fukasawa, Y.; Hirose, D.; Kato, M. Contribution of symbiotic mycangial fungi to larval nutrition of a leaf-rolling weevil. Evol. Ecol. 2008, 22, 711–722. [Google Scholar] [CrossRef]
  226. Li, X.; Wheeler, G.S.; Ding, J. A leaf-rolling weevil benefits from general saprophytic fungi in polysaccharide degradation. Arthropod-Plant Interact. 2012, 6, 417–424. [Google Scholar] [CrossRef]
  227. Lawson, S.P.; Christian, N.; Abbot, P. Comparative analysis of the biodiversity of fungal endophytes in insect-induced galls and surrounding foliar tissue. Fungal Divers 2014, 66, 89–97. [Google Scholar] [CrossRef]
  228. Lasota, J.A.; Waldvogel, M.G.; Shetlar, D.J. Fungus found in galls of Adelges abietis (L.) (Homoptera: Adelgidae): Identification, within-tree distribution, and possible impact on insect survival. Environ. Entomol. 1983, 12, 245–246. [Google Scholar] [CrossRef]
  229. Lebel, T.; Peele, C.; Veenstra, A. Fungi associated with Asphondylia (Diptera: Cecidomyiidae) galls on Sarcocornia quinqueflora and Tecticornia arbuscula (Chenopodiaceae). Fungal Divers 2012, 55, 143–154. [Google Scholar] [CrossRef]
  230. Munoz-Benavent, M.; Perez-Cobas, A.E.; Garcia-Ferris, C.; Moya, A.; Latorre, A. Insects’ potential: Understanding the functional role of their gut microbiome. J. Pharm. Biomed. Anal. 2021, 194, 113787. [Google Scholar] [CrossRef] [PubMed]
  231. Chen, S.; Liu, C.; Peng, C.; Liu, H.; Hu, M.; Zhong, G. Biodegradation of chlorpyrifos and its hydrolysis product 3,5,6-trichloro-2-pyridinol by a new fungal strain Cladosporium cladosporioides Hu-01. PLoS ONE 2012, 7, e47205. [Google Scholar] [CrossRef] [PubMed]
  232. Gao, Y.; Chen, S.; Hu, M.; Hu, Q.; Luo, J.; Li, Y. Purification and characterization of a novel chlorpyrifos hydrolase from Cladosporium cladosporioides Hu-01. PLoS ONE 2012, 7, e38137. [Google Scholar] [CrossRef] [PubMed]
  233. Bisht, J.; Harsh, N.S.K.; Palni, L.M.S.; Agnihotri, V.; Kumar, A. Bioaugmentation of endosulfan contaminated soil in artificial bed treatment using selected fungal species. Bioremed. J. 2019, 23, 196–214. [Google Scholar] [CrossRef]
  234. Malassigné, S.; Valiente Moro, C.; Luis, P. Mosquito mycobiota: An overview of non-entomopathogenic fungal interactions. Pathogens 2020, 9, 564. [Google Scholar] [CrossRef]
  235. Zhang, X.; Zhang, F.; Lu, X. Diversity and functional roles of the gut microbiota in Lepidopteran insects. Microorganisms 2022, 10, 1234. [Google Scholar] [CrossRef]
  236. Berasategui, A.; Jagdale, S.; Salem, H. Fusarium phytopathogens as insect mutualists. PLoS Pathog. 2023, 19, e1011497. [Google Scholar] [CrossRef]
  237. Nicoletti, R.; Becchimanzi, A. Ecological and molecular interactions between insects and fungi. Microorganisms 2022, 10, 96. [Google Scholar] [CrossRef] [PubMed]
  238. Eken, C.; Hayat, R. Preliminary evaluation of Cladosporium cladosporioides (Fresen.) de Vries in laboratory conditions, as a potential candidate for biocontrol of Tetranychus urticae Koch. World J. Microbiol. Biotechnol. 2009, 25, 489–492. [Google Scholar] [CrossRef]
