# Quantification of Cardiomyocyte Beating Frequency Using Fourier Transform Analysis

^{*}

^{†}

## Abstract

**:**

## 1. Introduction

## 2. Materials and Methods

^{−4}mM β-mercaptoethanol, 1X antibiotics/antimyoctic and 1000 U/mL LIF). Clonal lines were established and were checked to ensure that the MHCα::GFP is expressed in all cardiac cells and only in cardiac cells [19]. For differentiation studies, ES cells were passaged off of MEFs and were differentiated as embryoid bodies (EBs) using the hanging drop method, as previously described [19]. Single EBs, consisting of approximately 300 cells each, were plated in each well of a 48-well plate and were allowed to differentiate for 17–21 days prior to imaging.

- $R\left(t\right)=\frac{F\left(t\right)-{F}_{0}\left(t\right)}{{F}_{0}\left(t\right)}$where F is intensity and t is time. F
_{0}, the local minimum intensity, is found by - ${F}_{0}\left(t\right)=\left\{\mathrm{min}(\overline{F\left(x\right)})|(t+\frac{{\tau}_{1}}{2}\le x\le t+{\tau}_{2},x=t+\frac{{\tau}_{1}}{2}+0.01n\right\}$where n = 0, 1, 2,… etc.
- $\overline{F\left(x\right)}\approx \frac{1}{{\tau}_{1}}{{\displaystyle \int}}_{x-\frac{{\tau}_{1}}{2}}^{x+\frac{{\tau}_{1}}{2}}F\left(z\right)dz$where $\overline{F\left(x\right)}=\frac{1}{{\tau}_{1}}\left\{\frac{{\tau}_{1}}{n}\left[F\left({z}_{1}\right)+2F\left({z}_{2}\right)+2F\left({z}_{3}\right)+\cdots +2F\left({z}_{n-2}\right)+2F\left({z}_{n-1}\right)+F\left({z}_{n}\right)\right]\right\}$And ${z}_{n}={z}_{1}+0.01n$ and ${z}_{1}=x-\frac{{\tau}_{1}}{2}$
- $\left\{t=\frac{{\tau}_{1}}{2}+{\tau}_{0}n|0<t<a-{\tau}_{2}\right\}$where n = 0, 1, 2, … etc. and a = max(t)

_{0}, τ

_{1}, and τ

_{2}are spacing parameters and can be adjusted for different methods of imaging. The parameter τ

_{0}can be adjusted for different frequency images using the following equation:

## 3. Results and Discussion

_{0}= 0.1) satisfied the Nyquist sampling criteria to detect fast, SAN-like beating (<300 bpm at room temperature), with values of τ

_{1}= 0.75 and τ

_{2}= 2 found empirically to be optimal. However, the algorithm can easily be adapted for other time parameters and, therefore, is not limited to use with a single sampling frequency, time length, or type of imaging. Figure 2 shows how the normalization process eliminates low frequency noise from the data.

## Supplementary Materials

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- He, J.Q.; Ma, Y.; Lee, Y.; Thomson, J.A.; Kamp, T.J. Human embryonic stem cells develop into multiple types of cardiac myocytes: Action potential characterization. Circ. Res.
**2003**, 93, 32–39. [Google Scholar] [CrossRef] [PubMed] - Maltsev, V.A.; Wobus, A.M.; Rohwedel, J.; Bader, M.; Hescheler, J. Cardiomyocytes differentiated in vitro from embryonic stem cells developmentally express cardiac-specific genes and ionic currents. Circ. Res.
**1994**, 75, 233–244. [Google Scholar] [CrossRef] [PubMed] - Wobus, A.M.; Kaomei, G.; Shan, J.; Wellner, M.C.; Rohwedel, J.; Ji, G.; Fleischmann, B.; Katus, H.A.; Hescheler, J.; Franz, W.M. Retinoic acid accelerates embryonic stem cell-derived cardiac differentiation and enhances development of ventricular cardiomyocytes. J. Mol. Cell. Cardiol.
**1997**, 29, 1525–1539. [Google Scholar] [CrossRef] [PubMed] - Ronaldson-Bouchard, K.; Ma, S.P.; Yeager, K.; Chen, T.; Song, L.; Sirabella, D.; Morikawa, K.; Teles, D.; Yazawa, M.; Vunjak-Novakovic, G. Advanced maturation of human cardiac tissue grown from pluripotent stem cells. Nature
**2018**, 556, 239–243. [Google Scholar] [CrossRef] [PubMed] - Liu, Y.W.; Chen, B.; Yang, X.; Fugate, J.A.; Kalucki, F.A.; Futakuchi-Tsuchida, A.; Couture, L.; Vogel, K.W.; Astley, C.A.; Baldessari, A.; et al. Human embryonic stem cell-derived cardiomyocytes restore function in infarcted hearts of non-human primates. Nat. Biotechnol.
**2018**, 36, 597–605. [Google Scholar] [CrossRef] [PubMed] - Koh, G.Y.; Soonpaa, M.H.; Klug, M.G.; Pride, H.P.; Cooper, B.J.; Zipes, D.P.; Field, L.J. Stable fetal cardiomyocyte grafts in the hearts of dystrophic mice and dogs. J. Clin. Investig.
**1995**, 96, 2034–2042. [Google Scholar] [CrossRef] [PubMed] - Qu, J.; Plotnikov, A.N.; Danilo, P., Jr.; Shlapakova, I.; Cohen, I.S.; Robinson, R.B.; Rosen, M.R. Expression and function of a biological pacemaker in canine heart. Circulation
**2003**, 107, 1106–1109. [Google Scholar] [CrossRef] [PubMed] - Plotnikov, A.N.; Sosunov, E.A.; Qu, J.; Shlapakova, I.N.; Anyukhovsky, E.P.; Liu, L.; Janse, M.J.; Brink, P.R.; Cohen, I.S.; Robinson, R.B.; et al. Biological pacemaker implanted in canine left bundle branch provides ventricular escape rhythms that have physiologically acceptable rates. Circulation
**2004**, 109, 506–512. [Google Scholar] [CrossRef] [PubMed] - Bucchi, A.; Plotnikov, A.N.; Shlapakova, I.; Danilo, P., Jr.; Kryukova, Y.; Qu, J.; Lu, Z.; Liu, H.; Pan, Z.; Potapova, I.; et al. Wild-type and mutant HCN channels in a tandem biological-electronic cardiac pacemaker. Circulation
**2006**, 114, 992–999. [Google Scholar] [CrossRef] [PubMed] - Plotnikov, A.N.; Shlapakova, I.; Szabolcs, M.J.; Danilo, P., Jr.; Lorell, B.H.; Potapova, I.A.; Lu, Z.; Rosen, A.B.; Mathias, R.T.; Brink, P.R.; et al. Xenografted adult human mesenchymal stem cells provide a platform for sustained biological pacemaker function in canine heart. Circulation
**2007**, 116, 706–713. [Google Scholar] [CrossRef] [PubMed] - Shlapakova, I.N.; Nearing, B.D.; Lau, D.H.; Boink, G.J.; Danilo, P., Jr.; Kryukova, Y.; Robinson, R.B.; Cohen, I.S.; Rosen, M.R.; Verrier, R.L. Biological pacemakers in canines exhibit positive chronotropic response to emotional arousal. Heart Rhythm
**2010**, 7, 1835–1840. [Google Scholar] [CrossRef] [PubMed] - Protze, S.I.; Liu, J.; Nussinovitch, U.; Ohana, L.; Backx, P.H.; Gepstein, L.; Keller, G.M. Sinoatrial node cardiomyocytes derived from human pluripotent cells function as a biological pacemaker. Nat. Biotechnol.
**2017**, 35, 56–68. [Google Scholar] [CrossRef] [PubMed] - Rentschler, S.; Zander, J.; Meyers, K.; France, D.; Levine, R.; Porter, G.; Rivkees, S.A.; Morley, G.E.; Fishman, G.I. Neuregulin-1 promotes formation of the murine cardiac conduction system. Proc. Natl. Acad. Sci. USA
**2002**, 99, 10464–10469. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Wiese, C.; Nikolova, T.; Zahanich, I.; Sulzbacher, S.; Fuchs, J.; Yamanaka, S.; Graf, E.; Ravens, U.; Boheler, K.R.; Wobus, A.M. Differentiation induction of mouse embryonic stem cells into sinus node-like cells by suramin. Int. J. Cardiol.
**2011**, 147, 95–111. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Brown, K.; Legros, S.; Ortega, F.A.; Dai, Y.; Doss, M.X.; Christini, D.J.; Robinson, R.B.; Foley, A.C. Overexpression of Map3k7 activates sinoatrial node-like differentiation in mouse ES-derived cardiomyocytes. PLoS ONE
**2017**, 12, e0189818. [Google Scholar] [CrossRef] [PubMed] - Devarasetty, M.; Forsythe, S.; Shupe, T.D.; Soker, S.; Bishop, C.E.; Atala, A.; Skardal, A. Optical Tracking and Digital Quantification of Beating Behavior in Bioengineered Human Cardiac Organoids. Biosensors
**2017**, 7. [Google Scholar] [CrossRef] [PubMed] - Maddah, M.; Heidmann, J.D.; Mandegar, M.A.; Walker, C.D.; Bolouki, S.; Conklin, B.R.; Loewke, K.E. A non-invasive platform for functional characterization of stem-cell-derived cardiomyocytes with applications in cardiotoxicity testing. Stem Cell Rep.
**2015**, 4, 621–631. [Google Scholar] [CrossRef] [PubMed] - Takahashi, T.; Lord, B.; Schulze, P.C.; Fryer, R.M.; Sarang, S.S.; Gullans, S.R.; Lee, R.T. Ascorbic acid enhances differentiation of embryonic stem cells into cardiac myocytes. Circulation
**2003**, 107, 1912–1916. [Google Scholar] [CrossRef] [PubMed] - Brown, K.; Legros, S.; Artus, J.; Doss, M.X.; Khanin, R.; Hadjantonakis, A.K.; Foley, A. A comparative analysis of extra-embryonic endoderm cell lines. PLoS ONE
**2010**, 5, e12016. [Google Scholar] [CrossRef] [PubMed] - Jia, H.; Rochefort, N.L.; Chen, X.; Konnerth, A. In vivo two-photon imaging of sensory-evoked dendritic calcium signals in cortical neurons. Nat. Protoc.
**2011**, 6, 28–35. [Google Scholar] [CrossRef] [PubMed] - Spencer, M. (Ed.) Fundamentals of Light Microscopy; Cambridge University Press: Cambridge, UK, 1982; Volume 6, p. 3. [Google Scholar]
- Nussbaumer, H.J. Fast Fourier Transform and Convolution Algorithms; Springer: Berlin/Heidelberg, Germany, 1982; Volume 2. [Google Scholar]
- Allessie, M.A.; Boyden, P.A.; Camm, A.J.; Kleber, A.G.; Lab, M.J.; Legato, M.J.; Rosen, M.R.; Schwartz, P.J.; Spooner, P.M.; Van Wagoner, D.R.; et al. Pathophysiology and prevention of atrial fibrillation. Circulation
**2001**, 103, 769–777. [Google Scholar] [CrossRef] [PubMed] - Bracewell, R.N.; Bracewell, R. The Fourier Transform and Its Applications; McGraw Hill: New York, NY, USA, 2000. [Google Scholar]

**Figure 1.**Time-lapse series of beating cardiomyocytes with ROIs (region of interest) placed to extract motion. (

**A**) Phase-contrast image of beating areas within an EB (embryoid bodies), and corresponding MHCα::GFP image confirming cardiomyocyte identity. ROIs (5 × 5 pixels) are placed at the edges of the beating areas (purple, green and orange squares) and a non-beating control area (cyan square). Scale bare = 100 µm; (

**B**) Plot showing changes in the mean pixel intensities within ROIs over time, which correspond to beating motion.

**Figure 2.**Normalization of time series data and FFT (fast Fourier transform) power spectrum analysis to beating frequency. (

**A**) Raw time series data showing high frequency changes in mean intensity combined with slow, sinusoidal changes due to secondary motion imaging artifact. (

**B**) FFT plot of the raw time series data attributes dominant beating frequency (6 bpm) to motion caused by imaging artifact. (

**C**) Normalization of time series data eliminates changes due to secondary imaging artifacts. (

**D**) FFT plot of normalized time series data correctly identifies fast beating (166 bpm) as the dominant frequency.

**Figure 3.**FFT analysis correctly identifies dominant frequencies despite pauses in beating. (

**A**) Time series plot showing intermittent pauses (red bracket) in fast beating. (

**B**) FFT plot reveals a single dominant beating frequency (145 bpm) that is approximately double the value calculated manually by averaging the number of spikes over time (~84 bpm).

**Figure 4.**Comparison of cardiomyocyte contraction and calcium transients using FFT analysis. (

**A**) Time series plot of cardiomyocyte contractions measured by phase-contrast intensity fluctuations and (

**B**) corresponding FFT plot that identifies the dominant beating frequency (58 bpm). (

**C**) Time series plot of cardiomyocyte calcium transients that were measured by Fluo-4 fluorescence intensity fluctuations in the same beating area as (

**A**). Video S2 shows Fluo-4 imaging with the ROI (green square) used to measure intensity fluctuations. (

**D**) FFT plot of Fluo-4 data identifies a dominant beating frequency (65 bpm) based on calcium transients that is similar to the contraction frequency that is based on phase-contrast imaging. Sampling frequency was 18 Hz for both imaging modalities.

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Reno, A.; Hunter, A.W.; Li, Y.; Ye, T.; Foley, A.C.
Quantification of Cardiomyocyte Beating Frequency Using Fourier Transform Analysis. *Photonics* **2018**, *5*, 39.
https://doi.org/10.3390/photonics5040039

**AMA Style**

Reno A, Hunter AW, Li Y, Ye T, Foley AC.
Quantification of Cardiomyocyte Beating Frequency Using Fourier Transform Analysis. *Photonics*. 2018; 5(4):39.
https://doi.org/10.3390/photonics5040039

**Chicago/Turabian Style**

Reno, Allison, Andrew W. Hunter, Yang Li, Tong Ye, and Ann C. Foley.
2018. "Quantification of Cardiomyocyte Beating Frequency Using Fourier Transform Analysis" *Photonics* 5, no. 4: 39.
https://doi.org/10.3390/photonics5040039