# Two-Dimensional Dynamic Beam Steering by Tamm Plasmon Polariton

^{1}

^{2}

^{3}

^{4}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Description of the Model

## 3. Results and Discussion

## 4. Conclusions

## Author Contributions

## Funding

## Data Availability Statement

## Conflicts of Interest

## References

- Li, N.; Ho, C.P.; Xue, J.; Lim, L.W.; Chen, G.; Fu, Y.H.; Lee, L.Y.T. A Progress Review on Solid-State LiDAR and Nanophotonics-Based LiDAR Sensors. Laser Photonics Rev.
**2022**, 16, 2100511. [Google Scholar] [CrossRef] - Kim, I.; Martins, R.J.; Jang, J.; Badloe, T.; Khadir, S.; Jung, H.Y.; Kim, H.; Kim, J.; Genevet, P.; Rho, J. Nanophotonics for light detection and ranging technology. Nat. Nanotechnol.
**2021**, 16, 508–524. [Google Scholar] [CrossRef] [PubMed] - Martins, R.J.; Marinov, E.; Youssef, M.A.B.; Kyrou, C.; Joubert, M.; Colmagro, C.; Gâté, V.; Turbil, C.; Coulon, P.M.; Turover, D.; et al. Metasurface-enhanced light detection and ranging technology. Nat. Commun.
**2022**, 13, 5724. [Google Scholar] [CrossRef] [PubMed] - Huang, L.; Zhang, S.; Zentgraf, T. Metasurface holography: From fundamentals to applications. Nanophotonics
**2018**, 7, 1169–1190. [Google Scholar] [CrossRef] - Bosch, M.; Shcherbakov, M.R.; Won, K.; Lee, H.S.; Kim, Y.; Shvets, G. Electrically Actuated Varifocal Lens Based on Liquid-Crystal-Embedded Dielectric Metasurfaces. Nano Lett.
**2021**, 21, 3849–3856. [Google Scholar] [CrossRef] [PubMed] - Sun, S.; Yang, K.Y.; Wang, C.M.; Juan, T.K.; Chen, W.T.; Liao, C.Y.; He, Q.; Xiao, S.; Kung, W.T.; Guo, G.Y.; et al. High-Efficiency Broadband Anomalous Reflection by Gradient Meta-Surfaces. Nano Lett.
**2012**, 12, 6223–6229. [Google Scholar] [CrossRef] - Li, Z.; Palacios, E.; Butun, S.; Aydin, K. Visible-Frequency Metasurfaces for Broadband Anomalous Reflection and High-Efficiency Spectrum Splitting. Nano Lett.
**2015**, 15, 1615–1621. [Google Scholar] [CrossRef] [PubMed] - Sroor, H.; Huang, Y.W.; Sephton, B.; Naidoo, D.; Vallés, A.; Ginis, V.; Qiu, C.W.; Ambrosio, A.; Capasso, F.; Forbes, A. High-purity orbital angular momentum states from a visible metasurface laser. Nat. Photonics
**2020**, 14, 498–503. [Google Scholar] [CrossRef] - Xu, W.H.; Chou, Y.H.; Yang, Z.Y.; Liu, Y.Y.; Yu, M.W.; Huang, C.H.; Chang, C.T.; Huang, C.Y.; Lu, T.C.; Lin, T.R.; et al. Tamm Plasmon-Polariton Ultraviolet Lasers. Adv. Photonics Res.
**2021**, 3, 2100120. [Google Scholar] [CrossRef] - Liang, Y.; Koshelev, K.; Zhang, F.; Lin, H.; Lin, S.; Wu, J.; Jia, B.; Kivshar, Y. Bound States in the Continuum in Anisotropic Plasmonic Metasurfaces. Nano Lett.
**2020**, 20, 6351–6356. [Google Scholar] [CrossRef] - Bikbaev, R.G.; Maksimov, D.N.; Pankin, P.S.; Ye, M.J.; Chen, K.P.; Timofeev, I.V. Enhanced light absorption in Tamm metasurface with a bound state in the continuum. Photonics Nanostruct. Fundam. Appl.
**2023**, 55, 101148. [Google Scholar] [CrossRef] - Wu, F.; Qin, M.; Xiao, S. Quasi-bound state in the continuum supported by a compound grating waveguide structure for high-figure-of-merit refractive-index sensing. J. Appl. Phys.
**2022**, 132, 193101. [Google Scholar] [CrossRef] - Maksimov, D.N.; Gerasimov, V.S.; Bogdanov, A.A.; Polyutov, S.P. Enhanced sensitivity of an all-dielectric refractive index sensor with an optical bound state in the continuum. Phys. Rev. A
**2022**, 105, 033518. [Google Scholar] [CrossRef] - Li, J.; Yu, P.; Zhang, S.; Liu, N. Electrically-controlled digital metasurface device for light projection displays. Nat. Commun.
**2020**, 11, 3574. [Google Scholar] [CrossRef] - Su, H.; Wang, H.; Zhao, H.; Xue, T.; Zhang, J. Liquid-Crystal-Based Electrically Tuned Electromagnetically Induced Transparency Metasurface Switch. Sci. Rep.
**2017**, 7, 17378. [Google Scholar] [CrossRef] [PubMed] - Chen, K.P.; Ye, S.C.; Yang, C.Y.; Yang, Z.H.; Lee, W.; Sun, M.G. Electrically tunable transmission of gold binary-grating metasurfaces integrated with liquid crystals. Opt. Express
**2016**, 24, 16815. [Google Scholar] [CrossRef] [PubMed] - Belyaev, B.A.; Leksikov, A.A.; Serzhantov, A.M.; Shabanov, V.F. Controllable liquid-crystal microwave phase shifter. Tech. Phys. Lett.
**2008**, 34, 463–466. [Google Scholar] [CrossRef] - Hashemi, M.R.M.; Yang, S.H.; Wang, T.; Sepúlveda, N.; Jarrahi, M. Electronically-Controlled Beam-Steering through Vanadium Dioxide Metasurfaces. Sci. Rep.
**2016**, 6, 35439. [Google Scholar] [CrossRef] - Yang, D.; Wang, W.; Lv, E.; Wang, H.; Liu, B.; Hou, Y.; Chen, J.-h. Programmable VO2 metasurface for terahertz wave beam steering. iScience
**2022**, 25, 104824. [Google Scholar] [CrossRef] - De Galarreta, C.R.; Alexeev, A.; Bertolotti, J.; Wright, C.D. Phase-Change Metasurfaces for Dyamic Beam Steering and Beam Shaping in the Infrared. In Proceedings of the 2018 IEEE International Symposium on Circuits and Systems (ISCAS), Florence, Italy, 27–30 May 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Huang, Y.W.; Lee, H.W.H.; Sokhoyan, R.; Pala, R.A.; Thyagarajan, K.; Han, S.; Tsai, D.P.; Atwater, H.A. Gate-Tunable Conducting Oxide Metasurfaces. Nano Lett.
**2016**, 16, 5319–5325. [Google Scholar] [CrossRef] - Thureja, P.; Shirmanesh, G.K.; Fountaine, K.T.; Sokhoyan, R.; Grajower, M.; Atwater, H.A. Array-Level Inverse Design of Beam Steering Active Metasurfaces. ACS Nano
**2020**, 14, 15042–15055. [Google Scholar] [CrossRef] [PubMed] - Bikbaev, R.G.; Maksimov, D.N.; Chen, K.P.; Timofeev, I.V. Double-Resolved Beam Steering by Metagrating-Based Tamm Plasmon Polariton. Materials
**2022**, 15, 6014. [Google Scholar] [CrossRef] [PubMed] - Tamm, I.E. Tamm_t1_1975ru.pdf. Phys. Z. Sowjetunion
**1932**, 1, 733. [Google Scholar] - Kaliteevski, M.; Iorsh, I.; Brand, S.; Abram, R.A.; Chamberlain, J.M.; Kavokin, A.V.; Shelykh, I.A. Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror. Phys. Rev. B
**2007**, 76, 165415. [Google Scholar] [CrossRef] - Vetrov, S.Y.; Bikbaev, R.G.; Timofeev, I. Optical Tamm states at the interface between a photonic crystal and a nanocomposite with resonance dispersion. J. Exp. Theor. Phys.
**2013**, 117, 988–998. [Google Scholar] [CrossRef] - Bikbaev, R.G.; Vetrov, S.Y.; Timofeev, I.V. Hyperbolic metamaterial for the Tamm plasmon polariton application. J. Opt. Soc. Am. B
**2020**, 37, 2215. [Google Scholar] [CrossRef] - Sasin, M.E.; Seisyan, R.P.; Kaliteevski, M.; Brand, S.; Abram, R.A.; Chamberlain, J.M.; Egorov, A.Y.; Vasil’ev, A.P.; Mikhrin, V.S.; Kavokin, A.V. Tamm plasmon polaritons: Slow and spatially compact light. Appl. Phys. Lett.
**2008**, 92, 251112. [Google Scholar] [CrossRef] - Chen, Y.; Yang, Z.; Ye, M.; Wu, W.; Chen, L.; Shen, H.; Ishii, S.; Nagao, T.; Chen, K. Tamm Plasmon Polaritons Hydrogen Sensors. Adv. Phys. Res.
**2023**, 2200094. [Google Scholar] [CrossRef] - Zhang, W.; Yu, S. Bistable switching using an optical Tamm cavity with a Kerr medium. Opt. Commun.
**2010**, 283, 2622–2626. [Google Scholar] [CrossRef] - Hamidi, S.; Moradlou, R. Tamm plasmon boosting Faraday rotation in a coupled resonator magneto-plasmonic structure. J. Magn. Magn. Mater.
**2019**, 469, 364–372. [Google Scholar] [CrossRef] - Wu, J.; Yang, X.; Wang, Z.; Wu, B.; Wu, X. Giant enhancement of the transverse magneto-optical Kerr effect based on the Tamm plasmon polaritons and its application in sensing. Opt. Laser Technol.
**2022**, 154, 108353. [Google Scholar] [CrossRef] - Zhang, X.L.; Song, J.F.; Li, X.B.; Feng, J.; Sun, H.B. Optical Tamm states enhanced broad-band absorption of organic solar cells. Appl. Phys. Lett.
**2012**, 101, 243901. [Google Scholar] [CrossRef] - Wang, J.; Zhu, Y.; Wang, W.; Li, Y.; Gao, R.; Yu, P.; Xu, H.; Wang, Z. Broadband Tamm plasmon-enhanced planar hot-electron photodetector. Nanoscale
**2020**, 12, 23945–23952. [Google Scholar] [CrossRef] [PubMed] - Wu, F.; Xiao, S.; Xiao, S. Wide-angle high-efficiency absorption of graphene empowered by an angle-insensitive Tamm plasmon polariton. Opt. Express
**2023**, 31, 5722. [Google Scholar] [CrossRef] [PubMed] - Qing, Y.M.; Ma, H.F.; Yu, S.; Cui, T.J. Tunable dual-band perfect metamaterial absorber based on a graphene-SiC hybrid system by multiple resonance modes. J. Phys. D Appl. Phys.
**2018**, 52, 015104. [Google Scholar] [CrossRef] - Qing, Y.M.; Ma, H.F.; Cui, T.J. Flexible control of light trapping and localization in a hybrid Tamm plasmonic system. Opt. Lett.
**2019**, 44, 3302. [Google Scholar] [CrossRef] - Gazzano, O.; Michaelis Vasconcellos, S.; Gauthron, K.; Symonds, C.; Voisin, P.; Bellessa, J.; Lemaître, A.; Senellart, P. Single photon source using confined Tamm plasmon modes. Appl. Phys. Lett.
**2012**, 100, 232111. [Google Scholar] [CrossRef] - Vinogradov, A.P.; Dorofeenko, A.V.; Erokhin, S.G.; Inoue, M.; Lisyansky, A.A.; Merzlikin, A.M.; Granovsky, A.B. Surface state peculiarities in one-dimensional photonic crystal interfaces. Phys. Rev. B
**2006**, 74, 045128. [Google Scholar] [CrossRef] - Xue, C.H.; Jiang, H.T.; Lu, H.; Du, G.Q.; Chen, H. Efficient third-harmonic generation based on Tamm plasmon polaritons. Opt. Lett.
**2013**, 38, 959. [Google Scholar] [CrossRef] - Afinogenov, B.I.; Bessonov, V.O.; Fedyanin, A.A. Second-harmonic generation enhancement in the presence of Tamm plasmon-polaritons. Opt. Lett.
**2014**, 39, 6895. [Google Scholar] [CrossRef] - Treshin, I.V.; Klimov, V.V.; Melentiev, P.N.; Balykin, V.I. Optical Tamm state and extraordinary light transmission through a nanoaperture. Phys. Rev. A
**2013**, 88, 023832. [Google Scholar] [CrossRef] - Gessler, J.; Baumann, V.; Emmerling, M.; Amthor, M.; Winkler, K.; Höfling, S.; Schneider, C.; Kamp, M. Electro optical tuning of Tamm-plasmon exciton-polaritons. Appl. Phys. Lett.
**2014**, 105, 181107. [Google Scholar] [CrossRef] - Zhang, X.L.; Feng, J.; Han, X.C.; Liu, Y.F.; Chen, Q.D.; Song, J.F.; Sun, H.B. Hybrid Tamm plasmon-polariton/microcavity modes for white top-emitting organic light-emitting devices. Optica
**2015**, 2, 579. [Google Scholar] [CrossRef] - Chang, C.-Y.; Chen, Y.-H.; Tsai, Y.-L.; Kuo, H.-C.; Chen, K.-P. Tunability and Optimization of Coupling Efficiency in Tamm Plasmon Modes. IEEE J. Sel. Top. Quantum Electron.
**2015**, 21, 262–267. [Google Scholar] [CrossRef] - Vyunishev, A.M.; Pankin, P.S.; Svyakhovskiy, S.E.; Timofeev, I.; Vetrov, S.Y. Quasiperiodic one-dimensional photonic crystals with adjustable multiple photonic band gaps. Opt. Lett.
**2017**, 42, 3602–3605. [Google Scholar] [CrossRef] - Vetrov, S.Y.; Pyatnov, M.V.; Timofeev, I.V. Photonic defect modes in a cholesteric liquid crystal with a resonant nanocomposite layer and a twist defect. Phys. Rev. E Stat. Nonlinear Soft Matter Phys.
**2014**, 90. [Google Scholar] [CrossRef] - Lin, M.Y.; Xu, W.H.; Bikbaev, R.G.; Yang, J.H.; Li, C.R.; Timofeev, I.V.; Lee, W.; Chen, K.P. Chiral-Selective Tamm Plasmon Polaritons. Materials
**2021**, 14, 2788. [Google Scholar] [CrossRef] - Chen, L.R.; Chang, C.J.; Hong, K.B.; Weng, W.C.; Chuang, B.H.; Huang, Y.W.; Lu, T.C. Static Beam Steering by Applying Metasurfaces on Photonic-Crystal Surface-Emitting Lasers. J. Light. Technol.
**2022**, 40, 7136–7141. [Google Scholar] [CrossRef] - Johnson, P.; Christy, R.W. Optical constants of the noble metals. Phys. Rev. B
**1972**, 6, 4370–4379. [Google Scholar] [CrossRef] - Joannopoulos, J.D.; Johnson, S.G.; Winn, J.N.; Meade, R.D. Photonic Crystals: Molding the Flow of Light; Princeton University Press: Princeton, NJ, USA, 2008. [Google Scholar]
- Yang, Z.Y.; Ishii, S.; Yokoyama, T.; Dao, T.D.; Sun, M.G.; Pankin, P.S.; Timofeev, I.; Nagao, T.; Chen, K.P. Narrowband Wavelength Selective Thermal Emitters by Confined Tamm Plasmon Polaritons. ACS Photonics
**2017**, 4, 2212–2219. [Google Scholar] [CrossRef] - Kim, S.I.; Park, J.; Jeong, B.G.; Lee, D.; Yang, K.Y.; Park, Y.Y.; Ha, K.; Choo, H. Two-dimensional beam steering with tunable metasurface in infrared regime. Nanophotonics
**2022**, 11, 2719–2726. [Google Scholar] [CrossRef] - Sabri, R.; Mosallaei, H. Inverse design of perimeter-controlled InAs-assisted metasurface for two-dimensional dynamic beam steering. Nanophotonics
**2022**, 11, 4515–4530. [Google Scholar] [CrossRef] [PubMed]

**Figure 2.**(

**a**) The real part of the dielectric permittivity $\Re \epsilon $ of the ITO layer for different applied bias voltage. (

**b**) Reflectance spectra of the bare PhC and metasurface. (

**c**) Reflectance spectra of the structure presented in Figure 1. (

**d**) Distribution of the refractive index and local field intensity in the structure at the TPP wavelength (${\lambda}_{TPP}=1548$ nm) at a bias voltage of 4 volts. (

**e**) Simulated phase shift as a function of applied bias voltage between Au nanostripes and monolayer graphene. The results presented in (

**a**,

**e**) subplots were obtained for fixed wavelength at 1550 nm. The legend on subplot (

**a**) is relevant for subplots (

**c**,

**e**).

**Figure 3.**Phase distribution along metasurface and far field intensity for different values $\theta $ and $\varphi $. In this case, $x=tan\left(\theta \right)cos\left(\varphi \right)$, $y=tan\left(\theta \right)sin\left(\varphi \right)$, ${n}_{x}={n}_{y}=50$ are ordinal numbers of nanobricks along x and y-direction, respectively.

**Figure 4.**Phase distribution along metasurface and far field intensity for different values $\theta $ and $\varphi $ and contact numbers. In this case, $x=tan\left(\theta \right)cos\left(\varphi \right)$, $y=tan\left(\theta \right)sin\left(\varphi \right)$.

**Figure 5.**$\Delta ={I}_{{N}^{2}}-{I}_{2N}$ for the proposed structure. In this case ${k}_{x}=cos\left(\varphi \right)sin\left(\theta \right)$, ${k}_{y}=sin\left(\varphi \right)sin\left(\theta \right)$.

Carrier density, N (cm${}^{-3}$) | 2.2918 × 10${}^{20}$ |

Damping constant, $\mathsf{\Gamma}$ (Hz) | 1.7588 × 10${}^{14}$ |

High-frequency permittivity, ${\epsilon}_{inf}$ | 4.2345 |

Effective mass, ${m}^{\ast}$ | 0.2525 |

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Bikbaev, R.G.; Chen, K.-P.; Timofeev, I.V.
Two-Dimensional Dynamic Beam Steering by Tamm Plasmon Polariton. *Photonics* **2023**, *10*, 1151.
https://doi.org/10.3390/photonics10101151

**AMA Style**

Bikbaev RG, Chen K-P, Timofeev IV.
Two-Dimensional Dynamic Beam Steering by Tamm Plasmon Polariton. *Photonics*. 2023; 10(10):1151.
https://doi.org/10.3390/photonics10101151

**Chicago/Turabian Style**

Bikbaev, Rashid G., Kuo-Ping Chen, and Ivan V. Timofeev.
2023. "Two-Dimensional Dynamic Beam Steering by Tamm Plasmon Polariton" *Photonics* 10, no. 10: 1151.
https://doi.org/10.3390/photonics10101151