  239. Saranya, S.; Ramaraju, K.; Jeyarani, S.; Roseleen, S.S.J. Natural epizootics of Cladosporium cladosporioides on Tetranychus urticae Koch. (Acari: Tetranychidae) in Coimbatore. J. Biol. Control 2013, 27, 95–98. [Google Scholar]
  240. Torres, D.E.; Rojas-Martínez, R.I.; Zavaleta-Mejía, E.; Guevara-Fefer, P.; Márquez-Guzmán, G.J.; Pérez-Martínez, C. Cladosporium cladosporioides and Cladosporium pseudocladosporioides as potential new fungal antagonists of Puccinia horiana Henn., the causal agent of chrysanthemum white rust. PLoS ONE 2017, 12, e0170782. [Google Scholar] [CrossRef] [PubMed]
  241. Barge, E.G.; Leopold, D.R.; Rojas, A.; Vilgalys, R.; Busby, P.E. Phylogenetic conservatism of mycoparasitism and its contribution to pathogen antagonism. Mol. Ecol. 2022, 31, 3018–3030. [Google Scholar] [CrossRef] [PubMed]
  242. Meyer-Rochow, V.B.; Gahukar, R.T.; Ghosh, S.; Jung, C. Chemical composition, nutrient quality and acceptability of edible insects are affected by species, developmental stage, gender, diet, and processing method. Foods 2021, 10, 1036. [Google Scholar] [CrossRef] [PubMed]
  243. Okyere, A.A. Food safety management of insect-based foods. In Food Safety Management, 2nd ed.; Andersen, V., Lelieveld, H., Motarjemi, Y., Eds.; Academic Press: Cambridge, MA, USA, 2023; pp. 223–233. [Google Scholar]
  244. Garofalo, C.; Milanović, V.; Cardinali, F.; Aquilanti, L.; Clementi, F.; Osimani, A. Current knowledge on the microbiota of edible insects intended for human consumption: A state-of-the-art review. Food Res. Int. 2019, 125, 108527. [Google Scholar] [CrossRef]
  245. Evans, N.M.; Shao, S. Mycotoxin metabolism by edible insects. Toxins 2022, 14, 217. [Google Scholar] [CrossRef]
  246. Bisconsin-Junior, A.; Fonseca Feitosa, B.; Lopes Silva, F.; Barros Mariutti, L.R. Mycotoxins on edible insects: Should we be worried? Food Chem. Toxicol. 2023, 177, 113845. [Google Scholar] [CrossRef]
Figure 1. Findings of insect-associated Cladosporium spp. grouped by insect orders.
Figure 1. Findings of insect-associated Cladosporium spp. grouped by insect orders.
Jof 10 00078 g001
Figure 2. Isolation of Cladosporium from the pine tortoise scale (Toumeyella parvicornis).
Figure 2. Isolation of Cladosporium from the pine tortoise scale (Toumeyella parvicornis).
Jof 10 00078 g002
Figure 3. Chemical structure of Cladosporium secondary metabolites displaying anti-insectan effects.
Figure 3. Chemical structure of Cladosporium secondary metabolites displaying anti-insectan effects.
Jof 10 00078 g003
Table 1. Occurrence of Cladosporium in association with insect species.
Table 1. Occurrence of Cladosporium in association with insect species.
Cladosporium SpeciesInsect Species *LocationReference
C. aggregatocicatricatumDryocosmus kuriphilusMonti Cimini (Italy)[7]
Xylosandrus compactusCirceo Promontory (Italy)[8]
C. anthropophilumDrosophila suzukiiMaryland (USA)[9]
C. aphidisunidentified aphidPiracicaba (São Paulo, Brazil)
Berlin; Brandenburg (Germany)
Parma (Italy)
Wilmington (Delaware, USA)
[1]
Aphis gossypiiPuerto Rico
Aphis sp.Berlin (Germany)
Aphis symphytiKlosterneuburg (Austria)
Brevicoryne brassicaeAssiut (Egypt)[10]
