Next Issue
Volume 4, September
Previous Issue
Volume 4, March
 
 

ChemEngineering, Volume 4, Issue 2 (June 2020) – 23 articles

Cover Story (view full-size image): Improving low efficiencies (COP) and performances (SCP) of adsorption cooling machines is inevitably required to gain competitiveness. The simultaneous optimization of process and material parameters is a promising approach. In this work, we investigate the effect of competitive material properties and identify optimally matching operational parameters for global optimization. The method is demonstrated as exemplary for the well-known two-bed adsorption-cooling machine. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
11 pages, 1694 KiB  
Article
MnO2-Coated Dual Core–Shell Spindle-Like Nanorods for Improved Capacity Retention of Lithium–Sulfur Batteries
by Hamza Dunya, Maziar Ashuri, Dana Alramahi, Zheng Yue, Kamil Kucuk, Carlo U. Segre and Braja K. Mandal
ChemEngineering 2020, 4(2), 42; https://doi.org/10.3390/chemengineering4020042 - 19 Jun 2020
Cited by 8 | Viewed by 4621
Abstract
The emerging need for high-performance lithium–sulfur batteries has motivated many researchers to investigate different designs. However, the polysulfide shuttle effect, which is the result of dissolution of many intermediate polysulfides in electrolyte, has still remained unsolved. In this study, we have designed a [...] Read more.
The emerging need for high-performance lithium–sulfur batteries has motivated many researchers to investigate different designs. However, the polysulfide shuttle effect, which is the result of dissolution of many intermediate polysulfides in electrolyte, has still remained unsolved. In this study, we have designed a sulfur-filled dual core–shell spindle-like nanorod structure coated with manganese oxide (S@HCNR@MnO2) to achieve a high-performance cathode for lithium–sulfur batteries. The cathode showed an initial discharge capacity of 1661 mA h g−1 with 80% retention of capacity over 70 cycles at a 0.2C rate. Furthermore, compared with the nanorods without any coating (S@HCNR), the MnO2-coated material displayed superior rate capability, cycling stability, and Coulombic efficiency. The synergistic effects of the nitrogen-doped hollow carbon host and the MnO2 second shell are responsible for the improved electrochemical performance of this nanostructure. Full article
(This article belongs to the Special Issue Chemical Engineering and Multidisciplinary)
Show Figures

Figure 1

16 pages, 2465 KiB  
Article
Parametric Sensitivity of CSTBRs for Lactobacillus casei: Normalized Sensitivity Analysis
by Subhashis Das, Rajnish Kaur Calay and Ranjana Chowdhury
ChemEngineering 2020, 4(2), 41; https://doi.org/10.3390/chemengineering4020041 - 18 Jun 2020
Cited by 1 | Viewed by 2407
Abstract
In this paper, a sensitivity analysis of a continuous stirred tank bioreactor (CSTBR) was conducted to determine a parametrically sensitive regime. The growth of a lactic acid bacterium, namely, Lactobacillus casei, in a pH-controlled CSTBR was considered as a process model. Normalized [...] Read more.
In this paper, a sensitivity analysis of a continuous stirred tank bioreactor (CSTBR) was conducted to determine a parametrically sensitive regime. The growth of a lactic acid bacterium, namely, Lactobacillus casei, in a pH-controlled CSTBR was considered as a process model. Normalized objective sensitivities of the minimum pH were determined with respect to input parameters. A generalized criterion for sensitivity was defined for determining the parametric range of three input variables, i.e., dilution rate base stream (θ), base concentration (R), and initial pH (pH0) for maintaining optimal pH range in the reactor. The system exhibits sensitive behavior for θ, R, and pH0, from 0.095 to 0.295, 0 to 0.865, and 4.42 to 4.77, respectively. The critical values of θ, R, and pH0 are 0.0195, 0.48, and 4.6, respectively. The mathematical model can also be used to determine a parametrically sensitive regime for other important parameters, namely, temperature, the concentration of metabolites, and other byproducts. The mathematical tool can also be used in bioreactor design and the improvement of control strategies. Full article
(This article belongs to the Special Issue Chemical Engineering and Multidisciplinary)
Show Figures

Figure 1

13 pages, 4470 KiB  
Article
Selective Recovery of Manganese from Anode Sludge Residue by Reductive Leaching
by Toni Kauppinen, Tuomas Vielma, Justin Salminen and Ulla Lassi
ChemEngineering 2020, 4(2), 40; https://doi.org/10.3390/chemengineering4020040 - 17 Jun 2020
Cited by 5 | Viewed by 3724
Abstract
Manganese-containing anode sludge is a common side-product in the electrowinning of zinc. The anode sludge consists mainly of oxidized manganese, but also lesser amounts of lead, calcium, and other minor metals. The impurities present in the anode sludge mandate new recycling strategies for [...] Read more.
Manganese-containing anode sludge is a common side-product in the electrowinning of zinc. The anode sludge consists mainly of oxidized manganese, but also lesser amounts of lead, calcium, and other minor metals. The impurities present in the anode sludge mandate new recycling strategies for its efficient use. This work demonstrates a novel method for selective manganese recovery from lead- and calcium-bearing manganese oxide solid residue. Leaching with sulfuric acid in the presence of a selected reducing agent, such as hydrogen peroxide or citric acid, yields a concentrated MnSO4 solution with high selectivity over calcium and lead. Manganese yields up to 98% can be obtained. Minimization of calcium and lead in final manganese product can be accomplished with the correct choice of leaching conditions. Alongside manganese sulfate solution, leaching residue with high content of lead and silver was also formed. Full article
Show Figures

Figure 1

15 pages, 3015 KiB  
Article
Porous Layered Double Hydroxide/TiO2 Photocatalysts for the Photocatalytic Degradation of Orange II
by Rodrigue Djeda, Gilles Mailhot and Vanessa Prevot
ChemEngineering 2020, 4(2), 39; https://doi.org/10.3390/chemengineering4020039 - 10 Jun 2020
Cited by 10 | Viewed by 3148
Abstract
Layered Double Hydroxide (LDH)/TiO2 nanocomposites with photocatalytic properties were synthesized by both impregnation and the direct coprecipitation of LDH matrices using a colloidal suspension of TiO2 nanoparticles. While the two methods led to an efficient TiO2 nanoparticle immobilization, the direct [...] Read more.
Layered Double Hydroxide (LDH)/TiO2 nanocomposites with photocatalytic properties were synthesized by both impregnation and the direct coprecipitation of LDH matrices using a colloidal suspension of TiO2 nanoparticles. While the two methods led to an efficient TiO2 nanoparticle immobilization, the direct coprecipitation allowed us to tune the amount of immobilized TiO2 within the materials. The LDH/TiO2 nanocomposites obtained were deeply characterized by chemical analysis (ICP-AES), Powder X-ray diffraction (XRD), Fourier Transformed Infra-Red (FTIR), Thermogravimetric analysis (TGA), and High-Resolution Transmission Electron Microscopy (HRTEM). Clearly, the immobilization of TiO2 by direct coprecipitation promoted a modification of the textural properties and a net increase in the surface area. The crystallized TiO2 nanoparticles can be distinctly visualized by HRTEM at the surface of the layered material. Several parameters, such as the nature of the chemical composition of LDH (ZnAl and MgAl), the method of immobilization and the amount of TiO2, were shown to play a crucial role in the physicochemical and photocatalytic properties of the nanocomposites. The photocatalytic efficiency of the different LDH/TiO2 nanocomposites was investigated using the photodegradation of a model pollutant, the Orange II (OII), and was compared to a pure TiO2 colloidal solution. The degradation tests revealed that the nanocomposite obtained from MgAl LDH at a low MgAl LDH/TiO2 ratio was the most efficient for the photodegradation of OII leading to complete mineralization in 48 h. Full article
(This article belongs to the Special Issue Advanced Applications of Layered Double Hydroxides)
Show Figures

Figure 1

43 pages, 43683 KiB  
Review
Mechanical Behavior of Toughened Epoxy Structural Adhesives for Impact Applications
by Gamze S. Baş and Erol Sancaktar
ChemEngineering 2020, 4(2), 38; https://doi.org/10.3390/chemengineering4020038 - 08 Jun 2020
Cited by 9 | Viewed by 3728
Abstract
The focus of our study is to identify physical properties of different impact-resistant/toughened structural adhesives and identify/develop an elastic-viscoelastic-plastic model as a function of loading rate by using Ludwik-type equations to be able to predict adhesive behavior at higher loading rates and to [...] Read more.
The focus of our study is to identify physical properties of different impact-resistant/toughened structural adhesives and identify/develop an elastic-viscoelastic-plastic model as a function of loading rate by using Ludwik-type equations to be able to predict adhesive behavior at higher loading rates and to make cars more crashworthy. For this purpose, we first characterized eight different commercial toughened epoxy structural adhesives to provide detailed information about their constituents using X-ray diffraction (XRD), differential thermal analysis (DTA), thermogravimetric analysis (TGA), scanning electron microscope (SEM) and energy dispersive x-ray spectrometer (EDS). Most (but not all) of the model adhesives contained organic tougheners in the form of carboxyl terminated butadiene acrylonitrile (CTBN) copolymer, as well as polyurethane adducts. The main crystalline inorganic phases were found as calcite (CaCO3), wollastonite (CaSiO3) or calcium silicate (CaSiO3), talc (Mg3Si4O10 (OH)2), zeolite which is an alumina silicate based mineral and has many different elements in its composition (M2/nO·Al2O3·xSiO2·yH2O, M can be Mg, Na, Ca, K, Li). The total amount of inorganic fillers was found to be different in each adhesive. Material behavior of the model adhesives were determined via tensile tests and Single Lap Joint (SLJ) tests in shear. Split Hopkinson pressure bar (SHPB) was also used to measure the strain and stress values at higher strain rates in the order of 102 s−1, which is generally encountered in impact related loading situations. Toughness values in the range ~0.5 to ~1.35 MJ/m3 were observed with the model adhesives tested in tensile mode within the ~3 × 10−3 to 0.18 m/m/s strain rate range. The softening behavior of the elastic moduli at higher strain rates observed during tensile testing was also observed with SHPB testing. It is remarkable that, overall, the modulus magnitudes seem to be similar between the tensile test and SHPB specimens within this softening range of the initial bilinear elastic behavior observed. When the results from bulk (tensile) and bonded (shear) specimens were compared, it was clearly seen that the toughness responses of the adhesives to (tensile/shear) strain rates in the bulk and bonded forms, respectively, were different, with the bonded shear toughness values in the ~25 to ~120 MJ/m3 range within ~1.25 to ~25 mm/mm/s shear strain range. The model adhesive which included just inorganic fillers had the lowest tensile toughness at the lowest tensile strain rate, but the highest slope in its tensile toughness regression line, exhibited the second highest bonded shear toughness. When tested at the extension rates of 25 mm/min and 100 mm/min in bonded lap shear, the same adhesive exhibited limited interfacial failure areas, however the dominant failure mode was cohesive failure. When the extension rate increased further, transition to interfacial (adhesive) failure was observed revealing that interfacial failures do not necessarily diminish adhesive bond toughness. Our observations point to the fact that cohesive deformation/failure processes indicating interfacial separations, inter-particle interactions as well as polymer matrix deformation in high deformation loading scenario as in bonded shear loadings may provide the highest toughness. Apparently, a large inorganic filler weight fraction is not necessary to obtain high shear toughness in bonded form since the highest bonded shear toughness was obtained with the adhesive which had the least amount of inorganic fillers among the model adhesives with 14.72 wt %. Full article
Show Figures

Figure 1

18 pages, 2406 KiB  
Article
An Assessment of Drag Models in Eulerian–Eulerian CFD Simulation of Gas–Solid Flow Hydrodynamics in Circulating Fluidized Bed Riser
by Mukesh Upadhyay, Ayeon Kim, Heehyang Kim, Dongjun Lim and Hankwon Lim
ChemEngineering 2020, 4(2), 37; https://doi.org/10.3390/chemengineering4020037 - 06 Jun 2020
Cited by 21 | Viewed by 4454
Abstract
Accurate prediction of the hydrodynamic profile is important for circulating fluidized bed (CFB) reactor design and scale-up. Multiphase computational fluid dynamics (CFD) simulation with interphase momentum exchange is key to accurately predict the gas-solid profile along the height of the riser. The present [...] Read more.
Accurate prediction of the hydrodynamic profile is important for circulating fluidized bed (CFB) reactor design and scale-up. Multiphase computational fluid dynamics (CFD) simulation with interphase momentum exchange is key to accurately predict the gas-solid profile along the height of the riser. The present work deals with the assessment of six different drag model capability to accurately predict the riser section axial solid holdup distribution in bench scale circulating fluidized bed. The difference between six drag model predictions were validated against the experiment data. Two-dimensional geometry, transient solver and Eulerian–Eulerian multiphase models were used. Six drag model simulation predictions were discussed with respect to axial and radial profile. The comparison between CFD simulation and experimental data shows that the Syamlal-O’Brien, Gidaspow, Wen-Yu and Huilin-Gidaspow drag models were successfully able to predict the riser upper section solid holdup distribution with better accuracy, however unable to predict the solid holdup transition region. On the other hand, the Gibilaro model and Helland drag model were successfully able to predict the bottom dense region, but the upper section solid holdup distribution was overpredicted. The CFD simulation comparison of different drag model has clearly shown the limitation of the drag model to accurately predict overall axial heterogeneity with accuracy. Full article
(This article belongs to the Special Issue Computational Fluid Dynamics (CFD) of Chemical Processes)
Show Figures

Figure 1

20 pages, 5667 KiB  
Article
Investigation the Stability of Water in Oil Biofuel Emulsions Using Sunflower Oil
by Ravin S. Sahota and Sam M. Dakka
ChemEngineering 2020, 4(2), 36; https://doi.org/10.3390/chemengineering4020036 - 05 Jun 2020
Cited by 1 | Viewed by 3839
Abstract
Targets to reduce CO2 emissions by 75% and NOx emissions by 90% by 2050 in aviation have been set by The Advisory Council for Aviation Research and Innovation in Europe. Sustainable fuels, e.g., emulsified biofuel, have demonstrated promise in reducing emissions [...] Read more.
Targets to reduce CO2 emissions by 75% and NOx emissions by 90% by 2050 in aviation have been set by The Advisory Council for Aviation Research and Innovation in Europe. Sustainable fuels, e.g., emulsified biofuel, have demonstrated promise in reducing emissions and greenhouse gases. The aim of this project is to investigate the stability of a water in oil emulsion using sunflower oil. The primary objective is to achieve an emulsion which is stable for at least 4 days, and the secondary objective is to investigate how altering the emulsification parameter values of the surfactant hydrophilic-lipophilic balance (HLB), energy density and sonotrode depth in an ultrasonication procedure can impact the stability. The stability of each emulsion was measured over a period of 14 days. The main outcome is that two of the 14 emulsions made remained stable for at least 14 days using a surfactant HLB of five, which proved to be the optimum value from those tested. The results also show that, by using the sonotrode in a higher starting position, emulsions achieved a greater stability. Furthermore, over-processing of the emulsion was determined, with the point of over-processing lying between an energy density of 75 and 200 W.s/mL. Full article
(This article belongs to the Special Issue Emulsion Process Design)
Show Figures

Graphical abstract

14 pages, 2009 KiB  
Article
Self-Agglomeration in Fluidised Beds after Spray Drying
by John J. Fitzpatrick, Shaozong Wu, Kevin Cronin and Song Miao
ChemEngineering 2020, 4(2), 35; https://doi.org/10.3390/chemengineering4020035 - 05 Jun 2020
Cited by 2 | Viewed by 3234
Abstract
Many powders are produced in spray-drying processes from liquid concentrates. Self-agglomeration can be performed in a fluidised bed where the spray-dried powder is agglomerated using the liquid concentrate as the binder material. This has advantages over traditional wet agglomeration in fluid beds using [...] Read more.
Many powders are produced in spray-drying processes from liquid concentrates. Self-agglomeration can be performed in a fluidised bed where the spray-dried powder is agglomerated using the liquid concentrate as the binder material. This has advantages over traditional wet agglomeration in fluid beds using liquid binders (such as water or sugar solutions). These include thermal energy savings and no additional non-aqueous binder components added. The work presented has two parts. The first part is experimental, which investigated the self-agglomeration of whey protein isolate (WPI) powder as a case-study. It showed that satisfactory agglomeration was achieved with a great improvement in the wettability of the powder. The second part of the work performed thermal energy analysis to estimate the energy saving potential of self-agglomeration, and how this is influenced by binder to powder ratio and binder solids concentration. For the WPI case-study, the analysis showed there is potential for a 19% saving in thermal energy requirement for self-agglomeration in comparison to traditional agglomeration using a water binder. Full article
Show Figures

Figure 1

15 pages, 2336 KiB  
Article
Insights from Mathematical Modelling into Process Control of Oxygen Transfer in Batch Stirred Tank Bioreactors for Reducing Energy Requirement
by John J. Fitzpatrick, Franck Gloanec and Elisa Michel
ChemEngineering 2020, 4(2), 34; https://doi.org/10.3390/chemengineering4020034 - 26 May 2020
Cited by 2 | Viewed by 2417
Abstract
Significant energy savings can be made in aerobic stirred tank batch bioreactors by the manipulation of agitator power (Pag) and air flowrate per unit working volume (vvm). Control is often implemented to maintain the oxygen concentration in the bioreaction [...] Read more.
Significant energy savings can be made in aerobic stirred tank batch bioreactors by the manipulation of agitator power (Pag) and air flowrate per unit working volume (vvm). Control is often implemented to maintain the oxygen concentration in the bioreaction liquid (COL) at a constant value. This work used model simulations to show that controlling the Pag and vvm continuously over time, such that it is operated at or near the impeller flooding constraint results in the minimum energy requirement for oxygen transfer (strategy Cmin); however, this might prove impractical to control and operate in practice. As an alternative, the work shows that dividing the bioreaction time into a small number of constant Pag time segments (5–10), where a PID controller is used to control vvm to maintain COL constant in each segment, can achieve much of the energy saving that is associated with Cmin. During each time segment, vvm is increased and a sudden decrease in COL is used to detect the onset of flooding, after which there is a step increase in Pag. This sequence of Pag step increases continues until the bioreaction is completed. This practical control approach was shown to save most of the energy that is associated with Cmin. Full article
(This article belongs to the Special Issue Bio-Processing and Biochemical Engineering)
Show Figures

Figure 1

3 pages, 166 KiB  
Editorial
Special Issue “Progress in Thermal Process Engineering”
by Thomas Grützner
ChemEngineering 2020, 4(2), 33; https://doi.org/10.3390/chemengineering4020033 - 18 May 2020
Viewed by 2107
Abstract
The Special Issue “Progress in Thermal Process Engineering” contains a total of eight articles, seven research papers and a review article. The topics of the individual articles reflect the variety of current research in the field of thermal process engineering. The contributions address [...] Read more.
The Special Issue “Progress in Thermal Process Engineering” contains a total of eight articles, seven research papers and a review article. The topics of the individual articles reflect the variety of current research in the field of thermal process engineering. The contributions address important issues such as modularization, digitization, new equipment and simulation techniques. It becomes clear that efficiency efforts are an essential feature of current research in the mentioned field. Efficiency in the sense of energy efficiency as well as in the sense of more efficient, i.e., more flexible, production. The authors of the articles originate from the USA, Russia, Switzerland and Germany. Full article
(This article belongs to the Special Issue Progress in Thermal Process Engineering)
18 pages, 3191 KiB  
Article
Advances in Photoreactive Tissue Adhesives Derived from Natural Polymers
by Amal Narayanan, Ying Xu, Ali Dhinojwala and Abraham Joy
ChemEngineering 2020, 4(2), 32; https://doi.org/10.3390/chemengineering4020032 - 09 May 2020
Cited by 14 | Viewed by 6859
Abstract
To stop blood loss and accelerate wound healing, conventional wound closure techniques such as sutures and staples are currently used in the clinic. These tissue-piercing wound closure techniques have several disadvantages such as the potential for causing inflammation, infections, and scar formation. Surgical [...] Read more.
To stop blood loss and accelerate wound healing, conventional wound closure techniques such as sutures and staples are currently used in the clinic. These tissue-piercing wound closure techniques have several disadvantages such as the potential for causing inflammation, infections, and scar formation. Surgical sealants and tissue adhesives can address some of the disadvantages of current sutures and staples. An ideal tissue adhesive will demonstrate strong interfacial adhesion and cohesive strength to wet tissue surfaces. Most reported studies rely on the liquid-to-solid transition of organic molecules by taking advantage of polymerization and crosslinking reactions for improving the cohesive strength of the adhesives. Crosslinking reactions triggered using light are commonly used for increasing tissue adhesive strength since the reactions can be controlled spatially and temporally, providing the on-demand curing of the adhesives with minimum misplacements. In this review, we describe the recent advances in the field of naturally derived tissue adhesives and sealants in which the adhesive and cohesive strengths are modulated using photochemical reactions. Full article
Show Figures

Figure 1

26 pages, 2941 KiB  
Article
Simultaneous Optimization of Process Operational and Material Parameters for a 2-Bed Adsorption Refrigeration Process
by Marc Scherle and Ulrich Nieken
ChemEngineering 2020, 4(2), 31; https://doi.org/10.3390/chemengineering4020031 - 06 May 2020
Cited by 2 | Viewed by 2693
Abstract
In process engineering, optimization is usually carried out without the simultaneous consideration of material and process. This issue is addressed in the following contribution. A model-based optimization is presented to improve the performance of adsorption heat pumps. Optimization is carried out in two [...] Read more.
In process engineering, optimization is usually carried out without the simultaneous consideration of material and process. This issue is addressed in the following contribution. A model-based optimization is presented to improve the performance of adsorption heat pumps. Optimization is carried out in two steps. First, we optimize the operational parameters, the cycle time, and the thickness of the adsorbent for a given adsorption material. In a second step we use a material model to predict heat and mass transfer and adsorption capacity from structural material parameters. This allows us to vary the structural material parameters and calculate the optimal operational parameters for each adsorbent. The two-step optimization thus identifies optimal material properties together with corresponding optimal operational parameters. As constraints, a minimum specific cooling power (SCP) and the passive mass of heat transfer pipes are used. The coefficient of performance (COP) is taken as the objective function. We exemplarily demonstrate the approach for a two-bed adsorption chiller, carbide-derived carbon as the adsorbent, methanol as the sorptive and boron-nitrate as additive to improve heat conductivity. The approach can be easily extended to multi-bed installations and more sophisticated material models. Full article
Show Figures

Figure 1

15 pages, 7466 KiB  
Article
A Coarse Grained Model for Viscoelastic Solids in Discrete Multiphysics Simulations
by Iwan H. Sahputra, Alessio Alexiadis and Michael J. Adams
ChemEngineering 2020, 4(2), 30; https://doi.org/10.3390/chemengineering4020030 - 01 May 2020
Cited by 9 | Viewed by 2670
Abstract
Viscoelastic bonds intended for Discrete Multiphysics (DMP) models are developed to allow the study of viscoelastic particles with arbitrary shape and mechanical inhomogeneity that are relevant to the pharmaceutical sector and that have not been addressed by the Discrete Element Method (DEM). The [...] Read more.
Viscoelastic bonds intended for Discrete Multiphysics (DMP) models are developed to allow the study of viscoelastic particles with arbitrary shape and mechanical inhomogeneity that are relevant to the pharmaceutical sector and that have not been addressed by the Discrete Element Method (DEM). The model is applied to encapsulate particles with a soft outer shell due, for example, to the partial ingress of moisture. This was validated by the simulation of spherical homogeneous linear elastic and viscoelastic particles. The method is based on forming a particle from an assembly of beads connected by springs or springs and dashpots that allow the sub-surface stress fields to be computed, and hence an accurate description of the gross deformation. It is computationally more expensive than DEM, but could be used to define more effective interaction laws. Full article
Show Figures

Graphical abstract

14 pages, 1826 KiB  
Article
Artificial Neural Networks (ANNs) for Density and Viscosity Predictions of CO2 Loaded Alkanolamine + H2O Mixtures
by Sumudu S. Karunarathne, Khim Chhantyal, Dag A. Eimer and Lars E. Øi
ChemEngineering 2020, 4(2), 29; https://doi.org/10.3390/chemengineering4020029 - 15 Apr 2020
Cited by 2 | Viewed by 2478
Abstract
The physical properties, like density and viscosity, of alkanolamine + H2O (water) + CO2 (carbon dioxide) mixtures receive a significant amount of attention as they are essential in equipment sizing, mathematical modelling and simulations of amine-based post-combustion CO2 capture [...] Read more.
The physical properties, like density and viscosity, of alkanolamine + H2O (water) + CO2 (carbon dioxide) mixtures receive a significant amount of attention as they are essential in equipment sizing, mathematical modelling and simulations of amine-based post-combustion CO2 capture processes. Non-linear models based on artificial neural networks (ANNs) were trained to correlate measured densities and viscosities of monoethanol amine (MEA) + H2O, MEA + H2O + CO2, and 2-amino-2-methyl-1-propanol (AMP) + MEA + H2O + CO2 mixtures and results were compared with conventional correlations found in literature. For CO2-loaded aqueous amine mixtures, results from the ANN models are in good agreement with measured properties with less than 1% average absolute relative deviation (AARD). The ANN-based methodology shows much better agreement (R2 > 0.99) between calculated and measured values than conventional correlations. Full article
Show Figures

Figure 1

20 pages, 3589 KiB  
Review
A Review of Recent Research on Contamination of Oil Well Cement with Oil-based Drilling Fluid and the Need of New and Accurate Correlations
by Nachiket Arbad and Catalin Teodoriu
ChemEngineering 2020, 4(2), 28; https://doi.org/10.3390/chemengineering4020028 - 14 Apr 2020
Cited by 18 | Viewed by 5109
Abstract
Drilling fluids and oil well cement are important well barriers. Their compatibility affects the long-term integrity of the well. The mixing of drilling fluid with the oil well cement causes contamination of oil well cement. If the contamination is due to diesel/oil-based drilling [...] Read more.
Drilling fluids and oil well cement are important well barriers. Their compatibility affects the long-term integrity of the well. The mixing of drilling fluid with the oil well cement causes contamination of oil well cement. If the contamination is due to diesel/oil-based drilling fluid (OBF) it adversely affects the rheological and mechanical properties of oil well cement—in other words, the long-term integrity of the well. An initial study on OBF contamination of oil well cement was carried out two decades ago. In recent years, several research projects were carried out on the same topic to understand the reason for changes in the properties of oil well cement with OBF contamination. This literature review shows that using OBF eliminates several drilling problems, as the long-term integrity of the well depends on the amount of OBF contamination in the cement slurry. This paper compares the experiments performed, results and conclusions drawn from selected research studies on OBF contamination of oil well cement. Their shortcomings and a way forward are discussed in detail. A critical review of these research studies highlights the need for new and accurate correlations for OBF-contaminated oil well cement to predict the long-term integrity of wells. Full article
Show Figures

Figure 1

18 pages, 3517 KiB  
Article
Dynamically Operated Fischer–Tropsch Synthesis in PtL—Part 2: Coping with Real PV Profiles
by Marcel Loewert, Michael Riedinger and Peter Pfeifer
ChemEngineering 2020, 4(2), 27; https://doi.org/10.3390/chemengineering4020027 - 13 Apr 2020
Cited by 8 | Viewed by 3294
Abstract
Climate change calls for a paradigm shift in the primary energy generation that comes with new challenges to store and transport energy. A decentralization of energy conversion can only be implemented with novel methods in process engineering. In the second part of our [...] Read more.
Climate change calls for a paradigm shift in the primary energy generation that comes with new challenges to store and transport energy. A decentralization of energy conversion can only be implemented with novel methods in process engineering. In the second part of our work, we took a deeper look into the load flexibility of microstructured Fischer–Tropsch synthesis reactors to elucidate possible limits of dynamic operation. Real data from a 10 kW photovoltaic system is used to calculate a dynamic H2 feed flow, assuming that electrolysis is capable to react on power changes accordingly. The required CO flow for synthesis could either originate from a constantly operated biomass gasification or from a direct air capture that produces CO2; the latter is assumed to be dynamically converted into synthesis gas with additional hydrogen. Thus two cases exist, the input is constantly changing in syngas ratio or flow rate. These input data were used to perform challenging experiments with the pilot scale setup. Both cases were compared. While it appeared that a fluctuating flow rate is tolerable for constant product composition, a coupled temperature-conversion relationship model was developed. It allows keeping the conversion and product distribution constant despite highly dynamic feed flow conditions. Full article
Show Figures

Graphical abstract

12 pages, 4956 KiB  
Article
Nickel Nanofibers Manufactured via Sol-Gel and Electrospinning Processes for Electrically Conductive Adhesive Applications
by Darunee Aussawasathien and Erol Sancaktar
ChemEngineering 2020, 4(2), 26; https://doi.org/10.3390/chemengineering4020026 - 13 Apr 2020
Viewed by 2436
Abstract
The electrospun fibers of poly(vinyl pyrrolidone) (PVP)-nickel acetate (Ni(CH3COO)2·4H2O) composite were successfully prepared by using sol-gel processing and electrospinning technique. Nickel oxide (NiO) nanofibers were obtained afterwards by high temperature calcinations of the precursor fibers, PVP/Ni acetate [...] Read more.
The electrospun fibers of poly(vinyl pyrrolidone) (PVP)-nickel acetate (Ni(CH3COO)2·4H2O) composite were successfully prepared by using sol-gel processing and electrospinning technique. Nickel oxide (NiO) nanofibers were obtained afterwards by high temperature calcinations of the precursor fibers, PVP/Ni acetate composite nanofibers, at 700 °C for 10 h. Following with the reduction of NiO nanofibers at 400 °C using hydrogen gas (H2) under inert atmosphere, the metallic nickel (Ni) nanofibers were subsequently produced. In addition, as-prepared Ni nanofibers were chemically coated with silver (Ag) nanoparticles to enhance their electrical property and prevent the surface oxidation. The characteristics of as-prepared fibers, such as surface morphology, fiber diameters, purity, the amount of NiO nanofibers, and metal crystallinity, were determined using a scanning electron microscope (SEM), a Fourier transform infrared spectrometer (FT-IR), a thermogravimetric analyzer (TGA), and a wide-angle x-ray diffractometer (WAXD). The volume resistivity of epoxy nanocomposite filled with Ag-coated short Ni nanofibers was lower than the one containing short Ni nanofibers with no coating due to the synergetic effect of Ag nanoparticles created during the coating process. We also demonstrated that the volume resistivity of epoxy nanocomposite filled with Ni nanofibers could be dramatically decreased by using Ni nanofibers in the non-woven mat form due to their small fiber diameter and high fiber aspect ratio, which yield a high specific surface area, and high interconnecting network. Full article
Show Figures

Figure 1

19 pages, 6928 KiB  
Article
Integration of Microalgae Cultivation in a Biogas Production Process from Organic Municipal Solid Waste: From Laboratory to Pilot Scale
by Santiago Barreiro-Vescovo, Elena Barbera, Alberto Bertucco and Eleonora Sforza
ChemEngineering 2020, 4(2), 25; https://doi.org/10.3390/chemengineering4020025 - 10 Apr 2020
Cited by 15 | Viewed by 3151
Abstract
In this study, the feasibility of integrating microalgae cultivation in a biogas production process that treats the organic fraction of municipal solid waste (OFMSW) was investigated. In particular, the biomass growth performances in the liquid fraction of the digestate, characterized by high ammonia [...] Read more.
In this study, the feasibility of integrating microalgae cultivation in a biogas production process that treats the organic fraction of municipal solid waste (OFMSW) was investigated. In particular, the biomass growth performances in the liquid fraction of the digestate, characterized by high ammonia concentrations and turbidity, were assessed together with the nutrient removal efficiency. Preliminary laboratory-scale experiments were first carried out in photobioreactors operating in a continuous mode (Continuous-flow Stirred-Tank Reactor, CSTR), to gain preliminary data aimed at aiding the subsequent scaling up to a pilot scale facility. An outdoor experimental campaign, operated from July to October 2019, was then performed in a pilot scale raceway pond (4.5 m2), located in Arzignano (VI), Italy, to assess the performances under real environmental conditions. The results show that microalgae could grow well in this complex substrate, although dilution was necessary to enhance light penetration in the culture. In outdoor conditions, nitrification by autotrophic bacteria appeared to be significant, while the photosynthetic nitrogen removal was around 12% with respect to the inlet. On the other hand, phosphorus was almost completely removed from the medium under all the conditions tested, and a biomass production between 2–7 g m−2 d−1 was obtained. Full article
(This article belongs to the Special Issue Bio-Processing and Biochemical Engineering)
Show Figures

Figure 1

15 pages, 2367 KiB  
Article
Intraparticle Modeling of Non-Uniform Active Phase Distribution Catalyst
by Vincenzo Russo, Luca Mastroianni, Riccardo Tesser, Tapio Salmi and Martino Di Serio
ChemEngineering 2020, 4(2), 24; https://doi.org/10.3390/chemengineering4020024 - 09 Apr 2020
Cited by 6 | Viewed by 4351
Abstract
To maximize the performances of heterogeneous catalytic reactors, it is necessary to consider many parameters. Catalytic particle morphology (dimension, shape, active phase distribution) is generally previously established and seldom considered in the optimization of the catalyst to be specific for a given process. [...] Read more.
To maximize the performances of heterogeneous catalytic reactors, it is necessary to consider many parameters. Catalytic particle morphology (dimension, shape, active phase distribution) is generally previously established and seldom considered in the optimization of the catalyst to be specific for a given process. In this work, the influence of active phase distribution within spherical catalytic particles (egg-shell, egg-yolk and egg-white), on the yield and selectivity of a product is shown for a consecutive reaction network; here, the intermediate component is the main product of interest. Intraparticle mass and energy balances under non-steady conditions were implemented. Sensitivity studies lead to the identification of the optimal conditions, thus maximizing the yield of the intermediate for each active phase distribution. It was demonstrated that the egg-shell catalyst can maximize the intermediate yield, with a lower active-phase usage. Full article
Show Figures

Figure 1

27 pages, 2752 KiB  
Review
Multiscale Eulerian CFD of Chemical Processes: A Review
by Son Ich Ngo and Young-Il Lim
ChemEngineering 2020, 4(2), 23; https://doi.org/10.3390/chemengineering4020023 - 31 Mar 2020
Cited by 34 | Viewed by 6132
Abstract
This review covers the scope of multiscale computational fluid dynamics (CFD), laying the framework for studying hydrodynamics with and without chemical reactions in single and multiple phases regarded as continuum fluids. The molecular, coarse-grained particle, and meso-scale dynamics at the individual scale are [...] Read more.
This review covers the scope of multiscale computational fluid dynamics (CFD), laying the framework for studying hydrodynamics with and without chemical reactions in single and multiple phases regarded as continuum fluids. The molecular, coarse-grained particle, and meso-scale dynamics at the individual scale are excluded in this review. Scoping single-scale Eulerian CFD approaches, the necessity of multiscale CFD is highlighted. First, the Eulerian CFD theory, including the governing and turbulence equations, is described for single and multiple phases. The Reynolds-averaged Navier–Stokes (RANS)-based turbulence model such as the standard k-ε equation is briefly presented, which is commonly used for industrial flow conditions. Following the general CFD theories based on the first-principle laws, a multiscale CFD strategy interacting between micro- and macroscale domains is introduced. Next, the applications of single-scale CFD are presented for chemical and biological processes such as gas distributors, combustors, gas storage tanks, bioreactors, fuel cells, random- and structured-packing columns, gas-liquid bubble columns, and gas-solid and gas-liquid-solid fluidized beds. Several multiscale simulations coupled with Eulerian CFD are reported, focusing on the coupling strategy between two scales. Finally, challenges to multiscale CFD simulations are discussed. The need for experimental validation of CFD results is also presented to lay the groundwork for digital twins supported by CFD. This review culminates in conclusions and perspectives of multiscale CFD. Full article
(This article belongs to the Special Issue Computational Fluid Dynamics (CFD) of Chemical Processes)
Show Figures

Figure 1

14 pages, 5045 KiB  
Article
Energy Performance Analysis of a PV/T System Coupled with Domestic Hot Water System
by Navid Khordehgah, Alina Żabnieńska-Góra and Hussam Jouhara
ChemEngineering 2020, 4(2), 22; https://doi.org/10.3390/chemengineering4020022 - 30 Mar 2020
Cited by 25 | Viewed by 3748
Abstract
In this paper, a standalone photovoltaics-thermal solar panel is modelled using the TRNSYS simulation engine. Based on this, it was explored how such a system can be comprised of thermal and electrical storage components to provide electricity and hot water for a dwelling [...] Read more.
In this paper, a standalone photovoltaics-thermal solar panel is modelled using the TRNSYS simulation engine. Based on this, it was explored how such a system can be comprised of thermal and electrical storage components to provide electricity and hot water for a dwelling in a warm location in Europe. Furthermore, it was investigated how, by cooling the temperature of the solar cells, the electrical power output and efficiency of the panel was improved. The performance of the system was also studied, and the amount that the solar panel was able to convert the solar energy into electricity was investigated. Through this, we discovered that when the temperature of the panel was reduced, on average, by 20%, the electrical power output increased by nearly 12%. Moreover, it was demonstrated that the modelled system can provide hot water under different solar radiation conditions and during all seasons of the year. Full article
(This article belongs to the Special Issue Advanced Heat Exchangers for Waste Heat Recovery Applications)
Show Figures

Figure 1

20 pages, 5955 KiB  
Article
Dynamically Operated Fischer-Tropsch Synthesis in PtL-Part 1: System Response on Intermittent Feed
by Marcel Loewert and Peter Pfeifer
ChemEngineering 2020, 4(2), 21; https://doi.org/10.3390/chemengineering4020021 - 28 Mar 2020
Cited by 12 | Viewed by 4236
Abstract
Society is facing serious challenges to reduce CO2 emissions. Effective change requires the use of advanced chemical catalyst and reactor systems to utilize renewable feedstocks. One pathway to long-term energy storage is its transformation into high quality, low-emission and CO2-neutral [...] Read more.
Society is facing serious challenges to reduce CO2 emissions. Effective change requires the use of advanced chemical catalyst and reactor systems to utilize renewable feedstocks. One pathway to long-term energy storage is its transformation into high quality, low-emission and CO2-neutral fuels. Performance of technologies such as the Fischer-Tropsch reaction can be maximized using the inherent advantages of microstructured packed bed reactors. Advantages arise not only from high conversion and productivity, but from its capability to resolve the natural fluctuation of renewable sources. This work highlights and evaluates a system for dynamic feed gas and temperature changes in a pilot scale Fischer-Tropsch synthesis unit for up to 7 L of product per day. Dead times were determined for non-reactive and reactive mode at individual positions in the setup. Oscillating conditions were applied to investigate responses with regard to gaseous and liquid products. The system was stable at short cycle times of 8 min. Neither of the periodic changes showed negative effects on the process performance. Findings even suggest this technology’s capability for effective, small-to-medium-scale applications with periodically changing process parameters. The second part of this work focuses on the application of a real-time photovoltaics profile to the given system. Full article
Show Figures

Figure 1

19 pages, 2914 KiB  
Article
Spectroscopic Studies of a Phosphonium Ionic Liquid in Supercritical CO2
by Mark P. Heitz, Zackary C. Putney and Joel Campaign
ChemEngineering 2020, 4(2), 20; https://doi.org/10.3390/chemengineering4020020 - 27 Mar 2020
Viewed by 2669
Abstract
Fluorescence spectroscopy was used to study a solution comprised of coumarin 153 (C153)+ trihexyltetradecylphosphonium bis(trifluoromethylsulfonyl)imide ([P6,6,6,14]+ [Tf2N])+ supercritical CO2 (scCO2). We compare the spectroscopy of C153 in neat scCO2 to that of [...] Read more.
Fluorescence spectroscopy was used to study a solution comprised of coumarin 153 (C153)+ trihexyltetradecylphosphonium bis(trifluoromethylsulfonyl)imide ([P6,6,6,14]+ [Tf2N])+ supercritical CO2 (scCO2). We compare the spectroscopy of C153 in neat scCO2 to that of C153/scCO2 with the addition of ionic liquid (IL). Excitation and emission peak frequencies of C153 in scCO2 and in IL/scCO2 diverged at reduced densities (ρr = ρ/ρc) below the CO2 critical density. At low fluid density, spectral changes in the IL/scCO2 solutions showed evidence that C153 experiences a very different microenvironment—one that is unlike neat scCO2. The data show that the presence of IL clearly influences the C153 excitation and emission profiles. Excitation was broadened and red shifted by >2000 cm−1 and the presence of an additional low-energy emission component that was red shifted by ~3000 cm−1 was clearly visible and not observed in neat scCO2. The solution heterogeneity was controlled by changing the scCO2 density and at high fluid density, both the excitation and emission spectra were more similar to those in neat scCO2. Steady-state anisotropy also showed that at low fluid density, the C153 emission was significantly polarized. Aggregation of C153 has been reported in the literature and this led us to hypothesize the possibility that C153 dimer (aggregation) formation may be occurring in scCO2. Another possible explanation is that dye–IL aggregates may dissolve into the scCO2 phase due to C153 acting as a “co-solvent” for the IL. Time-resolved intensity decay measurements yielded only slightly non-exponential decays with accompanying time constants of ~3–4 ns that were significantly shorter than the 5–6 ns time constants in neat scCO2, which are suggestive of C153–IL interactions. However, these data did not conclusively support dimer formation. Pre-exponential factors of the time constants showed that almost all of the emission was due to monomeric C153. Full article
(This article belongs to the Special Issue Advanced Ionic Liquid-Based Mixed Solvent Systems)
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop