Valorization of Traditional Alcoholic Beverages: The Study of the Sicilian Amarena Wine during Bottle Aging
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Material and Reagents
2.3. Oenological Analysis
2.4. Chromaticity Measurments
2.5. Volatile Compounds
2.6. Element Analysis
2.7. Sensorial Analysis
2.8. Statistical Analysis
3. Results and Discussion
3.1. Oenological Properties
3.2. Chromaticity
3.3. Element Analysis
3.4. Volatiles
3.5. Differentiation of Amarena Wines by PCA
3.6. Sensorial Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Egea, T.; Signorini, M.A.; Ongaro, L.; Rivera, D.; Obón de Castro, C.; Bruschi, P. Traditional alcoholic beverages and their value in the local culture of the Alta Valle del Reno, a mountain borderland between Tuscany and Emilia-Romagna (Italy). J. Ethnobiol. Ethnomed. 2016, 12, 27. [Google Scholar] [CrossRef][Green Version]
- Agnoli, L.; Boeri, M.; Scarpa, R.; Capitello, R.; Begalli, D. Behavioural patterns in Mediterranean-style drinking: Generation Y preferences in alcoholic beverage consumption. J. Behav. Exp. Econ. 2018, 75, 117–125. [Google Scholar] [CrossRef]
- Smith, D.E.; Solgaard, H.S. The dynamics of shifts in European alcoholic drinks consumption. J. Int. Consum. Mark. 2000, 12, 85–109. [Google Scholar] [CrossRef]
- Beccaria, F.; Pretto, A. The quality of wine between innovation and tradition. A study of a changing ‘Mediterranean drinking culture’. Mod. Italy 2021, 26, 67–78. [Google Scholar] [CrossRef]
- Allamani, A.; Pepe, P.; Baccini, M.; Massini, G.; Voller, F. Europe. An analysis of changes in the consumption of alcoholic beverages: The interaction among consumption, related harms, contextual factors and alcoholic beverage control policies. Subst. Use Misuse 2014, 49, 1692–1715. [Google Scholar] [CrossRef] [PubMed]
- Vuik, S.; Cheatley, J. Trends and patterns in alcohol consumption. In Preventing Harmful Alcohol Use; OECD, Ed.; OECD Publishing: Paris, France, 2021. [Google Scholar]
- Egea, T.; Signorini, M.A.; Bruschi, P.; Rivera, D.; Obón, C.; Alcaraz, F.; Palazón, J.A. Spirits and liqueurs in European traditional medicine: Their history and ethnobotany in Tuscany and Bologna (Italy). J. Ethnopharmacol. 2015, 175, 241–255. [Google Scholar] [CrossRef]
- Motti, R.; Bonanomi, G.; de Falco, B. Wild and cultivated plants used in traditional alcoholic beverages in Italy: An ethnobotanical review. Eur. Food Res. Technol. 2022, 248, 1089–1106. [Google Scholar] [CrossRef]
- Baschali, A.; Tsakalidou, E.; Kyriacou, A.; Karavasiloglou, N.; Matalas, A.L. Traditional low-alcoholic and non-alcoholic fermented beverages consumed in European countries: A neglected food group. Nutr. Res. Rev. 2017, 30, 1–24. [Google Scholar] [CrossRef]
- Albergamo, A.; Costa, R.; Bartolomeo, G.; Rando, R.; Vadalà, R.; Nava, V.; Gervasi, T.; Toscano, G.; Germanò, M.P.; D’Angelo, V.; et al. Grape water: Reclaim and valorization of a by-product from the industrial cryoconcentration of grape (Vitis vinifera) must. J. Sci. Food Agric. 2020, 100, 2971–2981. [Google Scholar] [CrossRef] [PubMed]
- Di Bella, G.; Vecchio, G.L.; Albergamo, A.; Nava, V.; Bartolomeo, G.; Macrì, A.; Bacchetta, L.; Lo Turco, V.; Potortì, A.G. Chemical characterization of Sicilian dried nopal [Opuntia ficus-indica (L.) Mill.]. J. Food Comp. Anal. 2022, 106, 104307. [Google Scholar] [CrossRef]
- Tropea, A.; Ferracane, A.; Albergamo, A.; Potortì, A.G.; Lo Turco, V.; Di Bella, G. Single cell protein production through multi food-waste substrate fermentation. Fermentation 2022, 8, 91. [Google Scholar] [CrossRef]
- Salafia, F.; Ferracane, A.; Tropea, A. Pineapple waste cell wall sugar fermentation by saccharomyces cerevisiae for second generation bioethanol production. Fermentation 2022, 8, 100. [Google Scholar] [CrossRef]
- Tropea, A.; Wilson, D.; Lo Curto, R.B.; Dugo, G.; Saugman, P.; Troy-Davies, P.; Waldron, K.W. Simultaneous saccharification and fermentation of lignocellulosic waste material for second generation ethanol production. J. Biol. Res. 2015, 88, 142–143. [Google Scholar]
- Albergamo, A.; Potortí, A.G.; Di Bella, G.; Amor, N.B.; Lo Vecchio, G.; Nava, V.; Lo Turco, V. Chemical characterization of different products from the Tunisian Opuntia ficus-indica (L.) Mill. Foods 2022, 11, 155. [Google Scholar] [CrossRef]
- Sdiri, W.; Chehab, H.; Reyns, T.; Van Loco, J.; Mechri, B.; Boujnah, D.; Bua, G.D.; Mansour, H.B.; Di Bella, G. Incidence of dairy wastewater on morphological and physiological comportment of Chemlali and Chetoui olive. Water Resour. Ind. 2018, 20, 29–36. [Google Scholar] [CrossRef]
- Costa, R.; Albergamo, A.; Arrigo, S.; Gentile, F.; Dugo, G. Solid-phase microextraction-gas chromatography and ultra-high performance liquid chromatography applied to the characterization of lemon wax, a waste product from citrus industry. J. Chromatogr. A 2019, 1603, 262–268. [Google Scholar] [CrossRef]
- Sdiri, W.; Mansour, H.B.; Albergamo, A.; Di Bella, G. Effectiveness of dairy treated wastewater and different irrigation systems on the growth, biomass and fruiting of a Tunisian olive orchard (Olea europaea L., cv Chemlali). Nat. Prod. Res. 2020, 34, 183–186. [Google Scholar] [CrossRef]
- Morales-Oyervides, L.; Ruiz-Sánchez, J.P.; Oliveira, J.C.; Sousa-Gallagher, M.J.; Morales-Martínez, T.K.; Albergamo, A.; Salvo, A.; Giuffrida, D.; Dufossè, L.; Montañez, J. Medium design from corncob hydrolyzate for pigment production by Talaromyces atroroseus GH2: Kinetics modeling and pigments characterization. Biochem. Eng. J. 2020, 161, 107698. [Google Scholar] [CrossRef]
- Ferracane, A.; Tropea, A.; Salafia, F. Production and maturation of soaps with non-edible fermented olive oil and comparison with classic olive oil soaps. Fermentation 2021, 7, 245. [Google Scholar] [CrossRef]
- Tropea, A.; Potortì, A.G.; Lo Turco, V.; Russo, E.; Vadalà, R.; Rand, R.; Di Bella, G. Aquafeed production from fermented fish waste and lemon peel. Fermentation 2021, 7, 272. [Google Scholar] [CrossRef]
- Sdiri, W.; Dabbou, S.; Nava, V.; Di Bella, G.; Ben Mansour, H. Pomological descriptors, phenolic compounds, and chemical monitoring in olive fruits irrigated with dairy treated wastewater. Chemosensors 2021, 9, 130. [Google Scholar] [CrossRef]
- Haddaoui, I.; Mahjoub, O.; Mahjoub, B.; Boujelben, A.; Di Bella, G. Occurrence and distribution of PAHs, PCBs, and chlorinated pesticides in Tunisian soil irrigated with treated wastewater. Chemosphere 2016, 146, 195–205. [Google Scholar] [CrossRef] [PubMed]
- Gervasi, T.; Pellizzeri, V.; Calabrese, G.; Di Bella, G.; Cicero, N.; Dugo, G. Production of single cell protein (SCP) from food and agricultural waste by using Saccharomyces cerevisiae. Nat. Prod. Res. 2018, 32, 648–653. [Google Scholar] [CrossRef] [PubMed]
- Albergamo, A.; Salvo, A.; Carabetta, S.; Arrigo, S.; Di Sanzo, R.; Costa, R.; Dugo, G.; Russo, M. Development of an antioxidant formula based on peanut by-products and effects on sensory properties and aroma stability of fortified peanut snacks during storage. J. Sci. Food Agric. 2021, 101, 638–647. [Google Scholar] [CrossRef] [PubMed]
- Sdiri, W.; Dabbou, S.; Chehab, H.; Selvaggini, R.; Servili, M.; Di Bella, G.; Mansour, H.B. Quality characteristics and chemical evaluation of Chemlali olive oil produced under dairy wastewater irrigation. Agric. Water Manag. 2020, 236, 106–124. [Google Scholar] [CrossRef]
- Rodriguez-Sanchez, C.; Sellers-Rubio, R. Sustainability in the beverage industry: A research agenda from the demand side. Sustainability 2020, 13, 186. [Google Scholar] [CrossRef]
- Urbinati, A.; Chiaroni, D.; Toletti, G. Managing the introduction of circular products: Evidence from the beverage industry. Sustainability 2019, 11, 3650. [Google Scholar] [CrossRef][Green Version]
- Italian Ministerial Decree. Elenco nazionale dei prodotti agroalimentari tradizionali. Gazetta Ufficiale della Repubblica Italiana 21 August 2000, 194.
- Albergamo, A.; Mottese, A.F.; Bua, G.D.; Caridi, F.; Sabatino, G.; Barrega, L.; Costa, R.; Dugo, G. Discrimination of the Sicilian prickly pear (Opuntia ficus-indica L., cv. Muscaredda) according to the provenance by testing unsupervised and supervised chemometrics. J. Food Sci. 2018, 83, 2933–2942. [Google Scholar] [CrossRef]
- Mottese, A.F.; Albergamo, A.; Bartolomeo, G.; Bua, G.D.; Rando, R.; De Pasquale, P.; Saija, E.; Donato, D.; Dugo, G. Evaluation of fatty acids and inorganic elements by multivariate statistics for the traceability of the Sicilian Capparis spinosa L. J. Food Comp. Anal. 2018, 72, 66–74. [Google Scholar] [CrossRef]
- Albergamo, A.; Rotondo, A.; Salvo, A.; Pellizzeri, V.; Bua, D.G.; Maggio, A.; Dugo, G. Metabolite and mineral profiling of “Violetto di Niscemi” and “Spinoso di Menfi” globe artichokes by 1H-NMR and ICP-MS. Nat. Prod. Res. 2017, 31, 990–999. [Google Scholar] [CrossRef]
- Faust, M.; Surányi, D. Origin and dissemination of cherry. Hortic. Rev. 1997, 19, 263–317. [Google Scholar]
- Fratianni, F.; De Giulio, A.; Sada, A.; Nazzaro, F. Biochemical characteristics and biological properties of annurca apple cider. J. Med. Food 2012, 15, 18–23. [Google Scholar] [CrossRef] [PubMed]
- Schipilliti, L.; Bonaccorsi, I.; Cotroneo, A.; Dugo, P.; Mondello, L. Evaluation of gas chromatography–combustion–isotope ratio mass spectrometry (GC-C-IRMS) for the quality assessment of citrus liqueurs. J. Agric. Food Chem. 2013, 61, 1661–1670. [Google Scholar] [CrossRef] [PubMed]
- Pisani, M.; Astolfi, P.; Sabbatini, S.; Carloni, P. Antioxidant activity level, bioactive compounds, colour and spectroscopic analysis (UV-Vis and FT-IR) of flavoured drinks made with wine and sour cherries (Prunus cerasus Var. austera). Foods 2021, 10, 1953. [Google Scholar] [CrossRef] [PubMed]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. In Methods in Enzymology; Carlson, E.E., Ed.; Academic Press: Cambridge, MA, USA, 1999; Volume 299, pp. 152–178. [Google Scholar]
- Ribéreau-Gayon, P.; Stonestreet, E. Determination of anthocyanins in red wine. Bull. Soc. Chim. Fr. 1965, 9, 2649–2652. [Google Scholar] [PubMed]
- European Commission. Commission Regulation (EEC) No 2676/90 of 17 September 1990 determining Community methods for the analysis of wines. Off. J. Eur. Union L 1990, 272, 1–192. [Google Scholar]
- De Filippis, F.; Aponte, M.; Piombino, P.; Lisanti, M.T.; Moio, L.; Ercolini, D.; Blaiotta, G. Influence of microbial communities on the chemical and sensory features of Falanghina sweet passito wines. Food Res. Int. 2019, 120, 740–747. [Google Scholar] [CrossRef]
- Bua, G.D.; Albergamo, A.; Annuario, G.; Zammuto, V.; Costa, R.; Dugo, G. High-throughput ICP-MS and chemometrics for exploring the major and trace element profile of the Mediterranean sepia ink. Food Anal. Methods 2017, 10, 1181–1190. [Google Scholar] [CrossRef]
- Di Bella, G.; Potortì, A.G.; Lo Turco, V.; Bua, G.D.; Licata, P.; Cicero, N.; Dugo, G. Trace elements in Thunnus thynnus from Mediterranean Sea and benefit–risk assessment for consumers. Food Addit. Contam. B Surveill. 2015, 8, 175–181. [Google Scholar] [CrossRef]
- Lo Turco, V.; Potortì, A.G.; Tropea, A.; Dugo, G.; Di Bella, G. Element analysis of dried figs (Ficus carica L.) from the Mediterranean areas. J. Food Comp. Anal. 2020, 90, 103503. [Google Scholar] [CrossRef]
- Bella, G.D.; Licata, P.; Potortì, A.G.; Crupi, R.; Nava, V.; Qada, B.; Rando, R.; Bartolomeo, G.; Dugo, G.; Lo Turco, V. Mineral content and physico-chemical parameters of honey from North regions of Algeria. Nat. Prod. Res. 2022, 36, 636–643. [Google Scholar] [CrossRef] [PubMed]
- ISO 13299: 2016; Sensory Analysis-Methodology-General Guidance for Establishing a Sensory Profile. International Organization for Standardization: Geneva, Switzerland, 2016.
- ISO 8586: 2012; Sensory Analysis—General guidelines for the Selection, Training and Monitoring of Selected Assessors and Expert Sensory Assessors. International Organization for Standardization: Geneva, Switzerland, 2012.
- ISO-8589: 2007; Sensory Analysis. General Guidance for the Design of Test Rooms. International Organization for Standardization: Geneva, Switzerland, 2007.
- ISO 3591:1979; Sensory Analysis Apparatus Wine-Tasting Glass. International Organization for Standardization: Geneva, Switzerland, 1979.
- Mottese, A.F.; Fede, M.R.; Caridi, F.; Sabatino, G.; Marcianò, G.; Calabrese, G.; Albergamo, A.; Dugo, G. Chemometrics and innovative multidimensional data analysis (MDA) based on multi-element screening to protect the Italian porcino (Boletus sect Boletus) from fraud. Food Control 2020, 110, 107004. [Google Scholar] [CrossRef]
- Salvo, A.; Costa, R.; Albergamo, A.; Arrigo, S.; Rotondo, A.; La Torre, G.L.; Mangano, V.; Dugo, G. An in-depth study of the volatile variability of chinotto (Citrus myrtifolia Raf.) induced by the extraction procedure. Eur. Food Res. Technol. 2019, 245, 873–883. [Google Scholar] [CrossRef]
- Potortì, A.G.; Bua, G.D.; Lo Turco, V.; Tekaya, A.B.; Beltifa, A.; Mansour, H.B.; Dugo, G.; Di Bella, G. Major, minor and trace element concentrations in spices and aromatic herbs from Sicily (Italy) and Mahdia (Tunisia) by ICP-MS and multivariate analysis. Food Chem. 2020, 313, 126094. [Google Scholar] [CrossRef]
- Di Bella, G.; Lo Turco, V.; Potortì, A.G.; Bua, G.D.; Fede, M.R.; Dugo, G. Geographical discrimination of Italian honey by multi-element analysis with a chemometric approach. J. Food Comp. Anal. 2015, 44, 25–35. [Google Scholar] [CrossRef]
- Di Bella, G.; Potortì, A.G.; Beltifa, A.; Mansour, H.B.; Nava, V.; Lo Turco, V. Discrimination of Tunisian honey by mineral and trace element chemometrics profiling. Foods 2021, 10, 724. [Google Scholar] [CrossRef]
- Potortì, A.G.; Lo Turco, V.; Di Bella, G. Chemometric analysis of elements content in Algerian spices and aromatic herbs. LWT-Food Sci. Tecnol. 2021, 138, 110643. [Google Scholar] [CrossRef]
- Potortì, A.G.; Di Bella, G.; Lo Turco, V.; Rando, R.; Dugo, G. Non-toxic and potentially toxic elements in Italian donkey milk by ICP-MS and multivariate analysis. J. Food Comp. Anal. 2013, 31, 161–172. [Google Scholar] [CrossRef]
- Potortì, A.G.; Di Bella, G.; Mottese, A.F.; Bua, G.D.; Fede, M.R.; Sabatino, G.; Salvo, A.; Somma, R.; Dugo, G.; Lo Turco, V. Traceability of Protected Geographical Indication (PGI) Interdonato lemon pulps by chemometric analysis of the mineral composition. J. Food Comp. Anal. 2018, 69, 122–128. [Google Scholar] [CrossRef]
- Moreno-Arribas, M.V.; Gómez-Cordovés, C.; Martín-Álvarez, P.J. Evolution of red wine anthocyanins during malolactic fermentation, postfermentative treatments and ageing with lees. Food Chem. 2008, 109, 149–158. [Google Scholar] [CrossRef]
- Bakker, J.; Timberlake, C.F. The mechanism of color changes in aging port wine. Am. J. Enol. Vitic. 1986, 37, 288–292. [Google Scholar]
- Yanniotis, S.; Kotseridis, G.; Orfanidou, A.; Petraki, A. Effect of ethanol, dry extract and glycerol on the viscosity of wine. J. Food Engin. 2007, 81, 399–403. [Google Scholar] [CrossRef]
- Swiegers, J.H.; Bartowsky, E.J.; Henschke, P.A.; Pretorius, I. Yeast and bacterial modulation of wine aroma and flavour. Aust. J. Grape Wine Res. 2005, 11, 139–173. [Google Scholar] [CrossRef]
- Dubois, P. Les arômes des vins et leurs défauts. Rev. Franc. D’œnol. 1994, 145, 27–40. [Google Scholar]
- Izquierdo-Cañas, P.M.; Mena-Morales, A.; García-Romero, E. Malolactic fermentation before or during wine aging in barrels. LWT-Food Sci. Technol. 2016, 66, 468–474. [Google Scholar] [CrossRef]
- Cassino, C.; Tsolakis, C.; Bonello, F.; Gianotti, V.; Osella, D. Wine evolution during bottle aging, studied by 1H NMR spectroscopy and multivariate statistical analysis. Food Res. Int. 2019, 116, 566–577. [Google Scholar] [CrossRef]
- Monagas, M.; Núñez, V.; Bartolomé, B.; Gómez-Cordovés, C. Anthocyanin-derived pigments in Graciano, Tempranillo, and Cabernet Sauvignon wines produced in Spain. Am. J. Enol. Vitic. 2003, 54, 163–169. [Google Scholar]
- Picariello, L.; Gambuti, A.; Picariello, B.; Moio, L. Evolution of pigments, tannins and acetaldehyde during forced oxidation of red wine: Effect of tannins addition. LWT-Food Sci. Technol. 2017, 77, 370–375. [Google Scholar] [CrossRef]
- La Torre, G.L.; Potortì, A.G.; Saitta, M.; Tropea, A.; Dugo, G. Phenolic profile in selected Sicilian wines produced by different techniques of breeding and cropping methods. Ital. J. Food Sci. 2014, 26, 41–55. [Google Scholar]
- Lorrain, B.; Ky, I.; Pechamat, L.; Teissedre, P.L. Evolution of analysis of polyhenols from grapes, wines, and extracts. Molecules 2013, 18, 1076–1100. [Google Scholar] [CrossRef]
- Mercurio, M.D.; Smith, P.A. Tannin quantification in red grapes and wine: Comparison of polysaccharide-and protein-based tannin precipitation techniques and their ability to model wine astringency. J. Agric. Food Chem. 2008, 56, 5528–5537. [Google Scholar] [CrossRef] [PubMed]
- Granato, D.; Santos, J.S.; Maciel, L.G.; Nunes, D.S. Chemical perspective and criticism on selected analytical methods used to estimate the total content of phenolic compounds in food matrices. TrAC-Trend Anal. Chem. 2016, 80, 266–279. [Google Scholar] [CrossRef]
- Giacosa, S.; Parpinello, G.P.; Segade, S.R.; Ricci, A.; Paissoni, M.A.; Curioni, A.; Marangon, M.; Mattivi, F.; Arapitsas, P.; Moio, L.; et al. Diversity of Italian red wines: A study by enological parameters, color, and phenolic indices. Food Res. Int. 2021, 143, 110277. [Google Scholar] [CrossRef]
- Bakker, J.; Timberlake, C.F. Isolation, identification, and characterization of new color-stable anthocyanins occurring in some red wines. J. Agric. Food Chem. 1997, 45, 35–43. [Google Scholar] [CrossRef]
- Escribano-Bailón, T.; Dangles, O.; Brouillard, R. Coupling reactions between flavylium ions and catechin. Phytochemistry 1996, 41, 1583–1592. [Google Scholar] [CrossRef][Green Version]
- Santos-Buelga, C.; Francia-Aricha, E.M.; de Pascual-Teresa, S.; Rivas-Gonzalo, J.C. Contribution to the identification of the pigments responsible for the browning of anthocyanin-flavanol solutions. Eur. Food Res. Technol. 1999, 209, 411–415. [Google Scholar] [CrossRef]
- Câmara, J.D.S.; Alves, M.A.; Marques, J.C. Changes in volatile composition of Madeira wines during their oxidative ageing. Anal. Chim. Acta 2006, 563, 188–197. [Google Scholar] [CrossRef][Green Version]
- Moreno-García, J.; Raposo, R.M.; Moreno, J. Biological aging status characterization of Sherry type wines using statistical and oenological criteria. Food Res. Int. 2013, 54, 285–292. [Google Scholar] [CrossRef]
- Morrot, G.; Brochet, F.; Dubourdieu, D. The color of odors. Brain Lang. 2001, 79, 309–320. [Google Scholar] [CrossRef][Green Version]
- Fernández de Simón, B.; Cadahia, E.; Sanz, M.; Poveda, P.; Perez-Magariño, S.; Ortega-Heras, M.; González-Huerta, C. Volatile compounds and sensorial characterization of wines from four Spanish denominations of origin, aged in Spanish Rebollo (Quercus pyrenaica Willd.) oak wood barrels. J. Agric. Food Chem. 2008, 56, 9046–9055. [Google Scholar] [CrossRef]
- Pauling, L. A theory of the color of dyes. Proc. Natl. Acad. Sci. USA 1939, 25, 577. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Wrolstad, R.E.; Durst, R.W.; Lee, J. Tracking color and pigment changes in anthocyanin products. Trends Food Sci. Technol. 2005, 16, 423–428. [Google Scholar] [CrossRef]
- Castañeda-Ovando, A.; de Lourdes Pacheco-Hernández, M.; Páez-Hernández, M.E.; Rodríguez, J.A.; Galán-Vidal, C.A. Chemical studies of anthocyanins: A review. Food Chem. 2009, 113, 859–871. [Google Scholar] [CrossRef]
- Hutchings, J.B. Chemistry of food colour. In Food Colour and Appearance; Hutchings, J.B., Ed.; Springer: Boston, MA, USA, 1994; pp. 367–469. [Google Scholar]
- Ribéreau-Gayon, P.; Glories, Y.; Maujean, A.; Dubourdieu, D. Handbook of Enology, Volume 2: The Chemistry of Wine Stabilization and Treatments; John Wiley & Sons: Hoboken, NJ, USA, 2006. [Google Scholar]
- Somers, T.C. The polymeric nature of wine pigments. Phytochemistry 1971, 10, 2175–2186. [Google Scholar] [CrossRef]
- Timberlake, C.F.; Bridle, P. Interactions between anthocyanins, phenolic compounds, and acetaldehyde and their significance in red wines. Am. J. Enol. Vitic. 1976, 627, 97–105. [Google Scholar]
- Somers, T.C.; Evans, M.E. Evolution of red wines. I. Ambient influences on colour composition during early maturation. Vitis 1986, 25, 31–39. [Google Scholar]
- Monagas, M.; Gómez-Cordovés, C.; Bartolomé, B. Evolution of the phenolic content of red wines from Vitis vinifera L. during ageing in bottle. Food Chem. 2006, 95, 405–412. [Google Scholar] [CrossRef]
- Schwarz, M.; Wabnitz, T.C.; Winterhalter, P. Pathway leading to the formation of anthocyanin—Vinylphenol adducts and related pigments in red wines. J. Agric. Food Chem. 2003, 51, 3682–3687. [Google Scholar] [CrossRef]
- Boulton, R. The copigmentation of anthocyanins and its role in the color of red wine: A critical review. Am. J. Enol. Vitic. 2001, 52, 67–87. [Google Scholar]
- Somers, C. The Wine Spectrum: An Approach towards Objective Definition of Wine Quality; Winetitles: Broadview, SA, Australia, 1998. [Google Scholar]
- Marquez, A.; Serratosa, M.P.; Merida, J. Influence of bottle storage time on colour, phenolic composition and sensory properties of sweet red wines. Food Chem. 2014, 146, 507–514. [Google Scholar] [CrossRef]
- Valcárcel-Muñoz, M.J.; Guerrero-Chanivet, M.; Rodríguez-Dodero, M.D.C.; García-Moreno, M.D.V.; Guillén-Sánchez, D.A. Analytical and chemometric characterization of fino and amontillado sherries during aging in criaderas y solera system. Molecules 2022, 27, 365. [Google Scholar] [CrossRef] [PubMed]
- European Commission. Commission Regulation (EC) No 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs. Off. J. Eur. Union 2006, 364, 5–24. [Google Scholar]
- National Decree of August 10 (2017), pursuant to Law No. 238 of December 12, concerning the discipline of the cultivation of vine and of the production and commerce of wine. G.U. 2018, 253, 117–140.
- Potortί, A.G.; Lo Turco, V.; Saitta, M.; Bua, G.D.; Tropea, A.; Dugo, G.; Di Bella, G. Chemometric analysis of minerals and trace elements in Sicilian wines from two different grape cultivars. Nat. Prod. Res. 2017, 31, 1000–1005. [Google Scholar] [CrossRef]
- Geană, E.I.; Sandru, C.; Stanciu, V.; Ionete, R.E. Elemental profile and 87Sr/86Sr isotope ratio as fingerprints for geographical traceability of wines: An approach on Romanian wines. Food Anal. Methods 2017, 10, 63–73. [Google Scholar] [CrossRef]
- Astray, G.; Martinez-Castillo, C.; Mejuto, J.C.; Simal-Gandara, J. Metal and metalloid profile as a fingerprint for traceability of wines under any Galician protected designation of origin. J. Food Comp. Anal. 2021, 102, 104043. [Google Scholar] [CrossRef]
- Agazzi, F.M.; Nelson, J.; Tanabe, C.K.; Doyle, C.; Boulton, R.B.; Buscema, F. Aging of Malbec wines from Mendoza and California: Evolution of phenolic and elemental composition. Food Chem. 2018, 269, 103–110. [Google Scholar] [CrossRef]
- Burin, V.M.; Falcão, L.D.; Chaves, E.S.; Gris, E.F.; Preti, L.F.; Bordignon-Luiz, M.T. Phenolic composition, colour, antioxidant activity and mineral profile of Cabernet Sauvignon wines. Int. J. Food Sci. Technol. 2010, 45, 1505–1512. [Google Scholar] [CrossRef]
- Paneque, P.; Álvarez-Sotomayor, M.T.; Clavijo, A.; Gómez, I.A. Metal content in southern Spain wines and their classification according to origin and ageing. Microchem. J. 2010, 94, 175–179. [Google Scholar] [CrossRef]
- Dugo, G.; La Pera, L.; Pellicanó, T.M.; Di Bella, G.; D’Imperio, M. Determination of some inorganic anions and heavy metals in DOC Golden and Amber Marsala wines: Statistical study of the influence of ageing period, colour and sugar content. Food Chem. 2005, 91, 355–363. [Google Scholar] [CrossRef]
- La Torre, G.L.; La Pera, L.; Rando, R.; Lo Turco, V.; Di Bella, G.; Saitta, M.; Dugo, G. Classification of Marsala wines according to their polyphenol, carbohydrate and heavy metal levels using canonical discriminant analysis. Food Chem. 2008, 110, 729–734. [Google Scholar] [CrossRef]
- Han, G.; Webb, M.R.; Waterhouse, A.L. Acetaldehyde reactions during wine bottle storage. Food Chem. 2019, 290, 208–215. [Google Scholar] [CrossRef] [PubMed]
- Blumenthal, P.; Steger, M.C.; Einfalt, D.; Rieke-Zapp, J.; Quintanilla Bellucci, A.; Sommerfeld, K.; Schwarz, S.; Lachenmeier, D.W. Methanol mitigation during manufacturing of fruit spirits with special consideration of novel coffee cherry spirits. Molecules 2021, 26, 2585. [Google Scholar] [CrossRef] [PubMed]
- Rochfort, S.; Ezernieks, V.; Bastian, S.E.; Downey, M.O. Sensory attributes of wine influenced by variety and berry shading discriminated by NMR metabolomics. Food Chem. 2010, 121, 1296–1304. [Google Scholar] [CrossRef]
- Waterhouse, A.L.; Sacks, G.L.; Jeffery, D.W. Understanding Wine Chemistry; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- Vidal, S.; Francis, L.; Noble, A.; Kwiatkowski, M.; Cheynier, V.; Waters, E. Taste and mouth-feel properties of different types of tannin-like polyphenolic compounds and anthocyanins in wine. Anal. Chim. Acta 2004, 513, 57–65. [Google Scholar] [CrossRef]
- Plata, C.; Millan, C.; Mauricio, J.C.; Ortega, J.M. Formation of ethyl acetate and isoamyl acetate by various species of wine yeasts. Food Microbiol. 2003, 20, 217–224. [Google Scholar] [CrossRef]
- Echave, J.; Barral, M.; Fraga-Corral, M.; Prieto, M.A.; Simal-Gandara, J. Bottle aging and storage of wines: A review. Molecules 2021, 26, 713. [Google Scholar] [CrossRef]
- Moreno, J.A.; Zea, L.; Moyano, L.; Medina, M. Aroma compounds as markers of the changes in sherry wines subjected to biological ageing. Food Control 2005, 16, 333–338. [Google Scholar] [CrossRef]
- Muñoz, D.; Peinado, R.A.; Medina, M.; Moreno, J. Higher alcohols concentration and its relation with the biological aging evolution. Eur. Food Res. Technol. 2006, 222, 629–635. [Google Scholar] [CrossRef]
- Cordente, A.G.; Espinase Nandorfy, D.; Solomon, M.; Schulkin, A.; Kolouchova, R.; Francis, I.L.; Schmidt, S.A. Aromatic higher alcohols in wine: Implication on aroma and palate attributes during chardonnay aging. Molecules 2021, 26, 4979. [Google Scholar] [CrossRef]
- Rapp, A.; Versini, G. Influence of nitrogen compounds in grapes on aroma compounds of wines. In Developments in Food Science—Food Flavors: Generation, Analysis and Process Influence; Charalambous, G., Ed.; Elsevier: Amsterdam, The Netherlands, 1995; pp. 1659–1694. [Google Scholar]
- Moreira, N.; Araújo, A.M.; Rogerson, F.; Vasconcelos, I.; De Freitas, V.; de Pinho, P.G. Development and optimization of a HS-SPME-GC-MS methodology to quantify volatile carbonyl compounds in Port wines. Food Chem. 2019, 270, 518–526. [Google Scholar] [CrossRef] [PubMed]
- Perestrelo, R.; Silva, C.; Gonçalves, C.; Castillo, M.; Câmara, J.S. An approach of the madeira wine chemistry. Beverages 2020, 6, 12. [Google Scholar] [CrossRef][Green Version]
- Perestrelo, R.; Silva, C.L.; Câmara, J.S. Quantification of furanic derivatives in fortified wines by a highly sensitive and ultrafast analytical strategy based on digitally controlled microextraction by packed sorbent combined with ultrahigh pressure liquid chromatography. J. Chromatogr. A 2015, 1381, 54–63. [Google Scholar] [CrossRef] [PubMed]
- Pereira, V.; Albuquerque, F.M.; Ferreira, A.C.; Cacho, J.; Marques, J.C. Evolution of 5-hydroxymethylfurfural (HMF) and furfural (F) in fortified wines submitted to overheating conditions. Food Res. Int. 2011, 44, 71–76. [Google Scholar] [CrossRef]
- Moutounet, M.; Rabier, P.; Puech, J.L.; Verette, E.; Barillere, M. Analysis by HPLC of extractable substances of oak wood—Application to a Chardonnay wine. Sci. Aliment. 1989, 9, 35–51. [Google Scholar]
- Ortu, E.; Caboni, P. Levels of 5-hydroxymethylfurfural, furfural, 2-furoic acid in sapa syrup, Marsala wine and bakery products. Int. J. Food Prop. 2017, 20 (Suppl. S3), S2543–S2551. [Google Scholar] [CrossRef][Green Version]
- Lytra, G.; Tempere, S.; Le Floch, A.; de Revel, G.; Barbe, J.C. Study of sensory interactions among red wine fruity esters in a model solution. J. Agric. Food Chem. 2013, 61, 8504–8513. [Google Scholar] [CrossRef]
- Makhotkina, O.; Kilmartin, P.A. Hydrolysis and formation of volatile esters in New Zealand Sauvignon blanc wine. Food Chem. 2013, 135, 486–493. [Google Scholar] [CrossRef]
- Ramey, D.; Ough, C.S. Volatile ester hydrolysis or formation during storage of model solutions of wines. J. Agric. Food Chem. 1980, 28, 928–934. [Google Scholar] [CrossRef]
- Garofolo, A.; Piracci, A. Evolution of fatty acid esters during wine storage. Equilibrium constants and activation energies. Bull. L’OIV 1994, 757–758, 225–245. [Google Scholar]
- Petrozziello, M.; Guaita, M.; Motta, S.; Panero, L.; Bosso, A. Analytical and sensory characterization of the aroma of “Langhe DOC Nebbiolo” wines: Influence of the prefermentative cold maceration with dry ice. J. Food Sci. 2011, 76, C525–C534. [Google Scholar] [CrossRef] [PubMed]
- Silva Ferreira, A.C.; Barbe, J.C.; Bertrand, A. 3-Hydroxy-4, 5-dimethyl-2 (5 H)-furanone: A key odorant of the typical aroma of oxidative aged port wine. J. Agric. Food Chem. 2003, 51, 4356–4363. [Google Scholar] [CrossRef] [PubMed]
No. | Code | Age (Year) | n Bottles (Samples) |
---|---|---|---|
1 | AMAR1 | 1 | 5 (15) |
2 | AMAR2 | 2 | 5 (15) |
3 | AMAR3 | 3 | 5 (15) |
4 | AMAR4 | 4 | 5 (15) |
5 | AMAR6 | 6 | 5 (15) |
6 | AMAR11 | 11 | 5 (15) |
7 | AMAR20 | 20 | 5 (15) |
8 | AMAR25 | 25 | 5 (15) |
Attribute | Code | |
---|---|---|
Odor | Red fruits | O-RFr |
Dried fruits | O-DFr | |
Floral | O-Fl | |
Spicy | O-Sp | |
Flavor | Sweetness | F-Sw |
Astringency | F-As | |
Red fruits | F-RFr | |
Dried fruits | F-DFr | |
Floral | F-Fl | |
Spicy | F-Sp | |
Defects (odor + flavor) | Oxidized | D-Ox |
Acidity | D-Ac | |
Animal | D-An |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Bella, G.; Porretti, M.; Albergamo, A.; Mucari, C.; Tropea, A.; Rando, R.; Nava, V.; Lo Turco, V.; Potortì, A.G. Valorization of Traditional Alcoholic Beverages: The Study of the Sicilian Amarena Wine during Bottle Aging. Foods 2022, 11, 2152. https://doi.org/10.3390/foods11142152
Di Bella G, Porretti M, Albergamo A, Mucari C, Tropea A, Rando R, Nava V, Lo Turco V, Potortì AG. Valorization of Traditional Alcoholic Beverages: The Study of the Sicilian Amarena Wine during Bottle Aging. Foods. 2022; 11(14):2152. https://doi.org/10.3390/foods11142152
Chicago/Turabian StyleDi Bella, Giuseppa, Miriam Porretti, Ambrogina Albergamo, Claudio Mucari, Alessia Tropea, Rossana Rando, Vincenzo Nava, Vincenzo Lo Turco, and Angela Giorgia Potortì. 2022. "Valorization of Traditional Alcoholic Beverages: The Study of the Sicilian Amarena Wine during Bottle Aging" Foods 11, no. 14: 2152. https://doi.org/10.3390/foods11142152