Rhopalosiphum maidisHonolulu (Hawaii, USA)[1]
unidentified scaleEssen (Germany)
C. austrohemisphaericumX. compactusCirceo Promontory (Italy)[8]
C. chasmanthicolaSpodoptera frugiperdaKansas (USA)[11]
C. cladosporioidesAleurothrixus aepimBrazil[12]
Aphis craccivoraEgypt[13]
Apion ulicisChristchurch area (New Zealand)[14]
Apis melliferaAssiut Governorate (Egypt)[15]
Asphondylia micromeriae
Asphondylia nepetae
Isle of Vivara (Italy)
Averno; Matera (Italy)
[16]
Atta capiguara
Atta laevigata
Botucatu (São Paulo, Brazil)[17]
Bemisia spp.Dakahlia Governorate (Egypt)[18]
Brachypeplus glaberFlorida (USA)[19]
B. brassicaeDakahlia Governorate (Egypt)
Assiut (Egypt)
[20]
[10]
Ceratovacuna lanigeraAnakapalle (Andhra Pradesh, India)[5]
Chitaura brachypteraDumoga-Bone (Sulawesi, Indonesia)[21]
Chrysomphalus aonidumQualubia (Egypt)[22]
Chrysomya megacephalaLudhiana (Punjab, India)[23]
Chrysoperla rufilabrisMonroe; Oktibbeha (Mississippi, USA)[24]
unidentified lignicolous ColeopteraÅs (Norway)[25]
Coptotermes formosanusNew Orleans (Louisiana, USA)[26]
Culex pipiensQena Governorate (Egypt)[27]
Culex quinquefasciatusBasrah (Iraq)[28]
Cydia ulicetanaChristchurch area (New Zealand)[14]
Desoria albellaWarren Woods (Michigan, USA)[29]
Diaphorina citriFlorida (USA)[30]
unidentified DipteraCoimbra (Portugal)[31]
D. suzukiiMaryland (USA)
Geneva (New York, USA)
[9]
[32]
Dytiscus marginalisEast Anatolia (Turkey)[33]
Epiphyas postvittanaChristchurch area (New Zealand)[14]
Ericerus pelaKunming (China)[34]
Euphalerus clitoriaePernambuco (Brazil)[35]
Euwallacea interjectusHiroshima Prefecture (Japan)[36]
Galleria mellonellaNorthern China
Beijing (China)
[37]
[38]
Gromphadorhina portentosaColumbus (Ohio, USA)[39]
unspecified grasshoppersUlu-Endau (Malaysia)[21]
Hermetia illucensGiessen (Germany)[40]
Heteraphorura subtenuisAlberta (Canada)[41]
Homalodisca vitripennisSouthern California (USA)[42]
Hydrophilus piceusEast Anatolia (Turkey)[33]
unidentified dead insectThailand[43]
Ips sexdentatusNortheastern Ukraine[44]
Kermes sp.Guangdong (China)[45]
Lycorma delicatulaBerks County (Pennsylvania, USA)[46]
Megaplatypus mutatusBragado (Argentina)[47]
Mesambria maculipesDumoga-Bone (Sulawesi, Indonesia)[21]
Myzus persicaeSalah El-Din Governorate (Iraq)[48]
Nilaparvata lugensGazipur (Bangladesh)[49]
Odontotermes formosanusJinhua (China)[50]
Pantala flavescensJinhua (China)[51]
Pityogenes bidentatusBabimost; Mielec; Opole (Poland)[52]
Prays oleaeMirandela-Bragança region (Portugal)[53]
Pterostichus melanariusAssiut Governorate (Egypt)[15]
unidentified PyrrhocoridaeLebanon[54]
Rhynchophorus ferrugineusAssiut Governorate (Egypt)[15]
Scolytogenes birosimensisCentral and Western Japan[55]
Sericothrips staphylinusChristchurch area (New Zealand)[14]
Sitophilus oryzaeMultan (Pakistan)[56]
unidentified ThysanuraCoimbra (Portugal)[31]
Tomicus piniperdaMościska Forest (Poland)[57]
Triatoma brasiliensis
Triatoma pseudomaculata
Rio de Janeiro (Brazil)[58]
Triatoma infestansMendoza; Salta; Santa Fe (Argentina)[59]
Troglophilus neglectusTolmin (Slovenia)[60]
C. cucumerinumunidentified Diptera
unidentified Thysanura
Coimbra (Portugal)[31]
C. cycadicolaTribolium castaneumIksan (South Korea)[61]
C. delicatulumThrips sp.Hamedan (Iran)[62]
C. dominicanumX. compactusCirceo Promontory (Italy)[8]
C. endophyticumStenochironomus sp.Adolpho Ducke Reserve (Amazonas); Lajeado State Park (Tocantins, Brazil)[63]
C. exasperatumNasutitermes octopilisNouragues Nature Reserve (French Guiana)[64]
C. exileAphis sp.Somesara (Iran)[62]
C. halotoleransG. mellonellaNapoli area (Italy)[65]
Stenochironomus sp.Lajeado State Park (Tocantins, Brazil)[63]
Thitarodes xiaojinensisXiaojin (China)[66]
T. castaneumSangju (South Korea)[61]
C. herbarumAleurodicus cocoisRecife (Brazil)[67]
A. gossypiiLatvia[68]
A. ulicisChristchurch area (New Zealand)[14]
A. melliferaAssiut Governorate (Egypt)[15]
B. brassicaeAssiut (Egypt)[10]
C. ulicetanaChristchurch area (New Zealand)[14]
D. marginalisEast Anatolia (Turkey)[33]
E. postvittanaChristchurch area (New Zealand)[14]
H. subtenuisAlberta (Canada)[41]
H. piceusEast Anatolia (Turkey)[33]
Musca domesticaSeropedica (Rio de Janeiro, Brazil)[69]
Gauteng Province (South Africa)[70]
P. bidentatusBabimost (Poland)[52]
Pseudopsis subulataMontmorency Forest (Canada)[71]
S. staphylinusChristchurch area (New Zealand)[14]
Tenebrio molitorAarhus (Denmark)[72]
T. piniperdaMościska Forest (Poland)[57]
T. brasiliensis
T. pseudomaculata
Rio de Janeiro (Brazil)[58]
C. iranicumunidentified scaleIran[1]
C. kenpeggiiStenochironomus sp.Adolpho Ducke Reserve (Amazonas); Lajeado State Park (Tocantins, Brazil)[63]
Triplectides sp.Lajeado State Park (Tocantins, Brazil)[73]
C. langeroniiD. kuriphilusMonti Cimini (Italy)[7]
E. pelaKunming (China)[34]
C. macrocarpumH. subtenuisAlberta (Canada)[41]
C. oxysporumAnoplolepis custodiens
Aonidiella aurantii
Eastern Transvaal (South Africa)[74]
A. gossypiiMataffin (South Africa)[75]
A. melliferaAssiut Governorate (Egypt)[15]
C. lanigeraAnakapalle (Andhra Pradesh, India)[5]
C. aonidumEastern Transvaal (South Africa)[74]
Hypothenemus hampeiEl Tizal (Mexico)[76]
unidentified MuscidaeEastern Transvaal (South Africa)[74]
Planococcus citriMataffin (South Africa)[75]
P. oleaeMirandela–Bragança region (Portugal)[53]
Pseudococcus longispinusEastern Transvaal (South Africa)[74]
P. melanariusAssiut Governorate (Egypt)[15]
Pulvinaria aethiopica
Toxoptera citricidus
Trioza erytreae
Eastern Transvaal (South Africa)[74]
C. perangustumX. compactusGrottammare (Italy)[77]
C. pini-ponderosaeunidentified DipteraCoimbra (Portugal)[31]
C. pseudocladosporioidesEulophid parasitoid Averno; Napoli (Italy)[16]
D. suzukiiMaryland (USA)[9]
C. ramotenellumA. nepetaeNapoli (Italy)[16]
C. sphaerospermumBradysia impatiensSouth Korea[78]
B. brassicaeAssiut (Egypt)[10]
D. kuriphilusMonti Cimini (Italy)[7]
E. pelaKunming (China)[34]
unidentified grasshoppersUlu-Endau (Malaysia)[21]
H. vitripennisSouthern California (USA)[42]
H. subtenuisAlberta (Canada)[41]
Imbrasia belinaFrancistown (Botswana)[79]
M. maculipesDumoga-Bone (Sulawesi, Indonesia)[21]
Macrotermes barneyiGuangdong (China)[80]
Onychiurus pseudofimetariusAuckland (New Zealand)[1]
P. melanarius
R. ferrugineus
Assiut Governorate (Egypt)[15]
S. birosimensisCentral and Western Japan[55]
T. piniperdaMościska Forest (Poland)[57]
T. infestansMendoza; Santa Fe (Argentina)[59]
T. castaneumGoseong; Sangju (South Korea)[61]
Cladosporium sp.Acmaedora flavolineataTurkey[81]
Acronicta majorHangzhou (China)[82]
Adelges piceaeGaspé Peninsula (Canada)[83]
Adelges tsugaeNortheastern USA[84]
Aedes albopictusNice; Portes-lès-Valence; Saint Priest (France)
Mananjary; Toamasina; Tsimbazaza (Madagascar)
Bình Dương; Hồ Chí Minh; Vũng Tàu (Vietnam)
Villeurbanne (France)
Lubbock (Texas, USA)

[85]

[86]
[87]
Aedes aegyptiLubbock (Texas, USA)[87]
Aedes japonicusUrbana (Illinois, USA)[88]
Aedes triseriatus
Agathomyia sp.Yaoshan Mountain (China)[89]
Agrilus maliYining (China)[90]
Aleocharinae spp.Denmark[91]
Aleurocanthus spiniferusSouthern Anhui (China)[92]
A. aepimBahia (Brazil)[93]
Alniphagus aspericollisGreater Vancouver region (Canada)[94]
Anastrepha fraterculusCaxias do Sul (Rio Grande do Sul, Brazil)[95]
Anopheles coluzziiKoulikoro (Mali)[96]
Apertochrysa formosanusSugadaira-Kogen (Japan)[97]
A. craccivora
Aphis durantae
A. gossypii
Dakahlia Governorate (Egypt)[98]
Apis ceranaChiang Mai (Thailand) [99]
A. melliferaTucson (Arizona, USA)
Assiut Governorate (Egypt)
Grugliasco (Italy)
[100]
[15]
[101]
Halle (Germany)
Athens (Greece)
Lublin (Poland)
Chiang Mai (Thailand)
London (United Kingdom)
[102]

[99]

Asphondylia glabrigerminisMittagong; Melbourne area (Australia)[103]
A. micromeriaeAstroni Nature Reserve (Italy)[104]
Asphondylia serpylliLublin area (Poland)[105]
A. capiguara
A. laevigata
Botucatu (São Paulo, Brazil)[17,106]
Atomaria spp.Denmark[91]
Bactrocera oleaeCalabria (Italy)[107]
Bactrocera tryoniNew South Wales; Victoria (Australia)[108]
Bemisia tabaciDakahlia Governorate (Egypt)[98]
Bombus terrestrisBeijing (China)[109]
Bombyx moriHangzhou (China)[82]
B. impatiensSouth Korea[110]
Calliopum aeneumDenmark[91]
Callosobruchus maculatusColumbus; Miami County (Ohio); Erie County (Pennsylvania, USA)[111]
Carabidae spp.Uckermark (Germany)[112]
Carpophilus sp.Gualmatán (Colombia)[113]
Ceroplastes floridensisMansoura (Egypt)
Kiryat Tivon (Israel)
[22]
[114]
Ceroplastes rusciMansoura (Egypt)
Larnaca (Cyprus)
[115]
[114]
Ceroplastes sp.Malaga (Spain)[114]
Chalcophora detritaTurkey[116]
Coccus hesperidumRamat HaShofet (Israel)[114]
unspecified ColeopteraÅs (Norway)[25]
unidentified CollembolaWarren Woods (Michigan, USA)[29]
Colletes cuniculariusAve-et-Auffe (Belgium)[117]
Cortinicara gibbosaDenmark[91]
Crocothemis serviliaHefei (China)[118]
Ctenolepisma longicaudatumWien (Austria)[119]
C. pipiensSan Francisco; San Rafael (California, USA)[120]
C. quinquefasciatusNakhon Nayok (Thailand)
Mar del Plata (Argentina)
[121]
[122]
Cydia pomonellaAustria[123]
Cytilus sericeusOstrava (Czechia)[124]
Diabrotica sp.Gualmatán (Colombia)[113]
Diabrotica virgiferaDeutsch-Jahrndorf (Germany)[125]
Diaphania pyloalisHangzhou (China)[82]
unidentified DipteraWarren Woods (Michigan, USA)[29]
Dolichovespula sylvestrisHavreballe Forest (Denmark)[126]
D. suzukiiMaryland (USA)[127]
Drosophilidae spp.
Enicmus transversus
Denmark[91]
E. pelaKunming (China)[3]
Ferrisia virgataMadurai (India)[128]
H. vitripennisSouthern California (USA)[42]
Harmonia axyridisHubei (China)[129]
Helicoverpa armigeraNarrabri; New South Wales (Australia)[130]
H. hampeiChiapas (Mexico)
El Tizal (Mexico)
[131]
[76]
Illiciomyia yukawaiMie Prefecture (Japan)[132]
Ips acuminatusLibavá (Czechia)[133]
Ips cembrae
Ips duplicatus
Rouchovany (Czechia)
I. sexdentatusRouchovany (Czechia)
Northeastern Ukraine
[133]
[44]
Ips typographusRouchovany (Czechia)[133]
unidentified LepidopteraCoimbra (Portugal)[31]
Liparthrum colchicum Migliarino Natural Park (Italy)[134]
Loberus impressusIberia Parish (Louisiana, USA)[135]
Lonchodes brevipesSingapore[136]
Lonchoptera spp.Denmark[91]
Lutzomyia sp.Antioquia Department (Colombia)[137]
Lymantria dispar asiaticaHarbin (China)[138]
Macrosaccus robiniellaTransylvania (Romania)[139]
Marchalina hellenicaIschia (Italy)
Matsumurasca onukiivarious regions in China[140]
Meiltaea cinxiaEckerö; Sund (Finland)[141]
Milviscutulus mangiferaeUpper Galilee (Israel)[114]
Minettia fasciata
Minettia longipennis
Minettia plumicornis
Denmark[91]
M. domesticaAhwaz (Iran)[142]
Gauteng Province (South Africa)[70]
Bruxelles (Belgium)
Butare (Rwanda)
[143]
Neobathyscia mancinii
Neobathyscia pasai
Damati Cave (Italy)
Tana delle Sponde Cave (Italy)
[144]
N. lugensHangzhou (China)[145]
Orchelimum vulgareHouston (Texas, USA)[146]
Orthoperus brunnipesDenmark[91]
Orthotomicus erosusItalian harbors, on imported wood[147]
Ostrinia nubilalisAndau (Germany)[125]
Paracoccus marginatusMadurai (India)[128]
Parasaissetia nigraKiryat Tivon (Israel)[114]
Paravespula vulgarisHavreballe Forest (Denmark)[126]
Parectopa robiniellaTransylvania (Romania)[139]
Phlebotomus papatasiTehran (Iran)[148]
Phlebotomus spp.Tunisia[149]
Phylloicus sp.Adolpho Ducke Reserve (Amazonas, Brazil)[150]
Pieris brassicaeBornem (Belgium)
Randwijk; Wageningen (Netherlands)
[151]
Planococcus ficusGholan Heights (Israel)[152]
Poecilocerus pictusChennai (India)[153]
Polygraphus polygraphusRouchovany (Czechia)[133]
Probergrothius angolensisNamibia[154]
Pseudatomoscelis seriatusCollege Station (Texas, USA)[155]
unidentified PsocopteraWarren Woods (Michigan, USA)[29]
Psylliodes attenuataDaqing; Harbin; Changchun; Qujing (China)[156]
P. oleaeMirandela–Bragança region (Portugal)[53]
P. melanariusAssiut Governorate (Egypt)[15]
Pulvinaria aurantiiNorthern Iran[157]
Pulvinaria psidiiMansoura (Egypt)[22]
Pulvinaria tenuivalvataDakahlia Governorate (Egypt)[158]
R. ferrugineusAssiut Governorate (Egypt)[15]
Saissetia sp.Larnaca (Cyprus)[114]
Sapromyza quadripunctataDenmark[91]
Scolypopa australisNelson (New Zealand)[159]
S. birosimensisCentral and Western Japan[55]
S. frugiperdaGuangzhou (China)
Kansas (USA)
[160]
[12]
Stenochironomus sp.Adolpho Ducke Reserve (Amazonas); Lajeado State Park (Tocantins, Brazil)[63,150]
Stephostethus lardarius
Stilbus testaceus
Denmark[91]
Taeniothrips inconsequensNortheastern USA[84]
T. molitorAarhus (Denmark)
Shenyang (China)
[72]
[161]
Thaumastocoris peregrinusSoutheast Uruguay[162]
unidentified ThysanuraCoimbra (Portugal)[31]
Toumeyella parvicornisCampania (Italy)[163]
Trialeurodes riciniDakahlia Governorate (Egypt)[98]
T. brasiliensis
T. pseudomaculata
Rio de Janeiro (Brazil)[58]
T. castaneumSouth Korea[61]
Triplectides sp.Lajeado State Park (Tocantins, Brazil)[73]
Xyleborinus saxeseniiItalian harbors, on imported wood
Northeastern Italy
South Florida (USA)
[147]
[164]
[165]
Xyleborus bispinatus
Xyleborus volvulus
South Florida (USA)[165]
X. compactusCentral Florida (USA)
Migliarino Natural Park (Italy)
[166]
[134]
Xylosandrus crassiusculusSouth Florida (USA)[165]
Xylosandrus germanusNortheastern Italy[164]
C. subtilissimumA. capiguaraBotucatu (São Paulo, Brazil)[17]
C. subuliformeD. citriGuilin (China)[167]
unidentified StreblidaeFurna do Morcego (Pernambuco, Brazil)[168]
Triplectides sp.Lajeado State Park (Tocantins, Brazil)[73]
C. tenuissimumM. mutatusBragado (Argentina)[47]
M. persicaeSalah El-Din Governorate (Iraq)[48]
unidentified ThysanuraCoimbra (Portugal)[31]
Trachymela sloaneiGuangdong (China)[169]
C. uredinicolaA. gossypiiDakahlia Governorate (Egypt)[170]
Bemisia spp.Dakahlia Governorate (Egypt)[18]
B. tabaciDakahlia Governorate (Egypt)[170]
C. veloxB. oleaeCalabria (Italy)[107]
T. castaneumMungyeong; Sangju (South Korea)[61]
C. verrucocladosporioidesTriplectides sp.Lajeado State Park (Tocantins, Brazil)[73]
C. xanthocromaticumM. persicaeSalah El-Din Governorate (Iraq)[48]
* Colors are indicative of the order to which the species belong, as follows: Blattodea, Coleoptera, Collembola (Entomobryomorpha, Poduromorpha), Diptera, Hemiptera, Hymenoptera, Lepidoptera, Neuroptera, Odonata, Orthoptera, Phasmatodea, Psocoptera, Thysanoptera, Thysanura, Trichoptera. Identification of the strains isolated from the underlined sources is based on complete set of DNA markers. † Original isolation recently obtained by E.R.
Table 2. Reported effectiveness of conidial suspensions of Cladosporium in inducing mortality on insect pests.
Table 2. Reported effectiveness of conidial suspensions of Cladosporium in inducing mortality on insect pests.
Cladosporium SpeciesSourceInsect TargetsCountryReference
C. cladosporioidesBemisia sp.Bemisia sp.Egypt[18]
Brevicoryne brassicaeB. brassicaeEgypt[20]
Culex quinquefasciatusC. quinquefasciatusIraq[28]
endophyticDuponchelia fovealisBrazil[188]
Kermes sp.Hemiberlesia pitysophilaChina[45]
Lycorma delicatulaTenebrio molitorUSA[46]
Myzus persicaeM. persicaeIraq[48]
Nilaparvata lugensBemisia tabaciBangladesh[49]
Pulvinaria aurantiiAphis fabaeIran[157]
Sitophilus oryzaeRhyzopertha dominica
Sitophilus zeamais
Trogoderma granarium
Pakistan[56]
soilMetopolophium dirhodumEgypt[189]
C. oxysporumendophyticA. fabaeAlgeria[190]
endophyticChilo partellusIndia[191]
Planococcus citriPseudococcus longispinus
Pulvinaria aethiopica
Toxoptera citricida
Trioza erytreae
South Africa[75]
unknownAphis craccivoraIndia[192]
C. sphaerospermumendophyticD. fovealisBrazil[188]
Cladosporium sp.Helicoverpa armigeraAphis gossypii
B. tabaci
H. armigera
Australia[130]
Spodoptera frugiperdaS. frugiperdaChina[169]
Cladosporium spp.several species of sap-sucking HemipteraA. craccivora
A. gossypii
B. tabaci
Egypt[98,193]
C. subuliformeDiaphorina citriD. citriChina[167]
C. tenuissimumM. persicaeM. persicaeIraq[48]
Trachymela sloaneiS. frugiperdaChina[194]
C. uredinicolaA. gossypii
B. tabaci
A. gossypii
B. tabaci
Egypt[170]
Bemisia sp.Bemisia sp.Egypt[18]
C. xanthocromaticumM. persicaeM. persicaeIraq[48]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Nicoletti, R.; Russo, E.; Becchimanzi, A. Cladosporium—Insect Relationships. J. Fungi 2024, 10, 78. https://doi.org/10.3390/jof10010078

AMA Style

Nicoletti R, Russo E, Becchimanzi A. Cladosporium—Insect Relationships. Journal of Fungi. 2024; 10(1):78. https://doi.org/10.3390/jof10010078

Chicago/Turabian Style

Nicoletti, Rosario, Elia Russo, and Andrea Becchimanzi. 2024. "Cladosporium—Insect Relationships" Journal of Fungi 10, no. 1: 78. https://doi.org/10.3390/jof10010078

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop