Next Article in Journal
COVID-19 Spatial Diffusion: A Markovian Agent-Based Model
Next Article in Special Issue
Colorings of (r, r)-Uniform, Complete, Circular, Mixed Hypergraphs
Previous Article in Journal
Stochastic Chebyshev Goal Programming Mixed Integer Linear Model for Sustainable Global Production Planning
Previous Article in Special Issue
Steiner Configurations Ideals: Containment and Colouring
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Hypercycle Systems of 5-Cycles in Complete 3-Uniform Hypergraphs

1
Machine Perception Laboratory, Institute for Computer Science and Control (SZTAKI), Kende u. 13-17, 1111 Budapest, Hungary
2
Alfréd Rényi Institute of Mathematics, Reáltanoda u. 13-15, 1053 Budapest, Hungary
3
Department of Computer Science and Systems Technology, University of Pannonia, Egyetem u. 10, 8200 Veszprém, Hungary
*
Author to whom correspondence should be addressed.
Mathematics 2021, 9(5), 484; https://doi.org/10.3390/math9050484
Submission received: 8 December 2020 / Revised: 28 January 2021 / Accepted: 17 February 2021 / Published: 26 February 2021

Abstract

:
In this paper, we consider the problem of constructing hypercycle systems of 5-cycles in complete 3-uniform hypergraphs. A hypercycle system C ( r , k , v ) of order v is a collection of r-uniform k-cycles on a v-element vertex set, such that each r-element subset is an edge in precisely one of those k-cycles. We present cyclic hypercycle systems C ( 3 , 5 , v ) of orders v = 25 , 26 , 31 , 35 , 37 , 41 , 46 , 47 , 55 , 56 , a highly symmetric construction for v = 40 , and cyclic 2-split constructions of orders 32 , 40 , 50 , 52 . As a consequence, all orders v 60 permitted by the divisibility conditions admit a C ( 3 , 5 , v ) system. New recursive constructions are also introduced.

1. Introduction

A hypergraph H of order v is a pair ( X , E ) , where X is the vertex set with X = v and E is a family of subsets of X called edges. If all edges in E have size r, then H is said to be r-uniform. The complete r-uniform hypergraph of order v, denoted by K v ( r ) , is the hypergraph in which E consists of all the r-element subsets of X.
There are various ways to define cycles in hypergraphs. In this paper, we deal with an object called the tight r-uniform hypercycle of length k ( k > r 3 )—also called cycloid in another context—which consists of k vertices and k edges; namely, it is a cyclic sequence of k vertices of X in which any r consecutive vertices, and only those, form an edge. If r is understood, we simply call it a k-cycle. An r-uniform hypercycle of length k is denoted by C ( r , k ) , and the integers 0 , 1 , , v 1 are used for the vertices. For example, the cyclic sequence ( 0 , 1 , 2 , 3 , 4 ) represents a C ( 3 , 5 ) cycle for which the edges are the 3-sets { 0 , 1 , 2 } , { 1 , 2 , 3 } , { 2 , 3 , 4 } , { 3 , 4 , 0 } , and { 4 , 0 , 1 } . (Inside a 3-set, the order of vertices does not matter, but the order in a 5-tuple is of essence, except that any cyclic shift and the reversal of the sequence practically mean the same cycle.)
As a relative of Steiner systems, a hypercycle system C ( r , k , v ) of order v is a family C of k-cycles such that each edge of K v ( r ) is contained in precisely one k-cycle of C . A very natural but rather hard problem is to determine those r , k , v for which a C ( r , k , v ) exists.
In the case of k = r + 1 , the cycle is a complete hypergraph at the same time; hence, there is a bijection between C ( r , r + 1 , v ) systems and Steiner systems S ( k 1 , k , v ) of which the study is an important classical issue in design theory. Apart from this, the first paper written on hypercycle systems is [1], where Bailey and Stevens initiated the study of Hamiltonian cycle decompositions, i.e., the case of k = v . They showed for r = 3 that it is possible to connect any edge of K v ( 3 ) to a triplet of differences, and they developed a numerical algorithm. In this way, they settled the feasible cases for r = 3 up to v 16 in the affirmative, with two exceptions, and solved the case v = k = 9 , r = 4 . Their results on r = 3 were extended to the larger range of v 32 by Meszka and Rosa [2], who proposed the study of a general problem with r < k < v , too, and introduced further variants. Before turning to 3-uniform 5-cycles, which is the main subject of the present paper, we also mention another track of a remarkably efficient computer search by Jirimutu et al. with the parameters r = 3 and k = 7 , resulting in constructions for v = 7 , 8 , 14 , 16 , 22 , 23 , 29 , 37 , 43 , 44 , 45 , 58 ; see the series of papers [3,4,5,6,7].
From now on, we deal with C ( 3 , 5 , v ) systems and use the shorter term “cycle system” for them. Although such systems gained some attention in the past couple of years, there are still not many previous results regarding this topic. The first constructions were published by Meszka and Rosa in [2]. Certainly, the system of order 5 is trivial as C ( 3 , 5 ) is self-complementary. Meszka and Rosa established via a computer search that there are exactly two non-isomorphic cycle systems of order 7 (neither of them is cyclic), and there exist cycle systems of orders 10, 11, and 16. They also described a recursive rule for cases where 3-wise balanced Steiner systems of block size 5 exist and observed further that the spherical geometries S ( 3 , 5 , 4 n + 1 ) imply the existence of a cycle system for every order v of the form 4 n + 1 . The four base blocks of a cyclic S ( 3 , 5 , 17 ) system are listed, e.g., on page 319 of [8].
Gionfriddo, Milazzo, and the second author [9] developed further recursions for building larger cycle systems from smaller ones and applied a difference method to design new initial configurations, up to v = 22 . This work, finally published in [10], was one in an area in which the configurations were constructed by hand rather than by computer search; the paper included several hints concerning the concepts that helped establish results in this way. In the meantime, an idependent research was carried out by Li, Lei, and Jirimutu, finding constructions for v = 20 [11] and v = 32 [12] and for v = 22 by Huo, Zhao, Feng, and Yang, as cited in [11]. Beyond explicit constructions, that paper [13] contained the recursion v 5 v (which also follows from a more general construction in [10]) and claims a system for v = 26 . However, the generators for v = 26 contain ( 0 , 4 , 21 , 9 , 16 ) as cycle #12 and ( 0 , 4 , 18 , 12 , 16 ) as cycle #18, both of them covering the vertex triple { 0 , 4 , 16 } , hence not satisfying the requirements. Later in this paper, we present our solution to C ( 3 , 5 , 26 ) .

1.1. Our Results

In constructions, two types of systems occur frequently. Assuming that the vertices are represented with the integers 0 , 1 , , v 1 , a system is cyclic if the mapping i i + 1 ( mod v ) is an automorphism. In addition, if a system is of even order 2 v and contains two vertex-disjoint subsystems of order v, we say with the terminology of [9] that it is a 2-split system.
Every C ( 3 , 5 ) contains exactly five edges of K v ( 3 ) and exactly three edges incident with any of its vertices. Hence, ( v 3 ) has to be a multiple of 5 and ( v 1 2 ) a multiple of 3. Analogous observations are valid for 2-split systems of order 2 v and for their subsystems of order v. From these facts, one can conclude that the following conditions are necessary. Natural numbers v belonging to the listed residue classes are referred to as feasible orders.
Lemma 1. (Feasible residue classes for the spectrum) 
(i)
If there exist a system C ( 3 , 5 , v ) of order v, then v 1 , 2 , 5 , 7 , 10 , 11 ( mod 15 ) [2].
(ii)
If there exists a 2-split system C ( 3 , 5 , 2 v ) of order 2 v , then 2 v 2 , 10 , 20 , 22 ( mod 30 ) [10].
Divisibility conditions similar to those mentioned before the lemma can be formulated for every Steiner system S ( t , k , v ) , i.e., for partitioning the edge set of K v ( t ) into copies of K k ( t ) , and more generally for the existence of edge decompositions of K v ( r ) into subhypergraphs isomorphic to H for any given r-uniform hypergraph H. Keevash [14] introduced deep methods and proved that all but finitely many orders v satisfying the divisibility conditions admit an S ( t , k , v ) system for any parameters t and k. Glock, Kühn, Lo, and Osthus [15] extended this result from K v ( t ) -decompositions to H-decompositions for all uniform hypergraphs H. For technical details, we refer to Theorem 1.1 of [15] and Theorem 1.5 of [16]. As a consequence, it follows for every v large enough that the conditions in ( i ) are not only necessary but also sufficient for the existence of C ( 3 , 5 , v ) systems. Based on our results, we have the impression that they are sufficient in a much stronger sense, namely without any exceptions. This is expressed in the following two-part conjecture.
Conjecture 1. Let v be a feasible order.
( i )
If v 1 , 2 , 5 , 7 , 10 , 11 ( mod 15 ) and v 7 , then there exists a cyclic C ( 3 , 5 , v ) system of order v.
( i i )
If 2 v 2 , 10 , 20 , 22 ( mod 30 ) , then there exists a cyclic 2-split C ( 3 , 5 , 2 v ) system of order 2 v .
Our constructions in Section 5 verify this conjecture for a certain range of orders. We summarize this in the following assertion, indicating the smallest open cases as upper bounds on the orders of cycle systems.
Theorem 1. Let v be a feasible order.
( i )
If v 1 , 2 , 5 , 7 , 10 , 11 ( mod 15 ) , and v 7 , then there exists a cyclic C ( 3 , 5 , v ) system of order v for all v < 61 .
( i i )
If 2 v 2 , 10 , 20 , 22 ( mod 30 ) , then there exists a cyclic 2-split C ( 3 , 5 , 2 v ) system of order 2 v for all 2 v < 62 .
One step in the constructions of Section 5 for odd v is to find a packing of ( v 2 ) symmetric cycles, a subsystem with a quadratic number of cycles that can be generated by just one cycle and two automorphisms of the subsystem. The feasibility of this step is analyzed in Section 4.
In Section 3, we describe some recursive steps applicable to building larger cycle systems from smaller ones. The prerequisites for them are given in Section 2, where we find decompositions of some auxiliary constructions. We believe that these building blocks will be useful in many further constructions in the future, too.
A remarkable particular consequence of the method is a C ( 3 , 5 , 40 ) system of order 40, which is generated by as few as seven cycles via two types of mappings (see Corollary 1).
In order to help the reader check the correctness of the constructions, details of the calculation are listed in numerous tables in the Appendix A.

1.2. Difference Triplets

We conclude this introduction with some technical definitions needed in the design and description of cyclic systems.
The vertex set of a cyclic system of order v is assumed to be Z v . The distance of two vertices i , j is their shortest distance “along the cycle”, that is i j = min { i j , v i j } . A 5-cycle, say C = ( a , b , c , d , e ) , covers the five 3-element sets (vertex triples) { a , b , c } , { b , c , d } , { c , d , e } , { d , e , a } , and { e , a , b } .
Having fixed the value of v, a base cycle is a cycle C = ( a , b , c , d , e ) for which the orbit under rotation i i + 1 (mod v) should also be included in the system. Assume that T = { p , q , r } is a vertex triple in a base cycle C. As defined in [10], the difference triplet associated with T is a cyclic triplet of integers; it is obtained in the following way. First, find the increasing order of elements in T, i.e., let 0 i < j < k < v be such that { i , j , k } = { p , q , r } . Then, either of
( i j , j k , k i ) , ( j k , k i , i j ) , ( k i , i j , j k )
represents the difference triplet of T. Usually (but not always), we take the lexicographically smallest of these three. A difference triplet of type ( i , i , j ) is also called a “symmetric difference”, and we use the term “reflected difference” for a pair { ( i , j , k ) , ( i , k , j ) } of difference triplets in which the three distances i , j , k are all distinct.

2. Partial Cycle Systems of Orders 10 and 20

In this section, we present two auxiliary configurations that are useful in building larger cycle systems.

2.1. Decomposing a Doubled 5-Cycle

For the moment, let X = { a , b , c , d , e } be a 5-element set on which the 3-uniform 5-cycle C = ( a , b , c , d , e ) is taken. That is, C has five edges a b c , b c d , c d e , d e a , e a b (where the order of vertices in an edge is irrelevant). We double each vertex:
X 1 = { a 1 , b 1 , c 1 , d 1 , e 1 } , X 2 = { a 2 , b 2 , c 2 , d 2 , e 2 } .
In this way, each edge of C gives rise to eight vertex triples in X 1 X 2 . For example, b c d yields b 1 c 1 d 1 , b 1 c 1 d 2 , b 1 c 2 d 1 , b 1 c 2 d 2 , b 2 c 1 d 1 , b 2 c 1 d 2 , b 2 c 2 d 1 , and b 2 c 2 d 2 .
Definition 1.
A doubled 5-cycle consists of 10 vertices and 40 edges, as augmented from X to X 1 X 2 above.
Lemma 2.
The 40 edges of a doubled 5-cycle can be decomposed into eight 5-cycles.
Proof. 
A decomposition is obtained by taking the following eight cycles:
( a 1 , b 1 , c 1 , d 1 , e 1 ) , ( a 1 , b 1 , c 2 , d 2 , e 2 ) , ( a 1 , b 2 , c 1 , d 2 , e 1 ) , ( a 1 , b 2 , c 2 , d 1 , e 2 ) ,
( a 2 , b 1 , c 1 , d 2 , e 2 ) , ( a 2 , b 1 , c 2 , d 1 , e 1 ) , ( a 2 , b 2 , c 1 , d 1 , e 2 ) , ( a 2 , b 2 , c 2 , d 2 , e 1 ) .
It can be checked that every edge of the doubled cycle occurs in precisely one of the eight cycles above. □

2.2. Decomposing the Complement of a Blown-Up 4-Cycle

Here, we present a partial cycle system of order 20. The complement of the structure introduced below is the 3-uniform hypergraph, which is constructed by taking four 5-element vertex classes (sets of vertices) in cyclic order and by taking all vertex triples that are either inside one class or in the union of two consecutive classes in the fixed cyclic order.
Definition 2. 
Let H 4 × 5 denote the 3-uniform hypergraph of order 20 for which the vertex set is X = A B C D , with A = B = C = D = 5 , and for which the edge set consists of the vertex triples that
  • meet exactly three of the vertex classes A , B , C , D or
  • meet both A and C, or both B and D.
Lemma 3.
There exists a C ( 3 , 5 , 20 ) system that contains an embedded decomposition of H 4 × 5 as a partial subsystem.
Proof. 
The structure of the construction is shown in Figure 1 and Figure 2. Inside each of A , B , C , D , we take a C ( 3 , 5 , 5 ) . We also know that there exists a 2-split system of order 10 (see [10]); hence, the families of crossing triples of A B , B C , C D , and D A are decomposable into 5-cycles. What remains to be covered are the triples connecting A and C, or B and D or meeting exactly three of A , B , C , and D. Let us call the latter an ABC type (which can mean any of A B C , B C D , C D A , and D A B ) and the former two together an A A C type (which can mean A A C , B B D , C C A , and D D B ).
We have to cover 4 · 10 · 5 = 20 · 10 AAC-type triples and 4 · 5 3 = 20 · 25 ABC-type triples, altogether 20 · 35 triples, which therefore need 20 · 7 cycles. This is generated by the seven cycles listed in Table 1a. Figure 2 illustrates ACACB and ACABD cycles of these 7 cycles, highlighted in the table.
One can see that
  • each ACACB cycle covers two AAC-type triples and three ABC-type triples,
  • each ACABD cycle covers one AAC-type triple and four ABC-type triples.
Hence, the seven cycles cover 3 · 2 + 4 = 10 AAC-type triples and 3 · 3 + 4 · 4 = 25 ABC-type triples.
Now, from each of these seven cycles, we generate 20 cycles for C ( 3 , 5 , 20 ) by defining the following two types of automorphisms:
  • rotation of order four among the vertex classes, A B C D A ;
  • simultaneous rotation among the indices a i a i + i , b i b i + i , c i c i + i , d i d i + i , for i = 1 , 2 , 3 , 4 , 5 modulo 5 (where the image of 5 is 1).
The effect of these transformations on the cycles ( a 1 c 1 a 2 c 2 b 1 ) and ( a 2 c 5 a 1 b 1 d 4 ) is detailed in Table 1b,c, respectively.
In this way, 20 · 7 cycles are defined as needed, and one can check that each vertex triple is covered exactly once. □
Remark 1.
In the system C ( 3 , 5 , 20 ) constructed above, each of A B , B C , C D , and D A induces a 2-split C ( 3 , 5 , 10 ) system.

3. Recursive Constructions

In this section, we build some constructions that may be applied recursively. The method of the first subsection works for every order v for which there is a known 5-cycle system. The construct of the second subsection is applicable when an auxiliary partial system is available too. This requirement is fulfilled by H 4 × 5 , with the help of which a highly symmetric C ( 3 , 5 , 40 ) system can be designed.

3.1. General Step v 10 v

The next construction builds 2-split systems; hence, it generates systems that are suitable for further recursions.
Theorem 2.
If there exists a C ( 3 , 5 , v ) , then a 2-split C ( 3 , 5 , 10 v ) also exists.
Proof. 
Applying the ( C ( 3 , 5 , v ) C ( 3 , 5 , w ) ) C ( 3 , 5 , v w ) recursion of [10], [Theorem 4.3], for the particular case of w = 5 starting from a C ( 3 , 5 , v ) system, we obtain a C ( 3 , 5 , 5 v ) that has the following structure. The vertex set is partitioned into 5-element classes, say X = X 1 X v ; each class X i induces a C ( 3 , 5 , 5 ) ; the union of any two classes induces a 2-split C ( 3 , 5 , 10 ) ; and every vertex triple meeting three of the classes is covered by a cycle, all of the vertices of which are in mutually distinct classes.
The construction for C ( 3 , 5 , 10 v ) is illustrated with Figure 3. We create two vertex-disjoint copies of a C ( 3 , 5 , 5 v ) with the structure described above, say on the vertex sets X 1 = X 1 , 1 X 1 , v and X 2 = X 2 , 1 X 2 , v . For i = 1 , , v , we keep the C ( 3 , 5 , 5 ) subsystems inside both X 1 , i and X 2 , i and insert the crossing cycles of a 2-split C ( 3 , 5 , 10 ) between X 1 , i and X 2 , i .
For all 1 i < j v , we also keep the crossing cycles of a 2-split C ( 3 , 5 , 10 ) inside X 1 , i X 1 , j as well as inside X 2 , i X 2 , j . The remaining triples inside X 1 , i X 1 , j X 2 , i X 2 , j together form a hypergraph isomorphic to H 4 × 5 , which we decompose into 5-cycles by Lemma 3.
Finally, in order to cover the remaining vertex triples, we perform the following. Any cycle C that meets more than two classes of C ( 3 , 5 , 5 v ) specifies a 5-cycle C 1 in X 1 and a 5-cycle C 2 in X 2 . We replace C 1 C 2 with the eight 5-cycles constructed in Lemma 2. This completes the construction of C ( 3 , 5 , 10 v ) .
As it can be seen, in the system constructed in this way, every vertex triple is contained in one and only one 5-cycle. Hence, a C ( 3 , 5 , 10 v ) system is obtained. □
Remark 2.
Applying this result for known values and for the newly constructed systems, the existence problem is now solved for some further v = 70 , 160 , 200 , 260 , 310 , 320 , 350 , 370 , 460 , 470 , 520 , 550 , 560 , 700 , 800 , 820 , 1000 , Moreover, there are further values for which the existence of systems was already known, but systems with the 2-split property are new: 100 , 110 , 400 , 410 , and 500.

3.2. Conditional Step v 8 v

First, we define a parametrized hypergraph that generalizes the structure of H 4 × 5 . For the sake of applicability, the parameter k is assumed to be feasible for the existence of a C ( 3 , 5 , k ) system.
Definition 3.
Let H 4 × k denote the 3-uniform hypergraph of order 4 k for which the vertex set is X = A B C D , with | A | = | B | = | C | = | D | = k and for which the edge set consists of those vertex triples that
  • meet exactly three of the vertex classes A , B , C , or D or
  • meet both A and C, or both B and D.
Theorem 3.
If H 4 × v admits a decomposition into 5-cycles and there exists a 2-split C ( 3 , 5 , 2 v ) system, then a system C ( 3 , 5 , 8 v ) exists.
Proof. 
The basic scheme of the construction is as follows.
1.
Start with a Steiner Quadruple System of order 8.
2.
Take a 2 K 2 -decomposition of the complete graph K 8 embedded into SQS ( 8 ) .
3.
Substitute a v-element set into each point of SQS ( 8 ) and a C ( 3 , 5 , v ) system into each of those v-sets.
4.
Insert 14 copies of the 5-cycle decomposition of H 4 × v in each blown-up block of SQS ( 8 ) .
These steps are performed in the following way, illustrated in Figure 4.
1 For a simple notation, let us assume that the eight points of SQS ( 8 ) are 1 , 2 , , 8 . We consider the following 14 blocks:
A = { 1 , 2 , 5 , 6 } , B = { 1 , 2 , 7 , 8 } , C = { 3 , 4 , 5 , 6 } , D = { 3 , 4 , 7 , 8 } , E = { 1 , 3 , 5 , 7 } , F = { 1 , 3 , 6 , 8 } , G = { 2 , 4 , 5 , 7 } , H = { 2 , 4 , 6 , 8 } , J = { 1 , 4 , 5 , 8 } , K = { 1 , 4 , 6 , 7 } , L = { 2 , 3 , 5 , 8 } , M = { 2 , 3 , 6 , 7 } , P = { 1 , 2 , 3 , 4 } , Q = { 5 , 6 , 7 , 8 } .
2 The complete graph K 8 has 28 edges. Assume that its vertex set is the same { 1 , 2 , , 8 } as the set of points of SQS ( 8 ) . We decompose the edge set into 14 subgraphs isomorphic to 2 K 2 in such a way that the union of the two edges in each copy of 2 K 2 is a distinct block of SQS ( 8 ) . One solution is as follows:
A 1 , 2 : 5 , 6 ; B 1 , 7 : 2 , 8 ; C 3 , 5 : 4 , 6 ; D 3 , 4 : 7 , 8 ; E 1 , 3 : 5 , 7 ; F 1 , 8 : 3 , 6 ; G 2 , 7 : 4 , 5 ; H 2 , 4 : 6 , 8 ; J 1 , 5 : 4 , 8 ; K 1 , 6 : 4 , 7 ; L 2 , 5 : 3 , 8 ; M 2 , 6 : 3 , 7 ; P 1 , 4 : 2 , 3 ; Q 5 , 8 : 6 , 7 .
3 For each point i ( i = 1 , 2 , , 8 ) of SQS ( 8 ) , we take a v-element set X i , which will be the vertex set of a C ( 3 , 5 , v ) , hence forming eight vertex-disjoint subsystems of the C ( 3 , 5 , 4 v ) under construction.
4 For each block—say, i 1 , i 2 : i 3 , i 4 as partitioned in 2 —embed the 5-cycle decomposition of H 4 × v , applying the rule
A X i 1 , C X i 2 , B X i 3 , D X i 4 .
Hence, the two edges of 2 K 2 inside each block specify the positions of AAC triples in the blow-up of the block in question.
It can be checked that each vertex triple appears in exactly one 5-cycle:
  • If a triple is a subset of one X i , then it is in a cycle in the C ( 3 , 5 , v ) system embedded in X i .
  • If a triple meets exactly two parts, say X i 1 and X i 2 , then the edge i 1 i 2 determines a 2 K 2 in the decomposition of K 8 ; this 2 K 2 specifies a block in SQS ( 8 ) , and then in the copy of H 4 × v embedded in the blow-up of that block, the vertex triple in question is a triple of AAC type; hence, it is contained in a 5-cycle of the system.
  • If a triple meets exactly three parts, say X i 1 , X i 2 , and X i 3 , then by the definition of Steiner quadruple systems, the three points i 1 , i 2 , i 3 determine a block, and then in the copy of H 4 × v embedded in the blow-up of that block, the vertex triple in question is a triple of ABC type; hence, it is contained in a unique cycle.
This verifies the claimed properties and completes the proof. □
As a first application of this method, we derive that a highly symmetric C ( 3 , 5 , 40 ) system exists.
Corollary 1.
There exists a C ( 3 , 5 , 40 ) system generated by seven 5-cycles.
Proof. 
This follows from Theorem 3, applying Lemma 3, which ensures that H 4 × 5 admits a 5-cycle decomposition generated by seven cycles and two automorphisms. □

4. General Method for Cyclic Packing of Symmetric Cycles with gcd ( v , 10010 ) = 1

Cyclic systems are generated by a certain number of base cycles. In this way, instead of O ( v 3 ) cycles, the task is to find O ( v 2 ) base cycles for which the orbits cover all vertex triples. In this section, we present a method that reduces the number of base cycles to be found. Although the gain is only linear in v, it is significant when v is not too large. It is applicable whenever v satisfies a simple arithmetic condition.
More explicitly, the construction works for all odd v not divisible by 5, 7, 11, and 13. We first explain these exceptions and then prove that the method is applicable for all the other values of v. This analysis also tells us which ones are the few symmetric differences to be handled separately when v is a multiple of 5, 7, 11, or 13.
Throughout this section, we assume that v is odd and consider the base cycles
( 0 , i , v 3 i , 3 i , v i ) , i = 1 , 2 , , ( v 1 ) / 2 .
If v is a multiple of 5 or 7 or 11 or 13, then the difference triplets (see the definition in Section 1.2) listed in Table 2 are covered more than once. Marking with S means that a symmetric difference belonging to a value other than i also occurs in the 5-cycle ( 0 , i , v 3 i , 3 i , v i ) . Marking with M means that a reflected difference occurs for more than one value of i.
The case of v = 7 k is special, as it has both types of anomalies: All symmetric triplets and the (unique) reflected triplet are covered three times. To make the reason transparent, we exhibit the situation in Table 3 for v = 7 .
Theorem 4. (Symmetric Packing Lemma)
If v is an odd feasible order, then for the symmetric base cycles
( 0 , i , v 3 i , 3 i , v i ) , i = 1 , 2 , , ( v 1 ) / 2 ,
the necessary and sufficient condition of covering each difference triplet at most once and covering each symmetric difference exactly once is that v is not divisible by any of 5 , 7 , 11 , and 13. Moreover, if such a forbidden divisibility holds, then the multiple covers of difference triplets can be eliminated by the removal of symmetric cycles belonging to those i that are listed in the last column of Table 2.
Proof. 
The discussion preceding the theorem showed that divisibility by 5 , 7 , 11 , and 13 must be excluded if we want to avoid multiple covers of vertex triples. Below, we see that, if v is a multiple of one or more of these numbers, then exactly the multiple covers listed in Table 2 occur. Moreover, in any other case, each cycle ( 0 , i , v 3 i , 3 i , v i ) contains precisely one symmetric difference—namely, only the one occurring for its 3-element subset { 0 , i , v i } —and that no reflected difference is generated by more than one value of i.
To do this, we consider the vertex triples { 0 , i , v 3 i } and { i , v 3 i , 3 i } , compute the three differences determined by the vertex pairs in each triple, and put them in increasing order. Although we consider only two vertex triples here, they also represent the other two triples { v 3 i , 3 i , v i } and { 3 i , v i , 0 } because the latter two yield the same increasing sequences when the three distances are put in order.
The formula for a difference, as a function of i and v, depends on the ratio i / v . For example, the difference between 0 and 3 i is equal to 3 i if 0 i / v 1 / 6 , v 3 i if 1 / 6 i / v 1 / 3 , and 3 i v if 1 / 3 i / v 1 / 2 . (We may write strict inequalities here because a feasible v cannot be divisible by 2 and 3.) The same ratio i / v determines which of the three differences is smallest and which of them is largest.
A further characteristic that we take into account is what we call “position”. We say that a triplet has a normal position if its largest difference equals the sum of its other two (smallest and middle) differences, and it has extra position if its three differences sum up to v. Table 4 exhibits all these pieces of information for all i, where [ a , b ] means the range in the closed interval determined by the condition a i / v b . Completely identical (small, middle, and large) triplets are not repeated; for instance, ( i , 3 i , 4 i ) is valid in the entire interval [ 0 , 1 / 8 ] .
Hence, there are 23 possible cases altogether, 14 of which are normal and 9 of which are extra. More explicitly, the 14 normal triplets are
A = ( i , 3 i , 4 i ) ; B = ( i , v 4 i , v 3 i ) ; C = ( 2 i , 4 i , 6 i ) ; D = ( 3 i v , i , 4 i v ) ; E = ( 4 i v , v 3 i , i ) ; F = ( 4 i v , 2 v 6 i , v 2 i ) ; G = ( 6 i 2 v , v 2 i , 4 i v ) ; H = ( 6 i v , v 4 i , 2 i ) ; J = ( v 6 i , 2 i , v 4 i ) ; K = ( v 4 i , i , v 3 i ) ; L = ( v 4 i , 6 i v , 2 i ) ; M = ( v 3 i , 4 i v , i ) ; N = ( v 2 i , 2 v 4 i , 3 v 6 i ) ; P = ( 2 v 6 i , 4 i v , v 2 i ) ,
and the 9 extra triplets are
Q = ( i , 3 i , v 4 i ) ; R = ( i , v 4 i , 3 i ) ; S = ( 2 i , 4 i , v 6 i ) ; T = ( 2 i , v 6 i , 4 i ) ; U = ( 3 i v , i , 2 v 4 i ) ; V = ( 3 i v , 2 v 4 i , i ) ; X = ( v 2 i , 6 i 2 v , 2 v 4 i ) ; Y = ( v 2 i , 2 v 4 i , 6 i 2 v ) ; Z = ( 2 v 4 i , 3 i v , i ) .
One has to show that no coincidences other than the ones listed in Table 2 can occur. This can be done through a case-by-case analysis, as demonstrated in Table 5 and Table 6. Note that normal triplets—as well as extra triplets—may coincide among each other, but a normal triplet can never be equal to an extra triplet. Hence, the inspections branch into two directions, one for normal triplets and one for extra triplets. In the simplified scheme, as exhibited in the tables, we use the following abbreviations:
contr  :
no two values i 1 , i 2 can make the two triplets identical;
interv  :
the possible values i 1 , i 2 for identical triplets are not in the intervals where the formulas apply;
2 v  :
the possible values i 1 , i 2 for identical triplets would imply that v is even;
3 v  :
the possible values i 1 , i 2 for identical triplets would imply that v is a multiple of 3;
5  :
a disqualified triplet of Table 2 occurs if v is a multiple of 5;
7  :
a disqualified triplet of Table 2 occurs if v is a multiple of 7;
11  :
a disqualified triplet of Table 2 occurs if v is a multiple of 11;
13  :
a disqualified triplet of Table 2 occurs if v is a multiple of 13.
The cases are many but not hard. Here are some examples:
A vs. B :
the first terms of ( i 1 , 3 i 1 , 4 i 1 ) = ( i 2 , v 4 i 2 , v 3 i 2 ) would require i 1 = i 2 = i for some i and then i = v / 7 by either of the second and third terms, but the formula ( i 1 , 3 i 1 , 4 i 1 ) is valid only for i 1 / v [ 0 , 1 / 8 ] (and ( i 2 , v 4 i 2 , v 3 i 2 ) is valid only for i 2 [ 1 / 6 , 1 / 5 ] ).
E vs. H :
a comparison of the corresponding terms in ( 4 i 1 v , v 3 i 1 , i 1 ) = ( 6 i 2 v , v 4 i 2 , 2 i 2 ) would imply 4 i 1 = 6 i 2 , 3 i 1 = 4 i 2 , and i 1 = 2 i 2 , but any two of these lead to the contradiction i 1 = i 2 = 0 .
V vs. X :
in ( 3 i 1 v , 2 v 4 i 1 , i 1 ) = ( v 2 i 2 , 6 i 2 2 v , 2 v 4 i 2 ) , the equalities between the first terms and between the third terms together imply 3 i 1 + 2 i 2 = 2 v = i 1 + 4 i 2 ; hence, i 1 = i 2 = i for some i and then v = 5 i / 2 . That is, i 1 = i 2 = 2 v / 5 . For the validity of the formulas, we need i 1 [ 2 / 5 , 3 / 7 ] and i 2 [ 3 / 8 , 2 / 5 ] . Both conditions are satisfied, yielding the disqualified triplet ( v / 5 , 2 v / 5 , 2 v / 5 ) . This means that the 5-cycle defined for i = 2 v / 5 covers this symmetric triplet three times.
The same conclusion is obtained for the combinations (U, V), (U, X), (U, Y), (V, Y), and (X, Y), too, i.e., all six pairs from (U, V, X, Y) have the same implication.
U vs. Z :
starting from ( 3 i 1 v , i 1 , 2 v 4 i 1 ) = ( 2 v 4 i 2 , 3 i 2 v , i 2 ) , we multiply the second terms by 2 and compare the third terms. Then, 6 i 2 2 i 1 = 2 v = 4 i 1 + i 2 ; hence, 6 i 1 = 5 i 2 . Writing i 1 = 5 k and i 2 = 6 k , we obtain v = 3 i 2 i 1 = 13 k ; then, i 1 = 5 v / 13 and i 2 = 6 v / 13 . These solutions are feasible because, for validity of the formulas, we need i 1 / v [ 3 / 8 , 2 / 5 ] and i 2 / v [ 3 / 7 , 1 / 2 ] . These conditions are satisfied by 5/13 and 6/13, yielding the disqualified triplet ( 2 v / 13 , 5 v / 13 , 6 v / 13 ) .
The validity of all entries in Table 5 and Table 6 can be checked in a similar way. This proves the assertion since v is assumed to be odd, and there does not exist any 5-cycle system for which the order is divisible by 3. □

5. Complete Spectrum of C ( 3 , 5 , v ) Systems for v 60

Recall that the feasible residue classes are v 1 , 2 , 5 , 7 , 10 , 11 (mod 15). The results presented in this section, together with earlier publications, imply that every feasible order v 60 admits a 3-uniform 5-cycle system. The previously known system C ( 3 , 5 , 55 ) (which is not cyclic) was derived from C ( 3 , 5 , 11 ) by the recursions of [10,12], and before the time of writing this paper, no construction was known for v = 56 .
All our constructions are cyclic here, and the systems for v = 32 , v = 40 , v = 50 , and v = 52 are not only cyclic but also 2-split. These three are presented in the second subsection, separately from the systems of the first subsection that are cyclic but not 2-split. (The even orders 26 and 46 do not admit 2-split constructions.)

5.1. Cyclic Systems of Orders 25, 26, 31, 35, 37, 41, 46, 47, 55, and 56

Proposition 1.
There exists a cyclic C ( 3 , 5 , 25 ) system.
Proof. 
We have 25 · 24 · 23 6 = 25 · 92 vertex triples and 12 symmetric differences.
  • At the beginning, we take five subsystems isomorphic to the cyclic C ( 3 , 5 , 5 ) system, hence with the cycles
    ( 0 , 5 , 10 , 15 , 20 ) , ( 0 , 10 , 20 , 5 , 15 )
    in their five possible positions:
    ( i , 5 + i , 10 + i , 15 + i , 20 + i ) , ( i , 10 + i , 20 + i , 5 + i , 15 + i ) i = 0 , 1 , 2 , 3 , 4 .
    These cover 5 · 10 = 25 · 2 vertex triples and two symmetric differences. There remain 25 · 90 triples to cover for which we need 90 / 5 = 18 base cycles.
  • The 10 symmetric base cycles can be defined by the rule
    ( 0 , i , 25 3 i , 3 i , 25 i ) , i = 1 , 2 , 3 , 4 , 6 , 7 , 8 , 9 , 11 , 12
    according to Theorem 4.
  • We just need 8 reflected base cycles that can be arranged in four pairs:
    ( 0 , 1 , 5 , 11 , 10 ) , ( 0 , 2 , 5 , 12 , 10 ) , ( 0 , 3 , 13 , 20 , 8 ) , ( 0 , 4 , 14 , 20 , 9 ) , ( 0 , 24 , 5 , 9 , 10 ) , ( 0 , 23 , 5 , 8 , 10 ) , ( 0 , 13 , 20 , 5 , 8 ) , ( 0 , 14 , 20 , 5 , 9 ) .
These base cycles generate a system with the required number of 5-cycles and cover each vertex triple exactly once, as it can be verified from the data in Table A2 and Table A3. □
Proposition 2.
There exists a cyclic C ( 3 , 5 , 26 ) system.
Proof. 
We have 26 · 25 · 24 6 vertex triples; therefore, we need 26 · 20 cycles that should be generated by 20 base cycles.
  • The 12 symmetric base cycles are
    ( 0 , 1 , 24 , 2 , 25 ) , ( 0 , 3 , 20 , 6 , 23 ) , ( 0 , 5 , 16 , 10 , 21 ) , ( 0 , 7 , 12 , 14 , 19 ) , ( 0 , 9 , 8 , 18 , 17 ) , ( 0 , 11 , 4 , 22 , 15 ) , ( 0 , 2 , 22 , 4 , 24 ) , ( 0 , 4 , 18 , 8 , 22 ) , ( 0 , 6 , 22 , 4 , 20 ) , ( 0 , 8 , 21 , 5 , 18 ) , ( 0 , 10 , 25 , 1 , 16 ) , ( 0 , 12 , 23 , 3 , 14 ) .
    Here, for odd i, the cycles are taken according to the pattern ( 0 , i , 26 2 i , 2 i , 26 i ) , but for even i, we need to make several modifications.
  • The 8 reflected base cycles are in four pairs:
    ( 0 , 1 , 8 , 17 , 13 ) , ( 0 , 1 , 12 , 25 , 6 ) , ( 0 , 12 , 20 , 23 , 2 ) , ( 0 , 3 , 7 , 2 , 19 ) , ( 0 , 22 , 5 , 12 , 13 ) , ( 0 , 7 , 20 , 5 , 6 ) , ( 0 , 5 , 8 , 16 , 2 ) , ( 0 , 17 , 12 , 16 , 19 ) .
These base cycles generate a system with the required number of 5-cycles and cover each vertex triple exactly once as it can be verified from the data in Table A4 and Table A5. □
Proposition 3.
There exists a cyclic C ( 3 , 5 , 31 ) system.
Proof. 
We have 31 · 30 · 29 6 vertex triples; therefore, we need 31 · 29 cycles, which should be generated by 29 base cycles.
  • The 15 symmetric base cycles can be taken as
    ( 0 , i , 31 3 i , 3 i , 31 i ) , i = 1 , , 15
    as guaranteed by Theorem 4.
  • The 14 reflected base cycles are in seven pairs:
    ( 0 , 1 , 5 , 8 , 20 ) ( 0 , 12 , 15 , 19 , 20 ) ;   ( 0 , 1 , 7 , 17 , 9 ) ( 0 , 23 , 2 , 8 , 9 ) ; ( 0 , 1 , 13 , 15 , 18 ) ( 0 , 3 , 5 , 17 , 18 ) ;   ( 0 , 2 , 9 , 22 , 7 ) ( 0 , 16 , 29 , 5 , 7 ) ; ( 0 , 13 , 27 , 23 , 3 ) ( 0 , 11 , 7 , 21 , 3 ) ;   ( 0 , 15 , 6 , 25 , 4 ) ( 0 , 10 , 29 , 20 , 4 ) ; ( 0 , 5 , 11 , 6 , 14 ) ( 0 , 8 , 3 , 9 , 14 ) .
These base cycles generate a system with the required number of 5-cycles and cover each vertex triple exactly once, as it can be verified from the data in Table A6 and Table A7. □
Proposition 4.
There exists a cyclic C ( 3 , 5 , 35 ) system.
Proof. 
We have 35 · 34 · 33 6 = 35 · 187 vertex triples and 17 symmetric differences. From Theorem 4, we know that multiples of 5 and 7 have to be handled separately from the other symmetric differences.
  • At the beginning, we take seven subsystems isomorphic to the cyclic C ( 3 , 5 , 5 ) system, hence with the cycles
    ( i , 7 + i , 14 + i , 21 + i , 28 + i ) , ( i , 14 + i , 28 + i , 7 + i , 21 + i ) i = 0 , 1 , , 6 .
    These cover 7 · 10 = 35 · 2 vertex triples and two symmetric differences. There remain 35 · 185 triples to cover, for which we need 185 / 5 = 37 base cycles.
  • Now, 12 of the remaining 15 symmetric base cycles can be defined by the rule
    ( 0 , i , 35 3 i , 3 i , 35 i ) , i = 1 , 2 , 3 , 4 , 6 , 8 , 9 , 11 , 12 , 13 , 16 , 17
    according to Theorem 4. For the other three, i.e., the multiples of 5, the almost general rule would not work. Therefore, we make a little modification, taking the base cycles
    ( 0 , 5 , 33 , 2 , 30 ) , ( 0 , 10 , 31 , 4 , 25 ) , ( 0 , 15 , 29 , 6 , 20 ) .
  • Furthermore, we need 22 reflected base cycles that can be arranged in 11 pairs. As the first half, we take
    ( 0 , 1 , 5 , 10 , 7 ) ,       ( 0 , 1 , 6 , 9 , 20 ) ,       ( 0 , 1 , 8 , 10 , 22 ) ,     ( 0 , 1 , 10 , 16 , 21 ) , ( 0 , 2 , 10 , 22 , 17 ) ,   ( 0 , 3 , 15 , 31 , 17 ) ,   ( 0 , 4 , 11 , 24 , 19 ) ,   ( 0 , 4 , 24 , 34 , 10 ) , ( 0 , 5 , 14 , 33 , 23 ) ,   ( 0 , 6 , 16 , 33 , 13 ) ,   ( 0 , 7 , 15 , 28 , 18 ) ;
    the reflected pairs of them are
    ( 0 , 32 , 2 , 6 , 7 ) ,   ( 0 , 11 , 14 , 19 , 20 ) ,   ( 0 , 12 , 14 , 21 , 22 ) ,   ( 0 , 5 , 11 , 20 , 21 ) , ( 0 , 30 , 7 , 15 , 17 ) ,   ( 0 , 21 , 2 , 14 , 17 ) ,   ( 0 , 30 , 8 , 15 , 19 ) ,   ( 0 , 11 , 21 , 6 , 10 ) , ( 0 , 25 , 9 , 18 , 23 ) ,   ( 0 , 15 , 32 , 7 , 13 ) ,   ( 0 , 25 , 3 , 11 , 18 ) .
These base cycles generate a system with the required number of 5-cycles and cover each vertex triple exactly once, as it can be verified from the data in Table A10 and Table A11. □
Proposition 5.
There exists a cyclic C ( 3 , 5 , 37 ) system.
Proof. 
We have 37 · 36 · 35 6 vertex triples; therefore, we need 37 · 42 cycles, which should be generated by 42 base cycles.
  • The 18 symmetric base cycles can be taken as
    ( 0 , i , 37 3 i , 3 i , 37 i ) , i = 1 , , 18
    as guaranteed by Theorem 4.
  • For the first 12 reflected base cycles, we take
    ( 0 , 1 , 5 , 8 , 27 ) , ( 0 , 1 , 6 , 3 , 14 ) , ( 0 , 1 , 7 , 11 , 29 ) , ( 0 , 1 , 8 , 3 , 15 ) , ( 0 , 17 , 25 , 22 , 1 ) , ( 0 , 2 , 9 , 15 , 25 ) , ( 0 , 2 , 17 , 30 , 12 ) , ( 0 , 18 , 14 , 28 , 2 ) , ( 0 , 4 , 13 , 29 , 9 ) , ( 0 , 5 , 11 , 26 , 17 ) , ( 0 , 6 , 14 , 4 , 17 ) , ( 0 , 7 , 20 , 34 , 18 ) .
  • Their reflected pairs are
    ( 0 , 19 , 22 , 26 , 27 ) , ( 0 , 11 , 8 , 13 , 14 ) , ( 0 , 18 , 22 , 28 , 29 ) , ( 0 , 12 , 7 , 14 , 15 ) , ( 0 , 16 , 13 , 21 , 1 ) , ( 0 , 10 , 16 , 23 , 25 ) , ( 0 , 19 , 32 , 10 , 12 ) , ( 0 , 11 , 25 , 21 , 2 ) , ( 0 , 17 , 33 , 5 , 9 ) , ( 0 , 28 , 6 , 12 , 17 ) , ( 0 , 13 , 3 , 11 , 17 ) , ( 0 , 21 , 35 , 11 , 18 ) .
These base cycles generate a system with the required number of 5-cycles and cover each vertex triple exactly once, as it can be verified from the data in Table A12 and Table A13. □
Proposition 6.
There exists a cyclic C ( 3 , 5 , 41 ) system.
Proof. 
We have 41 · 40 · 39 6 vertex triples; therefore, we need 41 · 4 · 13 cycles, which should be generated by 52 base cycles.
  • The 20 symmetric base cycles can be taken as
    ( 0 , i , 41 3 i , 3 i , 41 i ) , i = 1 , , 20
    as guaranteed by Theorem 4.
  • For the first 16 reflected base cycles, we take
    ( 0 , 1 , 5 , 8 , 10 ) , ( 0 , 1 , 6 , 8 , 18 ) , ( 0 , 1 , 7 , 11 , 16 ) , ( 0 , 1 , 8 , 10 , 19 ) , ( 0 , 1 , 9 , 4 , 17 ) , ( 0 , 1 , 12 , 7 , 29 ) , ( 0 , 2 , 14 , 23 , 27 ) , ( 0 , 2 , 17 , 5 , 25 ) , ( 0 , 3 , 16 , 33 , 27 ) , ( 0 , 3 , 30 , 14 , 10 ) , ( 0 , 6 , 13 , 2 , 20 ) , ( 0 , 6 , 19 , 38 , 21 ) , ( 0 , 7 , 15 , 35 , 26 ) , ( 0 , 8 , 22 , 3 , 26 ) , ( 0 , 10 , 22 , 35 , 25 ) , ( 0 , 26 , 9 , 30 , 12 ) .
  • Their reflected pairs are
    ( 0 , 2 , 5 , 9 , 10 ) , ( 0 , 10 , 12 , 17 , 18 ) , ( 0 , 5 , 9 , 15 , 16 ) , ( 0 , 9 , 11 , 18 , 19 ) , ( 0 , 13 , 8 , 16 , 17 ) , ( 0 , 22 , 17 , 28 , 29 ) , ( 0 , 4 , 13 , 25 , 27 ) , ( 0 , 20 , 8 , 23 , 25 ) , ( 0 , 35 , 11 , 24 , 27 ) , ( 0 , 37 , 21 , 7 , 10 ) , ( 0 , 18 , 7 , 14 , 20 ) , ( 0 , 24 , 2 , 15 , 21 ) , ( 0 , 32 , 11 , 19 , 26 ) , ( 0 , 23 , 4 , 18 , 26 ) , ( 0 , 31 , 3 , 15 , 25 ) , ( 0 , 23 , 3 , 27 , 12 ) .
These base cycles generate a system with the required number of 5-cycles and cover each vertex triple exactly once, as it can be verified from the data in Table A16 and Table A17. □
Proposition 7.
There exists a cyclic C ( 3 , 5 , 46 ) system.
Proof. 
We have 46 · 45 · 44 6 vertex triples; therefore, we need 46 · 3 · 22 cycles, which should be generated by 66 base cycles.
  • The 22 symmetric base cycles can be taken as
    ( 0 , i , 46 2 i , 2 i , 46 i ) , i = 1 , , 22 .
    This is out of scope in Theorem 4, but one can check that these cycles do not cover any difference triplet more than once, cf. Table A18.
  • For the first 22 reflected base cycles, we take
    ( 0 , 1 , 5 , 8 , 10 ) , ( 0 , 1 , 6 , 8 , 17 ) , ( 0 , 1 , 7 , 11 , 18 ) , ( 0 , 1 , 8 , 10 , 23 ) , ( 0 , 1 , 9 , 4 , 13 ) , ( 0 , 1 , 11 , 4 , 19 ) , ( 0 , 1 , 12 , 4 , 27 ) , ( 0 , 1 , 14 , 9 , 21 ) , ( 0 , 2 , 14 , 17 , 27 ) , ( 0 , 2 , 17 , 6 , 23 ) , ( 0 , 2 , 19 , 5 , 28 ) , ( 0 , 3 , 14 , 9 , 25 ) , ( 0 , 3 , 16 , 25 , 30 ) , ( 0 , 3 , 18 , 40 , 21 ) , ( 0 , 3 , 20 , 35 , 26 ) , ( 0 , 4 , 22 , 35 , 17 ) , ( 0 , 5 , 19 , 40 , 27 ) , ( 0 , 7 , 19 , 42 , 26 ) , ( 0 , 7 , 24 , 33 , 17 ) , ( 0 , 8 , 20 , 36 , 14 ) ( 0 , 26 , 5 , 36 , 11 ) , ( 0 , 27 , 12 , 34 , 13 ) .
  • Their reflected pairs are
    ( 0 , 2 , 5 , 9 , 10 ) , ( 0 , 9 , 11 , 16 , 17 ) , ( 0 , 7 , 11 , 17 , 18 ) , ( 0 , 13 , 15 , 22 , 23 ) , ( 0 , 9 , 4 , 12 , 13 ) , ( 0 , 15 , 8 , 18 , 19 ) , ( 0 , 23 , 15 , 26 , 27 ) , ( 0 , 12 , 7 , 20 , 21 ) , ( 0 , 10 , 13 , 25 , 27 ) , ( 0 , 17 , 6 , 21 , 23 ) , ( 0 , 23 , 9 , 26 , 28 ) , ( 0 , 16 , 11 , 22 , 25 ) , ( 0 , 5 , 14 , 27 , 30 ) , ( 0 , 27 , 3 , 18 , 21 ) , ( 0 , 37 , 6 , 23 , 26 ) , ( 0 , 28 , 41 , 13 , 17 ) , ( 0 , 33 , 8 , 22 , 27 ) , ( 0 , 30 , 7 , 19 , 26 ) , ( 0 , 30 , 39 , 10 , 17 ) , ( 0 , 24 , 40 , 6 , 14 ) , ( 0 , 21 , 6 , 31 , 11 ) , ( 0 , 25 , 1 , 32 , 13 ) .
These base cycles generate a system with the required number of 5-cycles and cover each vertex triple exactly once, as it can be verified from the data in Table A18 and Table A23. □
Proposition 8.
There exists a cyclic C ( 3 , 5 , 47 ) system.
Proof. 
We have 47 · 46 · 45 6 vertex triples; therefore, we need 47 · 23 · 3 cycles, which should be generated by 69 base cycles.
  • The 23 symmetric base cycles can be taken as
    ( 0 , i , 47 3 i , 3 i , 47 i ) , i = 1 , , 23
    as guaranteed by Theorem 4.
  • For the first 23 reflected base cycles, we take
    ( 0 , 1 , 5 , 8 , 10 ) ,       ( 0 , 1 , 6 , 8 , 18 ) ,       ( 0 , 1 , 7 , 11 , 34 ) ,     ( 0 , 1 , 8 , 10 , 21 ) , ( 0 , 1 , 9 , 4 , 15 ) ,       ( 0 , 1 , 11 , 8 , 35 ) ,     ( 0 , 1 , 19 , 3 , 26 ) ,     ( 0 , 2 , 11 , 6 , 22 ) , ( 0 , 2 , 14 , 9 , 26 ) ,     ( 0 , 2 , 16 , 6 , 19 ) ,     ( 0 , 2 , 20 , 17 , 28 ) ,   ( 0 , 3 , 15 , 22 , 30 ) , ( 0 , 3 , 16 , 9 , 31 ) ,     ( 0 , 3 , 17 , 35 , 21 ) ,   ( 0 , 23 , 32 , 40 , 4 ) ,   ( 0 , 6 , 17 , 32 , 26 ) , ( 0 , 6 , 20 , 36 , 16 ) ,   ( 0 , 23 , 30 , 39 , 6 ) ,   ( 0 , 8 , 26 , 13 , 22 ) ,   ( 0 , 25 , 5 , 33 , 10 ) , ( 0 , 23 , 5 , 35 , 10 )   ( 0 , 12 , 25 , 43 , 21 ) ,   ( 0 , 28 , 13 , 32 , 12 ) .
  • Their reflected pairs are
    ( 0 , 2 , 5 , 9 , 10 ) ,         ( 0 , 10 , 12 , 17 , 18 ) ,   ( 0 , 23 , 27 , 33 , 34 ) ,   ( 0 , 11 , 13 , 20 , 21 ) , ( 0 , 11 , 6 , 14 , 15 ) ,     ( 0 , 27 , 24 , 34 , 35 ) ,     ( 0 , 23 , 7 , 25 , 26 ) ,     ( 0 , 16 , 11 , 20 , 22 ) , ( 0 , 17 , 12 , 24 , 26 ) ,   ( 0 , 13 , 3 , 17 , 19 ) ,       ( 0 , 11 , 8 , 26 , 28 ) ,       ( 0 , 8 , 15 , 27 , 30 ) , ( 0 , 22 , 15 , 28 , 31 ) ,     ( 0 , 33 , 4 , 18 , 21 ) ,       ( 0 , 11 , 19 , 28 , 4 ) ,       ( 0 , 41 , 9 , 20 , 26 ) , ( 0 , 27 , 43 , 10 , 16 ) ,   ( 0 , 14 , 23 , 30 , 6 ) ,       ( 0 , 9 , 43 , 14 , 22 ) ,       ( 0 , 24 , 5 , 32 , 10 ) , ( 0 , 22 , 5 , 34 , 10 )   ( 0 , 25 , 43 , 9 , 21 ) ,   ( 0 , 27 , 46 , 31 , 12 ) .
These base cycles generate a system with the required number of 5-cycles and cover each vertex triple exactly once, as it can be verified from the data in Table A20 and Table A21. □
Proposition 9.
There exists a cyclic C ( 3 , 5 , 55 ) system.
Proof. 
We have 55 · 54 · 53 6 = 55 · 477 vertex triples, for which we need to define 11 · 9 · 53 cycles. The number of symmetric differences is 55 1 2 = 27 .
  • We multiply the two base cycles of C ( 3 , 5 , 5 ) by 11 and take their 11 distinct positions:
    ( i , 11 + i , 22 + i , 33 + i , 44 + i ) , ( i , 22 + i , 44 + i , 11 + i , 33 + i ) , i = 0 , 1 , , 10 .
    These cycles cover 110 = 55 · 2 vertex triples, including all triples belonging to two symmetric differences. There remain 55 · 475 triples to be covered and 25 symmetric differences.
  • The general principles cannot be applied to cover symmetric differences divisible by 5, which here means 5 , 10 , 15 , 20 , 25 . We cover those with five specially designed base cycles, most of them of the form ( 0 , 5 i , 55 2 i , 2 i , 55 5 i ) , as follows:
    ( 0 , 5 , 53 , 2 , 50 ) , ( 0 , 10 , 51 , 4 , 45 ) , ( 0 , 15 , 49 , 6 , 40 ) , ( 0 , 20 , 47 , 8 , 35 ) , ( 0 , 25 , 43 , 12 , 30 ) .
    These cycles cover 5 · 25 vertex triples, five of them are symmetric. There remain 55 · 450 triples to be covered, for which we define 90 base cycles.
    (An alternative approach is to multiply the C ( 3 , 5 , 11 ) system by 5, hence to take the three base cycles ( 0 , 5 , 30 , 45 , 10 ) , ( 0 , 5 , 20 , 10 , 35 ) , and ( 0 , 20 , 45 , 35 , 50 ) ; but then, the continuation would of course be different.)
  • The remaining 20 symmetric base cycles can be taken as
    ( 0 , i , 55 3 i , 3 i , 55 i ) , i { 1 , , 27 } ( { 11 , 22 } { 5 , 10 , 15 , 20 , 25 } )
    as guaranteed by Theorem 4. There remain 70 base cycles to be defined.
  • The first half of 70 reflected base cycles is
    ( 0 , 1 , 5 , 10 , 7 ) ,         ( 0 , 1 , 6 , 9 , 17 ) ,         ( 0 , 1 , 8 , 10 , 21 ) ,       ( 0 , 1 , 9 , 11 , 20 ) , ( 0 , 1 , 10 , 14 , 25 ) ,     ( 0 , 1 , 11 , 5 , 16 ) ,       ( 0 , 1 , 12 , 5 , 22 ) ,       ( 0 , 1 , 13 , 3 , 30 ) , ( 0 , 1 , 15 , 3 , 23 ) ,       ( 0 , 2 , 15 , 5 , 20 ) ,       ( 0 , 2 , 16 , 5 , 23 ) ,       ( 0 , 2 , 17 , 5 , 27 ) , ( 0 , 2 , 18 , 8 , 26 ) ,       ( 0 , 2 , 22 , 6 , 25 ) ,       ( 0 , 3 , 17 , 8 , 27 ) ,       ( 0 , 3 , 18 , 9 , 33 ) , ( 0 , 3 , 20 , 14 , 34 ) ,     ( 0 , 3 , 21 , 7 , 36 ) ,       ( 0 , 4 , 19 , 11 , 24 ) ,     ( 0 , 4 , 22 , 9 , 29 ) , ( 0 , 4 , 23 , 10 , 32 ) ,     ( 0 , 4 , 25 , 48 , 33 ) ,     ( 0 , 5 , 12 , 18 , 34 ) ,     ( 0 , 5 , 21 , 49 , 25 ) , ( 0 , 9 , 34 , 45 , 26 ) ,     ( 0 , 10 , 24 , 53 , 31 ) ,   ( 0 , 10 , 35 , 48 , 25 ) ,   ( 0 , 11 , 37 , 6 , 26 ) , ( 0 , 12 , 27 , 43 , 17 ) ,   ( 0 , 12 , 34 , 6 , 23 ) ,     ( 0 , 12 , 35 , 7 , 25 ) ,     ( 0 , 13 , 28 , 50 , 36 ) , ( 0 , 16 , 41 , 8 , 25 ) ,   ( 0 , 17 , 37 , 1 , 32 ) ,   ( 0 , 19 , 40 , 13 , 33 ) .
  • Their reflected pairs are
    ( 0 , 52 , 2 , 6 , 7 ) ,         ( 0 , 8 , 11 , 16 , 17 ) ,     ( 0 , 11 , 13 , 20 , 21 ) ,     ( 0 , 9 , 11 , 19 , 20 ) , ( 0 , 11 , 15 , 24 , 25 ) ,   ( 0 , 11 , 5 , 15 , 16 ) ,     ( 0 , 17 , 10 , 21 , 22 ) ,     ( 0 , 27 , 17 , 29 , 30 ) , ( 0 , 20 , 8 , 22 , 23 ) ,     ( 0 , 15 , 5 , 18 , 20 ) ,     ( 0 , 18 , 7 , 21 , 23 ) ,     ( 0 , 22 , 10 , 25 , 27 ) , ( 0 , 18 , 8 , 24 , 26 ) ,     ( 0 , 19 , 3 , 23 , 25 ) ,     ( 0 , 19 , 10 , 24 , 27 ) ,     ( 0 , 24 , 15 , 30 , 33 ) , ( 0 , 20 , 14 , 31 , 34 ) ,   ( 0 , 29 , 15 , 33 , 36 ) ,   ( 0 , 13 , 5 , 20 , 24 ) ,       ( 0 , 20 , 7 , 25 , 29 ) , ( 0 , 22 , 9 , 28 , 32 ) ,     ( 0 , 40 , 8 , 29 , 33 ) ,     ( 0 , 16 , 22 , 29 , 34 ) ,     ( 0 , 31 , 4 , 20 , 25 ) , ( 0 , 36 , 47 , 17 , 26 ) ,   ( 0 , 33 , 7 , 21 , 31 ) ,     ( 0 , 32 , 45 , 15 , 25 ) ,     ( 0 , 20 , 44 , 15 , 26 ) , ( 0 , 29 , 45 , 5 , 17 ) ,       ( 0 , 17 , 44 , 11 , 23 ) ,   ( 0 , 18 , 45 , 13 , 25 ) ,     ( 0 , 41 , 8 , 23 , 36 ) , ( 0 , 17 , 39 , 9 , 25 ) ,   ( 0 , 31 , 50 , 15 , 32 ) ,   ( 0 , 20 , 48 , 14 , 33 ) .
These base cycles generate a system with the required number of 5-cycles and cover each vertex triple exactly once, as it can be verified from the data in Table A26 and Table A27. □
Proposition 10.
There exists a cyclic C ( 3 , 5 , 56 ) system.
Proof. 
We have 56 · 55 · 54 6 = 56 · 55 · 9 vertex triples, for which we need to define 11 · 9 = 99 base cycles. The number of symmetric differences is 27. For those 27, we can start with a general formula ( 0 , i , 56 2 i , 2 i , 56 i ) as an approach similar to the one in the case of v = 46 . However, in the current situation, several adjustments are needed to resolve collisions.
  • For odd symmetric differences, we only need to make one little change, for the difference i = 7 . Therefore, the 14 odd symmetric base cycles are
    ( 0 , 1 , 54 , 2 , 55 ) , ( 0 , 3 , 50 , 6 , 53 ) , ( 0 , 5 , 46 , 10 , 51 ) , ( 0 , 7 , 44 , 12 , 49 ) , ( 0 , 9 , 38 , 18 , 47 ) , ( 0 , 11 , 34 , 22 , 45 ) , ( 0 , 13 , 30 , 26 , 43 ) , ( 0 , 15 , 26 , 30 , 41 ) , ( 0 , 17 , 22 , 34 , 39 ) , ( 0 , 19 , 18 , 38 , 37 ) , ( 0 , 21 , 14 , 42 , 35 ) , ( 0 , 23 , 10 , 46 , 33 ) , ( 0 , 25 , 6 , 50 , 31 ) , ( 0 , 27 , 2 , 54 , 29 ) .
  • The even case is less favorable. Beyond the expected values 8, 16, and 24—which are multiples of v / 7 —we also need to modify the base cycle for i = 14 . Hence, we take the following 13 base cycles for the even differences:
    ( 0 , 2 , 52 , 4 , 54 ) ,       ( 0 , 4 , 48 , 8 , 52 ) ,       ( 0 , 6 , 44 , 12 , 50 ) ,     ( 0 , 8 , 42 , 14 , 48 ) , ( 0 , 10 , 36 , 20 , 46 ) ,   ( 0 , 12 , 32 , 24 , 44 ) ,   ( 0 , 14 , 32 , 24 , 42 ) ,   ( 0 , 16 , 30 , 26 , 40 ) , ( 0 , 18 , 20 , 36 , 38 ) ,   ( 0 , 20 , 16 , 40 , 36 ) ,   ( 0 , 22 , 12 , 44 , 34 ) ,   ( 0 , 24 , 10 , 46 , 32 ) , ( 0 , 26 , 4 , 52 , 30 ) .
  • There remain 99 27 = 72 base cycles to be defined. We arrange them in 36 reflected pairs. The first half is
    ( 0 , 1 , 5 , 8 , 10 ) , ( 0 , 1 , 6 , 8 , 15 ) , ( 0 , 1 , 7 , 11 , 16 ) , ( 0 , 1 , 8 , 11 , 21 ) , ( 0 , 1 , 9 , 4 , 18 ) , ( 0 , 1 , 11 , 13 , 22 ) , ( 0 , 1 , 12 , 4 , 23 ) , ( 0 , 1 , 13 , 6 , 17 ) , ( 0 , 1 , 14 , 3 , 27 ) , ( 0 , 1 , 24 , 3 , 28 ) , ( 0 , 1 , 25 , 8 , 31 ) , ( 0 , 2 , 14 , 17 , 28 ) , ( 0 , 2 , 15 , 6 , 21 ) , ( 0 , 2 , 16 , 8 , 25 ) , ( 0 , 2 , 17 , 20 , 39 ) , ( 0 , 2 , 22 , 5 , 26 ) , ( 0 , 3 , 16 , 8 , 29 ) , ( 0 , 3 , 17 , 22 , 35 ) , ( 0 , 3 , 19 , 9 , 26 ) , ( 0 , 3 , 21 , 43 , 25 ) , ( 0 , 4 , 19 , 26 , 32 ) , ( 0 , 5 , 11 , 24 , 31 ) , ( 0 , 5 , 21 , 12 , 33 ) , ( 0 , 6 , 22 , 49 , 27 ) , ( 0 , 7 , 36 , 48 , 18 ) , ( 0 , 9 , 33 , 50 , 23 ) , ( 0 , 10 , 31 , 48 , 19 ) , ( 0 , 11 , 35 , 48 , 20 ) , ( 0 , 11 , 36 , 51 , 27 ) , ( 0 , 12 , 28 , 5 , 25 ) , ( 0 , 14 , 29 , 50 , 20 ) , ( 0 , 14 , 37 , 7 , 26 ) , ( 0 , 14 , 43 , 10 , 25 ) , ( 0 , 15 , 34 , 5 , 23 ) , ( 0 , 16 , 33 , 2 , 24 ) , ( 0 , 16 , 35 , 7 , 25 ) .
  • Their reflected pairs are
    ( 0 , 2 , 5 , 9 , 10 ) , ( 0 , 7 , 9 , 14 , 15 ) , ( 0 , 5 , 9 , 15 , 16 ) , ( 0 , 10 , 13 , 20 , 21 ) , ( 0 , 14 , 9 , 17 , 18 ) , ( 0 , 9 , 11 , 21 , 22 ) , ( 0 , 19 , 11 , 22 , 23 ) , ( 0 , 11 , 4 , 16 , 17 ) , ( 0 , 24 , 13 , 26 , 27 ) , ( 0 , 25 , 4 , 27 , 28 ) , ( 0 , 23 , 6 , 30 , 31 ) , ( 0 , 11 , 14 , 26 , 28 ) , ( 0 , 15 , 6 , 19 , 21 ) , ( 0 , 17 , 9 , 23 , 25 ) , ( 0 , 19 , 22 , 37 , 39 ) , ( 0 , 21 , 4 , 24 , 26 ) , ( 0 , 21 , 13 , 26 , 29 ) , ( 0 , 13 , 18 , 32 , 35 ) , ( 0 , 17 , 7 , 23 , 26 ) , ( 0 , 38 , 4 , 22 , 25 ) , ( 0 , 6 , 13 , 28 , 32 ) , ( 0 , 7 , 20 , 26 , 31 ) , ( 0 , 21 , 12 , 28 , 33 ) , ( 0 , 34 , 5 , 21 , 27 ) , ( 0 , 26 , 38 , 11 , 18 ) , ( 0 , 29 , 46 , 14 , 23 ) , ( 0 , 27 , 44 , 9 , 19 ) , ( 0 , 28 , 41 , 9 , 20 ) , ( 0 , 32 , 47 , 16 , 27 ) , ( 0 , 20 , 53 , 13 , 25 ) , ( 0 , 26 , 47 , 6 , 20 ) , ( 0 , 19 , 45 , 12 , 26 ) , ( 0 , 15 , 38 , 11 , 25 ) , ( 0 , 18 , 45 , 8 , 23 ) , ( 0 , 22 , 47 , 8 , 24 ) , ( 0 , 18 , 46 , 9 , 25 ) .
These base cycles generate a system with the required number of 5-cycles and cover each vertex triple exactly once, as it can be verified from the data in Table A28 and Table A29. □

5.2. Cyclic 2-Split Systems of Orders 32, 40, 50, and 52

In this subsection, we present constructions that are not only cyclic but also 2-split. The cases of v = 32 , v = 40 , v = 50 , and v = 52 are considered. For v = 40 and v = 52 , no constructions have been known so far. Although the existence of a cyclic C ( 3 , 5 , 32 ) and a 2-split C ( 3 , 5 , 50 ) was known, the former was not 2-split and the latter was not cyclic.
For a 2-split system, it is convenient to write 2 v for its order and to assume that it is built on the vertex-disjoint union of two subsystems of order v each. Throughout this subsection, we assume that the vertex sets of those subsystems are
X 1 = { 0 , 2 , , 2 v 2 } , X 2 = { 1 , 3 , , 2 v 1 } .
Then, one can start with the base blocks of a cyclic C ( 3 , 5 , v ) and multiply all its elements by 2, hence obtaining a cyclic subsystem induced by X 1 . Moreover, rotation by 1 yields an induced cyclic subsystem on X 2 .
Proposition 11.
There exists a cyclic 2-split C ( 3 , 5 , 32 ) system.
Proof. 
We have 32 · 31 · 30 6 vertex triples; therefore, we need 32 · 31 cycles that should be generated by 31 base cycles.
  • The seven base cycles obtained from a cyclic C ( 3 , 5 , 16 ) are
    ( 0 , 2 , 18 , 14 , 30 ) ,   ( 0 , 28 , 26 , 6 , 4 ) ,   ( 0 , 6 , 20 , 12 , 26 ) ,   ( 0 , 24 , 30 , 2 , 8 ) , ( 0 , 22 , 30 , 2 , 10 ) ,   ( 0 , 20 , 2 , 30 , 12 ) ,   ( 0 , 18 , 8 , 24 , 14 ) .
    All these cycles are symmetric. They are obtained from the system given in [10] by rotating the base cycles in a way that 0 is the center of each symmetric triangle.
  • The other eight symmetric base cycles are
    ( 0 , 1 , 30 , 2 , 31 ) , ( 0 , 3 , 26 , 6 , 29 ) , ( 0 , 5 , 22 , 10 , 27 ) , ( 0 , 7 , 18 , 14 , 25 ) , ( 0 , 9 , 14 , 18 , 23 ) , ( 0 , 11 , 10 , 22 , 21 ) , ( 0 , 13 , 6 , 26 , 19 ) , ( 0 , 15 , 2 , 30 , 17 ) .
  • We take the following eight base cycles as the first half of reflected crossing cycles:
    ( 0 , 1 , 5 , 8 , 13 ) , ( 0 , 1 , 6 , 3 , 14 ) , ( 0 , 1 , 8 , 7 , 16 ) , ( 0 , 1 , 10 , 29 , 15 ) , ( 0 , 3 , 10 , 30 , 19 ) , ( 0 , 3 , 13 , 22 , 15 ) , ( 0 , 5 , 16 , 24 , 7 ) , ( 0 , 6 , 17 , 2 , 11 ) .
  • Their reflected base cycles are
    ( 0 , 5 , 8 , 12 , 13 ) , ( 0 , 11 , 8 , 13 , 14 ) , ( 0 , 9 , 8 , 15 , 16 ) , ( 0 , 18 , 5 , 14 , 15 ) , ( 0 , 21 , 9 , 16 , 19 ) , ( 0 , 25 , 2 , 12 , 15 ) , ( 0 , 15 , 23 , 2 , 7 ) , ( 0 , 9 , 26 , 5 , 11 ) .
Figure 5 exhibits one base cycle derived from C ( 3 , 5 , 16 ) in red and one crossing base cycle in blue.
The set of base cycles defined above generates a system with the required number of 5-cycles and covers each vertex triple exactly once, as it can be verified from the data in Table A8 and Table A9. □
Proposition 12.
There exists a cyclic 2-split C ( 3 , 5 , 40 ) system.
Proof. 
We have 40 · 39 · 38 6 vertex triples, from which the two C ( 3 , 5 , 20 ) subsystems together cover 40 · 19 · 18 6 triples. Hence, we need to cover the remaining 40 · 30 · 38 6 triples, which therefore need 40 · 38 cycles, requiring 38 additional base cycles. For the sake of completeness, we also list the base cycles that generate the C ( 3 , 5 , 20 ) subsystem and present them in a way that reflects the iterated doubling 5 10 20 40 .
  • We take 1 5 ( 5 3 ) = 2 base cycles, with the cyclic C ( 3 , 5 , 5 ) multiplied by 8:
    ( 0 , 8 , 16 , 24 , 32 ) , ( 0 , 16 , 32 , 8 , 24 ) ;
  • Furthermore, we take 1 5 ( ( 10 3 ) 2 · ( 5 3 ) ) · 1 10 = 2 base cycles of a cyclic C ( 3 , 5 , 10 ) from [2], multiplied by 4:
    ( 0 , 4 , 8 , 20 , 24 ) , ( 0 , 8 , 20 , 16 , 28 ) ;
  • We also take 1 5 ( ( 20 3 ) 2 · ( 10 3 ) ) · 1 20 = 9 base cycles of a cyclic C ( 3 , 5 , 20 ) —five symmetric cycles and two reflected pairs—from [10], multiplied by 2:
    ( 0 , 2 , 36 , 4 , 38 ) ,       ( 0 , 6 , 24 , 16 , 34 ) ,   ( 0 , 6 , 14 , 20 , 10 ) ,   ( 0 , 2 , 16 , 12 , 26 ) , ( 0 , 34 , 10 , 4 , 22 ) ,   ( 0 , 2 , 12 , 28 , 10 ) ,   ( 0 , 30 , 14 , 32 , 2 ) ,   ( 0 , 18 , 32 , 12 , 14 ) , ( 0 , 20 , 18 , 32 , 14 ) .
  • The other ten symmetric base cycles are
    ( 0 , 1 , 6 , 34 , 39 ) ,       ( 0 , 3 , 18 , 22 , 37 ) ,     ( 0 , 5 , 2 , 38 , 35 ) ,     ( 0 , 7 , 2 , 38 , 33 ) , ( 0 , 9 , 14 , 26 , 31 ) ,   ( 0 , 11 , 26 , 14 , 29 ) ,   ( 0 , 13 , 38 , 2 , 27 ) ,   ( 0 , 15 , 10 , 30 , 25 ) , ( 0 , 17 , 22 , 18 , 23 ) ,   ( 0 , 19 , 34 , 6 , 21 ) .
    Note that a little adjustment was necessary for the cycle containg the symmetric difference ( 5 , 5 , 10 ) —the cycle ( 0 , 5 , 2 , 38 , 35 ) —which does not follow the general arithmetic pattern of the others.
  • We take the following 14 base cycles as the first half of reflected crossing cycles:
    ( 0 , 1 , 3 , 10 , 9 ) , ( 0 , 1 , 4 , 9 , 15 ) , ( 0 , 1 , 8 , 11 , 17 ) , ( 0 , 1 , 11 , 14 , 23 ) , ( 0 , 1 , 12 , 3 , 16 ) , ( 0 , 1 , 13 , 24 , 21 ) , ( 0 , 1 , 14 , 3 , 22 ) , ( 0 , 3 , 14 , 7 , 26 ) , ( 0 , 5 , 16 , 36 , 19 ) , ( 0 , 5 , 21 , 36 , 13 ) , ( 0 , 7 , 16 , 35 , 22 ) , ( 0 , 7 , 20 , 31 , 13 ) , ( 0 , 7 , 24 , 9 , 17 ) , ( 0 , 10 , 29 , 2 , 19 ) .
  • Their reflected base cycles are
    ( 0 , 39 , 6 , 8 , 9 ) , ( 0 , 6 , 11 , 14 , 15 ) , ( 0 , 6 , 9 , 16 , 17 ) , ( 0 , 9 , 12 , 22 , 23 ) , ( 0 , 13 , 4 , 15 , 16 ) , ( 0 , 37 , 8 , 20 , 21 ) , ( 0 , 19 , 8 , 21 , 22 ) , ( 0 , 19 , 12 , 23 , 26 ) , ( 0 , 23 , 3 , 14 , 19 ) , ( 0 , 17 , 32 , 8 , 13 ) , ( 0 , 27 , 6 , 15 , 22 ) , ( 0 , 22 , 33 , 6 , 13 ) , ( 0 , 8 , 33 , 10 , 17 ) , ( 0 , 17 , 30 , 9 , 19 ) .
Hence, the number of base cycles supplementing the two copies of C ( 3 , 5 , 20 ) is 10 + 14 + 14 = 38 as needed. This set of base cycles generates a system with the required number of 5-cycles and covers each vertex triple exactly once, as it can be verified from the data in Table A14 and Table A15. □
Proposition 13.
There exists a cyclic 2-split C ( 3 , 5 , 50 ) system.
Proof. 
We have 50 · 49 · 48 6 = 50 · 392 vertex triples, including 24 symmetric differences.
  • We take the 20 base cycles of C ( 3 , 5 , 25 ) , miltiplied by 2; for the sake of completeness, we also list them here:
    ( 0 , 2 , 44 , 6 , 48 ) , ( 0 , 4 , 38 , 12 , 46 ) , ( 0 , 6 , 32 , 18 , 44 ) , ( 0 , 8 , 26 , 24 , 42 ) , ( 0 , 10 , 20 , 30 , 40 ) , ( 0 , 12 , 14 , 36 , 38 ) , ( 0 , 14 , 8 , 42 , 36 ) , ( 0 , 16 , 2 , 48 , 34 ) , ( 0 , 18 , 46 , 4 , 32 ) , ( 0 , 20 , 40 , 10 , 30 ) , ( 0 , 22 , 34 , 16 , 28 ) , ( 0 , 24 , 28 , 22 , 26 ) , ( 0 , 2 , 10 , 22 , 20 ) , ( 0 , 4 , 10 , 24 , 20 ) , ( 0 , 6 , 26 , 40 , 16 ) , ( 0 , 8 , 28 , 40 , 18 ) , ( 0 , 48 , 10 , 18 , 20 ) , ( 0 , 46 , 10 , 16 , 20 ) , ( 0 , 26 , 40 , 10 , 16 ) , ( 0 , 28 , 40 , 10 , 18 ) .
    These cover 2 · ( 25 3 ) = 50 · 92 vertex triples. Hence, there remain 50 · 300 vertex triples to be covered, which need 50 · 60 cycles, that means 60 base cycles. The number of symmetric differences not covered so far is 24 12 = 12 .
  • To define the 12 base cycles for odd symmetric differences, the “ 2 i -rule” is almost perfect, with just one little adjustment for i = 5 . Namely, we take
    ( 0 , i , 50 2 i , 2 i , 50 i ) , i { 1 , 3 } { 7 , 9 , , 23 }
    and ( 0 , 5 , 38 , 12 , 45 ) for i = 5 .
  • For the remaining 60 12 = 48 base cycles, we define 24 reflected pairs. For the first half, we take
    ( 0 , 1 , 5 , 8 , 13 ) , ( 0 , 1 , 6 , 3 , 14 ) , ( 0 , 1 , 7 , 12 , 21 ) , ( 0 , 1 , 8 , 3 , 15 ) , ( 0 , 1 , 9 , 16 , 19 ) , ( 0 , 1 , 10 , 3 , 16 ) , ( 0 , 1 , 11 , 14 , 29 ) , ( 0 , 1 , 12 , 3 , 20 ) , ( 0 , 1 , 23 , 4 , 25 ) , ( 0 , 2 , 15 , 6 , 25 ) , ( 0 , 2 , 17 , 6 , 29 ) , ( 0 , 3 , 17 , 34 , 27 ) , ( 0 , 3 , 21 , 8 , 25 ) , ( 0 , 3 , 23 , 10 , 29 ) , ( 0 , 4 , 33 , 16 , 11 ) , ( 0 , 5 , 21 , 40 , 29 ) , ( 0 , 5 , 23 , 34 , 9 ) , ( 0 , 5 , 31 , 4 , 19 ) , ( 0 , 6 , 35 , 26 , 15 ) , ( 0 , 9 , 22 , 39 , 16 ) , ( 0 , 9 , 24 , 2 , 33 ) , ( 0 , 11 , 30 , 43 , 18 ) , ( 0 , 13 , 36 , 8 , 23 ) , ( 0 , 15 , 32 , 5 , 25 ) .
  • The reflected pairs of these cycles are
    ( 0 , 5 , 8 , 12 , 13 ) , ( 0 , 11 , 8 , 13 , 14 ) , ( 0 , 9 , 14 , 20 , 21 ) , ( 0 , 12 , 7 , 14 , 15 ) , ( 0 , 3 , 10 , 18 , 19 ) , ( 0 , 13 , 6 , 15 , 16 ) , ( 0 , 15 , 18 , 28 , 29 ) , ( 0 , 17 , 8 , 19 , 20 ) , ( 0 , 21 , 2 , 24 , 25 ) , ( 0 , 19 , 10 , 23 , 25 ) , ( 0 , 23 , 12 , 27 , 29 ) , ( 0 , 43 , 10 , 24 , 27 ) , ( 0 , 17 , 4 , 22 , 25 ) , ( 0 , 19 , 6 , 26 , 29 ) , ( 0 , 45 , 28 , 7 , 11 ) , ( 0 , 39 , 8 , 24 , 29 ) , ( 0 , 25 , 36 , 4 , 9 ) , ( 0 , 15 , 38 , 14 , 19 ) , ( 0 , 39 , 30 , 9 , 15 ) , ( 0 , 27 , 44 , 7 , 16 ) , ( 0 , 31 , 9 , 24 , 33 ) , ( 0 , 25 , 38 , 7 , 18 ) , ( 0 , 15 , 37 , 10 , 23 ) , ( 0 , 20 , 43 , 10 , 25 ) .
This set of base cycles generates a system with the required number of 5-cycles and covers each vertex triple exactly once, as it can be verified from the data in Table A22 and Table A23. □
Proposition 14.
There exists a cyclic 2-split C ( 3 , 5 , 52 ) system.
Proof. 
We have 52 · 51 · 50 6 vertex triples; therefore, we need 52 · 17 · 5 cycles, which should be generated by 85 base cycles.
  • The 20 base cycles of a cyclic C ( 3 , 5 , 26 ) system are multiplied by 2:
    ( 0 , 2 , 48 , 4 , 50 ) , ( 0 , 6 , 40 , 12 , 46 ) , ( 0 , 10 , 32 , 20 , 42 ) , ( 0 , 14 , 24 , 28 , 38 ) , ( 0 , 18 , 16 , 36 , 34 ) , ( 0 , 22 , 8 , 44 , 30 ) , ( 0 , 4 , 44 , 8 , 48 ) , ( 0 , 8 , 36 , 16 , 44 ) , ( 0 , 12 , 44 , 8 , 40 ) , ( 0 , 16 , 42 , 10 , 36 ) , ( 0 , 20 , 50 , 2 , 32 ) , ( 0 , 24 , 46 , 6 , 28 ) , ( 0 , 2 , 16 , 34 , 26 ) , ( 0 , 2 , 24 , 50 , 12 ) , ( 0 , 24 , 40 , 46 , 4 ) , ( 0 , 6 , 14 , 4 , 38 ) , ( 0 , 44 , 10 , 24 , 26 ) , ( 0 , 14 , 40 , 10 , 12 ) , ( 0 , 10 , 16 , 32 , 4 ) , ( 0 , 34 , 24 , 32 , 38 ) .
    These include 12 symmetric cycles; the other eight cycles are in four reflected pairs.
  • The further 13 symmetric base cycles are
    ( 0 , 1 , 50 , 2 , 51 ) ,       ( 0 , 3 , 46 , 6 , 49 ) ,     ( 0 , 5 , 42 , 10 , 47 ) ,     ( 0 , 7 , 38 , 14 , 45 ) , ( 0 , 9 , 34 , 18 , 43 ) ,     ( 0 , 11 , 30 , 22 , 41 ) ,   ( 0 , 13 , 28 , 24 , 39 ) ,     ( 0 , 15 , 22 , 30 , 37 ) , ( 0 , 17 , 18 , 34 , 35 ) ,   ( 0 , 19 , 14 , 38 , 33 ) ,   ( 0 , 21 , 10 , 42 , 31 ) ,     ( 0 , 23 , 6 , 46 , 29 ) , ( 0 , 25 , 2 , 50 , 27 ) .
    As we noted above, the even symmetric cycles of C ( 3 , 5 , 26 ) were irregular at several points although the odd cycles had a regular behavior. A little adjustment also occurs here, in the cycle containing the symmetric difference ( 13 , 13 , 26 ) —the cycle ( 0 , 13 , 28 , 24 , 39 ) —which does not follow the general arithmetic pattern of the others.
  • We take the following 26 base cycles as the first half of reflected crossing cycles:
    ( 0 , 1 , 5 , 8 , 13 ) , ( 0 , 1 , 6 , 3 , 14 ) , ( 0 , 1 , 7 , 12 , 19 ) , ( 0 , 1 , 8 , 3 , 20 ) , ( 0 , 1 , 9 , 18 , 11 ) , ( 0 , 1 , 10 , 5 , 21 ) , ( 0 , 1 , 12 , 3 , 16 ) , ( 0 , 1 , 15 , 6 , 25 ) , ( 0 , 1 , 22 , 3 , 26 ) , ( 0 , 1 , 23 , 10 , 29 ) , ( 0 , 2 , 13 , 6 , 31 ) , ( 0 , 2 , 15 , 8 , 35 ) , ( 0 , 3 , 10 , 19 , 31 ) , ( 0 , 3 , 13 , 20 , 33 ) , ( 0 , 3 , 15 , 30 , 21 ) , ( 0 , 3 , 18 , 38 , 27 ) , ( 0 , 25 , 12 , 36 , 3 ) , ( 0 , 23 , 12 , 38 , 3 ) , ( 0 , 4 , 21 , 46 , 31 ) , ( 0 , 5 , 18 , 41 , 25 ) , ( 0 , 5 , 27 , 10 , 23 ) , ( 0 , 7 , 30 , 41 , 24 ) , ( 0 , 9 , 32 , 47 , 24 ) , ( 0 , 13 , 30 , 44 , 21 ) , ( 0 , 13 , 34 , 8 , 27 ) , ( 0 , 15 , 31 , 48 , 33 ) .
  • Their reflected base cycle pairs are
    ( 0 , 5 , 8 , 12 , 13 ) , ( 0 , 11 , 8 , 13 , 14 ) , ( 0 , 7 , 12 , 18 , 19 ) , ( 0 , 17 , 12 , 19 , 20 ) , ( 0 , 45 , 2 , 10 , 11 ) , ( 0 , 16 , 11 , 20 , 21 ) , ( 0 , 13 , 4 , 15 , 16 ) , ( 0 , 19 , 10 , 24 , 25 ) , ( 0 , 23 , 4 , 25 , 26 ) , ( 0 , 19 , 6 , 28 , 29 ) , ( 0 , 25 , 18 , 29 , 31 ) , ( 0 , 27 , 20 , 33 , 35 ) , ( 0 , 12 , 21 , 28 , 31 ) , ( 0 , 13 , 20 , 30 , 33 ) , ( 0 , 43 , 6 , 18 , 21 ) , ( 0 , 41 , 9 , 24 , 27 ) , ( 0 , 19 , 43 , 30 , 3 ) , ( 0 , 17 , 43 , 32 , 3 ) , ( 0 , 37 , 10 , 27 , 31 ) , ( 0 , 36 , 7 , 20 , 25 ) , ( 0 , 13 , 48 , 18 , 23 ) , ( 0 , 35 , 46 , 17 , 24 ) , ( 0 , 29 , 44 , 15 , 24 ) , ( 0 , 29 , 43 , 8 , 21 ) , ( 0 , 19 , 45 , 14 , 27 ) , ( 0 , 37 , 2 , 18 , 33 ) .
This set of base cycles generates a system with the required number of 5-cycles and covers each vertex triple exactly once, as it can be verified from the data in Table A24 and Table A25. □

6. Conclusions

In this paper, we further developed the theory of decompositions of complete3-uniform hypergraphs into 5-cycles. We introduced new recursive rules to generate larger systems from known smaller ones and designed many initial constructions from which new systems can be built.
As formulated in Conjecture 1, we expect that, for all feasible orders except v = 7 , there exists a cyclic 3-uniform 5-cycle system. Analogously, we expect that, for all feasible orders, there exists a more structured 3-uniform 5-cycle system, namely a cyclic 2-split system, with no exceptions at all.
With regards to our conditional recursion v 8 v of Section 3, it is an interesting new problem to analyze for which values of v does the nypergraph H 4 × v admit an edge decomposition into 5-cycles. Perhaps the corresponding divisibility conditions will be sufficient for this type of systems too.
We presented cyclic hypercycle systems C ( 3 , 5 , v ) of orders v = 25, 26, 31, 35, 37, 41, 46, 47, 55, and 56; a highly symmetric construction for v = 40 ; and cyclic 2-split constructions of orders 32 , 40 , 50 , and 52. These systems were determined using computer-aided methods. As a consequence, we obtain that all orders v 60 permitted by the divisibility conditions admit a C ( 3 , 5 , v ) system.
The recursive constructions of Section 3 establish the existence of 2-split C ( 3 , 5 , v ) systems for many previously unsolved cases. The consequences of the v 10 v step result in an infinite set of new solutions, including v = 70 , 160, 200, 260, 310, 320, 350, 370, 460, 470, 520, 550, 560, 700, 800, 820, 1000 , Moreover, some previously solved cases, e.g., v = 100 , 110, 400, 410, and 500, are now proven to admit 2-split systems, which are suitable for serving as initial structures for further recursive operations of [10].
A useful tool in these constructions is the auxiliary system over H 4 × 5 , found in Section 2, for which we expect further applications in the future, too. One nice structure derived from it is the C ( 3 , 5 , 40 ) system of order 40 that benefits from lots of symmetries and that is built over a Steiner quadruple system using as few as seven generating cycles.
Combinatorial designs have a huge number of applications in various fields, e.g., in statistical experimental design, coding theory, optical networks, and even in music composition. Quoting from the historical introduction in the Handbook of Combinatorics ([17], p. 11), every passing year sees thousands of new published papers employing the results and techniques of combinatorial design theory. Concerning the subject of the current paper, it would be very interesting to see that hypercycle systems can also be applied to improve the efficiency of methods in the abovementioned fields. In this direction, one of our referees proposed that the constructed systems could for example be implemented in turbo coding. The connection between block design and block codes is well known, with several notable results, for example, Steiner sytems and Golay codes [18], the application of finite geometries to LDPC codes (low-density parity-check codes) [19], or a more recently published link between Steiner systems and rank metric codes [20]. It is worth mentioning that a combination of turbo coding and balanced incomplete block design was also proposed in [21] for a digital fingerprinting system. As we have shown in this paper, hypercycle and Steiner systems are closely related designs; hence, this may turn out to be an exciting track of research in the future for us. We aim to extend our work and to investigate the cases of different hypercycle lengths to make the constructions more suitable for application.

Author Contributions

The authors contributed equally to this work. All authors contributed to the conceptualization, methodology, software, validation and the writing-editing process of the paper. All authors have read and agreed to the published version of the manuscript.

Funding

This research was supported by the National Research, Development, and Innovation Office—NKFIH under the grant SNN 129364—and by the Ministry of Innovation and Technology NRDI Office within the framework of the Artificial Intelligence National Laboratory Program.

Conflicts of Interest

The authors declare no conflict of interest.

Appendix A. Auxiliary Tables

The number of triplet types is quadratic when it is expressed as a function of the number of vertices, and it gets harder and harder to check whether all triplets are included in the constructed cycles as v grows. The aim of including the supplementary material presented in this Appendix is to facilitate validation of the cycle systems for which the cycles were only listed in the text of the paper.
We present additional data in two types of tables regarding cyclic constructions, caculating the triplet types. The process of caculating the triplet types for a cycle is detailed in Table A1, taking the base cycle ( 0 , 1 , 24 , 2 , 25 ) as an example from Table A5a. For each vertex triple covered by the cycle in question, the distance between any two vertices is calculated according to the following formula:
d i s t 1 , 2 = { x 1 x 2 , if x 1 x 2 v / 2 , v x 1 x 2 , otherwise .
After that, the vertex pair with the smallest distance is considered for reference. The vertex triple is then rearranged (if necessary) in the way that this reference pair is put in the smaller arc of the cyclic order 0 , 1 , , v 1 , 0 and the third vertex of the vertex triple is put last. (In about 2/3 of symmetric difference triplets, the smaller distance occurs twice. Then, the vertex at equal distance from the other two is viewed as the middle vertex.) Finally, the triple is rotated so that the first vertex is labelled 1. The ordered 3-tuple obtained in this way is the triplet type associated with the vertex triple.
A set of base cycles generates a C ( 3 , 5 , v ) properly if and only if all triplet types occur precisely once.
The tables are arranged in increasing order of v. For each v, the table of first kind (split into subtables if v is not small) lists the base cycles and calculates the three distances for each of the five edges in every cycle. After that, the tables of second kind for the same v compute the triplet types determined by the edges of each cycle. For symmetric base cycles, the symmetric differences and half of the reflected differences are emphasized with colored background. In the case of reflected base cycles, the five difference triplets in one representative cycle and its reflected pair are highlighted with a colored background.
Table A1. Example base cycle ( 0 , 1 , 24 , 2 , 25 ) from the v = 26 case (detailed in Table A5a).
Table A1. Example base cycle ( 0 , 1 , 24 , 2 , 25 ) from the v = 26 case (detailed in Table A5a).
Ind. (mod5)abs(Distance)Real DistancedFirst 2DirectionTripleType
(xi,xi+1,xi+2)xi-xi+1xi+1-xi+2xi+2-xixi-xi+1xi+1-xi+2xi+2-xi
(0,1,24)1232413210 1right0 1 241 2 25
(1,24,2)2322134112 1left1 2 241 2 24
(24,2,25)22231431125 24left24 25 21 2 5
(2,25,0)23252312125 0right25 0 21 2 4
(25,0,1)25124112125 0right25 0 11 2 3
Table A2. Cyclic C ( 3 , 5 , 25 ) —vertices and distances in base cycles. The bright yellow cells within the symmetric cycles correspond to the symmetric difference triplets. The distances in the pale green and blue cells have their reflected pairs within each cycle. In the case of the reflected base cycles (1st and 2nd halves), the cells corresponding to reflected difference triplets are marked by the same color for the first cycle pair as an example. With red, we highlighted the special base cycles that only have v / 5 different positions, as i i + v / 5 results in an automorphism of these cycles.
Table A2. Cyclic C ( 3 , 5 , 25 ) —vertices and distances in base cycles. The bright yellow cells within the symmetric cycles correspond to the symmetric difference triplets. The distances in the pale green and blue cells have their reflected pairs within each cycle. In the case of the reflected base cycles (1st and 2nd halves), the cells corresponding to reflected difference triplets are marked by the same color for the first cycle pair as an example. With red, we highlighted the special base cycles that only have v / 5 different positions, as i i + v / 5 results in an automorphism of these cycles.
Base Cycles (5 Vertices)Distances in the Difference Triplets
v1v2v3v4v51-2-32-3-43-4-54-5-15-1-2
Symmetric base cycles
0122324143462642413112
021962328681241284826224
03169223129127671261239336
0413122149129181989412448
0510152055105510551055105510
067181961711112111121676612
0742118734381183113747711
0812417871729279781889
09232169112114741171192997
010205151010510105101051010510105
011178141168693963611811113
012141113122112313212121112121
Reflected cycles 1st half
01511101454610615110111019
02512102353710725210121028
031320831012107871251285835
041420941011106961151195945
Reflected cycles 2nd half
02459101656410415110910111
02358102757310325210810212
013205812757108103123858125
014205911656109104114959115
Table A3. C ( 3 , 5 , 25 ) —for each base cycle, the corresponding 5 triples are analyzed. Three columns belong to each triple: d—the minimum difference value, triple—the ordered version of the original triple, and type—the triple type. The meaning of these is discussed at the beginning of the Appendix A.
Table A3. C ( 3 , 5 , 25 ) —for each base cycle, the corresponding 5 triples are analyzed. Three columns belong to each triple: d—the minimum difference value, triple—the ordered version of the original triple, and type—the triple type. The meaning of these is discussed at the beginning of the Appendix A.
(a) Symmetric base cycles.
Cycles(x1,x2,x3)(x2,x3,x4)(x3,x4,x5)(x4,x5,x1)(x5,x1,x2)
(x1,x2,x3,x4,x5)dtripletypedtripletypedtripletypedtripletypedtripletype
(0,1,22,3,24)10 1 221 2 2321 3 221 3 22222 24 31 3 7124 0 31 2 5124 0 11 2 3
(0,2,19,6,23)20 2 191 3 2042 6 191 5 18419 23 61 5 13223 0 61 3 9223 0 21 3 5
(0,3,16,9,22)30 3 161 4 1763 9 161 7 14616 22 91 7 19322 0 91 4 13322 0 31 4 7
(0,4,13,12,21)40 4 131 5 14112 13 41 2 18112 13 211 2 10421 0 121 5 17421 0 41 5 9
(0,5,10,15,20)50 5 101 6 1155 10 151 6 11510 15 201 6 11515 20 01 6 11520 0 51 6 11
(0,6,7,18,19)16 7 01 2 2016 7 181 2 13118 19 71 2 15118 19 01 2 8619 0 61 7 13
(0,7,4,21,18)34 7 01 4 2234 7 211 4 18318 21 41 4 12318 21 01 4 8718 0 71 8 15
(0,8,1,24,17)10 1 81 2 9224 1 81 3 10224 1 171 3 19124 0 171 2 19817 0 81 9 17
(0,9,23,2,16)223 0 91 3 12423 2 91 5 12423 2 161 5 1920 2 161 3 1779 16 01 8 17
(0,10,20,5,15)520 0 101 6 1655 10 201 6 16515 20 51 6 1650 5 151 6 16510 15 01 6 16
(0,11,17,8,14)611 17 01 7 1538 11 171 4 10314 17 81 4 2068 14 01 7 18311 14 01 4 15
(0,12,14,11,13)212 14 01 3 14111 12 141 2 4113 14 111 2 24211 13 01 3 15112 13 01 2 14
(b) First half of the reflected base cycle pairs.
Cycles(x1,x2,x3)(x2,x3,x4)(x3,x4,x5)(x4,x5,x1)(x5,x1,x2)
(x1,x2,x3,x4,x5)dtripletypedtripletypedtripletypedtripletypedtripletype
(0,1,5,11,10)10 1 51 2 641 5 111 5 11110 11 51 2 21110 11 01 2 1610 1 101 2 11
(0,2,5,12,10)20 2 51 3 632 5 121 4 11210 12 51 3 21210 12 01 3 1620 2 101 3 11
(0,3,13,20,8)30 3 131 4 14713 20 31 8 1658 13 201 6 13520 0 81 6 1430 3 81 4 9
(0,4,14,20,9)40 4 141 5 15614 20 41 7 1659 14 201 6 12520 0 91 6 1540 4 91 5 10
(c) Second half of the reflected base cycle pairs.
Cycles(x1,x2,x3)(x2,x3,x4)(x3,x4,x5)(x4,x5,x1)(x5,x1,x2)
(x1,x2,x3,x4,x5)dtripletypedtripletypedtripletypedtripletypedtripletype
(0,24,5,9,10)124 0 51 2 745 9 241 5 2019 10 51 2 2219 10 01 2 17124 0 101 2 12
(0,23,5,8,10)223 0 51 3 835 8 231 4 1928 10 51 3 2328 10 01 3 18223 0 101 3 13
(0,13,20,5,8)520 0 131 6 19713 20 51 8 1835 8 201 4 1635 8 01 4 2158 13 01 6 18
(0,14,20,5,9)520 0 141 6 20614 20 51 7 1745 9 201 5 1645 9 01 5 2159 14 01 6 17
Table A4. Cyclic C ( 3 , 5 , 26 ) —vertices and distances in base cycles. The bright yellow cells within the symmetric cycles correspond to the symmetric difference triplets. The distances in the pale green and blue cells have their reflected pairs within each cycle. In the case of reflected base cycles (1st and 2nd halves), the cells corresponding to reflected difference triplets are marked by the same color for the first cycle pair as an example.
Table A4. Cyclic C ( 3 , 5 , 26 ) —vertices and distances in base cycles. The bright yellow cells within the symmetric cycles correspond to the symmetric difference triplets. The distances in the pale green and blue cells have their reflected pairs within each cycle. In the case of reflected base cycles (1st and 2nd halves), the cells corresponding to reflected difference triplets are marked by the same color for the first cycle pair as an example.
Base Cycles (5 Vertices)Distances in the Difference Triplets
v1v2v3v4v51-2-32-3-43-4-54-5-15-1-2
Symmetric base cycles
0124225132341431312112
032062339691231293936336
051610215111011656115115105510
07121419751252725757127712
098181791811091019198998
01142215117478118711711411114
0222424264682862624224
0418822412812104101241248448
062242061041082810210646612
08215188135131031013313858810
0102511610111112921191110110106
0122331412113116961191112312122
Reflected cycles 1st half
01817131787910945413913112
011225611112111321376761615
012202321286831135852321210
03721934745159129727310
Reflected cycles 2nd half
022512134959710718113121349
07205671361311211112165671
0581625383811812612210253
01712161995125414373710792
Table A5. C ( 3 , 5 , 26 ) —for each base cycle, the corresponding 5 triples are analyzed. Three columns belong to each triple: d—the minimum difference value, triple—the ordered version of the original triple, and type—the triple type. The meaning of these is discussed at the beginning of the Appendix A.
Table A5. C ( 3 , 5 , 26 ) —for each base cycle, the corresponding 5 triples are analyzed. Three columns belong to each triple: d—the minimum difference value, triple—the ordered version of the original triple, and type—the triple type. The meaning of these is discussed at the beginning of the Appendix A.
(a) Smmetric base cycles.
Cycles(x1,x2,x3)(x2,x3,x4)(x3,x4,x5)(x4,x5,x1)(x5,x1,x2)
(x1,x2,x3,x4,x5)dtripletypedtripletypedtripletypedtripletypedtripletype
(0,1,24,2,25)10 1 241 2 2511 2 241 2 24124 25 21 2 5125 0 21 2 4125 0 11 2 3
(0,2,22,4,24)20 2 221 3 2322 4 221 3 21222 24 41 3 9224 0 41 3 7224 0 21 3 5
(0,3,20,6,23)30 3 201 4 2133 6 201 4 18320 23 61 4 13323 0 61 4 10323 0 31 4 7
(0,4,18,8,22)40 4 181 5 1944 8 181 5 15418 22 81 5 17422 0 81 5 13422 0 41 5 9
(0,5,16,10,21)50 5 161 6 1755 10 161 6 12516 21 101 6 21521 0 101 6 16521 0 51 6 11
(0,6,22,4,20)422 0 61 5 1124 6 221 3 19220 22 41 3 1140 4 201 5 21620 0 61 7 13
(0,7,12,14,19)57 12 01 6 20212 14 71 3 22212 14 191 3 8514 19 01 6 13719 0 71 8 15
(0,8,21,5,18)521 0 81 6 1435 8 211 4 17318 21 51 4 1450 5 181 6 19818 0 81 9 17
(0,9,8,18,17)18 9 01 2 1918 9 181 2 11117 18 81 2 18117 18 01 2 1089 17 01 9 18
(0,10,25,1,16)125 0 101 2 12225 1 101 3 12225 1 161 3 1810 1 161 2 17610 16 01 7 17
(0,11,4,22,15)40 4 111 5 1274 11 221 8 19715 22 41 8 16422 0 151 5 20411 15 01 5 16
(0,12,23,3,14)323 0 121 4 16623 3 121 7 16623 3 141 7 1830 3 141 4 15212 14 01 3 15
(b) First half of the reflected base cycle pairs.
Cycles(x1,x2,x3)(x2,x3,x4)(x3,x4,x5)(x4,x5,x1)(x5,x1,x2)
(x1,x2,x3,x4,x5)dtripletypedtripletypedtripletypedtripletypedtripletype
(0,1,8,17,13)10 1 81 2 971 8 171 8 17413 17 81 5 22413 17 01 5 1410 1 131 2 14
(0,1,12,25,6)10 1 121 2 13225 1 121 3 1466 12 251 7 20125 0 61 2 810 1 61 2 7
(0,12,20,23,2)620 0 121 7 19320 23 121 4 19320 23 21 4 920 2 231 3 2420 2 121 3 13
(0,3,7,2,19)30 3 71 4 812 3 71 2 652 7 191 6 1820 2 191 3 2030 3 191 4 20
(c) Second half of the reflected base cycle pairs.
Cycles(x1,x2,x3)(x2,x3,x4)(x3,x4,x5)(x4,x5,x1)(x5,x1,x2)
(x1,x2,x3,x4,x5)dtripletypedtripletypedtripletypedtripletypedtripletype
(0,22,5,12,13)422 0 51 5 1075 12 221 8 18112 13 51 2 20112 13 01 2 15422 0 131 5 18
(0,7,20,5,6)620 0 71 7 1425 7 201 3 1615 6 201 2 1615 6 01 2 2216 7 01 2 21
(0,5,8,16,2)35 8 01 4 2235 8 161 4 1262 8 161 7 1520 2 161 3 1720 2 51 3 6
(0,17,12,16,19)512 17 01 6 15116 17 121 2 23316 19 121 4 23316 19 01 4 11217 19 01 3 10
Table A6. Cyclic C ( 3 , 5 , 31 ) —vertices and distances in base cycles. The bright yellow cells within the symmetric cycles correspond to the symmetric difference triplets. The distances in the pale green and blue cells have their reflected pairs within each cycle. In the case of reflected base cycles (1st and 2nd halves), the cells corresponding to reflected difference triplets are marked by the same color for the first cycle pair as an example.
Table A6. Cyclic C ( 3 , 5 , 31 ) —vertices and distances in base cycles. The bright yellow cells within the symmetric cycles correspond to the symmetric difference triplets. The distances in the pale green and blue cells have their reflected pairs within each cycle. In the case of reflected base cycles (1st and 2nd halves), the cells corresponding to reflected difference triplets are marked by the same color for the first cycle pair as an example.
Base Cycles (5 Vertices)Distances in the Difference Triplets
v1v2v3v4v51-2-32-3-43-4-54-5-15-1-2
Symmetric base cycles
0128330143462642413112
022562928681241284826224
0322928312912136131261239336
04191227415121578715815412448
05161526511151111011110115155510
0613182567137512571276136612
071021247310311141131437107714
087242381711415141151878815
0942722954581385135949913
010130211091921129119101101011
0112922011132134941391311211119
012265191214514107101471412512127
013238181310810155151051013813135
014201117146116939636141114143
015171416152142313212151415151
Reflected cycles 1st half
015820145437312151211811112
0171791676101510828914918
0113151811213122142353131513114
02922727971311131521579725
0132723313144144104117113831310
015625415969121012102104641511
0511614561165158381461459
Reflected cycles 2nd half
012151920123153474151111211128
0232898102106156171989814
035171832521214121131131413315
016295715132137117292757159
011721311474141014134133103118
0102920410122129109156154114106
083914853561651151491486
Table A7. C ( 3 , 5 , 31 ) —for each base cycle, the corresponding 5 triples are analyzed. Three columns belong to each triple: d—the minimum difference value, triple—the ordered version of the original triple, and type—the triple type. The meaning of these is discussed at the beginning of the Appendix A.
Table A7. C ( 3 , 5 , 31 ) —for each base cycle, the corresponding 5 triples are analyzed. Three columns belong to each triple: d—the minimum difference value, triple—the ordered version of the original triple, and type—the triple type. The meaning of these is discussed at the beginning of the Appendix A.
(a) Symmetric base cycles.
Cycles(x1,x2,x3)(x2,x3,x4)(x3,x4,x5)(x4,x5,x1)(x5,x1,x2)
(x1,x2,x3,x4,x5)dtripletypedtripletypedtripletypedtripletypedtripletype
(0,1,28,3,30)10 1 281 2 2921 3 281 3 28228 30 31 3 7130 0 31 2 5130 0 11 2 3
(0,2,25,6,29)20 2 251 3 2642 6 251 5 24425 29 61 5 13229 0 61 3 9229 0 21 3 5
(0,3,22,9,28)30 3 221 4 2363 9 221 7 20622 28 91 7 19328 0 91 4 13328 0 31 4 7
(0,4,19,12,27)40 4 191 5 20712 19 41 8 24712 19 271 8 16427 0 121 5 17427 0 41 5 9
(0,5,16,15,26)50 5 161 6 17115 16 51 2 22115 16 261 2 12526 0 151 6 21526 0 51 6 11
(0,6,13,18,25)60 6 131 7 14513 18 61 6 25513 18 251 6 13625 0 181 7 25625 0 61 7 13
(0,7,10,21,24)37 10 01 4 2537 10 211 4 15321 24 101 4 21321 24 01 4 11724 0 71 8 15
(0,8,7,24,23)17 8 01 2 2517 8 241 2 18123 24 71 2 16123 24 01 2 9823 0 81 9 17
(0,9,4,27,22)40 4 91 5 1054 9 271 6 24522 27 41 6 14427 0 221 5 27922 0 91 10 19
(0,10,1,30,21)10 1 101 2 11230 1 101 3 12230 1 211 3 23130 0 211 2 231021 0 101 11 21
(0,11,29,2,20)229 0 111 3 14429 2 111 5 14429 2 201 5 2320 2 201 3 21911 20 01 10 21
(0,12,26,5,19)526 0 121 6 1875 12 261 8 22719 26 51 8 1850 5 191 6 20712 19 01 8 20
(0,13,23,8,18)823 0 131 9 2258 13 231 6 16518 23 81 6 2280 8 181 9 19513 18 01 6 19
(0,14,20,11,17)614 20 01 7 18311 14 201 4 10317 20 111 4 26611 17 01 7 21314 17 01 4 18
(0,15,17,14,16)215 17 01 3 17114 15 171 2 4116 17 141 2 30214 16 01 3 18115 16 01 2 17
(b) First half of the reflected base cycle pairs.
Cycles(x1,x2,x3)(x2,x3,x4)(x3,x4,x5)(x4,x5,x1)(x5,x1,x2)
(x1,x2,x3,x4,x5)dtripletypedtripletypedtripletypedtripletypedtripletype
(0,1,5,8,20)10 1 51 2 635 8 11 4 2835 8 201 4 1680 8 201 9 2110 1 201 2 21
(0,1,7,17,9)10 1 71 2 861 7 171 7 1727 9 171 3 1189 17 01 9 2310 1 91 2 10
(0,1,13,15,18)10 1 131 2 14213 15 11 3 20213 15 181 3 6315 18 01 4 1710 1 181 2 19
(0,2,9,22,7)20 2 91 3 1072 9 221 8 2127 9 221 3 1670 7 221 8 2320 2 71 3 8
(0,13,27,23,3)427 0 131 5 18423 27 131 5 22423 27 31 5 1230 3 231 4 2430 3 131 4 14
(0,15,6,25,4)60 6 151 7 1696 15 251 10 2024 6 251 3 2240 4 251 5 2640 4 151 5 16
(0,5,11,6,14)50 5 111 6 1215 6 111 2 7311 14 61 4 2760 6 141 7 1550 5 141 6 15
(c) Second half of the reflected base cycle pairs.
Cycles(x1,x2,x3)(x2,x3,x4)(x3,x4,x5)(x4,x5,x1)(x5,x1,x2)
(x1,x2,x3,x4,x5)dtripletypedtripletypedtripletypedtripletypedtripletype
(0,12,15,19,20)312 15 01 4 20312 15 191 4 8119 20 151 2 28119 20 01 2 13812 20 01 9 20
(0,23,2,8,9)20 2 231 3 2462 8 231 7 2218 9 21 2 2618 9 01 2 24823 0 91 9 18
(0,3,5,17,18)23 5 01 3 2923 5 171 3 15117 18 51 2 20117 18 01 2 1530 3 181 4 19
(0,16,29,5,7)229 0 161 3 19729 5 161 8 1925 7 291 3 2525 7 01 3 2770 7 161 8 17
(0,11,7,21,3)47 11 01 5 2547 11 211 5 1543 7 211 5 1930 3 211 4 2230 3 111 4 12
(0,10,29,20,4)229 0 101 3 13920 29 101 10 22629 4 201 7 2340 4 201 5 2140 4 101 5 11
(0,8,3,9,14)30 3 81 4 918 9 31 2 2759 14 31 6 2659 14 01 6 2368 14 01 7 24
Table A8. Cyclic split C ( 3 , 5 , 32 ) —vertices and distances in base cycles. The bright yellow cells within the symmetric cycles correspond to the symmetric difference triplets. The distances in the pale green and blue cells have their reflected pairs within each cycle. In the case of reflected base cycles (1st and 2nd halves), the cells corresponding to reflected difference triplets are marked by the same color for the first cycle pair as an example.
Table A8. Cyclic split C ( 3 , 5 , 32 ) —vertices and distances in base cycles. The bright yellow cells within the symmetric cycles correspond to the symmetric difference triplets. The distances in the pale green and blue cells have their reflected pairs within each cycle. In the case of reflected base cycles (1st and 2nd halves), the cells corresponding to reflected difference triplets are marked by the same color for the first cycle pair as an example.
Base Cycles (5 Vertices)Distances in the Difference Triplets
v1v2v3v4v51-2-32-3-43-4-54-5-15-1-2
Symmetric base cycles for odd values
0130231132341431312112
032662939691231293936336
05221027515101512512155155105510
071814257111411474117117147714
09141823951454945959149914
01110222111110112111211111110111110
0136261913767121312713713613136
015230171513213415413151315215152
Symmetric base cycles for even values: base cycles of C ( 3 , 5 , 16 ) with vertex indices multiplied by two
0218143021614164124161216214224
02826644262121012210246448
062012266141214868146146126612
0243028862641046106828816
022302101082841248128102101012
020230121214214410414101412212128
018824141410810166161061014814144
Reflected cycles 1st half
015813145437358513813112
01631415653231181114314113
018716178716198916716115
0110291519109134131451415315114
0310301937107125121191113213316
0313221531013109139727151015312
0516247511161181381591578752
06172116111511154159691121165
Reflected cycles 2nd half
0581213538347415113121358
0118131411383525161141314113
0981516918176718116151697
0185141514135139491101151415143
0219161911129127573103131613112
0252121579291013103133151215710
0152327158981113115165727158
09265119156151141161561151192
Table A9. C ( 3 , 5 , 32 ) —for each base cycle, the corresponding 5 triples are analyzed. Three columns belong to each triple: d—the minimum difference value, triple—the ordered version of the original triple, and type—the triple type. The meaning of these is discussed at the beginning of the Appendix A.
Table A9. C ( 3 , 5 , 32 ) —for each base cycle, the corresponding 5 triples are analyzed. Three columns belong to each triple: d—the minimum difference value, triple—the ordered version of the original triple, and type—the triple type. The meaning of these is discussed at the beginning of the Appendix A.
(a) Symmetric base cycles for odd values.
Cycles(x1,x2,x3)(x2,x3,x4)(x3,x4,x5)(x4,x5,x1)(x5,x1,x2)
(x1,x2,x3,x4,x5)dtripletypedtripletypedtripletypedtripletypedtripletype
(0,1,30,2,31)10 1 301 2 3111 2 301 2 30130 31 21 2 5131 0 21 2 4131 0 11 2 3
(0,3,26,6,29)30 3 261 4 2733 6 261 4 24326 29 61 4 13329 0 61 4 10329 0 31 4 7
(0,5,22,10,27)50 5 221 6 2355 10 221 6 18522 27 101 6 21527 0 101 6 16527 0 51 6 11
(0,7,18,14,25)70 7 181 8 19414 18 71 5 26414 18 251 5 12725 0 141 8 22725 0 71 8 15
(0,9,14,18,23)59 14 01 6 24414 18 91 5 28414 18 231 5 10518 23 01 6 15923 0 91 10 19
(0,11,10,22,21)110 11 01 2 23110 11 221 2 13121 22 101 2 22121 22 01 2 121011 21 01 11 22
(0,13,6,26,19)60 6 131 7 1476 13 261 8 21719 26 61 8 20626 0 191 7 26613 19 01 7 20
(0,15,2,30,17)20 2 151 3 16430 2 151 5 18430 2 171 5 20230 0 171 3 20215 17 01 3 18
(b) Symmetric base cycles for even values: base cycles of C ( 3 , 5 , 26 ) with vertex indices multiplied by two.
Cycles(x1,x2,x3)(x2,x3,x4)(x3,x4,x5)(x4,x5,x1)(x5,x1,x2)
(x1,x2,x3,x4,x5)dtripletypedtripletypedtripletypedtripletypedtripletype
(0,2,18,14,30)20 2 181 3 19414 18 21 5 21414 18 301 5 17230 0 141 3 17230 0 21 3 5
(0,28,26,6,4)226 28 01 3 7226 28 61 3 1324 6 261 3 2324 6 01 3 29428 0 41 5 9
(0,6,20,12,26)60 6 201 7 2166 12 201 7 15620 26 121 7 25626 0 121 7 19626 0 61 7 13
(0,24,30,2,8)230 0 241 3 27430 2 241 5 27430 2 81 5 1120 2 81 3 9824 0 81 9 17
(0,22,30,2,10)230 0 221 3 25430 2 221 5 25430 2 101 5 1320 2 101 3 111022 0 101 11 21
(0,20,2,30,12)20 2 201 3 21430 2 201 5 23430 2 121 5 15230 0 121 3 15812 20 01 9 21
(0,18,8,24,14)80 8 181 9 19618 24 81 7 2368 14 241 7 17824 0 141 9 23414 18 01 5 19
(c) First half of the reflected base cycle pairs.
Cycles(x1,x2,x3)(x2,x3,x4)(x3,x4,x5)(x4,x5,x1)(x5,x1,x2)
(x1,x2,x3,x4,x5)dtripletypedtripletypedtripletypedtripletypedtripletype
(0,1,5,8,13)10 1 51 2 635 8 11 4 2935 8 131 4 958 13 01 6 2510 1 131 2 14
(0,1,6,3,14)10 1 61 2 721 3 61 3 633 6 141 4 1230 3 141 4 1510 1 141 2 15
(0,1,8,7,16)10 1 81 2 917 8 11 2 2717 8 161 2 1070 7 161 8 1710 1 161 2 17
(0,1,10,29,15)10 1 101 2 11429 1 101 5 14510 15 291 6 20329 0 151 4 1910 1 151 2 16
(0,3,10,30,19)30 3 101 4 11530 3 101 6 13910 19 301 10 21230 0 191 3 2230 3 191 4 20
(0,3,13,22,15)30 3 131 4 14913 22 31 10 23213 15 221 3 10715 22 01 8 1830 3 151 4 16
(0,5,16,24,7)50 5 161 6 17816 24 51 9 22816 24 71 9 2470 7 241 8 2525 7 01 3 28
(0,6,17,2,11)60 6 171 7 1842 6 171 5 16611 17 21 7 2420 2 111 3 1256 11 01 6 27
(d) Second half of the reflected base cycle pairs.
Cycles(x1,x2,x3)(x2,x3,x4)(x3,x4,x5)(x4,x5,x1)(x5,x1,x2)
(x1,x2,x3,x4,x5)dtripletypedtripletypedtripletypedtripletypedtripletype
(0,5,8,12,13)35 8 01 4 2835 8 121 4 8112 13 81 2 29112 13 01 2 2150 5 131 6 14
(0,11,8,13,14)38 11 01 4 25211 13 81 3 30113 14 81 2 28113 14 01 2 20311 14 01 4 22
(0,9,8,15,16)18 9 01 2 2518 9 151 2 8115 16 81 2 26115 16 01 2 1879 16 01 8 24
(0,18,5,14,15)50 5 181 6 19414 18 51 5 24114 15 51 2 24114 15 01 2 19315 18 01 4 18
(0,21,9,16,19)90 9 211 10 22516 21 91 6 26316 19 91 4 26316 19 01 4 17219 21 01 3 14
(0,25,2,12,15)20 2 251 3 26925 2 121 10 20312 15 21 4 23312 15 01 4 21725 0 151 8 23
(0,15,23,2,7)815 23 01 9 18815 23 21 9 2052 7 231 6 2220 2 71 3 870 7 151 8 16
(0,9,26,5,11)626 0 91 7 1645 9 261 5 2265 11 261 7 2250 5 111 6 1229 11 01 3 24
Table A10. Cyclic C ( 3 , 5 , 35 ) —vertices and distances in base cycles. The bright yellow cells within the symmetric cycles correspond to the symmetric difference triplets. The distances in the pale green and blue cells have their reflected pairs within each cycle. The bright green cells mark the base cycle vertices where the original +3 rule had to be modified for v4 (which means a modification for v3 as well). In the case of reflected base cycles (1st and 2nd halves), the cells corresponding to reflected difference triplets are marked by the same color for the first cycle pair as an example. With red, we highlighted the special base cycles that only have v / 5 different positions, as i i + v / 5 results in an automorphism of these cycles.
Table A10. Cyclic C ( 3 , 5 , 35 ) —vertices and distances in base cycles. The bright yellow cells within the symmetric cycles correspond to the symmetric difference triplets. The distances in the pale green and blue cells have their reflected pairs within each cycle. The bright green cells mark the base cycle vertices where the original +3 rule had to be modified for v4 (which means a modification for v3 as well). In the case of reflected base cycles (1st and 2nd halves), the cells corresponding to reflected difference triplets are marked by the same color for the first cycle pair as an example. With red, we highlighted the special base cycles that only have v / 5 different positions, as i i + v / 5 results in an automorphism of these cycles.
Base Cycles (5 Vertices)Distances in the Difference Triplets
v1v2v3v4v51-2-32-3-43-4-54-5-15-1-2
Symmetric base cycles
0132334143462642413112
022963328681241284826224
0326932312912176171261239336
0423123141612161181116816412448
05332305727434737525510
06171829611171111211112116176612
0714212877147714771477147714
081124278311313161331638118816
098272691811617161171989917
01031425101441486814614104101015
011233241192941349139112111113
0123412312131132112131113121121211
0133142213174178981791713413139
014287211414714147141471414714147
015296201514614129121491415615155
016221319166136939636161316163
017191618172162313212171617171
Reflected cycles 1st half
0151071454595323710716
016920156538311141115915116
01810221787292121412131013114
011016211910961565115141614115
0210221728108121512575171317215
031531173121512167161421417417314
0411241947117131513585161116415
042434104151115105101114111011046
0514332359149167161091012212517
06163313610161017817153151321367
07152818781581314131031017717711
Reflected cycles 2nd half
0322673525494151767310
011141920113143585161151615119
0121421221221427971811314131210
051120215611691591101141514516
0307151751271281582102171517513
021214171416216127123153171417144
0308151951381371574114161516511
0259182310169169795145121712102
01532713151731710810616613713152
02531118101331381487157171117107
Table A11. C ( 3 , 5 , 35 ) —for each base cycle, the corresponding 5 triples are analyzed. Three columns belong to each triple: d—the minimum difference value, triple—the ordered version of the original triple, and type—the triple type. The meaning of these is discussed at the beginning of the Appendix A.
Table A11. C ( 3 , 5 , 35 ) —for each base cycle, the corresponding 5 triples are analyzed. Three columns belong to each triple: d—the minimum difference value, triple—the ordered version of the original triple, and type—the triple type. The meaning of these is discussed at the beginning of the Appendix A.
(a) Symmetric base cycles.
Cycles(x1,x2,x3)(x2,x3,x4)(x3,x4,x5)(x4,x5,x1)(x5,x1,x2)
(x1,x2,x3,x4,x5)dtripletypedtripletypedtripletypedtripletypedtripletype
(0,1,32,3,34)10 1 321 2 3321 3 321 3 32232 34 31 3 7134 0 31 2 5134 0 11 2 3
(0,2,29,6,33)20 2 291 3 3042 6 291 5 28429 33 61 5 13233 0 61 3 9233 0 21 3 5
(0,3,26,9,32)30 3 261 4 2763 9 261 7 24626 32 91 7 19332 0 91 4 13332 0 31 4 7
(0,4,23,12,31)40 4 231 5 2484 12 231 9 20823 31 121 9 25431 0 121 5 17431 0 41 5 9
(0,5,33,2,30)233 0 51 3 832 5 331 4 32330 33 21 4 820 2 301 3 31530 0 51 6 11
(0,6,17,18,29)60 6 171 7 18117 18 61 2 25117 18 291 2 13629 0 181 7 25629 0 61 7 13
(0,7,14,21,28)70 7 141 8 1577 14 211 8 15714 21 281 8 15721 28 01 8 15728 0 71 8 15
(0,8,11,24,27)38 11 01 4 2838 11 241 4 17324 27 111 4 23324 27 01 4 12827 0 81 9 17
(0,9,8,27,26)18 9 01 2 2818 9 271 2 20126 27 81 2 18126 27 01 2 10926 0 91 10 19
(0,10,31,4,25)431 0 101 5 1564 10 311 7 28625 31 41 7 1540 4 251 5 261025 0 101 11 21
(0,11,2,33,24)20 2 111 3 12433 2 111 5 14433 2 241 5 27233 0 241 3 271124 0 111 12 23
(0,12,34,1,23)134 0 121 2 14234 1 121 3 14234 1 231 3 2510 1 231 2 241112 23 01 12 24
(0,13,31,4,22)431 0 131 5 18831 4 131 9 18831 4 221 9 2740 4 221 5 23913 22 01 10 23
(0,14,28,7,21)728 0 141 8 2277 14 281 8 22721 28 71 8 2270 7 211 8 22714 21 01 8 22
(0,15,29,6,20)629 0 151 7 2296 15 291 10 24920 29 61 10 2260 6 201 7 21515 20 01 6 21
(0,16,22,13,19)616 22 01 7 20313 16 221 4 10319 22 131 4 30613 19 01 7 23316 19 01 4 20
(0,17,19,16,18)217 19 01 3 19116 17 191 2 4118 19 161 2 34216 18 01 3 20117 18 01 2 19
(b) First half of the reflected base cycle pairs.
Cycles(x1,x2,x3)(x2,x3,x4)(x3,x4,x5)(x4,x5,x1)(x5,x1,x2)
(x1,x2,x3,x4,x5)dtripletypedtripletypedtripletypedtripletypedtripletype
(0,1,5,10,7)10 1 51 2 641 5 101 5 1025 7 101 3 637 10 01 4 2910 1 71 2 8
(0,1,6,9,20)10 1 61 2 736 9 11 4 3136 9 201 4 1590 9 201 10 2110 1 201 2 21
(0,1,8,10,22)10 1 81 2 928 10 11 3 2928 10 221 3 15100 10 221 11 2310 1 221 2 23
(0,1,10,16,21)10 1 101 2 11610 16 11 7 27516 21 101 6 30516 21 01 6 2010 1 211 2 22
(0,2,10,22,17)20 2 101 3 1182 10 221 9 21517 22 101 6 29517 22 01 6 1920 2 171 3 18
(0,3,15,31,17)30 3 151 4 16731 3 151 8 20215 17 311 3 17431 0 171 5 2230 3 171 4 18
(0,4,11,24,19)40 4 111 5 1274 11 241 8 21519 24 111 6 28519 24 01 6 1740 4 191 5 20
(0,4,24,34,10)40 4 241 5 25534 4 241 6 261024 34 101 11 22134 0 101 2 1240 4 101 5 11
(0,5,14,33,23)50 5 141 6 15733 5 141 8 17914 23 331 10 20233 0 231 3 2650 5 231 6 24
(0,6,16,33,13)60 6 161 7 17833 6 161 9 19313 16 331 4 21233 0 131 3 1660 6 131 7 14
(0,7,15,28,18)70 7 151 8 1687 15 281 9 22315 18 281 4 14728 0 181 8 2670 7 181 8 19
(c) Second half of the reflected base cycle pairs.
Cycles(x1,x2,x3)(x2,x3,x4)(x3,x4,x5)(x4,x5,x1)(x5,x1,x2)
(x1,x2,x3,x4,x5)dtripletypedtripletypedtripletypedtripletypedtripletype
(0,32,2,6,7)20 2 321 3 3342 6 321 5 3116 7 21 2 3216 7 01 2 30332 0 71 4 11
(0,11,14,19,20)311 14 01 4 25311 14 191 4 9119 20 141 2 31119 20 01 2 17911 20 01 10 25
(0,12,14,21,22)212 14 01 3 24212 14 211 3 10121 22 141 2 29121 22 01 2 151012 22 01 11 24
(0,5,11,20,21)50 5 111 6 1265 11 201 7 16120 21 111 2 27120 21 01 2 1650 5 211 6 22
(0,30,7,15,17)530 0 71 6 1387 15 301 9 24215 17 71 3 28215 17 01 3 21530 0 171 6 23
(0,21,2,14,17)20 2 211 3 22714 21 21 8 24314 17 21 4 24314 17 01 4 22417 21 01 5 19
(0,30,8,15,19)530 0 81 6 1478 15 301 8 23415 19 81 5 29415 19 01 5 21530 0 191 6 25
(0,11,21,6,10)1011 21 01 11 2556 11 211 6 1646 10 211 5 1646 10 01 5 30110 11 01 2 26
(0,25,9,18,23)90 9 251 10 26718 25 91 8 27518 23 91 6 27518 23 01 6 18223 25 01 3 13
(0,15,32,7,13)332 0 151 4 1987 15 321 9 2667 13 321 7 2667 13 01 7 29213 15 01 3 23
(0,25,3,11,18)30 3 251 4 2683 11 251 9 23711 18 31 8 28711 18 01 8 25718 25 01 8 18
Table A12. Cyclic C ( 3 , 5 , 37 ) —vertices and distances in base cycles. The bright yellow cells within the symmetric cycles correspond to the symmetric difference triplets. The distances in the pale green and blue cells have their reflected pairs within each cycle. In the case of reflected base cycles (1st and 2nd halves), the cells corresponding to reflected difference triplets are marked by the same color for the first cycle pair as an example.
Table A12. Cyclic C ( 3 , 5 , 37 ) —vertices and distances in base cycles. The bright yellow cells within the symmetric cycles correspond to the symmetric difference triplets. The distances in the pale green and blue cells have their reflected pairs within each cycle. In the case of reflected base cycles (1st and 2nd halves), the cells corresponding to reflected difference triplets are marked by the same color for the first cycle pair as an example.
Base Cycles (5 Vertices)Distances in the Difference Triplets
v1v2v3v4v51-2-32-3-43-4-54-5-15-1-2
Symmetric base cycles
0134336143462642413112
023163528681241284826224
0328934312912186181261239336
0425123341612161381316816412448
05221532517151771071710175155510
06191831613181311211312136186612
0716213079169514591497167714
081324298513511161151658138816
091027289110117181711819109918
01073027103731417143173107101017
011433261174781587157114111115
0121362512111112132111311121121213
0133522413152154114151115132131311
014325231418518109101891814514149
015298221514814167161471415815157
016261121161011101551510510161116165
017231420176146939636171417173
018201719182172313212181718181
Reflected cycles 1st half
015827145437318151810810111
01631415653231181114314113
017112916764104181518811819
01831517875251271215315114
0172522117812835316131611511716
029152527976136101610121512214
021730122151715139131851812712210
018142821841441410141112112921816
0413299491391612161741798945
0511261756116151615969171117512
061441768148102101331317417611
0720341871317131410141621618318711
Reflected cycles 2nd half
019222627183153474151101110188
0118131411383525161141314113
01822282918415461061718981811
0127141512575727181151415123
0161321116313385817121711611615
01016232510616671372921214121015
0193210121813513159152172121012187
011252121114121441041814182162119
0173359171641691294134959178
0286121791561561665115171217911
0133111713103108286146171117134
02135111816142141310137177181118163
Table A13. C ( 3 , 5 , 37 ) —for each base cycle, the corresponding 5 triples are analyzed. Three columns belong to each triple: d—the minimum difference value, triple—the ordered version of the original triple, and type—the triple type. The meaning of these is discussed at the beginning of the Appendix A.
Table A13. C ( 3 , 5 , 37 ) —for each base cycle, the corresponding 5 triples are analyzed. Three columns belong to each triple: d—the minimum difference value, triple—the ordered version of the original triple, and type—the triple type. The meaning of these is discussed at the beginning of the Appendix A.
(a) Symmetric base cycles.
Cycles(x1,x2,x3)(x2,x3,x4)(x3,x4,x5)(x4,x5,x1)(x5,x1,x2)
(x1,x2,x3,x4,x5)dtripletypedtripletypedtripletypedtripletypedtripletype
(0,1,34,3,36)10 1 341 2 3521 3 341 3 34234 36 31 3 7136 0 31 2 5136 0 11 2 3
(0,2,31,6,35)20 2 311 3 3242 6 311 5 30431 35 61 5 13235 0 61 3 9235 0 21 3 5
(0,3,28,9,34)30 3 281 4 2963 9 281 7 26628 34 91 7 19334 0 91 4 13334 0 31 4 7
(0,4,25,12,33)40 4 251 5 2684 12 251 9 22825 33 121 9 25433 0 121 5 17433 0 41 5 9
(0,5,22,15,32)50 5 221 6 23715 22 51 8 28715 22 321 8 18532 0 151 6 21532 0 51 6 11
(0,6,19,18,31)60 6 191 7 20118 19 61 2 26118 19 311 2 14631 0 181 7 25631 0 61 7 13
(0,7,16,21,30)70 7 161 8 17516 21 71 6 29516 21 301 6 15730 0 211 8 29730 0 71 8 15
(0,8,13,24,29)58 13 01 6 3058 13 241 6 17524 29 131 6 27524 29 01 6 14829 0 81 9 17
(0,9,10,27,28)19 10 01 2 2919 10 271 2 19127 28 101 2 21127 28 01 2 11928 0 91 10 19
(0,10,7,30,27)37 10 01 4 3137 10 301 4 24327 30 71 4 18327 30 01 4 111027 0 101 11 21
(0,11,4,33,26)40 4 111 5 1274 11 331 8 30726 33 41 8 16433 0 261 5 311126 0 111 12 23
(0,12,1,36,25)10 1 121 2 13236 1 121 3 14236 1 251 3 27136 0 251 2 271225 0 121 13 25
(0,13,35,2,24)235 0 131 3 16435 2 131 5 16435 2 241 5 2720 2 241 3 251113 24 01 12 25
(0,14,32,5,23)532 0 141 6 2095 14 321 10 28923 32 51 10 2050 5 231 6 24914 23 01 10 24
(0,15,29,8,22)829 0 151 9 2478 15 291 8 22722 29 81 8 2480 8 221 9 23715 22 01 8 23
(0,16,26,11,21)1016 26 01 11 22511 16 261 6 16521 26 111 6 281011 21 01 11 27516 21 01 6 22
(0,17,23,14,20)617 23 01 7 21314 17 231 4 10320 23 141 4 32614 20 01 7 24317 20 01 4 21
(0,18,20,17,19)218 20 01 3 20117 18 201 2 4119 20 171 2 36217 19 01 3 21118 19 01 2 20
(b) First half of the reflected base cycle pairs.
Cycles(x1,x2,x3)(x2,x3,x4)(x3,x4,x5)(x4,x5,x1)(x5,x1,x2)
(x1,x2,x3,x4,x5)dtripletypedtripletypedtripletypedtripletypedtripletype
(0,1,5,8,27)10 1 51 2 635 8 11 4 3435 8 271 4 2380 8 271 9 2810 1 271 2 28
(0,1,6,3,14)10 1 61 2 721 3 61 3 633 6 141 4 1230 3 141 4 1510 1 141 2 15
(0,1,7,11,29)10 1 71 2 847 11 11 5 3247 11 291 5 23829 0 111 9 2010 1 291 2 30
(0,1,8,3,15)10 1 81 2 921 3 81 3 853 8 151 6 1330 3 151 4 1610 1 151 2 16
(0,17,25,22,1)817 25 01 9 21322 25 171 4 33322 25 11 4 1710 1 221 2 2310 1 171 2 18
(0,2,9,15,25)20 2 91 3 1069 15 21 7 3169 15 251 7 171015 25 01 11 2320 2 251 3 26
(0,2,17,30,12)20 2 171 3 18930 2 171 10 25512 17 301 6 19730 0 121 8 2020 2 121 3 13
(0,18,14,28,2)414 18 01 5 24414 18 281 5 151128 2 141 12 2420 2 281 3 2920 2 181 3 19
(0,4,13,29,9)40 4 131 5 1494 13 291 10 2649 13 291 5 21829 0 91 9 1840 4 91 5 10
(0,5,11,26,17)50 5 111 6 1265 11 261 7 22611 17 261 7 16917 26 01 10 2150 5 171 6 18
(0,6,14,4,17)60 6 141 7 1524 6 141 3 11314 17 41 4 2840 4 171 5 1860 6 171 7 18
(0,7,20,34,18)70 7 201 8 211034 7 201 11 24218 20 341 3 17334 0 181 4 2270 7 181 8 19
(c) Second half of the reflected base cycle pairs.
Cycles(x1,x2,x3)(x2,x3,x4)(x3,x4,x5)(x4,x5,x1)(x5,x1,x2)
(x1,x2,x3,x4,x5)dtripletypedtripletypedtripletypedtripletypedtripletype
(0,19,22,26,27)319 22 01 4 19319 22 261 4 8126 27 221 2 34126 27 01 2 12819 27 01 9 19
(0,11,8,13,14)38 11 01 4 30211 13 81 3 35113 14 81 2 33113 14 01 2 25311 14 01 4 27
(0,18,22,28,29)418 22 01 5 20418 22 281 5 11128 29 221 2 32128 29 01 2 10829 0 181 9 27
(0,12,7,14,15)57 12 01 6 31212 14 71 3 33114 15 71 2 31114 15 01 2 24312 15 01 4 26
(0,16,13,21,1)313 16 01 4 25313 16 211 4 9813 21 11 9 2610 1 211 2 2210 1 161 2 17
(0,10,16,23,25)610 16 01 7 28610 16 231 7 14223 25 161 3 31223 25 01 3 15100 10 251 11 26
(0,19,32,10,12)532 0 191 6 25910 19 321 10 23210 12 321 3 23210 12 01 3 28712 19 01 8 26
(0,11,25,21,2)110 11 251 12 26421 25 111 5 28421 25 21 5 1920 2 211 3 2220 2 111 3 12
(0,17,33,5,9)433 0 171 5 22933 5 171 10 2245 9 331 5 2945 9 01 5 3389 17 01 9 29
(0,28,6,12,17)60 6 281 7 2966 12 281 7 23512 17 61 6 32512 17 01 6 26928 0 171 10 27
(0,13,3,11,17)30 3 131 4 14211 13 31 3 30611 17 31 7 30611 17 01 7 27413 17 01 5 25
(0,21,35,11,18)235 0 211 3 241011 21 351 11 25711 18 351 8 25711 18 01 8 27318 21 01 4 20
Table A14. Cyclic split C ( 3 , 5 , 40 ) —vertices and distances in base cycles. With red, we highlighted the special base cycles that only have v / 5 different positions, as i i + v / 5 results in an automorphism. For the rest of the base cycles corresponding to symmetric difference triplets (17 triplets), the meaning of the colors is the following. The bright yellow cells within the symmetric cycles correspond to the symmetric difference triplets. Within each cycle, the pale green and blue colors mark the distances of one half of the reflected triplet pairs. In the case of reflected base cycles (1st and 2nd halves), the cells corresponding to reflected difference triplets are marked by the same color for the first cycle pair as an example. The columns of base cycles (0,2,12,28,10) and (0,30,14,32,2) are highlighted with 5 different colors to mark the connected distances of the reflected triplet pairs. Please note that, in this special case, although the differences and their orders look identical, they belong to different triple types, as it is shown in the corresponding rows of Table A15.
Table A14. Cyclic split C ( 3 , 5 , 40 ) —vertices and distances in base cycles. With red, we highlighted the special base cycles that only have v / 5 different positions, as i i + v / 5 results in an automorphism. For the rest of the base cycles corresponding to symmetric difference triplets (17 triplets), the meaning of the colors is the following. The bright yellow cells within the symmetric cycles correspond to the symmetric difference triplets. Within each cycle, the pale green and blue colors mark the distances of one half of the reflected triplet pairs. In the case of reflected base cycles (1st and 2nd halves), the cells corresponding to reflected difference triplets are marked by the same color for the first cycle pair as an example. The columns of base cycles (0,2,12,28,10) and (0,30,14,32,2) are highlighted with 5 different colors to mark the connected distances of the reflected triplet pairs. Please note that, in this special case, although the differences and their orders look identical, they belong to different triple types, as it is shown in the corresponding rows of Table A15.
Base Cycles (5 Vertices)Distances in the Difference Triplets
v1v2v3v4v51-2-32-3-43-4-54-5-15-1-2
2 base cycles of a cyclic C ( 3 , 5 , 5 ) multiplied by 8
0816243288168816881688168816
016328241616816168161681616816168
2 base cycles of a cyclic C ( 3 , 5 , 10 ) multiplied by 4
048202444841216124164162016420
08201628812201248412812121612820
9 base cycles of a cyclic C ( 3 , 5 , 20 ) multiplied by 2 (5 symmetric base cycles and 2 reflected pairs)
0236438264682862624224
06241634618161881081810186166612
061420106814861461041010201064
0216122621416144104141014141214216
034104226161016610618121818418612
0212281021012101614161821810121028
0301432210161416182181012102821012
0183212141814814206202182141214184
0201832142021821412141841814814206
Symmetric cycles for odd values
016343915651271257516112
0318223731518154194151915318336
05238355323474373525510
07238337525494595727714
091426319514512171251759149918
0112614291115141512312153151114111118
0133822713152154114151115132131314
01510302515510520152051551510151510
017221823175185414515171817176
01934621191561512131215131519619192
Reflected cycles 1st half
0131091232797161910918
0149151343585611615915114
018111717873103696171117116
01111423110111031339129171417118
011231611112119291341316316115
011324211121312111711383191619120
01143221131413112111981918318119
0314726311141174719121914714317
051636195111611209201731719419514
05213613516191615915178171341358
07163522791691912191361318518715
072031137132013111611187181391376
072491771716171521587817917710
01029219101911191381317101719219109
Reflected cycles 2nd half
0396891767292131989110
061114156511538314115141569
069161763937107181171617611
09122223931231013101111171817914
0134151613949112111121161516133
037820213118111217121131192019316
019821221911811132131141181918193
019122326197127114113143141714197
023314191720320119115165191419174
01732813171581516916519513813174
02761522131961991297167181518135
022336131811711131613720713613189
0833101781571517217716717101789
01730919171310131981910111019919172
Table A15. C ( 3 , 5 , 40 ) —for each base cycle, the corresponding 5 triples are analyzed. Three columns belong to each triple: d—the minimum difference value, triple—the ordered version of the original triple, and type—the triple type. The meaning of these is discussed at the beginning of the Appendix A.
Table A15. C ( 3 , 5 , 40 ) —for each base cycle, the corresponding 5 triples are analyzed. Three columns belong to each triple: d—the minimum difference value, triple—the ordered version of the original triple, and type—the triple type. The meaning of these is discussed at the beginning of the Appendix A.
(a) 2 base cycles of a cyclic C ( 3 , 5 , 5 ) multiplied by 8.
Cycles(x1,x2,x3)(x2,x3,x4)(x3,x4,x5)(x4,x5,x1)(x5,x1,x2)
(x1,x2,x3,x4,x5)dtripletypedtripletypedtripletypedtripletypedtripletype
(0,8,16,24,32)80 8 161 9 1788 16 241 9 17816 24 321 9 17824 32 01 9 17832 0 81 9 17
(0,16,32,8,24)832 0 161 9 2588 16 321 9 25824 32 81 9 2580 8 241 9 25816 24 01 9 25
(b) 2 base cycles of a cyclic C ( 3 , 5 , 10 ) multiplied by 4.
Cycles(x1,x2,x3)(x2,x3,x4)(x3,x4,x5)(x4,x5,x1)(x5,x1,x2)
(x1,x2,x3,x4,x5)dtripletypedtripletypedtripletypedtripletypedtripletype
(0,4,8,20,24)40 4 81 5 944 8 201 5 17420 24 81 5 29420 24 01 5 2140 4 241 5 25
(0,8,20,16,28)80 8 201 9 21416 20 81 5 33416 20 281 5 131216 28 01 13 2580 8 281 9 29
(c) 9 base cycles of a cyclic C ( 3 , 5 , 20 ) multiplied by 2 (5 symmetric base cycles and 2 reflected pairs).
Cycles(x1,x2,x3)(x2,x3,x4)(x3,x4,x5)(x4,x5,x1)(x5,x1,x2)
(x1,x2,x3,x4,x5)dtripletypedtripletypedtripletypedtripletypedtripletype
(0,2,36,4,38)20 2 361 3 3722 4 361 3 35236 38 41 3 9238 0 41 3 7238 0 21 3 5
(0,6,24,16,34)60 6 241 7 25816 24 61 9 31816 24 341 9 19634 0 161 7 23634 0 61 7 13
(0,6,14,20,10)60 6 141 7 15614 20 61 7 33410 14 201 5 11100 10 201 11 2146 10 01 5 35
(0,2,16,12,26)20 2 161 3 17412 16 21 5 31412 16 261 5 15120 12 261 13 2720 2 261 3 27
(0,34,10,4,22)634 0 101 7 1764 10 341 7 3164 10 221 7 1940 4 221 5 23634 0 221 7 29
(0,2,12,28,10)20 2 121 3 13102 12 281 11 27210 12 281 3 19100 10 281 11 2920 2 101 3 11
(0,30,14,32,2)1030 0 141 11 25230 32 141 3 251032 2 141 11 2320 2 321 3 3320 2 301 3 31
(0,18,32,12,14)832 0 181 9 27612 18 321 7 21212 14 321 3 21212 14 01 3 29414 18 01 5 27
(0,20,18,32,14)218 20 01 3 23218 20 321 3 15414 18 321 5 19832 0 141 9 23614 20 01 7 27
(d) Symmetric cycles for odd values.
Cycles(x1,x2,x3)(x2,x3,x4)(x3,x4,x5)(x4,x5,x1)(x5,x1,x2)
(x1,x2,x3,x4,x5)dtripletypedtripletypedtripletypedtripletypedtripletype
(0,1,6,34,39)10 1 61 2 751 6 341 6 34534 39 61 6 13139 0 341 2 36139 0 11 2 3
(0,3,18,22,37)30 3 181 4 19418 22 31 5 26418 22 371 5 20337 0 221 4 26337 0 31 4 7
(0,5,2,38,35)20 2 51 3 632 5 381 4 37335 38 21 4 8238 0 351 3 38535 0 51 6 11
(0,7,2,38,33)20 2 71 3 8438 2 71 5 10438 2 331 5 36238 0 331 3 36733 0 71 8 15
(0,9,14,26,31)59 14 01 6 3259 14 261 6 18526 31 141 6 29526 31 01 6 15931 0 91 10 19
(0,11,26,14,29)110 11 261 12 27311 14 261 4 16326 29 141 4 291129 0 141 12 261129 0 111 12 23
(0,13,38,2,27)238 0 131 3 16438 2 131 5 16438 2 271 5 3020 2 271 3 281327 0 131 14 27
(0,15,10,30,25)510 15 01 6 31510 15 301 6 21525 30 101 6 26525 30 01 6 161015 25 01 11 26
(0,17,22,18,23)517 22 01 6 24117 18 221 2 6122 23 181 2 37518 23 01 6 23617 23 01 7 24
(0,19,34,6,21)634 0 191 7 261234 6 191 13 261234 6 211 13 2860 6 211 7 22219 21 01 3 22
(e) First half of the reflected base cycle pairs.
Cycles(x1,x2,x3)(x2,x3,x4)(x3,x4,x5)(x4,x5,x1)(x5,x1,x2)
(x1,x2,x3,x4,x5)dtripletypedtripletypedtripletypedtripletypedtripletype
(0,1,3,10,9)10 1 31 2 421 3 101 3 1019 10 31 2 3519 10 01 2 3210 1 91 2 10
(0,1,4,9,15)10 1 41 2 531 4 91 4 954 9 151 6 1269 15 01 7 3210 1 151 2 16
(0,1,8,11,17)10 1 81 2 938 11 11 4 3438 11 171 4 10611 17 01 7 3010 1 171 2 18
(0,1,11,14,23)10 1 111 2 12311 14 11 4 31311 14 231 4 13914 23 01 10 2710 1 231 2 24
(0,1,12,3,16)10 1 121 2 1321 3 121 3 12412 16 31 5 3230 3 161 4 1710 1 161 2 17
(0,1,13,24,21)10 1 131 2 141113 24 11 12 29321 24 131 4 33321 24 01 4 2010 1 211 2 22
(0,1,14,3,22)10 1 141 2 1521 3 141 3 14814 22 31 9 3030 3 221 4 2310 1 221 2 23
(0,3,14,7,26)30 3 141 4 1543 7 141 5 1277 14 261 8 2070 7 261 8 2730 3 261 4 27
(0,5,16,36,19)50 5 161 6 17936 5 161 10 21316 19 361 4 21436 0 191 5 2450 5 191 6 20
(0,5,21,36,13)50 5 211 6 22936 5 211 10 26813 21 361 9 24436 0 131 5 1850 5 131 6 14
(0,7,16,35,22)70 7 161 8 1797 16 351 10 29616 22 351 7 20535 0 221 6 2870 7 221 8 23
(0,7,20,31,13)70 7 201 8 211120 31 71 12 28713 20 311 8 19931 0 131 10 2367 13 01 7 34
(0,7,24,9,17)70 7 241 8 2527 9 241 3 18717 24 91 8 3389 17 01 9 3270 7 171 8 18
(0,10,29,2,19)100 10 291 11 3082 10 291 9 281019 29 21 11 2420 2 191 3 20910 19 01 10 31
(f) Second half of the reflected base cycle pairs.
Cycles(x1,x2,x3)(x2,x3,x4)(x3,x4,x5)(x4,x5,x1)(x5,x1,x2)
(x1,x2,x3,x4,x5)dtriplettypedtriplettypedtriplettypedtriplettypedtriplettype
(0,39,6,8,9)139 0 61 2 826 8 391 3 3418 9 61 2 3918 9 01 2 33139 0 91 2 11
(0,6,11,14,15)56 11 01 6 35311 14 61 4 36114 15 111 2 38114 15 01 2 2760 6 151 7 16
(0,6,9,16,17)36 9 01 4 3536 9 161 4 11116 17 91 2 34116 17 01 2 2560 6 171 7 18
(0,9,12,22,23)39 12 01 4 3239 12 221 4 14122 23 121 2 31122 23 01 2 1990 9 231 10 24
(0,13,4,15,16)40 4 131 5 14213 15 41 3 32115 16 41 2 30115 16 01 2 26313 16 01 4 28
(0,37,8,20,21)337 0 81 4 121137 8 201 12 24120 21 81 2 29120 21 01 2 21337 0 211 4 25
(0,19,8,21,22)80 8 191 9 20219 21 81 3 30121 22 81 2 28121 22 01 2 20319 22 01 4 22
(0,19,12,23,26)712 19 01 8 29419 23 121 5 34323 26 121 4 30323 26 01 4 18719 26 01 8 22
(0,23,3,14,19)30 3 231 4 24914 23 31 10 30514 19 31 6 30514 19 01 6 27419 23 01 5 22
(0,17,32,8,13)832 0 171 9 2698 17 321 10 2558 13 321 6 2558 13 01 6 33413 17 01 5 28
(0,27,6,15,22)60 6 271 7 2896 15 271 10 22715 22 61 8 32715 22 01 8 26522 27 01 6 19
(0,22,33,6,13)733 0 221 8 301122 33 61 12 2576 13 331 8 2860 6 131 7 14913 22 01 10 28
(0,8,33,10,17)733 0 81 8 1628 10 331 3 26710 17 331 8 24710 17 01 8 3180 8 171 9 18
(0,17,30,9,19)1030 0 171 11 2889 17 301 9 22109 19 301 11 2290 9 191 10 20217 19 01 3 24
Table A16. Cyclic C ( 3 , 5 , 41 ) —vertices and distances in base cycles. The bright yellow cells within the symmetric cycles correspond to the symmetric difference triplets. The distances in the pale green and blue cells have their reflected pairs within each cycle. In the case of reflected base cycles (1st and 2nd halves), the cells corresponding to reflected difference triplets are marked by the same color for the first cycle pair as an example.
Table A16. Cyclic C ( 3 , 5 , 41 ) —vertices and distances in base cycles. The bright yellow cells within the symmetric cycles correspond to the symmetric difference triplets. The distances in the pale green and blue cells have their reflected pairs within each cycle. In the case of reflected base cycles (1st and 2nd halves), the cells corresponding to reflected difference triplets are marked by the same color for the first cycle pair as an example.
Base Cycles (5 Vertices)Distances in the Difference Triplets
v1v2v3v4v51-2-32-3-43-4-54-5-15-1-2
Symmetric base cycles
0138340143462642413112
023563928681241284826224
0332938312912186181261239336
0429123741612161781716816412448
0526153652015201110112010205155510
06231835617181751251712176186612
07202134713201311411314137207714
0817243389179716791698178816
091427329514513181351859149918
01011303110111119201912011011101020
01183330113831619163193118111119
01253629127571017107177125121217
0132392813112114154111511132131315
0144012714151152132151315141141413
0153742615194198118191119154151511
016347251618718149141891816716169
017311024171410142072014714171017177
018281323181013101551510510181318185
019251622196166939636191619193
020221921202192313212201920201
Reflected cycles 1st half
01581014543732521081019
016818156527210121018818117
017111616764104595161116115
018101917872929119191019118
01941718985351381317417116
0112729111121156519171912712113
02142327212141292094134141814216
02175252151715123122082016516218
031633273131613171117611614814317
033014103141114161116420410141037
061322067137114111871820220614
061938216131913199191721720320615
0715352678158201320911915615719
08223268141914195191841815315818
0102235251012191213161310310166161015
02693012151791720420183181211121514
Reflected cycles 2nd half
02591023534741511091028
010121718102122575161181718108
059151654946106171161516511
0911181992112797181191819910
0138161713585838191171617134
022172829195175116111121121312197
04132527491391220122142141614418
020823252012812153152172161816205
0351124276171117131113316314171468
037217104162016141114311310710414
0187142018117117476136201420182
024215211719219139136196201520173
03211192692011208138715715191596
023418261819419145148198151815183
031315251013313121612101910161516106
02332712182032017417159151214121811
Table A17. C ( 3 , 5 , 41 ) —for each base cycle, the corresponding 5 triples are analyzed. Three columns belong to each triple: d—the minimum difference value, triple—the ordered version of the original triple, and type—the triple type. The meaning of these is discussed at the beginning of the Appendix A.
Table A17. C ( 3 , 5 , 41 ) —for each base cycle, the corresponding 5 triples are analyzed. Three columns belong to each triple: d—the minimum difference value, triple—the ordered version of the original triple, and type—the triple type. The meaning of these is discussed at the beginning of the Appendix A.
(a) Symmetric base cycles.
Cycles(x1,x2,x3)(x2,x3,x4)(x3,x4,x5)(x4,x5,x1)(x5,x1,x2)
(x1,x2,x3,x4,x5)dtripletypedtripletypedtripletypedtripletypedtripletype
(0,1,38,3,40)10 1 381 2 3921 3 381 3 38238 40 31 3 7140 0 31 2 5140 0 11 2 3
(0,2,35,6,39)20 2 351 3 3642 6 351 5 34435 39 61 5 13239 0 61 3 9239 0 21 3 5
(0,3,32,9,38)30 3 321 4 3363 9 321 7 30632 38 91 7 19338 0 91 4 13338 0 31 4 7
(0,4,29,12,37)40 4 291 5 3084 12 291 9 26829 37 121 9 25437 0 121 5 17437 0 41 5 9
(0,5,26,15,36)50 5 261 6 27105 15 261 11 221026 36 151 11 31536 0 151 6 21536 0 51 6 11
(0,6,23,18,35)60 6 231 7 24518 23 61 6 30518 23 351 6 18635 0 181 7 25635 0 61 7 13
(0,7,20,21,34)70 7 201 8 21120 21 71 2 29120 21 341 2 15734 0 211 8 29734 0 71 8 15
(0,8,17,24,33)80 8 171 9 18717 24 81 8 33717 24 331 8 17833 0 241 9 33833 0 81 9 17
(0,9,14,27,32)59 14 01 6 3359 14 271 6 19527 32 141 6 29527 32 01 6 15932 0 91 10 19
(0,10,11,30,31)110 11 01 2 32110 11 301 2 21130 31 111 2 23130 31 01 2 121031 0 101 11 21
(0,11,8,33,30)38 11 01 4 3438 11 331 4 26330 33 81 4 20330 33 01 4 121130 0 111 12 23
(0,12,5,36,29)50 5 121 6 1375 12 361 8 32729 36 51 8 18536 0 291 6 351229 0 121 13 25
(0,13,2,39,28)20 2 131 3 14439 2 131 5 16439 2 281 5 31239 0 281 3 311328 0 131 14 27
(0,14,40,1,27)140 0 141 2 16240 1 141 3 16240 1 271 3 2910 1 271 2 281314 27 01 14 28
(0,15,37,4,26)437 0 151 5 20837 4 151 9 20837 4 261 9 3140 4 261 5 271115 26 01 12 27
(0,16,34,7,25)734 0 161 8 2497 16 341 10 28925 34 71 10 2470 7 251 8 26916 25 01 10 26
(0,17,31,10,24)1031 0 171 11 28710 17 311 8 22724 31 101 8 28100 10 241 11 25717 24 01 8 25
(0,18,28,13,23)1018 28 01 11 24513 18 281 6 16523 28 131 6 321013 23 01 11 29518 23 01 6 24
(0,19,25,16,22)619 25 01 7 23316 19 251 4 10322 25 161 4 36616 22 01 7 26319 22 01 4 23
(0,20,22,19,21)220 22 01 3 22119 20 221 2 4121 22 191 2 40219 21 01 3 23120 21 01 2 22
(b) First half of the reflected base cycle pairs.
Cycles(x1,x2,x3)(x2,x3,x4)(x3,x4,x5)(x4,x5,x1)(x5,x1,x2)
(x1,x2,x3,x4,x5)dtripletypedtripletypedtripletypedtripletypedtripletype
(0,1,5,8,10)10 1 51 2 635 8 11 4 3828 10 51 3 3928 10 01 3 3410 1 101 2 11
(0,1,6,8,18)10 1 61 2 726 8 11 3 3726 8 181 3 1380 8 181 9 1910 1 181 2 19
(0,1,7,11,16)10 1 71 2 847 11 11 5 3647 11 161 5 10511 16 01 6 3110 1 161 2 17
(0,1,8,10,19)10 1 81 2 928 10 11 3 3528 10 191 3 12910 19 01 10 3210 1 191 2 20
(0,1,9,4,17)10 1 91 2 1031 4 91 4 954 9 171 6 1440 4 171 5 1810 1 171 2 18
(0,1,12,7,29)10 1 121 2 1357 12 11 6 3657 12 291 6 2370 7 291 8 3010 1 291 2 30
(0,2,14,23,27)20 2 141 3 15914 23 21 10 30423 27 141 5 33423 27 01 5 1920 2 271 3 28
(0,2,17,5,25)20 2 171 3 1832 5 171 4 16817 25 51 9 3050 5 251 6 2620 2 251 3 26
(0,3,16,33,27)30 3 161 4 171133 3 161 12 25627 33 161 7 31627 33 01 7 1530 3 271 4 28
(0,3,30,14,10)30 3 301 4 31113 14 301 12 28410 14 301 5 21410 14 01 5 3230 3 101 4 11
(0,6,13,2,20)60 6 131 7 1442 6 131 5 12713 20 21 8 3120 2 201 3 2160 6 201 7 21
(0,6,19,38,21)60 6 191 7 20938 6 191 10 23219 21 381 3 20338 0 211 4 2560 6 211 7 22
(0,7,15,35,26)70 7 151 8 1687 15 351 9 29926 35 151 10 31635 0 261 7 3370 7 261 8 27
(0,8,22,3,26)80 8 221 9 2353 8 221 6 20422 26 31 5 2330 3 261 4 2780 8 261 9 27
(0,10,22,35,25)100 10 221 11 231210 22 351 13 26322 25 351 4 14635 0 251 7 32100 10 251 11 26
(0,26,9,30,12)90 9 261 10 27426 30 91 5 2539 12 301 4 221130 0 121 12 24120 12 261 13 27
(c) Second half of the reflected base cycle pairs.
Cycles(x1,x2,x3)(x2,x3,x4)(x3,x4,x5)(x4,x5,x1)(x5,x1,x2)
(x1,x2,x3,x4,x5)dtripletypedtripletypedtripletypedtripletypedtripletype
(0,2,5,9,10)20 2 51 3 632 5 91 4 819 10 51 2 3819 10 01 2 3320 2 101 3 11
(0,10,12,17,18)210 12 01 3 32210 12 171 3 8117 18 121 2 37117 18 01 2 25810 18 01 9 32
(0,5,9,15,16)45 9 01 5 3745 9 151 5 11115 16 91 2 36115 16 01 2 2750 5 161 6 17
(0,9,11,18,19)29 11 01 3 3329 11 181 3 10118 19 111 2 35118 19 01 2 2490 9 191 10 20
(0,13,8,16,17)58 13 01 6 34313 16 81 4 37116 17 81 2 34116 17 01 2 26413 17 01 5 29
(0,22,17,28,29)517 22 01 6 25517 22 281 6 12128 29 171 2 31128 29 01 2 14722 29 01 8 20
(0,4,13,25,27)40 4 131 5 1494 13 251 10 22225 27 131 3 30225 27 01 3 1740 4 271 5 28
(0,20,8,23,25)80 8 201 9 21320 23 81 4 30223 25 81 3 27223 25 01 3 19520 25 01 6 22
(0,35,11,24,27)635 0 111 7 181124 35 111 12 29324 27 111 4 29324 27 01 4 18635 0 271 7 34
(0,37,21,7,10)437 0 211 5 261137 7 211 12 2637 10 211 4 1537 10 01 4 35437 0 101 5 15
(0,18,7,14,20)70 7 181 8 19414 18 71 5 35614 20 71 7 35614 20 01 7 28218 20 01 3 24
(0,24,2,15,21)20 2 241 3 25915 24 21 10 29615 21 21 7 29615 21 01 7 27321 24 01 4 21
(0,32,11,19,26)932 0 111 10 21811 19 321 9 22719 26 111 8 34719 26 01 8 23626 32 01 7 16
(0,23,4,18,26)40 4 231 5 24518 23 41 6 28818 26 41 9 28818 26 01 9 24323 26 01 4 19
(0,31,3,15,25)30 3 311 4 32123 15 311 13 291015 25 31 11 301015 25 01 11 27625 31 01 7 17
(0,23,3,27,12)30 3 231 4 24423 27 31 5 2293 12 271 10 25120 12 271 13 281112 23 01 12 30
Table A18. Cyclic C ( 3 , 5 , 46 ) —vertices and distances in base cycles. The bright yellow cells within the symmetric cycles correspond to the symmetric difference triplets. The distances in the pale green and blue cells have their reflected pairs within each cycle. In the case of reflected base cycles (1st and 2nd halves), the cells corresponding to reflected difference triplets are marked by the same color for the first cycle pair as an example.
Table A18. Cyclic C ( 3 , 5 , 46 ) —vertices and distances in base cycles. The bright yellow cells within the symmetric cycles correspond to the symmetric difference triplets. The distances in the pale green and blue cells have their reflected pairs within each cycle. In the case of reflected base cycles (1st and 2nd halves), the cells corresponding to reflected difference triplets are marked by the same color for the first cycle pair as an example.
(a) Cyclic C ( 3 , 5 , 46 ) —symmetric base cycles.
Base Cycles (5 Vertices)Distances in the Difference Triplets
v1v2v3v4v51-2-32-3-43-4-54-5-15-1-2
0144245132341431312112
0242444264682862624224
034064339691231293936336
0438842412812164161241248448
05361041515101520520155155105510
06341240618121822622186186126612
07321439721142118718217217147714
08301638822162214814228228168816
09281837919181910910199199189918
0102620361016201661061610161020101020
0112422351113221321121311131122111122
0122224341210221021221012101222121222
013202633137207613671371320131320
01418283214418410141041441418141418
01516303115116114151411511516151516
01614323016214218161821621614161614
01712342917512522172251751712171712
01810362818810820182081881810181810
01983827191181116191611191119819198
02064026201461412201214201420620206
021442252117417821817211721421214
022244242220220422420222022222222
(b) Cyclic C ( 3 , 5 , 46 ) —first half of the reflected base cycle pairs.
Base Cycles (5 Vertices)Distances in the Difference Triplets
v1v2v3v4v51-2-32-3-43-4-54-5-15-1-2
01581014543732521081019
0168171565272911917817116
0171118167641047117181118117
01810231787292131513231023122
019413189853594913413112
011141911011107371581519419118
0112427111121183823152319419120
011492111314135851271221921120
0214172721214123153101310191719221
02176232151715114111761723623221
02195282171917143142392318518220
0314925311141156516111621921322
03162530313161392295145162116319
031840213151815229221931921621318
032035263172017151415969201120323
04223517418221813151318518171117413
0519402751419142111211381319619522
0719422671219122311231671620420719
072433177172217920916716171317710
0820361481220121618162262214101486
026536112021521151015216211110112015
0271234131915121522722211211312131914
(c) Cyclic C ( 3 , 5 , 46 ) —second half of the reflected base cycle pairs.
Base Cycles (5 Vertices)Distances in the Difference Triplets
v1v2v3v4v51-2-32-3-43-4-54-5-15-1-2
02591023534741511091028
091116179211257516117161798
07111718741146106171181718711
0131522231321527971812322231310
0941213954583819113121394
0158181915787103101111191819154
023152627238158113111121192019234
0127202112575138131141212021129
01013252710313312151221421921191017
017621231711611154152172232123176
023926282314914173172192182018235
016112225165115116113143212221169
05142730591491322133163161916521
027318211922322159153183211821196
037623269156151714173203202320911
028411317181351318151842241713171811
0338222713218211411145195192219136
0307192616237231211127197201920164
0303910171697917201772271710171613
0244061422166161218128208146142210
021631112115615211021205201115112110
025132132122122157151912191314132112
Table A19. C ( 3 , 5 , 46 ) —for each base cycle, the corresponding 5 triples are analyzed. Three columns belong to each triple: d—the minimum difference value, triple—the ordered version of the original triple, and type—the triple type. The meaning of these is discussed at the beginning of the Appendix A.
Table A19. C ( 3 , 5 , 46 ) —for each base cycle, the corresponding 5 triples are analyzed. Three columns belong to each triple: d—the minimum difference value, triple—the ordered version of the original triple, and type—the triple type. The meaning of these is discussed at the beginning of the Appendix A.
(a) Symmetric base cycles.
Cycles(x1,x2,x3)(x2,x3,x4)(x3,x4,x5)(x4,x5,x1)(x5,x1,x2)
(x1,x2,x3,x4,x5)dtripletypedtripletypedtripletypedtripletypedtripletype
(0,1,44,2,45)10 1 441 2 4511 2 441 2 44144 45 21 2 5145 0 21 2 4145 0 11 2 3
(0,2,42,4,44)20 2 421 3 4322 4 421 3 41242 44 41 3 9244 0 41 3 7244 0 21 3 5
(0,3,40,6,43)30 3 401 4 4133 6 401 4 38340 43 61 4 13343 0 61 4 10343 0 31 4 7
(0,4,38,8,42)40 4 381 5 3944 8 381 5 35438 42 81 5 17442 0 81 5 13442 0 41 5 9
(0,5,36,10,41)50 5 361 6 3755 10 361 6 32536 41 101 6 21541 0 101 6 16541 0 51 6 11
(0,6,34,12,40)60 6 341 7 3566 12 341 7 29634 40 121 7 25640 0 121 7 19640 0 61 7 13
(0,7,32,14,39)70 7 321 8 3377 14 321 8 26732 39 141 8 29739 0 141 8 22739 0 71 8 15
(0,8,30,16,38)80 8 301 9 3188 16 301 9 23830 38 161 9 33838 0 161 9 25838 0 81 9 17
(0,9,28,18,37)90 9 281 10 2999 18 281 10 20928 37 181 10 37937 0 181 10 28937 0 91 10 19
(0,10,26,20,36)100 10 261 11 27620 26 101 7 37620 26 361 7 171036 0 201 11 311036 0 101 11 21
(0,11,24,22,35)110 11 241 12 25222 24 111 3 36222 24 351 3 141135 0 221 12 341135 0 111 12 23
(0,12,22,24,34)1012 22 01 11 35222 24 121 3 37222 24 341 3 131024 34 01 11 231234 0 121 13 25
(0,13,20,26,33)713 20 01 8 34620 26 131 7 40620 26 331 7 14726 33 01 8 211333 0 131 14 27
(0,14,18,28,32)414 18 01 5 33414 18 281 5 15428 32 181 5 37428 32 01 5 191432 0 141 15 29
(0,15,16,30,31)115 16 01 2 32115 16 301 2 16130 31 161 2 33130 31 01 2 171531 0 151 16 31
(0,16,14,32,30)214 16 01 3 33214 16 321 3 19230 32 141 3 31230 32 01 3 171416 30 01 15 31
(0,17,12,34,29)512 17 01 6 35512 17 341 6 23529 34 121 6 30529 34 01 6 181217 29 01 13 30
(0,18,10,36,28)810 18 01 9 37810 18 361 9 27828 36 101 9 29828 36 01 9 191018 28 01 11 29
(0,19,8,38,27)80 8 191 9 20118 19 381 12 311127 38 81 12 28838 0 271 9 36819 27 01 9 28
(0,20,6,40,26)60 6 201 7 211240 6 201 13 271240 6 261 13 33640 0 261 7 33620 26 01 7 27
(0,21,4,42,25)40 4 211 5 22842 4 211 9 26842 4 251 9 30442 0 251 5 30421 25 01 5 26
(0,22,2,44,24)20 2 221 3 23444 2 221 5 25444 2 241 5 27244 0 241 3 27222 24 01 3 25
(b) First half of the reflected base cycle pairs.
Cycles(x1,x2,x3)(x2,x3,x4)(x3,x4,x5)(x4,x5,x1)(x5,x1,x2)
(x1,x2,x3,x4,x5)dtripletypedtripletypedtripletypedtripletypedtripletype
(0,1,5,8,10)10 1 51 2 635 8 11 4 4328 10 51 3 4428 10 01 3 3910 1 101 2 11
(0,1,6,8,17)10 1 61 2 726 8 11 3 4226 8 171 3 1280 8 171 9 1810 1 171 2 18
(0,1,7,11,18)10 1 71 2 847 11 11 5 4147 11 181 5 12711 18 01 8 3610 1 181 2 19
(0,1,8,10,23)10 1 81 2 928 10 11 3 4028 10 231 3 16100 10 231 11 2410 1 231 2 24
(0,1,9,4,13)10 1 91 2 1031 4 91 4 949 13 41 5 4240 4 131 5 1410 1 131 2 14
(0,1,11,4,19)10 1 111 2 1231 4 111 4 1174 11 191 8 1640 4 191 5 2010 1 191 2 20
(0,1,12,4,27)10 1 121 2 1331 4 121 4 1284 12 271 9 2440 4 271 5 2810 1 271 2 28
(0,1,14,9,21)10 1 141 2 1559 14 11 6 3959 14 211 6 1390 9 211 10 2210 1 211 2 22
(0,2,14,17,27)20 2 141 3 15314 17 21 4 35314 17 271 4 141017 27 01 11 3020 2 271 3 28
(0,2,17,6,23)20 2 171 3 1842 6 171 5 16617 23 61 7 3660 6 231 7 2420 2 231 3 24
(0,2,19,5,28)20 2 191 3 2032 5 191 4 18919 28 51 10 3350 5 281 6 2920 2 281 3 29
(0,3,14,9,25)30 3 141 4 1559 14 31 6 4159 14 251 6 1790 9 251 10 2630 3 251 4 26
(0,3,16,25,30)30 3 161 4 17916 25 31 10 34525 30 161 6 38525 30 01 6 2230 3 301 4 31
(0,3,18,40,21)30 3 181 4 19940 3 181 10 25318 21 401 4 23640 0 211 7 2830 3 211 4 22
(0,3,20,35,26)30 3 201 4 211435 3 201 15 32620 26 351 7 16926 35 01 10 2130 3 261 4 27
(0,4,22,35,17)40 4 221 5 231322 35 41 14 29517 22 351 6 191135 0 171 12 2940 4 171 5 18
(0,5,19,40,27)50 5 191 6 201140 5 191 12 26819 27 401 9 22640 0 271 7 3450 5 271 6 28
(0,7,19,42,26)70 7 191 8 201142 7 191 12 24719 26 421 8 24442 0 261 5 3170 7 261 8 27
(0,7,24,33,17)70 7 241 8 25924 33 71 10 30717 24 331 8 171333 0 171 14 3170 7 171 8 18
(0,8,20,36,14)80 8 201 9 21128 20 361 13 29614 20 361 7 231036 0 141 11 2568 14 01 7 39
(0,26,5,36,11)50 5 261 6 271026 36 51 11 2665 11 361 7 321036 0 111 11 22110 11 261 12 27
(0,27,12,34,13)120 12 271 13 28727 34 121 8 32112 13 341 2 231234 0 131 13 26130 13 271 14 28
(c) Second half of the reflected base cycle pairs.
Cycles(x1,x2,x3)(x2,x3,x4)(x3,x4,x5)(x4,x5,x1)(x5,x1,x2)
(x1,x2,x3,x4,x5)dtripletypedtripletypedtripletypedtripletypedtripletype
(0,2,5,9,10)20 2 51 3 632 5 91 4 819 10 51 2 4319 10 01 2 3820 2 101 3 11
(0,9,11,16,17)29 11 01 3 3829 11 161 3 8116 17 111 2 42116 17 01 2 3189 17 01 9 38
(0,7,11,17,18)47 11 01 5 4047 11 171 5 11117 18 111 2 41117 18 01 2 3070 7 181 8 19
(0,13,15,22,23)213 15 01 3 34213 15 221 3 10122 23 151 2 40122 23 01 2 251013 23 01 11 34
(0,9,4,12,13)40 4 91 5 1039 12 41 4 42112 13 41 2 39112 13 01 2 3549 13 01 5 38
(0,15,8,18,19)78 15 01 8 39315 18 81 4 40118 19 81 2 37118 19 01 2 29415 19 01 5 32
(0,23,15,26,27)815 23 01 9 32323 26 151 4 39126 27 151 2 36126 27 01 2 21423 27 01 5 24
(0,12,7,20,21)57 12 01 6 4057 12 201 6 14120 21 71 2 34120 21 01 2 27912 21 01 10 35
(0,10,13,25,27)310 13 01 4 37310 13 251 4 16225 27 131 3 35225 27 01 3 22100 10 271 11 28
(0,17,6,21,23)60 6 171 7 18417 21 61 5 36221 23 61 3 32221 23 01 3 26617 23 01 7 30
(0,23,9,26,28)90 9 231 10 24323 26 91 4 33226 28 91 3 30226 28 01 3 21523 28 01 6 24
(0,16,11,22,25)511 16 01 6 36511 16 221 6 12322 25 111 4 36322 25 01 4 25916 25 01 10 31
(0,5,14,27,30)50 5 141 6 1595 14 271 10 23327 30 141 4 34327 30 01 4 2050 5 301 6 31
(0,27,3,18,21)30 3 271 4 28918 27 31 10 32318 21 31 4 32318 21 01 4 29621 27 01 7 26
(0,37,6,23,26)60 6 371 7 381423 37 61 15 30323 26 61 4 30323 26 01 4 24937 0 261 10 36
(0,28,41,13,17)541 0 281 6 341328 41 131 14 32413 17 411 5 29413 17 01 5 341117 28 01 12 30
(0,33,8,22,27)80 8 331 9 341122 33 81 12 33522 27 81 6 33522 27 01 6 25627 33 01 7 20
(0,30,7,19,26)70 7 301 8 311119 30 71 12 35719 26 71 8 35719 26 01 8 28426 30 01 5 21
(0,30,39,10,17)739 0 301 8 38930 39 101 10 27710 17 391 8 30710 17 01 8 371317 30 01 14 30
(0,24,40,6,14)640 0 241 7 311240 6 241 13 3186 14 401 9 3560 6 141 7 151014 24 01 11 33
(0,21,6,31,11)60 6 211 7 221021 31 61 11 3256 11 311 6 26110 11 311 12 321011 21 01 11 36
(0,25,1,32,13)10 1 251 2 26725 32 11 8 23121 13 321 13 32130 13 321 14 331213 25 01 13 34
Table A20. Cyclic C ( 3 , 5 , 47 ) —vertices and distances in base cycles. The bright yellow cells within the symmetric cycles correspond to the symmetric difference triplets. The distances in the pale green and blue cells have their reflected pairs within each cycle. In the case of reflected base cycles (1st and 2nd halves), the cells corresponding to reflected difference triplets are marked by the same color for the first cycle pair as an example.
Table A20. Cyclic C ( 3 , 5 , 47 ) —vertices and distances in base cycles. The bright yellow cells within the symmetric cycles correspond to the symmetric difference triplets. The distances in the pale green and blue cells have their reflected pairs within each cycle. In the case of reflected base cycles (1st and 2nd halves), the cells corresponding to reflected difference triplets are marked by the same color for the first cycle pair as an example.
(a) Cyclic C ( 3 , 5 , 47 ) —symmetric base cycles.
Base Cycles (5 Vertices)Distances in the Difference Triplets
v1v2v3v4v51-2-32-3-43-4-54-5-15-1-2
0144346143462642413112
024164528681241284826224
0338944312912186181261239336
0435124341612162382316816412448
0532154252015201710172010205155510
0629184162318231112112312236186612
07262140719211951451914197217714
08232439815231511611516158238816
09202738911201171871118119209918
01017303710717713201372071017101020
01114333611314319221932231114111122
01211363512111122232212311211121223
01383934135851621165215138131321
01454233149591019109199145141419
0152453215132134174131713152151517
0164613116171172152171517161161615
0174343017214218138211321174171713
018407291822722141114221122187181811
019371028191810182092018918191019199
020341327201413142172114714201320207
021311626211016101551510510211621215
022281925226196939636221922223
023252224232222313212232223231
(b) Cyclic C ( 3 , 5 , 47 ) —first half of the reflected base cycle pairs.
Base Cycles (5 Vertices)Distances in the Difference Triplets
v1v2v3v4v51-2-32-3-43-4-54-5-15-1-2
01581014543732521081019
016818156527210121018818117
017113416764104232023131113114
01810211787292111311211021120
01941518985351161115415114
0111835110111037320232012812113
01193261181918162162372321321122
02116222911954516111622622220
0214926212141257517121721921223
02166192141614104101331319619217
022017282182018315311811191719221
03152230312151271978158172217320
0316931313161376722152216916319
03173521314171418151814414211221318
0233240423915981781119114742319
061732266111711152115696211521620
06203616614201416171620420161116610
0233039623717791691423146862317
08261322818211813513949221322814
02553310222052019819235231014102215
023535102318518171217225221012102313
012254321121322131816182242221421129
0281332121915131519419201201215121916
(c) Cyclic C ( 3 , 5 , 47 ) —second half of the reflected base cycle pairs.
Base Cycles (5 Vertices)Distances in the Difference Triplets
v1v2v3v4v51-2-32-3-43-4-54-5-15-1-2
02591023534741511091028
010121718102122575161181718108
02327333423420461061711314132311
0111320211121327971812120211110
0116141511565838191151415114
027243435203233107101111121312208
023725262316716182181191212221233
0161120221651159492112222022166
017122426175125127122142212321179
013317191310310144142162191719136
011826281138318151822021921191117
08152730871571219123153172017822
022152831227157136133163161916229
03341821141841814151431732118211412
0111928411819891792315234194117
041920266159151121116176212021615
027431016201641614171462061610162011
0142330614923971672317236176148
09431422913413185188218221422913
02453210231951920820225221015102314
022534102217517181218235231013102212
02543921221841813161312221221921224
0274631122019119154151913191216122015
Table A21. C ( 3 , 5 , 47 ) —for each base cycle, the corresponding 5 triples are analyzed. Three columns belong to each triple: d—the minimum difference value, triple—the ordered version of the original triple, and type—the triple type. The meaning of these is discussed at the beginning of the Appendix A.
Table A21. C ( 3 , 5 , 47 ) —for each base cycle, the corresponding 5 triples are analyzed. Three columns belong to each triple: d—the minimum difference value, triple—the ordered version of the original triple, and type—the triple type. The meaning of these is discussed at the beginning of the Appendix A.
(a) Symmetric base cycles.
Cycles(x1,x2,x3)(x2,x3,x4)(x3,x4,x5)(x4,x5,x1)(x5,x1,x2)
(x1,x2,x3,x4,x5)dtripletypedtripletypedtripletypedtripletypedtripletype
(0,1,44,3,46)10 1 441 2 4521 3 441 3 44244 46 31 3 7146 0 31 2 5146 0 11 2 3
(0,2,41,6,45)20 2 411 3 4242 6 411 5 40441 45 61 5 13245 0 61 3 9245 0 21 3 5
(0,3,38,9,44)30 3 381 4 3963 9 381 7 36638 44 91 7 19344 0 91 4 13344 0 31 4 7
(0,4,35,12,43)40 4 351 5 3684 12 351 9 32835 43 121 9 25443 0 121 5 17443 0 41 5 9
(0,5,32,15,42)50 5 321 6 33105 15 321 11 281032 42 151 11 31542 0 151 6 21542 0 51 6 11
(0,6,29,18,41)60 6 291 7 301118 29 61 12 361118 29 411 12 24641 0 181 7 25641 0 61 7 13
(0,7,26,21,40)70 7 261 8 27521 26 71 6 34521 26 401 6 20740 0 211 8 29740 0 71 8 15
(0,8,23,24,39)80 8 231 9 24123 24 81 2 33123 24 391 2 17839 0 241 9 33839 0 81 9 17
(0,9,20,27,38)90 9 201 10 21720 27 91 8 37720 27 381 8 19938 0 271 10 37938 0 91 10 19
(0,10,17,30,37)710 17 01 8 38710 17 301 8 21730 37 171 8 35730 37 01 8 181037 0 101 11 21
(0,11,14,33,36)311 14 01 4 37311 14 331 4 23333 36 141 4 29333 36 01 4 151136 0 111 12 23
(0,12,11,36,35)111 12 01 2 37111 12 361 2 26135 36 111 2 24135 36 01 2 131235 0 121 13 25
(0,13,8,39,34)58 13 01 6 4058 13 391 6 32534 39 81 6 22534 39 01 6 141334 0 131 14 27
(0,14,5,42,33)50 5 141 6 1595 14 421 10 38933 42 51 10 20542 0 331 6 391433 0 141 15 29
(0,15,2,45,32)20 2 151 3 16445 2 151 5 18445 2 321 5 35245 0 321 3 351532 0 151 16 31
(0,16,46,1,31)146 0 161 2 18246 1 161 3 18246 1 311 3 3310 1 311 2 321516 31 01 16 32
(0,17,43,4,30)443 0 171 5 22843 4 171 9 22843 4 301 9 3540 4 301 5 311317 30 01 14 31
(0,18,40,7,29)740 0 181 8 26117 18 401 12 341129 40 71 12 2670 7 291 8 301118 29 01 12 30
(0,19,37,10,28)1037 0 191 11 30910 19 371 10 28928 37 101 10 30100 10 281 11 29919 28 01 10 29
(0,20,34,13,27)1334 0 201 14 34713 20 341 8 22727 34 131 8 34130 13 271 14 28720 27 01 8 28
(0,21,31,16,26)1021 31 01 11 27516 21 311 6 16526 31 161 6 381016 26 01 11 32521 26 01 6 27
(0,22,28,19,25)622 28 01 7 26319 22 281 4 10325 28 191 4 42619 25 01 7 29322 25 01 4 26
(0,23,25,22,24)223 25 01 3 25122 23 251 2 4124 25 221 2 46222 24 01 3 26123 24 01 2 25
(b) First half of the reflected base cycle pairs.
Cycles(x1,x2,x3)(x2,x3,x4)(x3,x4,x5)(x4,x5,x1)(x5,x1,x2)
(x1,x2,x3,x4,x5)dtripletypedtripletypedtripletypedtripletypedtripletype
(0,1,5,8,10)10 1 51 2 635 8 11 4 4428 10 51 3 4528 10 01 3 4010 1 101 2 11
(0,1,6,8,18)10 1 61 2 726 8 11 3 4326 8 181 3 1380 8 181 9 1910 1 181 2 19
(0,1,7,11,34)10 1 71 2 847 11 11 5 4247 11 341 5 28110 11 341 12 3510 1 341 2 35
(0,1,8,10,21)10 1 81 2 928 10 11 3 4128 10 211 3 14100 10 211 11 2210 1 211 2 22
(0,1,9,4,15)10 1 91 2 1031 4 91 4 954 9 151 6 1240 4 151 5 1610 1 151 2 16
(0,1,11,8,35)10 1 111 2 1238 11 11 4 4138 11 351 4 2880 8 351 9 3610 1 351 2 36
(0,1,19,3,26)10 1 191 2 2021 3 191 3 19719 26 31 8 3230 3 261 4 2710 1 261 2 27
(0,2,11,6,22)20 2 111 3 1242 6 111 5 1056 11 221 6 1760 6 221 7 2320 2 221 3 23
(0,2,14,9,26)20 2 141 3 1559 14 21 6 4159 14 261 6 1890 9 261 10 2720 2 261 3 27
(0,2,16,6,19)20 2 161 3 1742 6 161 5 15316 19 61 4 3860 6 191 7 2020 2 191 3 20
(0,2,20,17,28)20 2 201 3 21317 20 21 4 33317 20 281 4 121117 28 01 12 3120 2 281 3 29
(0,3,15,22,30)30 3 151 4 16715 22 31 8 36715 22 301 8 16822 30 01 9 2630 3 301 4 31
(0,3,16,9,31)30 3 161 4 1763 9 161 7 1479 16 311 8 2390 9 311 10 3230 3 311 4 32
(0,3,17,35,21)30 3 171 4 18143 17 351 15 33417 21 351 5 191235 0 211 13 3430 3 211 4 22
(0,23,32,40,4)923 32 01 10 25832 40 231 9 39832 40 41 9 2040 4 401 5 4140 4 231 5 24
(0,6,17,32,26)60 6 171 7 18116 17 321 12 27626 32 171 7 39626 32 01 7 2260 6 261 7 27
(0,6,20,36,16)60 6 201 7 21146 20 361 15 31416 20 361 5 211136 0 161 12 2860 6 161 7 17
(0,23,30,39,6)723 30 01 8 25723 30 391 8 17930 39 61 10 2460 6 391 7 4060 6 231 7 24
(0,8,26,13,22)80 8 261 9 2758 13 261 6 19422 26 131 5 39913 22 01 10 3580 8 221 9 23
(0,25,5,33,10)50 5 251 6 26825 33 51 9 2855 10 331 6 29100 10 331 11 34100 10 251 11 26
(0,23,5,35,10)50 5 231 6 241223 35 51 13 3055 10 351 6 31100 10 351 11 36100 10 231 11 24
(0,12,25,43,21)120 12 251 13 261312 25 431 14 32421 25 431 5 23443 0 211 5 26912 21 01 10 36
(0,28,13,32,12)130 13 281 14 29428 32 131 5 33112 13 321 2 21120 12 321 13 33120 12 281 13 29
(c) Second half of the reflected base cycle pairs.
Cycles(x1,x2,x3)(x2,x3,x4)(x3,x4,x5)(x4,x5,x1)(x5,x1,x2)
(x1,x2,x3,x4,x5)dtripletypedtripletypedtripletypedtripletypedtripletype
(0,2,5,9,10)20 2 51 3 632 5 91 4 819 10 51 2 4419 10 01 2 3920 2 101 3 11
(0,10,12,17,18)210 12 01 3 38210 12 171 3 8117 18 121 2 43117 18 01 2 31810 18 01 9 38
(0,23,27,33,34)423 27 01 5 25423 27 331 5 11133 34 271 2 42133 34 01 2 151123 34 01 12 25
(0,11,13,20,21)211 13 01 3 37211 13 201 3 10120 21 131 2 41120 21 01 2 281011 21 01 11 37
(0,11,6,14,15)56 11 01 6 42311 14 61 4 43114 15 61 2 40114 15 01 2 34411 15 01 5 37
(0,27,24,34,35)324 27 01 4 24324 27 341 4 11134 35 241 2 38134 35 01 2 14827 35 01 9 21
(0,23,7,25,26)70 7 231 8 24223 25 71 3 32125 26 71 2 30125 26 01 2 23323 26 01 4 25
(0,16,11,20,22)511 16 01 6 37416 20 111 5 43220 22 111 3 39220 22 01 3 28616 22 01 7 32
(0,17,12,24,26)512 17 01 6 36512 17 241 6 13224 26 121 3 36224 26 01 3 24917 26 01 10 31
(0,13,3,17,19)30 3 131 4 14413 17 31 5 38217 19 31 3 34217 19 01 3 31613 19 01 7 35
(0,11,8,26,28)38 11 01 4 4038 11 261 4 19226 28 81 3 30226 28 01 3 22110 11 281 12 29
(0,8,15,27,30)78 15 01 8 4078 15 271 8 20327 30 151 4 36327 30 01 4 2180 8 301 9 31
(0,22,15,28,31)715 22 01 8 33622 28 151 7 41328 31 151 4 35328 31 01 4 20922 31 01 10 26
(0,33,4,18,21)40 4 331 5 34144 18 331 15 30318 21 41 4 34318 21 01 4 301221 33 01 13 27
(0,11,19,28,4)811 19 01 9 37811 19 281 9 18919 28 41 10 3340 4 281 5 2940 4 111 5 12
(0,41,9,20,26)641 0 91 7 16119 20 411 12 33620 26 91 7 37620 26 01 7 28641 0 261 7 33
(0,27,43,10,16)443 0 271 5 321443 10 271 15 32610 16 431 7 34610 16 01 7 381116 27 01 12 32
(0,14,23,30,6)914 23 01 10 34723 30 141 8 39723 30 61 8 3160 6 301 7 3160 6 141 7 15
(0,9,43,14,22)443 0 91 5 1459 14 431 6 35814 22 431 9 30814 22 01 9 3490 9 221 10 23
(0,24,5,32,10)50 5 241 6 25824 32 51 9 2955 10 321 6 28100 10 321 11 33100 10 241 11 25
(0,22,5,34,10)50 5 221 6 231222 34 51 13 3155 10 341 6 30100 10 341 11 35100 10 221 11 23
(0,25,43,9,21)443 0 251 5 301343 9 251 14 30129 21 431 13 3590 9 211 10 22421 25 01 5 27
(0,27,46,31,12)146 0 271 2 29427 31 461 5 201346 12 311 14 33120 12 311 13 32120 12 271 13 28
Table A22. Cyclic split C ( 3 , 5 , 50 ) —vertices and distances in base cycles. The bright yellow cells within the symmetric cycles correspond to the symmetric difference triplets. The distances in the pale green and blue cells have their reflected pairs within each cycle. The bright green cells mark the base cycle vertices where the original +3 rule had to be modified for v4 (which means a modification for v3 as well.) With red, we highlighted the special base cycles, that only have v / 5 different positions, as i i + v / 5 results in an automorphism of these cycles. In the case of reflected base cycles (1st and 2nd halves), the cells corresponding to reflected difference triplets are marked by the same color for the first cycle pair as an example.
Table A22. Cyclic split C ( 3 , 5 , 50 ) —vertices and distances in base cycles. The bright yellow cells within the symmetric cycles correspond to the symmetric difference triplets. The distances in the pale green and blue cells have their reflected pairs within each cycle. The bright green cells mark the base cycle vertices where the original +3 rule had to be modified for v4 (which means a modification for v3 as well.) With red, we highlighted the special base cycles, that only have v / 5 different positions, as i i + v / 5 results in an automorphism of these cycles. In the case of reflected base cycles (1st and 2nd halves), the cells corresponding to reflected difference triplets are marked by the same color for the first cycle pair as an example.
(a) Cyclic C ( 3 , 5 , 50 ) —symmetric cycles for odd values.
Base Cycles (5 Vertices)Distances in the Difference Triplets
v1v2v3v4v51-2-32-3-43-4-54-5-15-1-2
0148249132341431312112
034464739691231293936336
05381245517121724724177175125510
07361443721142122722217217147714
09321841923182314914239239189918
0112822391117221761161711171122111122
0132426371311241121321113111324131324
01520303515520510151051551520151520
01716343317116118171811711716171716
01912383119712724192471971912191912
02184229211381316211613211321821218
023446272319419823819231923423234
(b) Cyclic C ( 3 , 5 , 50 ) —symmetric base cycles for even values with 4 pairs of reflected base cycles: the base cycles of C ( 3 , 5 , 25 ) with vertex indices multiplied by two.
Base Cycles (5 Vertices)Distances in the Difference Triplets
v1v2v3v4v51-2-32-3-43-4-54-5-15-1-2
024464828681241284826224
0438124641612162482416816412448
0632184462418241412142412246186612
08262442818241821621816188248816
010203040 101020101020101020101020101020
01214363812214222242222421214121224
01484236146861622166226148141422
0162483416142144184141814162161618
0184643218224228148221422184181814
020401030 202010202010202010202010202010
022341628221216121861812612221622226
024282226244224626424242224242
02102220281081220122102202220218
04102420461061420144104202420416
062640166202420141614241024161016610
082840188202220121812221022181018810
048101820212101282082102201820222
046101620414101462064104201620424
0264010162414101420162062461610162410
0284010182212101220182082281810182210
(c) Cyclic C ( 3 , 5 , 50 ) ——first half of the remaining reflected base cycle pairs.
Base Cycles (5 Vertices)Distances in the Difference Triplets
v1v2v3v4v51-2-32-3-43-4-54-5-15-1-2
015813145437358513813112
01631415653231181114314113
0171221167651159149211221120
01831517875251271215315114
0191619189871573103191619118
0110316191097271361316316115
0111142911011103133151815211421122
011232011112119291781720320119
01234251222322193192122125425124
0215625213151394919101925625223
021762921517151141123122321621223
0317342731417141719177107231623324
03218253182118135131741725825322
0323102932023201371319619211021324
043316114211721171217522511161147
05214029516211619151911811211021524
05233495182318112111251425916954
053141952419242312315121519419514
063526156211521920911201115241569
0922391691322131720172362316111697
09242339152415227221991917217924
0113043181119201913181325122518718117
013368231323142322522151315238231310
015325251517181723102320720255251510
(d) Cyclic C ( 3 , 5 , 50 ) —second half of the remaining reflected base cycle pairs.
Base Cycles (5 Vertices)Distances in the Difference Triplets
v1v2v3v4v51-2-32-3-43-4-54-5-15-1-2
0581213538347415113121358
0118131411383525161141314113
09142021951456116171212021912
0127141512575727181151415123
03101819371078158191191819316
01361516137679291101161516133
01518282915318310131011112122211514
0178192017989112111121201920173
021224252119219223221231252425214
019102325199109134132152252325196
02312272923111211154152172212321236
04310242771710171419143173232423716
017422251713413185183213252225178
0196262919136132072032332124211910
045287115172217211221417411711516
03982429111981916151652152124211110
02536492511141118211852359492516
01538141915231223241245195191419154
039309151192092120216156159151124
0274471623176171320139229167162311
031924331922922157159249172417192
025387182513121319181911201118718257
0153710231522132223523131413231023158
0204310252023723171017151815251025205
Table A23. C ( 3 , 5 , 50 ) —for each base cycle, the corresponding 5 triples are analyzed. Three columns belong to each triple: d—the minimum difference value, triple—the ordered version of the original triple, and type—the triple type. The meaning of these is discussed at the beginning of the Appendix A.
Table A23. C ( 3 , 5 , 50 ) —for each base cycle, the corresponding 5 triples are analyzed. Three columns belong to each triple: d—the minimum difference value, triple—the ordered version of the original triple, and type—the triple type. The meaning of these is discussed at the beginning of the Appendix A.
(a) C ( 3 , 5 , 50 ) —symmetric base cycles.
Cycles(x1,x2,x3)(x2,x3,x4)(x3,x4,x5)(x4,x5,x1)(x5,x1,x2)
(x1,x2,x3,x4,x5)dtripletypedtripletypedtripletypedtripletypedtripletype
(0,1,48,2,49)10 1 481 2 4911 2 481 2 48148 49 21 2 5149 0 21 2 4149 0 11 2 3
(0,3,44,6,47)30 3 441 4 4533 6 441 4 42344 47 61 4 13347 0 61 4 10347 0 31 4 7
(0,5,38,12,45)50 5 381 6 3975 12 381 8 34738 45 121 8 25545 0 121 6 18545 0 51 6 11
(0,7,36,14,43)70 7 361 8 3777 14 361 8 30736 43 141 8 29743 0 141 8 22743 0 71 8 15
(0,9,32,18,41)90 9 321 10 3399 18 321 10 24932 41 181 10 37941 0 181 10 28941 0 91 10 19
(0,11,28,22,39)110 11 281 12 29622 28 111 7 40622 28 391 7 181139 0 221 12 341139 0 111 12 23
(0,13,24,26,37)1113 24 01 12 38224 26 131 3 40224 26 371 3 141126 37 01 12 251337 0 131 14 27
(0,15,20,30,35)515 20 01 6 36515 20 301 6 16530 35 201 6 41530 35 01 6 211535 0 151 16 31
(0,17,16,34,33)116 17 01 2 35116 17 341 2 19133 34 161 2 34133 34 01 2 181617 33 01 17 34
(0,19,12,38,31)712 19 01 8 39712 19 381 8 27731 38 121 8 32731 38 01 8 201219 31 01 13 32
(0,21,8,42,29)80 8 211 9 22138 21 421 14 351329 42 81 14 30842 0 291 9 38821 29 01 9 30
(0,23,4,46,27)40 4 231 5 24846 4 231 9 28846 4 271 9 32446 0 271 5 32423 27 01 5 28
(b) C ( 3 , 5 , 50 ) —symmetric cycles for even values with 4 pairs of reflected base cycles: the base cycles of C ( 3 , 5 , 50 ) with vertex indices multiplied by two.
Cycles(x1,x2,x3)(x2,x3,x4)(x3,x4,x5)(x4,x5,x1)(x5,x1,x2)
(x1,x2,x3,x4,x5)dtripletypedtripletypedtripletypedtripletypedtripletype
(0,2,44,6,48)20 2 441 3 4542 6 441 5 43444 48 61 5 13248 0 61 3 9248 0 21 3 5
(0,4,38,12,46)40 4 381 5 3984 12 381 9 35838 46 121 9 25446 0 121 5 17446 0 41 5 9
(0,6,32,18,44)60 6 321 7 33126 18 321 13 271232 44 181 13 37644 0 181 7 25644 0 61 7 13
(0,8,26,24,42)80 8 261 9 27224 26 81 3 35224 26 421 3 19842 0 241 9 33842 0 81 9 17
(0,10,20,30,40)100 10 201 11 211010 20 301 11 211020 30 401 11 211030 40 01 11 211040 0 101 11 21
(0,12,14,36,38)212 14 01 3 39212 14 361 3 25236 38 141 3 29236 38 01 3 151238 0 121 13 25
(0,14,8,42,36)68 14 01 7 4368 14 421 7 35636 42 81 7 23636 42 01 7 151436 0 141 15 29
(0,16,2,48,34)20 2 161 3 17448 2 161 5 19448 2 341 5 37248 0 341 3 371634 0 161 17 33
(0,18,46,4,32)446 0 181 5 23846 4 181 9 23846 4 321 9 3740 4 321 5 331418 32 01 15 33
(0,20,40,10,30)1040 0 201 11 311010 20 401 11 311030 40 101 11 31100 10 301 11 311020 30 01 11 31
(0,22,34,16,28)1222 34 01 13 29616 22 341 7 19628 34 161 7 391216 28 01 13 35622 28 01 7 29
(0,24,28,22,26)424 28 01 5 27222 24 281 3 7226 28 221 3 47422 26 01 5 29224 26 01 3 27
(0,2,10,22,20)20 2 101 3 1182 10 221 9 21220 22 101 3 41220 22 01 3 3120 2 201 3 21
(0,4,10,24,20)40 4 101 5 1164 10 241 7 21420 24 101 5 41420 24 01 5 3140 4 201 5 21
(0,6,26,40,16)60 6 261 7 271426 40 61 15 311016 26 401 11 251040 0 161 11 2760 6 161 7 17
(0,8,28,40,18)80 8 281 9 291228 40 81 13 311018 28 401 11 231040 0 181 11 2980 8 181 9 19
(0,48,10,18,20)248 0 101 3 13810 18 481 9 39218 20 101 3 43218 20 01 3 33248 0 201 3 23
(0,46,10,16,20)446 0 101 5 15610 16 461 7 37416 20 101 5 45416 20 01 5 35446 0 201 5 25
(0,26,40,10,16)1040 0 261 11 371426 40 101 15 35610 16 401 7 31610 16 01 7 411016 26 01 11 35
(0,28,40,10,18)1040 0 281 11 391228 40 101 13 33810 18 401 9 31810 18 01 9 411018 28 01 11 33
(c) C ( 3 , 5 , 50 ) —first half of the remaining reflected base cycle pairs.
Cycles(x1,x2,x3)(x2,x3,x4)(x3,x4,x5)(x4,x5,x1)(x5,x1,x2)
(x1,x2,x3,x4,x5)dtripletypedtripletypedtripletypedtripletypedtripletype
(0,1,5,8,13)10 1 51 2 635 8 11 4 4735 8 131 4 958 13 01 6 4310 1 131 2 14
(0,1,6,3,14)10 1 61 2 721 3 61 3 633 6 141 4 1230 3 141 4 1510 1 141 2 15
(0,1,7,12,21)10 1 71 2 857 12 11 6 4557 12 211 6 15912 21 01 10 3910 1 211 2 22
(0,1,8,3,15)10 1 81 2 921 3 81 3 853 8 151 6 1330 3 151 4 1610 1 151 2 16
(0,1,9,16,19)10 1 91 2 1079 16 11 8 43316 19 91 4 44316 19 01 4 3510 1 191 2 20
(0,1,10,3,16)10 1 101 2 1121 3 101 3 10610 16 31 7 4430 3 161 4 1710 1 161 2 17
(0,1,11,14,29)10 1 111 2 12311 14 11 4 41311 14 291 4 19140 14 291 15 3010 1 291 2 30
(0,1,12,3,20)10 1 121 2 1321 3 121 3 12812 20 31 9 4230 3 201 4 2110 1 201 2 21
(0,1,23,4,25)10 1 231 2 2431 4 231 4 23223 25 41 3 3240 4 251 5 2610 1 251 2 26
(0,2,15,6,25)20 2 151 3 1642 6 151 5 1496 15 251 10 2060 6 251 7 2620 2 251 3 26
(0,2,17,6,29)20 2 171 3 1842 6 171 5 16116 17 291 12 2460 6 291 7 3020 2 291 3 30
(0,3,17,34,27)30 3 171 4 18143 17 341 15 32727 34 171 8 41727 34 01 8 2430 3 271 4 28
(0,3,21,8,25)30 3 211 4 2253 8 211 6 19421 25 81 5 3880 8 251 9 2630 3 251 4 26
(0,3,23,10,29)30 3 231 4 2473 10 231 8 21623 29 101 7 38100 10 291 11 3030 3 291 4 30
(0,4,33,16,11)40 4 331 5 34124 16 331 13 30511 16 331 6 23511 16 01 6 4040 4 111 5 12
(0,5,21,40,29)50 5 211 6 221540 5 211 16 32821 29 401 9 201040 0 291 11 4050 5 291 6 30
(0,5,23,34,9)50 5 231 6 241123 34 51 12 331123 34 91 12 3790 9 341 10 3545 9 01 5 46
(0,5,31,4,19)50 5 311 6 3214 5 311 2 281219 31 41 13 3640 4 191 5 2050 5 191 6 20
(0,6,35,26,15)60 6 351 7 36926 35 61 10 31926 35 151 10 401115 26 01 12 3660 6 151 7 16
(0,9,22,39,16)90 9 221 10 23139 22 391 14 31616 22 391 7 241139 0 161 12 2879 16 01 8 42
(0,9,24,2,33)90 9 241 10 2572 9 241 8 23924 33 21 10 2920 2 331 3 3490 9 331 10 34
(0,11,30,43,18)110 11 301 12 311330 43 111 14 321218 30 431 13 26743 0 181 8 26711 18 01 8 40
(0,13,36,8,23)130 13 361 14 3758 13 361 6 291323 36 81 14 3680 8 231 9 241013 23 01 11 38
(0,15,32,5,25)150 15 321 16 33105 15 321 11 28725 32 51 8 3150 5 251 6 261015 25 01 11 36
(d) C ( 3 , 5 , 50 ) —second half of the remaining reflected base cycle pairs.
Cycles(x1,x2,x3)(x2,x3,x4)(x3,x4,x5)(x4,x5,x1)(x5,x1,x2)
(x1,x2,x3,x4,x5)dtripletypedtripletypedtripletypedtripletypedtripletype
(0,5,8,12,13)35 8 01 4 4635 8 121 4 8112 13 81 2 47112 13 01 2 3950 5 131 6 14
(0,11,8,13,14)38 11 01 4 43211 13 81 3 48113 14 81 2 46113 14 01 2 38311 14 01 4 40
(0,9,14,20,21)59 14 01 6 4259 14 201 6 12120 21 141 2 45120 21 01 2 3190 9 211 10 22
(0,12,7,14,15)57 12 01 6 44212 14 71 3 46114 15 71 2 44114 15 01 2 37312 15 01 4 39
(0,3,10,18,19)30 3 101 4 1173 10 181 8 16118 19 101 2 43118 19 01 2 3330 3 191 4 20
(0,13,6,15,16)60 6 131 7 14213 15 61 3 44115 16 61 2 42115 16 01 2 36313 16 01 4 38
(0,15,18,28,29)315 18 01 4 36315 18 281 4 14128 29 181 2 41128 29 01 2 231415 29 01 15 36
(0,17,8,19,20)80 8 171 9 18217 19 81 3 42119 20 81 2 40119 20 01 2 32317 20 01 4 34
(0,21,2,24,25)20 2 211 3 22321 24 21 4 32124 25 21 2 29124 25 01 2 27421 25 01 5 30
(0,19,10,23,25)910 19 01 10 41419 23 101 5 42223 25 101 3 38223 25 01 3 28619 25 01 7 32
(0,23,12,27,29)1112 23 01 12 39423 27 121 5 40227 29 121 3 36227 29 01 3 24623 29 01 7 28
(0,43,10,24,27)743 0 101 8 181410 24 431 15 34324 27 101 4 37324 27 01 4 27743 0 271 8 35
(0,17,4,22,25)40 4 171 5 18517 22 41 6 38322 25 41 4 33322 25 01 4 29817 25 01 9 34
(0,19,6,26,29)60 6 191 7 20719 26 61 8 38326 29 61 4 31326 29 01 4 251019 29 01 11 32
(0,45,28,7,11)545 0 281 6 341245 7 281 13 3447 11 281 5 2247 11 01 5 44545 0 111 6 17
(0,39,8,24,29)80 8 391 9 401524 39 81 16 35524 29 81 6 35524 29 01 6 271029 39 01 11 22
(0,25,36,4,9)1125 36 01 12 261125 36 41 12 3054 9 361 6 3340 4 91 5 1090 9 251 10 26
(0,15,38,14,19)1238 0 151 13 28114 15 381 2 25514 19 381 6 25514 19 01 6 37415 19 01 5 36
(0,39,30,9,15)930 39 01 10 21930 39 91 10 3069 15 301 7 2269 15 01 7 421139 0 151 12 27
(0,27,44,7,16)644 0 271 7 341344 7 271 14 3497 16 441 10 3870 7 161 8 171116 27 01 12 35
(0,31,9,24,33)90 9 311 10 32724 31 91 8 36924 33 91 10 36924 33 01 10 27231 33 01 3 20
(0,25,38,7,18)1238 0 251 13 381325 38 71 14 33117 18 381 12 3270 7 181 8 19718 25 01 8 33
(0,15,37,10,23)1337 0 151 14 29510 15 371 6 281310 23 371 14 28100 10 231 11 24815 23 01 9 36
(0,20,43,10,25)743 0 201 8 281010 20 431 11 341510 25 431 16 34100 10 251 11 26520 25 01 6 31
Table A24. Cyclic split C ( 3 , 5 , 52 ) —vertices and distances in base cycles. The bright yellow cells within the symmetric cycles correspond to the symmetric difference triplets. The distances in the pale green and blue cells have their reflected pairs within each cycle. The bright green cells mark the base cycle vertices where the original +3 rule had to be modified for v4 (which means a modification for v3 as well.) In subtable b, the 4 pairs of reclected base cycles derived from C ( 3 , 5 , 26 ) are highlighted with 2 shades of grey. The rest of the reflected base cycle pairs are listed in subtables c and d, where the cells corresponding to reflected difference triplets are marked by the same color for the first cycle pair as an example.
Table A24. Cyclic split C ( 3 , 5 , 52 ) —vertices and distances in base cycles. The bright yellow cells within the symmetric cycles correspond to the symmetric difference triplets. The distances in the pale green and blue cells have their reflected pairs within each cycle. The bright green cells mark the base cycle vertices where the original +3 rule had to be modified for v4 (which means a modification for v3 as well.) In subtable b, the 4 pairs of reclected base cycles derived from C ( 3 , 5 , 26 ) are highlighted with 2 shades of grey. The rest of the reflected base cycle pairs are listed in subtables c and d, where the cells corresponding to reflected difference triplets are marked by the same color for the first cycle pair as an example.
(a) Cyclic C ( 3 , 5 , 52 ) —symmetric cycles for odd values.
Base Cycles (5 Vertices)Distances in the Difference Triplets
v1v2v3v4v51-2-32-3-43-4-54-5-15-1-2
0150251132341431312112
034664939691231293936336
05421047515101520520155155105510
07381445721142124724217217147714
09341843925182516916259259189918
0113022411119221981181911191122111122
0132824391315241541141511151324131326
015223037157227815871571522151522
01718343517118116171611711718171718
01914383319514524192451951914191914
021104231211110112021201121112110212110
02364629231761712231217231723623236
025250272523223425423252325225252
(b) Cyclic C ( 3 , 5 , 26 ) with vertex indices multiplied by two.
Base Cycles (5 Vertices)Distances in the Difference Triplets
v1v2v3v4v51-2-32-3-43-4-54-5-15-1-2
0248450264682862624224
06401246618121824624186186126612
010322042102220221210122210221020101020
0142428381410241041441014101424141424
01816363418216220182021821816181816
02284430221481416221614221422822228
0444848412812164161241248448
08361644824162420820248248168816
0124484012208201641620420128121224
0164210361626102620620266261610161620
0205023220222224184221822202202012
02446628242262212181222182224624244
0216342621416141820188108261826224
0224501222224222642614121412212210
024404642416121662261016104642420
0614438681481021018241814414620
04410242681810181420142162262426818
01440101214261226224222242121012142
010163241061661622162412244204106
034243238181024108286146142014184
(c) Cyclic C ( 3 , 5 , 52 ) —first half of the remaining reflected base cycle pairs.
Base Cycles (5 Vertices)Distances in the Difference Triplets
v1v2v3v4v51-2-32-3-43-4-54-5-15-1-2
015813145437358513813112
01631415653231181114314113
0171219167651157127191219118
018320178752517121720320119
019181118989179727111811110
01105211910954516111621521120
011231611112119291341316316115
0115625114151495919101925625124
01223261212221192192342326326125
0123102912223221391319619231023124
0213631211131174725182521621223
0215835213151376725202517817219
03101931371079169122112211921324
0313203331013107177132013192019322
031530213121512152515969212221318
03183827315181520172011911251425324
02512363251312132411241991931632522
02312383231112112615261791731432320
04214631417211725102515101521621425
05184125513181323162316716251125520
0527102352225221751713413231023518
07304124723222311181117617241124717
0932472492320231514152382324524915
013304421131722171421142392321821138
01334827132118212652619719258251314
0153148331516211617191715215194191518
(d) Cyclic C ( 3 , 5 , 52 ) —second half of the remaining 26 reflected base cycle pairs.
Base Cycles (5 Vertices)Distances in the Difference Triplets
v1v2v3v4v51-2-32-3-43-4-54-5-15-1-2
0581213538347415113121358
0118131411383525161141314113
07121819751256116171191819712
017121920175125727181201920173
0452101179298178191111011718
0161120211651159491101212021165
0134151613949112111121161516133
019102425199109145141151252425196
023425262319419212211221262526233
0196282919136132292212312324231910
025182931257187114112132212321256
027203335257207136132152171917258
012212831129219716731032124211219
01320303313720710171031331922191320
043618219156151225123153211821922
04192427112092015171531832524251114
01943303192492413111325122532231916
01743323172692611151123122332031714
037102731152510251710174214212521156
03672025162372313161351852520251611
01348182313174172252252552318231310
035461724171161123182372272417241711
02944152423158152314239209241524235
02943821231491417211713221321821238
019451427192672621521131813251425198
037218331517217161916152115191819154
Table A25. C ( 3 , 5 , 52 ) —for each base cycle, the corresponding 5 triples are analyzed. Three columns belong to each triple: d—the minimum difference value, triple—the ordered version of the original triple, and type—the triple type. The meaning of these is discussed at the beginning of the Appendix A.
Table A25. C ( 3 , 5 , 52 ) —for each base cycle, the corresponding 5 triples are analyzed. Three columns belong to each triple: d—the minimum difference value, triple—the ordered version of the original triple, and type—the triple type. The meaning of these is discussed at the beginning of the Appendix A.
(a) C ( 3 , 5 , 52 ) —symmetric cycles for odd values.
Cycles(x1,x2,x3)(x2,x3,x4)(x3,x4,x5)(x4,x5,x1)(x5,x1,x2)
(x1,x2,x3,x4,x5)dtripletypedtripletypedtripletypedtripletypedtripletype
(0,1,50,2,51)10 1 501 2 5111 2 501 2 50150 51 21 2 5151 0 21 2 4151 0 11 2 3
(0,3,46,6,49)30 3 461 4 4733 6 461 4 44346 49 61 4 13349 0 61 4 10349 0 31 4 7
(0,5,42,10,47)50 5 421 6 4355 10 421 6 38542 47 101 6 21547 0 101 6 16547 0 51 6 11
(0,7,38,14,45)70 7 381 8 3977 14 381 8 32738 45 141 8 29745 0 141 8 22745 0 71 8 15
(0,9,34,18,43)90 9 341 10 3599 18 341 10 26934 43 181 10 37943 0 181 10 28943 0 91 10 19
(0,11,30,22,41)110 11 301 12 31822 30 111 9 42822 30 411 9 201141 0 221 12 341141 0 111 12 23
(0,13,28,24,39)130 13 281 14 29424 28 131 5 42424 28 391 5 161339 0 241 14 381339 0 131 14 27
(0,15,22,30,37)715 22 01 8 38715 22 301 8 16730 37 221 8 45730 37 01 8 231537 0 151 16 31
(0,17,18,34,35)117 18 01 2 36117 18 341 2 18134 35 181 2 37134 35 01 2 191735 0 171 18 35
(0,19,14,38,33)514 19 01 6 39514 19 381 6 25533 38 141 6 34533 38 01 6 201419 33 01 15 34
(0,21,10,42,31)100 10 211 11 221110 21 421 12 331131 42 101 12 321042 0 311 11 421021 31 01 11 32
(0,23,6,46,29)60 6 231 7 241246 6 231 13 301246 6 291 13 36646 0 291 7 36623 29 01 7 30
(0,25,2,50,27)20 2 251 3 26450 2 251 5 28450 2 271 5 30250 0 271 3 30225 27 01 3 28
(b) C ( 3 , 5 , 52 ) —symmetric base cycles for even values with 4 pairs of reflected base cycles: the base cycles of C ( 3 , 5 , 26 ) with vertex indices multiplied by two.
Cycles(x1,x2,x3)(x2,x3,x4)(x3,x4,x5)(x4,x5,x1)(x5,x1,x2)
(x1,x2,x3,x4,x5)dtripletypedtripletypedtripletypedtripletypedtripletype
(0,2,48,4,50)20 2 481 3 4922 4 481 3 47248 50 41 3 9250 0 41 3 7250 0 21 3 5
(0,6,40,12,46)60 6 401 7 4166 12 401 7 35640 46 121 7 25646 0 121 7 19646 0 61 7 13
(0,10,32,20,42)100 10 321 11 331010 20 321 11 231032 42 201 11 411042 0 201 11 311042 0 101 11 21
(0,14,24,28,38)1014 24 01 11 39424 28 141 5 43424 28 381 5 151028 38 01 11 251438 0 141 15 29
(0,18,16,36,34)216 18 01 3 37216 18 361 3 21234 36 161 3 35234 36 01 3 191618 34 01 17 35
(0,22,8,44,30)80 8 221 9 23148 22 441 15 371430 44 81 15 31844 0 301 9 39822 30 01 9 31
(0,4,44,8,48)40 4 441 5 4544 8 441 5 41444 48 81 5 17448 0 81 5 13448 0 41 5 9
(0,8,36,16,44)80 8 361 9 3788 16 361 9 29836 44 161 9 33844 0 161 9 25844 0 81 9 17
(0,12,44,8,40)844 0 121 9 2148 12 441 5 37440 44 81 5 2180 8 401 9 411240 0 121 13 25
(0,16,42,10,36)1042 0 161 11 27610 16 421 7 33636 42 101 7 27100 10 361 11 371636 0 161 17 33
(0,20,50,2,32)250 0 201 3 23450 2 201 5 23450 2 321 5 3520 2 321 3 331220 32 01 13 33
(0,24,46,6,28)646 0 241 7 311246 6 241 13 311246 6 281 13 3560 6 281 7 29424 28 01 5 29
(0,2,16,34,26)20 2 161 3 17142 16 341 15 33826 34 161 9 43826 34 01 9 2720 2 261 3 27
(0,2,24,50,12)20 2 241 3 25450 2 241 5 271212 24 501 13 39250 0 121 3 1520 2 121 3 13
(0,24,40,46,4)1240 0 241 13 37640 46 241 7 37640 46 41 7 1740 4 461 5 4740 4 241 5 25
(0,6,14,4,38)60 6 141 7 1524 6 141 3 11104 14 381 11 3540 4 381 5 3960 6 381 7 39
(0,44,10,24,26)844 0 101 9 191410 24 441 15 35224 26 101 3 39224 26 01 3 29844 0 261 9 35
(0,14,40,10,12)1240 0 141 13 27410 14 401 5 31210 12 401 3 31210 12 01 3 43212 14 01 3 41
(0,10,16,32,4)610 16 01 7 43610 16 321 7 23124 16 321 13 2940 4 321 5 3340 4 101 5 11
(0,34,24,32,38)1024 34 01 11 29232 34 241 3 45632 38 241 7 45632 38 01 7 21434 38 01 5 19
(c) First half of the remaining reflected base cycle pairs.
Cycles(x1,x2,x3)(x2,x3,x4)(x3,x4,x5)(x4,x5,x1)(x5,x1,x2)
(x1,x2,x3,x4,x5)dtripletypedtripletypedtripletypedtripletypedtripletype
(0,1,5,8,13)10 1 51 2 635 8 11 4 4935 8 131 4 958 13 01 6 4510 1 131 2 14
(0,1,6,3,14)10 1 61 2 721 3 61 3 633 6 141 4 1230 3 141 4 1510 1 141 2 15
(0,1,7,12,19)10 1 71 2 857 12 11 6 4757 12 191 6 13712 19 01 8 4110 1 191 2 20
(0,1,8,3,20)10 1 81 2 921 3 81 3 853 8 201 6 1830 3 201 4 2110 1 201 2 21
(0,1,9,18,11)10 1 91 2 1081 9 181 9 1829 11 181 3 10711 18 01 8 4210 1 111 2 12
(0,1,10,5,21)10 1 101 2 1141 5 101 5 1055 10 211 6 1750 5 211 6 2210 1 211 2 22
(0,1,12,3,16)10 1 121 2 1321 3 121 3 12412 16 31 5 4430 3 161 4 1710 1 161 2 17
(0,1,15,6,25)10 1 151 2 1651 6 151 6 1596 15 251 10 2060 6 251 7 2610 1 251 2 26
(0,1,22,3,26)10 1 221 2 2321 3 221 3 22422 26 31 5 3430 3 261 4 2710 1 261 2 27
(0,1,23,10,29)10 1 231 2 2491 10 231 10 23623 29 101 7 40100 10 291 11 3010 1 291 2 30
(0,2,13,6,31)20 2 131 3 1442 6 131 5 1276 13 311 8 2660 6 311 7 3220 2 311 3 32
(0,2,15,8,35)20 2 151 3 1662 8 151 7 1478 15 351 8 2880 8 351 9 3620 2 351 3 36
(0,3,10,19,31)30 3 101 4 1173 10 191 8 17910 19 311 10 221219 31 01 13 3430 3 311 4 32
(0,3,13,20,33)30 3 131 4 14713 20 31 8 43713 20 331 8 211320 33 01 14 3330 3 331 4 34
(0,3,15,30,21)30 3 151 4 16123 15 301 13 28615 21 301 7 16921 30 01 10 3230 3 211 4 22
(0,3,18,38,27)30 3 181 4 19153 18 381 16 36918 27 381 10 211127 38 01 12 2630 3 271 4 28
(0,25,12,36,3)120 12 251 13 261125 36 121 12 4093 12 361 10 3430 3 361 4 3730 3 251 4 26
(0,23,12,38,3)1112 23 01 12 411112 23 381 12 2793 12 381 10 3630 3 381 4 3930 3 231 4 24
(0,4,21,46,31)40 4 211 5 221046 4 211 11 281021 31 461 11 26646 0 311 7 3840 4 311 5 32
(0,5,18,41,25)50 5 181 6 19135 18 411 14 37718 25 411 8 241141 0 251 12 3750 5 251 6 26
(0,5,27,10,23)50 5 271 6 2855 10 271 6 23423 27 101 5 40100 10 231 11 2450 5 231 6 24
(0,7,30,41,24)70 7 301 8 311130 41 71 12 30624 30 411 7 181141 0 241 12 3670 7 241 8 25
(0,9,32,47,24)90 9 321 10 331447 9 321 15 38824 32 471 9 24547 0 241 6 3090 9 241 10 25
(0,13,30,44,21)130 13 301 14 311430 44 131 15 36921 30 441 10 24844 0 211 9 30813 21 01 9 40
(0,13,34,8,27)130 13 341 14 3558 13 341 6 27727 34 81 8 3480 8 271 9 28130 13 271 14 28
(0,15,31,48,33)150 15 311 16 321615 31 481 17 34231 33 481 3 18448 0 331 5 38150 15 331 16 34
(d) Second half of the remaining reflected base cycle pairs.
Cycles(x1,x2,x3)(x2,x3,x4)(x3,x4,x5)(x4,x5,x1)(x5,x1,x2)
(x1,x2,x3,x4,x5)dtripletypedtripletypedtripletypedtripletypedtripletype
(0,5,8,12,13)35 8 01 4 4835 8 121 4 8112 13 81 2 49112 13 01 2 4150 5 131 6 14
(0,11,8,13,14)38 11 01 4 45211 13 81 3 50113 14 81 2 48113 14 01 2 40311 14 01 4 42
(0,7,12,18,19)57 12 01 6 4657 12 181 6 12118 19 121 2 47118 19 01 2 3570 7 191 8 20
(0,17,12,19,20)512 17 01 6 41217 19 121 3 48119 20 121 2 46119 20 01 2 34317 20 01 4 36
(0,45,2,10,11)20 2 451 3 4682 10 451 9 44110 11 21 2 45110 11 01 2 43745 0 111 8 19
(0,16,11,20,21)511 16 01 6 42416 20 111 5 48120 21 111 2 44120 21 01 2 33516 21 01 6 37
(0,13,4,15,16)40 4 131 5 14213 15 41 3 44115 16 41 2 42115 16 01 2 38313 16 01 4 40
(0,19,10,24,25)910 19 01 10 43519 24 101 6 44124 25 101 2 39124 25 01 2 29619 25 01 7 34
(0,23,4,25,26)40 4 231 5 24223 25 41 3 34125 26 41 2 32125 26 01 2 28323 26 01 4 30
(0,19,6,28,29)60 6 191 7 20919 28 61 10 40128 29 61 2 31128 29 01 2 251019 29 01 11 34
(0,25,18,29,31)718 25 01 8 35425 29 181 5 46229 31 181 3 42229 31 01 3 24625 31 01 7 28
(0,27,20,33,35)720 27 01 8 33627 33 201 7 46233 35 201 3 40233 35 01 3 20827 35 01 9 26
(0,12,21,28,31)912 21 01 10 41721 28 121 8 44328 31 211 4 46328 31 01 4 25120 12 311 13 32
(0,13,20,30,33)713 20 01 8 40713 20 301 8 18330 33 201 4 43330 33 01 4 23130 13 331 14 34
(0,43,6,18,21)60 6 431 7 44126 18 431 13 38318 21 61 4 41318 21 01 4 35943 0 211 10 31
(0,41,9,24,27)90 9 411 10 42159 24 411 16 33324 27 91 4 38324 27 01 4 291141 0 271 12 39
(0,19,43,30,3)943 0 191 10 291119 30 431 12 251243 3 301 13 4030 3 301 4 3130 3 191 4 20
(0,17,43,32,3)943 0 171 10 271132 43 171 12 381132 43 31 12 2430 3 321 4 3330 3 171 4 18
(0,37,10,27,31)100 10 371 11 381027 37 101 11 36427 31 101 5 36427 31 01 5 26631 37 01 7 22
(0,36,7,20,25)70 7 361 8 37137 20 361 14 30520 25 71 6 40520 25 01 6 331125 36 01 12 28
(0,13,48,18,23)448 0 131 5 18513 18 481 6 36518 23 481 6 31518 23 01 6 351013 23 01 11 40
(0,35,46,17,24)646 0 351 7 421135 46 171 12 35717 24 461 8 30717 24 01 8 361124 35 01 12 29
(0,29,44,15,24)844 0 291 9 381415 29 441 15 30915 24 441 10 30915 24 01 10 38524 29 01 6 29
(0,29,43,8,21)943 0 291 10 391429 43 81 15 32138 21 431 14 3680 8 211 9 22821 29 01 9 32
(0,19,45,14,27)745 0 191 8 27514 19 451 6 321314 27 451 14 321314 27 01 14 39819 27 01 9 34
(0,37,2,18,33)20 2 371 3 38162 18 371 17 361518 33 21 16 371518 33 01 16 35433 37 01 5 20
Table A26. Cyclic C ( 3 , 5 , 55 ) —vertices and distances in base cycles. The bright yellow cells within the symmetric cycles correspond to the symmetric difference triplets. The distances in the pale green and blue cells have their reflected pairs within each cycle. v = 55 is a special case as 55 can be divided by 5 and 11 as well. The symmetric cycles corresponding to the difference triplets (5,5,10), (10,10,20), (15,15,25), (20,20,15), and (25,25,5) are shown in a separate subtable. Among the rest of the symmetric cycles, we highlighted with red the ones that correspond to (11,11,22) and (22,22,11). The detailed explanation for why these cases have to be handled differently can be found in Section 4. In the case of reflected base cycles (1st and 2nd halves), the cells corresponding to reflected difference triplets are marked by the same color for the first cycle pair as an example.
Table A26. Cyclic C ( 3 , 5 , 55 ) —vertices and distances in base cycles. The bright yellow cells within the symmetric cycles correspond to the symmetric difference triplets. The distances in the pale green and blue cells have their reflected pairs within each cycle. v = 55 is a special case as 55 can be divided by 5 and 11 as well. The symmetric cycles corresponding to the difference triplets (5,5,10), (10,10,20), (15,15,25), (20,20,15), and (25,25,5) are shown in a separate subtable. Among the rest of the symmetric cycles, we highlighted with red the ones that correspond to (11,11,22) and (22,22,11). The detailed explanation for why these cases have to be handled differently can be found in Section 4. In the case of reflected base cycles (1st and 2nd halves), the cells corresponding to reflected difference triplets are marked by the same color for the first cycle pair as an example.
(a) Cyclic C ( 3 , 5 , 55 ) —symmetric cycles for the symmetric triplets (5,5,10), (10,10,20), (15,15,25), (20,20,15), and (25,25,5).
Base Cycles (5 Vertices)Distances in the Difference Triplets
v1v2v3v4v51-2-32-3-43-4-54-5-15-1-2
05532505727434737525510
01051445101441486814614104101020
0154964015216211291221921156151525
020478352027827161216271227208202015
02543123025181218241324181318251225255
(b) Cyclic C ( 3 , 5 , 55 ) —the remaining symmetric cycles.
Base Cycles (5 Vertices)Distances in the Difference Triplets
v1v2v3v4v51-2-32-3-43-4-54-5-15-1-2
0152354143462642413112
024965328681241284826224
0346952312912186181261239336
0443125141612162482416816412448
0637184962418241912192412246186612
0734214872721271314132714277217714
08312447823242371672316238248816
09282746919271911811918199279918
011223344 111122111122111122111122111122
01219364312719717241772471219121224
01316394213316323262332631316131326
01413424114113126272612711413141427
01674839169791423149239167161623
0174513817134138218132113174171721
0181543718171172192171917181181819
0195323619212214174211721192191917
021478342126826161316261326218212113
022441133 222211222211222211222211222211
023411432231814182792718918231423239
024381731241417142172114714241724247
026322329266236939636262326263
027292628272262313212272627271
(c) Cyclic C ( 3 , 5 , 55 ) —first half of the reflected base cycle pairs.
Base Cycles (5 Vertices)Distances in the Difference Triplets
v1v2v3v4v51-2-32-3-43-4-54-5-15-1-2
0151071454595323710716
0169171565383811817917116
01810211787292111311211021120
0191120189821029119201120119
01101425191094134111511251425124
011151611011106461151116516115
0112522111121174717101722522121
011333011213121021027172725325126
01153231141514122122082023323122
02155202131513103101551520520218
02165232141614113111871823523221
021752721517151231222102227527225
02188262161816106101881826826224
02226252202220164161931925625223
0317827314171495919101927827324
0318933315181596924152422922325
0320143431720176116201420211421324
032173631821181441426152619719322
04191124415191587813513241124420
04229294182218135132072026926425
0423103241923191361322922231023427
0425483342125212311231581522722426
05121834571276136162216211821526
0521492551621162711272442425625520
09344526925212511191119819261026917
0102453311014241426122622722242241021
01035482510252025131713231023257251015
011376261126182624524201120266261115
01227431712152715162416261026171217125
012346231222212227627171117236231211
012357251223202327527181018257251213
0132850361315271522182214814195191323
01641825162514252282217161725825169
017371321720182019161924524231231715
0194013331921152127627207202213221914
(d) Cyclic C ( 3 , 5 , 55 ) —second half of the reflected base cycle pairs.
Base Cycles (5 Vertices)Distances in the Difference Triplets
v1v2v3v4v51-2-32-3-43-4-54-5-15-1-2
0522673525494151767310
081116178311358516117161789
0111320211121327971812120211110
09111920921128108191201920911
011152425114154913911012524251114
0115151611656104101111161516115
017102122177107114111121222122175
02717293027101710122121131252625273
020822232012812142141151232223203
015518201510510133132152201820155
018721231811711143142162232123185
02210252722121012153152172272527225
018824261810810166162182262426188
019323251916316204202222252325196
019102427199109145143173272427198
024153033249159156153183222522249
02014313420614617111732032124212014
02915333626141514184183213192219267
01352024138581571541942420241311
020725292013713185184224262526209
0229283222139131961942342327232210
0408293315238232111214254222622157
016222934166226713751252126211618
0314202524274271611165215252025246
036471726191181125192592192617261910
033721312226726141214102410242124222
03245152523131013251725102010251525237
0204415262024112426526111811261526206
0294551726161016152415122712175172612
0174411231727112722622122112231123176
0184513251827102723523122012251325187
041823361422822151815132713192319145
01739925172216222582516141625925178
0315015322419519201620171817231523241
0204814332027727216211915192214222013
Table A27. C ( 3 , 5 , 55 ) —for each base cycle, the corresponding 5 triples are analyzed. Three columns belong to each triple: d—the minimum difference value, triple—the ordered version of the original triple, and type—the triple type. The meaning of these is discussed at the beginning of the Appendix A.
Table A27. C ( 3 , 5 , 55 ) —for each base cycle, the corresponding 5 triples are analyzed. Three columns belong to each triple: d—the minimum difference value, triple—the ordered version of the original triple, and type—the triple type. The meaning of these is discussed at the beginning of the Appendix A.
(a) C ( 3 , 5 , 55 ) —symmetric cycles for the symmetric triplets (5,5,10), (10,10,20), (15,15,25), (20,20,15), and (25,25,5).
Cycles(x1,x2,x3)(x2,x3,x4)(x3,x4,x5)(x4,x5,x1)(x5,x1,x2)
(x1,x2,x3,x4,x5)dtripletypedtripletypedtripletypedtripletypedtripletype
(0,5,53,2,50)253 0 51 3 832 5 531 4 52350 53 21 4 820 2 501 3 51550 0 51 6 11
(0,10,51,4,45)451 0 101 5 1564 10 511 7 48645 51 41 7 1540 4 451 5 461045 0 101 11 21
(0,15,49,6,40)649 0 151 7 2296 15 491 10 44940 49 61 10 2260 6 401 7 411540 0 151 16 31
(0,20,47,8,35)847 0 201 9 29128 20 471 13 401235 47 81 13 2980 8 351 9 361520 35 01 16 36
(0,25,43,12,30)1243 0 251 13 381312 25 431 14 321330 43 121 14 38120 12 301 13 31525 30 01 6 31
(b) C ( 3 , 5 , 55 ) —the remaining symmetric cycles.
Cycles(x1,x2,x3)(x2,x3,x4)(x3,x4,x5)(x4,x5,x1)(x5,x1,x2)
(x1,x2,x3,x4,x5)dtripletypedtripletypedtripletypedtripletypedtripletype
(0,1,52,3,54)10 1 521 2 5321 3 521 3 52252 54 31 3 7154 0 31 2 5154 0 11 2 3
(0,2,49,6,53)20 2 491 3 5042 6 491 5 48449 53 61 5 13253 0 61 3 9253 0 21 3 5
(0,3,46,9,52)30 3 461 4 4763 9 461 7 44646 52 91 7 19352 0 91 4 13352 0 31 4 7
(0,4,43,12,51)40 4 431 5 4484 12 431 9 40843 51 121 9 25451 0 121 5 17451 0 41 5 9
(0,6,37,18,49)60 6 371 7 38126 18 371 13 321237 49 181 13 37649 0 181 7 25649 0 61 7 13
(0,7,34,21,48)70 7 341 8 351321 34 71 14 421321 34 481 14 28748 0 211 8 29748 0 71 8 15
(0,8,31,24,47)80 8 311 9 32724 31 81 8 40724 31 471 8 24847 0 241 9 33847 0 81 9 17
(0,9,28,27,46)90 9 281 10 29127 28 91 2 38127 28 461 2 20946 0 271 10 37946 0 91 10 19
(0,11,22,33,44)110 11 221 12 231111 22 331 12 231122 33 441 12 231133 44 01 12 231144 0 111 12 23
(0,12,19,36,43)712 19 01 8 44712 19 361 8 25736 43 191 8 39736 43 01 8 201243 0 121 13 25
(0,13,16,39,42)313 16 01 4 43313 16 391 4 27339 42 161 4 33339 42 01 4 171342 0 131 14 27
(0,14,13,42,41)113 14 01 2 43113 14 421 2 30141 42 131 2 28141 42 01 2 151441 0 141 15 29
(0,16,7,48,39)70 7 161 8 1797 16 481 10 42939 48 71 10 24748 0 391 8 471639 0 161 17 33
(0,17,4,51,38)40 4 171 5 18851 4 171 9 22851 4 381 9 43451 0 381 5 431738 0 171 18 35
(0,18,1,54,37)10 1 181 2 19254 1 181 3 20254 1 371 3 39154 0 371 2 391837 0 181 19 37
(0,19,53,2,36)253 0 191 3 22453 2 191 5 22453 2 361 5 3920 2 361 3 371719 36 01 18 37
(0,21,47,8,34)847 0 211 9 30138 21 471 14 401334 47 81 14 3080 8 341 9 351321 34 01 14 35
(0,22,44,11,33)1144 0 221 12 341111 22 441 12 341133 44 111 12 34110 11 331 12 341122 33 01 12 34
(0,23,41,14,32)1441 0 231 15 38914 23 411 10 28932 41 141 10 38140 14 321 15 33923 32 01 10 33
(0,24,38,17,31)1424 38 01 15 32717 24 381 8 22731 38 171 8 421417 31 01 15 39724 31 01 8 32
(0,26,32,23,29)626 32 01 7 30323 26 321 4 10329 32 231 4 50623 29 01 7 33326 29 01 4 30
(0,27,29,26,28)227 29 01 3 29126 27 291 2 4128 29 261 2 54226 28 01 3 30127 28 01 2 29
(c) First half of the remaining 26 reflected base cycle pairs.
Cycles(x1,x2,x3)(x2,x3,x4)(x3,x4,x5)(x4,x5,x1)(x5,x1,x2)
(x1,x2,x3,x4,x5)dtripletypedtripletypedtripletypedtripletypedtripletype
(0,1,5,10,7)10 1 51 2 641 5 101 5 1025 7 101 3 637 10 01 4 4910 1 71 2 8
(0,1,6,9,17)10 1 61 2 736 9 11 4 5136 9 171 4 1289 17 01 9 4710 1 171 2 18
(0,1,8,10,21)10 1 81 2 928 10 11 3 4928 10 211 3 14100 10 211 11 2210 1 211 2 22
(0,1,9,11,20)10 1 91 2 1029 11 11 3 4829 11 201 3 12911 20 01 10 4510 1 201 2 21
(0,1,10,14,25)10 1 101 2 11410 14 11 5 47410 14 251 5 161114 25 01 12 4210 1 251 2 26
(0,1,11,5,16)10 1 111 2 1241 5 111 5 11511 16 51 6 5050 5 161 6 1710 1 161 2 17
(0,1,12,5,22)10 1 121 2 1341 5 121 5 1275 12 221 8 1850 5 221 6 2310 1 221 2 23
(0,1,13,3,30)10 1 131 2 1421 3 131 3 13103 13 301 11 2830 3 301 4 3110 1 301 2 31
(0,1,15,3,23)10 1 151 2 1621 3 151 3 15815 23 31 9 4430 3 231 4 2410 1 231 2 24
(0,2,15,5,20)20 2 151 3 1632 5 151 4 14515 20 51 6 4650 5 201 6 2120 2 201 3 21
(0,2,16,5,23)20 2 161 3 1732 5 161 4 15716 23 51 8 4550 5 231 6 2420 2 231 3 24
(0,2,17,5,27)20 2 171 3 1832 5 171 4 161017 27 51 11 4450 5 271 6 2820 2 271 3 28
(0,2,18,8,26)20 2 181 3 1962 8 181 7 17818 26 81 9 4680 8 261 9 2720 2 261 3 27
(0,2,22,6,25)20 2 221 3 2342 6 221 5 21322 25 61 4 4060 6 251 7 2620 2 251 3 26
(0,3,17,8,27)30 3 171 4 1853 8 171 6 1598 17 271 10 2080 8 271 9 2830 3 271 4 28
(0,3,18,9,33)30 3 181 4 1963 9 181 7 1699 18 331 10 2590 9 331 10 3430 3 331 4 34
(0,3,20,14,34)30 3 201 4 21614 20 31 7 45614 20 341 7 21140 14 341 15 3530 3 341 4 35
(0,3,21,7,36)30 3 211 4 2243 7 211 5 19147 21 361 15 3070 7 361 8 3730 3 361 4 37
(0,4,19,11,24)40 4 191 5 2074 11 191 8 16519 24 111 6 48110 11 241 12 2540 4 241 5 25
(0,4,22,9,29)40 4 221 5 2354 9 221 6 19722 29 91 8 4390 9 291 10 3040 4 291 5 30
(0,4,23,10,32)40 4 231 5 2464 10 231 7 20923 32 101 10 43100 10 321 11 3340 4 321 5 33
(0,4,25,48,33)40 4 251 5 261148 4 251 12 33825 33 481 9 24748 0 331 8 4140 4 331 5 34
(0,5,12,18,34)50 5 121 6 13612 18 51 7 49612 18 341 7 231618 34 01 17 3850 5 341 6 35
(0,5,21,49,25)50 5 211 6 221149 5 211 12 28421 25 491 5 29649 0 251 7 3250 5 251 6 26
(0,9,34,45,26)90 9 341 10 351134 45 91 12 31826 34 451 9 201045 0 261 11 3790 9 261 10 27
(0,10,24,53,31)100 10 241 11 251253 10 241 13 27724 31 531 8 30253 0 311 3 34100 10 311 11 32
(0,10,35,48,25)100 10 351 11 361335 48 101 14 311025 35 481 11 24748 0 251 8 33100 10 251 11 26
(0,11,37,6,26)110 11 371 12 3856 11 371 6 321126 37 61 12 3660 6 261 7 27110 11 261 12 27
(0,12,27,43,17)120 12 271 13 281512 27 431 16 321017 27 431 11 271243 0 171 13 30512 17 01 6 44
(0,12,34,6,23)120 12 341 13 3566 12 341 7 291123 34 61 12 3960 6 231 7 241112 23 01 12 44
(0,12,35,7,25)120 12 351 13 3657 12 351 6 291025 35 71 11 3870 7 251 8 26120 12 251 13 26
(0,13,28,50,36)130 13 281 14 291513 28 501 16 38828 36 501 9 23550 0 361 6 42130 13 361 14 37
(0,16,41,8,25)1441 0 161 15 3188 16 411 9 341625 41 81 17 3980 8 251 9 26916 25 01 10 40
(0,17,37,1,32)170 17 371 18 38161 17 371 17 37532 37 11 6 2510 1 321 2 331517 32 01 16 39
(0,19,40,13,33)1540 0 191 16 35613 19 401 7 28733 40 131 8 36130 13 331 14 341419 33 01 15 37
(d) Second half of the remaining 26 reflected base cycle pairs.
Cycles(x1,x2,x3)(x2,x3,x4)(x3,x4,x5)(x4,x5,x1)(x5,x1,x2)
(x1,x2,x3,x4,x5)dtripletypedtripletypedtripletypedtripletypedtripletype
(0,52,2,6,7)20 2 521 3 5342 6 521 5 5116 7 21 2 5216 7 01 2 50352 0 71 4 11
(0,8,11,16,17)38 11 01 4 4838 11 161 4 9116 17 111 2 51116 17 01 2 4080 8 171 9 18
(0,11,13,20,21)211 13 01 3 45211 13 201 3 10120 21 131 2 49120 21 01 2 361011 21 01 11 45
(0,9,11,19,20)29 11 01 3 4729 11 191 3 11119 20 111 2 48119 20 01 2 3790 9 201 10 21
(0,11,15,24,25)411 15 01 5 45411 15 241 5 14124 25 151 2 47124 25 01 2 32110 11 251 12 26
(0,11,5,15,16)50 5 111 6 12411 15 51 5 50115 16 51 2 46115 16 01 2 41511 16 01 6 45
(0,17,10,21,22)710 17 01 8 46417 21 101 5 49121 22 101 2 45121 22 01 2 35517 22 01 6 39
(0,27,17,29,30)1017 27 01 11 39227 29 171 3 46129 30 171 2 44129 30 01 2 27327 30 01 4 29
(0,20,8,22,23)80 8 201 9 21220 22 81 3 44122 23 81 2 42122 23 01 2 34320 23 01 4 36
(0,15,5,18,20)50 5 151 6 16315 18 51 4 46218 20 51 3 43218 20 01 3 38515 20 01 6 41
(0,18,7,21,23)70 7 181 8 19318 21 71 4 45221 23 71 3 42221 23 01 3 35518 23 01 6 38
(0,22,10,25,27)100 10 221 11 23322 25 101 4 44225 27 101 3 41225 27 01 3 31522 27 01 6 34
(0,18,8,24,26)80 8 181 9 19618 24 81 7 46224 26 81 3 40224 26 01 3 32818 26 01 9 38
(0,19,3,23,25)30 3 191 4 20419 23 31 5 40223 25 31 3 36223 25 01 3 33619 25 01 7 37
(0,19,10,24,27)910 19 01 10 46519 24 101 6 47324 27 101 4 42324 27 01 4 32819 27 01 9 37
(0,24,15,30,33)915 24 01 10 41624 30 151 7 47330 33 151 4 41330 33 01 4 26924 33 01 10 32
(0,20,14,31,34)614 20 01 7 42614 20 311 7 18331 34 141 4 39331 34 01 4 251420 34 01 15 36
(0,29,15,33,36)1415 29 01 15 41429 33 151 5 42333 36 151 4 38333 36 01 4 23729 36 01 8 27
(0,13,5,20,24)50 5 131 6 14713 20 51 8 48420 24 51 5 41420 24 01 5 361113 24 01 12 43
(0,20,7,25,29)70 7 201 8 21520 25 71 6 43425 29 71 5 38425 29 01 5 31920 29 01 10 36
(0,22,9,28,32)90 9 221 10 23622 28 91 7 43428 32 91 5 37428 32 01 5 281022 32 01 11 34
(0,40,8,29,33)80 8 401 9 411129 40 81 12 35429 33 81 5 35429 33 01 5 27733 40 01 8 23
(0,16,22,29,34)616 22 01 7 40616 22 291 7 14529 34 221 6 49529 34 01 6 27160 16 341 17 35
(0,31,4,20,25)40 4 311 5 321120 31 41 12 40520 25 41 6 40520 25 01 6 36625 31 01 7 31
(0,36,47,17,26)847 0 361 9 451136 47 171 12 37917 26 471 10 31917 26 01 10 391026 36 01 11 30
(0,33,7,21,31)70 7 331 8 341221 33 71 13 421021 31 71 11 421021 31 01 11 35231 33 01 3 25
(0,32,45,15,25)1045 0 321 11 431332 45 151 14 391015 25 451 11 311015 25 01 11 41725 32 01 8 31
(0,20,44,15,26)1144 0 201 12 32515 20 441 6 301115 26 441 12 301115 26 01 12 41620 26 01 7 36
(0,29,45,5,17)1045 0 291 11 401545 5 291 16 40125 17 451 13 4150 5 171 6 181217 29 01 13 39
(0,17,44,11,23)1144 0 171 12 29611 17 441 7 341211 23 441 13 34110 11 231 12 24617 23 01 7 39
(0,18,45,13,25)1045 0 181 11 29513 18 451 6 331213 25 451 13 331213 25 01 13 43718 25 01 8 38
(0,41,8,23,36)80 8 411 9 42158 23 411 16 341323 36 81 14 411323 36 01 14 33536 41 01 6 20
(0,17,39,9,25)1639 0 171 17 3489 17 391 9 311425 39 91 15 4090 9 251 10 26817 25 01 9 39
(0,31,50,15,32)550 0 311 6 371615 31 501 17 361715 32 501 18 36150 15 321 16 33131 32 01 2 25
(0,20,48,14,33)748 0 201 8 28614 20 481 7 351533 48 141 16 37140 14 331 15 341320 33 01 14 36
Table A28. Cyclic C ( 3 , 5 , 56 ) —vertices and distances in base cycles. The bright yellow cells within the symmetric cycles correspond to the symmetric difference triplets. The distances in the pale green and blue cells have their reflected pairs within each cycle. The bright green cells mark the base cycle vertices where the original +2 rule had to be modified for v4 (which means a modification for v3 as well.) In the case of reflected base cycle pairs (1st and 2nd halves), the cells corresponding to reflected difference triplets are marked by the same color for the first cycle pair as an example.
Table A28. Cyclic C ( 3 , 5 , 56 ) —vertices and distances in base cycles. The bright yellow cells within the symmetric cycles correspond to the symmetric difference triplets. The distances in the pale green and blue cells have their reflected pairs within each cycle. The bright green cells mark the base cycle vertices where the original +2 rule had to be modified for v4 (which means a modification for v3 as well.) In the case of reflected base cycle pairs (1st and 2nd halves), the cells corresponding to reflected difference triplets are marked by the same color for the first cycle pair as an example.
(a) Cyclic C ( 3 , 5 , 56 ) —symmetric cycles for odd values. The vertices in the 4th coloumn were selected using a +2 rule, but a modification had to be made. The exception is marked.
Base Cycles (5 Vertices)Distances in the Difference Triplets
v1v2v3v4v51-2-32-3-43-4-54-5-15-1-2
0154255132341431312112
035065339691231293936336
05461051515101520520155155105510
07441249719121924524195197127714
09381847927182720920279279189918
011342245112322231211122311231122111122
0133026431317261741341713171326131326
0152630411511261141541115111526151526
01722343917522512171251751722171722
01918383719118120192011911918191918
02114423521714728212872172114212114
023104633231310132023201323132310232310
02565031251961912251219251925625256
027254292725225427425272527227272
(b) C ( 3 , 5 , 56 ) —symmetric cycles for even values. The vertices in the 4th coloumn were selected using a +2 rule, but modifications had to be made. The exceptions are marked
Base Cycles (5 Vertices)Distances in the Difference Triplets
v1v2v3v4v51-2-32-3-43-4-54-5-15-1-2
0252454264682862624224
0448852412812164161241248448
06441250618121824624186186126612
08421448822142228628226228148816
010362046102620261610162610261020101020
0123224441220242081282012201224121224
0143224421418241881081810181424141428
0163026401614261441041410141626161624
01820363818220216181621821820181820
02016403620416424202442042016202016
022124434221012102422241022102212222212
02410463224141014202220142214241024248
026452302622422826822262226426264
(c) C ( 3 , 5 , 56 ) —first half of the reflected base cycle pairs.
Base Cycles (5 Vertices)Distances in the Difference Triplets
v1v2v3v4v51-2-32-3-43-4-54-5-15-1-2
01581014543732521081019
016815156527279715815114
017111616764104595161116115
018112117873103101310211121120
01941818985351491418418117
01111322110111021229119221322121
0112423111121183819111923423122
011361711213127571141117617116
011432711314131121124132427327126
01243281232423212212542528328127
01258311242524177172362325825126
0214172821214123153111411281728226
021562121315139491561521621219
021682521416148681791725825223
0217203921517153183192219172017219
02225262202220173172142126526224
0316829313161385821132127827326
0317223531417145195131813212221324
03199263161916106101771726926323
03214325318211822162218418251325322
04192632415191572276136242624428
05112431561161319137207252425526
052112335162116979211221231223528
0622492761622162713272252227727621
07364818727202712151226182618818711
09335023924232417151727102723623914
0103148191021252117181727122719819109
0113548201124212413191328152820820119
0113651271125202515161524924275271116
01228525121628162372320320255251213
014295020141527152120212692620620146
014377261423192326726191119267261412
01443102514271327234231518152510251411
015345231519221927102718111823523158
01633224161723172514252292224224168
01635725161921192892818101825725169
(d) C ( 3 , 5 , 56 ) —second half of the reflected base cycle pairs.
Base Cycles (5 Vertices)Distances in the Difference Triplets
v1v2v3v4v51-2-32-3-43-4-54-5-15-1-2
02591023534741511091028
0791415729257516115141578
059151654946106171161516511
01013202110313371071812120211011
0149171814595838191181718144
09112122921121012101111222122913
019112223198118113111121232223194
0114161711747125121131171617116
02413262724111311132131141272627243
025427282521421232231241282728253
023630312317617247241251252625238
01114262811314312151221422826281117
0156192115969134132152211921156
0179232517898146142162252325178
01922373919322315181521721719171920
021424262117417203202222262426215
021132629218138135133163272627218
01318323513518514191431732124211322
017723261710710166163193262326179
03842225182242218161832132522251813
06132832671371522154194242824626
07202631713201361965115252625724
0211228332191291671652152328232112
0345212722275271613166226272127227
026381118261218122715277207181118268
029461423271710172415249239231423276
027449192717121721182110251019919278
028419202813151324192411211120920288
0324716272415915251625112011271627245
020531325202332316716122812251325205
02647620262192115201514271420620266
0194512261926112623723141914261226197
01538112515231823274271413142511251510
018458231827112719101915221523823185
02247824222592517141716231624824222
01846925182810281991916211625925187
Table A29. C ( 3 , 5 , 56 ) —for each base cycle, the corresponding 5 triples are analyzed. Three columns belong to each triple: d—the minimum difference value, triple—the ordered version of the original triple, and type—the triple type. The meaning of these is discussed at the beginning of the Appendix A.
Table A29. C ( 3 , 5 , 56 ) —for each base cycle, the corresponding 5 triples are analyzed. Three columns belong to each triple: d—the minimum difference value, triple—the ordered version of the original triple, and type—the triple type. The meaning of these is discussed at the beginning of the Appendix A.
(a) Symmetric cycles for odd values.
Cycles(x1,x2,x3)(x2,x3,x4)(x3,x4,x5)(x4,x5,x1)(x5,x1,x2)
(x1,x2,x3,x4,x5)dtripletypedtripletypedtripletypedtripletypedtripletype
(0,1,54,2,55)10 1 541 2 5511 2 541 2 54154 55 21 2 5155 0 21 2 4155 0 11 2 3
(0,3,50,6,53)30 3 501 4 5133 6 501 4 48350 53 61 4 13353 0 61 4 10353 0 31 4 7
(0,5,46,10,51)50 5 461 6 4755 10 461 6 42546 51 101 6 21551 0 101 6 16551 0 51 6 11
(0,7,44,12,49)70 7 441 8 4557 12 441 6 38544 49 121 6 25749 0 121 8 20749 0 71 8 15
(0,9,38,18,47)90 9 381 10 3999 18 381 10 30938 47 181 10 37947 0 181 10 28947 0 91 10 19
(0,11,34,22,45)110 11 341 12 351111 22 341 12 241134 45 221 12 451145 0 221 12 341145 0 111 12 23
(0,13,30,26,43)130 13 301 14 31426 30 131 5 44426 30 431 5 181343 0 261 14 401343 0 131 14 27
(0,15,26,30,41)1115 26 01 12 42426 30 151 5 46426 30 411 5 161130 41 01 12 271541 0 151 16 31
(0,17,22,34,39)517 22 01 6 40517 22 341 6 18534 39 221 6 45534 39 01 6 231739 0 171 18 35
(0,19,18,38,37)118 19 01 2 39118 19 381 2 21137 38 181 2 38137 38 01 2 201819 37 01 19 38
(0,21,14,42,35)714 21 01 8 43714 21 421 8 29735 42 141 8 36735 42 01 8 221421 35 01 15 36
(0,23,10,46,33)100 10 231 11 241310 23 461 14 371333 46 101 14 341046 0 331 11 441023 33 01 11 34
(0,25,6,50,31)60 6 251 7 261250 6 251 13 321250 6 311 13 38650 0 311 7 38625 31 01 7 32
(0,27,2,54,29)20 2 271 3 28454 2 271 5 30454 2 291 5 32254 0 291 3 32227 29 01 3 30
(b) Symmetric cycles for even values.
Cycles(x1,x2,x3)(x2,x3,x4)(x3,x4,x5)(x4,x5,x1)(x5,x1,x2)
(x1,x2,x3,x4,x5)dtripletypedtripletypedtripletypedtripletypedtripletype
(0,2,52,4,54)20 2 521 3 5322 4 521 3 51252 54 41 3 9254 0 41 3 7254 0 21 3 5
(0,4,48,8,52)40 4 481 5 4944 8 481 5 45448 52 81 5 17452 0 81 5 13452 0 41 5 9
(0,6,44,12,50)60 6 441 7 4566 12 441 7 39644 50 121 7 25650 0 121 7 19650 0 61 7 13
(0,8,42,14,48)80 8 421 9 4368 14 421 7 35642 48 141 7 29848 0 141 9 23848 0 81 9 17
(0,10,36,20,46)100 10 361 11 371010 20 361 11 271036 46 201 11 411046 0 201 11 311046 0 101 11 21
(0,12,32,24,44)120 12 321 13 33824 32 121 9 45824 32 441 9 211244 0 241 13 371244 0 121 13 25
(0,14,32,24,42)140 14 321 15 33824 32 141 9 47824 32 421 9 191442 0 241 15 391442 0 141 15 29
(0,16,30,26,40)1416 30 01 15 41426 30 161 5 47426 30 401 5 151426 40 01 15 311640 0 161 17 33
(0,18,20,36,38)218 20 01 3 39218 20 361 3 19236 38 201 3 41236 38 01 3 211838 0 181 19 37
(0,20,16,40,36)416 20 01 5 41416 20 401 5 25436 40 161 5 37436 40 01 5 211620 36 01 17 37
(0,22,12,44,34)1012 22 01 11 451012 22 441 11 331034 44 121 11 351034 44 01 11 231222 34 01 13 35
(0,24,10,46,32)100 10 241 11 251410 24 461 15 371432 46 101 15 351046 0 321 11 43824 32 01 9 33
(0,26,4,52,30)40 4 261 5 27852 4 261 9 31852 4 301 9 35452 0 301 5 35426 30 01 5 31
(c) First half of the reflected base cycle pairs.
Cycles(x1,x2,x3)(x2,x3,x4)(x3,x4,x5)(x4,x5,x1)(x5,x1,x2)
(x1,x2,x3,x4,x5)dtripletypedtripletypedtripletypedtripletypedtripletype
(0,1,5,8,10)10 1 51 2 635 8 11 4 5328 10 51 3 5428 10 01 3 4910 1 101 2 11
(0,1,6,8,15)10 1 61 2 726 8 11 3 5226 8 151 3 1078 15 01 8 4910 1 151 2 16
(0,1,7,11,16)10 1 71 2 847 11 11 5 5147 11 161 5 10511 16 01 6 4610 1 161 2 17
(0,1,8,11,21)10 1 81 2 938 11 11 4 5038 11 211 4 141011 21 01 11 4610 1 211 2 22
(0,1,9,4,18)10 1 91 2 1031 4 91 4 954 9 181 6 1540 4 181 5 1910 1 181 2 19
(0,1,11,13,22)10 1 111 2 12211 13 11 3 47211 13 221 3 12913 22 01 10 4410 1 221 2 23
(0,1,12,4,23)10 1 121 2 1331 4 121 4 1284 12 231 9 2040 4 231 5 2410 1 231 2 24
(0,1,13,6,17)10 1 131 2 1451 6 131 6 13413 17 61 5 5060 6 171 7 1810 1 171 2 18
(0,1,14,3,27)10 1 141 2 1521 3 141 3 14113 14 271 12 2530 3 271 4 2810 1 271 2 28
(0,1,24,3,28)10 1 241 2 2521 3 241 3 24424 28 31 5 3630 3 281 4 2910 1 281 2 29
(0,1,25,8,31)10 1 251 2 2671 8 251 8 25625 31 81 7 4080 8 311 9 3210 1 311 2 32
(0,2,14,17,28)20 2 141 3 15314 17 21 4 45314 17 281 4 151117 28 01 12 4020 2 281 3 29
(0,2,15,6,21)20 2 151 3 1642 6 151 5 14615 21 61 7 4860 6 211 7 2220 2 211 3 22
(0,2,16,8,25)20 2 161 3 1762 8 161 7 1588 16 251 9 1880 8 251 9 2620 2 251 3 26
(0,2,17,20,39)20 2 171 3 18317 20 21 4 42317 20 391 4 231739 0 201 18 3820 2 391 3 40
(0,2,22,5,26)20 2 221 3 2332 5 221 4 21422 26 51 5 4050 5 261 6 2720 2 261 3 27
(0,3,16,8,29)30 3 161 4 1753 8 161 6 1488 16 291 9 2280 8 291 9 3030 3 291 4 30
(0,3,17,22,35)30 3 171 4 18517 22 31 6 43517 22 351 6 191322 35 01 14 3530 3 351 4 36
(0,3,19,9,26)30 3 191 4 2063 9 191 7 17719 26 91 8 4790 9 261 10 2730 3 261 4 27
(0,3,21,43,25)30 3 211 4 221643 3 211 17 35421 25 431 5 231343 0 251 14 3930 3 251 4 26
(0,4,19,26,32)40 4 191 5 20719 26 41 8 42626 32 191 7 50626 32 01 7 3140 4 321 5 33
(0,5,11,24,31)50 5 111 6 1265 11 241 7 20724 31 111 8 44724 31 01 8 3350 5 311 6 32
(0,5,21,12,33)50 5 211 6 2275 12 211 8 17912 21 331 10 22120 12 331 13 3450 5 331 6 34
(0,6,22,49,27)60 6 221 7 231349 6 221 14 30522 27 491 6 28749 0 271 8 3560 6 271 7 28
(0,7,36,48,18)70 7 361 8 371236 48 71 13 281236 48 181 13 39848 0 181 9 2770 7 181 8 19
(0,9,33,50,23)90 9 331 10 341550 9 331 16 401023 33 501 11 28650 0 231 7 3090 9 231 10 24
(0,10,31,48,19)100 10 311 11 321731 48 101 18 361219 31 481 13 30848 0 191 9 28910 19 01 10 47
(0,11,35,48,20)110 11 351 12 361335 48 111 14 331335 48 201 14 42848 0 201 9 29911 20 01 10 46
(0,11,36,51,27)110 11 361 12 371536 51 111 16 32927 36 511 10 25551 0 271 6 33110 11 271 12 28
(0,12,28,5,25)120 12 281 13 2975 12 281 8 24325 28 51 4 3750 5 251 6 26120 12 251 13 26
(0,14,29,50,20)140 14 291 15 301514 29 501 16 37920 29 501 10 31650 0 201 7 27614 20 01 7 43
(0,14,37,7,26)140 14 371 15 3877 14 371 8 311126 37 71 12 3870 7 261 8 271214 26 01 13 43
(0,14,43,10,25)1343 0 141 14 28410 14 431 5 341510 25 431 16 34100 10 251 11 261114 25 01 12 43
(0,15,34,5,23)150 15 341 16 35105 15 341 11 301123 34 51 12 3950 5 231 6 24815 23 01 9 42
(0,16,33,2,24)160 16 331 17 34142 16 331 15 32924 33 21 10 3520 2 241 3 25816 24 01 9 41
(0,16,35,7,25)160 16 351 17 3697 16 351 10 291025 35 71 11 3970 7 251 8 26916 25 01 10 41
(d) Second half of the reflected base cycle pairs.
Cycles(x1,x2,x3)(x2,x3,x4)(x3,x4,x5)(x4,x5,x1)(x5,x1,x2)
(x1,x2,x3,x4,x5)dtripletypedtripletypedtripletypedtripletypedtripletype
(0,2,5,9,10)20 2 51 3 632 5 91 4 819 10 51 2 5319 10 01 2 4820 2 101 3 11
(0,7,9,14,15)27 9 01 3 5027 9 141 3 8114 15 91 2 52114 15 01 2 4370 7 151 8 16
(0,5,9,15,16)45 9 01 5 5245 9 151 5 11115 16 91 2 51115 16 01 2 4250 5 161 6 17
(0,10,13,20,21)310 13 01 4 47310 13 201 4 11120 21 131 2 50120 21 01 2 37100 10 211 11 22
(0,14,9,17,18)59 14 01 6 48314 17 91 4 52117 18 91 2 49117 18 01 2 40414 18 01 5 43
(0,9,11,21,22)29 11 01 3 4829 11 211 3 13121 22 111 2 47121 22 01 2 3690 9 221 10 23
(0,19,11,22,23)811 19 01 9 46319 22 111 4 49122 23 111 2 46122 23 01 2 35419 23 01 5 38
(0,11,4,16,17)40 4 111 5 12511 16 41 6 50116 17 41 2 45116 17 01 2 41611 17 01 7 46
(0,24,13,26,27)1113 24 01 12 44224 26 131 3 46126 27 131 2 44126 27 01 2 31324 27 01 4 33
(0,25,4,27,28)40 4 251 5 26225 27 41 3 36127 28 41 2 34127 28 01 2 30325 28 01 4 32
(0,23,6,30,31)60 6 231 7 24723 30 61 8 40130 31 61 2 33130 31 01 2 27823 31 01 9 34
(0,11,14,26,28)311 14 01 4 46311 14 261 4 16226 28 141 3 45226 28 01 3 31110 11 281 12 29
(0,15,6,19,21)60 6 151 7 16415 19 61 5 48219 21 61 3 44219 21 01 3 38615 21 01 7 42
(0,17,9,23,25)89 17 01 9 48617 23 91 7 49223 25 91 3 43223 25 01 3 34817 25 01 9 40
(0,19,22,37,39)319 22 01 4 38319 22 371 4 19237 39 221 3 42237 39 01 3 201739 0 191 18 37
(0,21,4,24,26)40 4 211 5 22321 24 41 4 40224 26 41 3 37224 26 01 3 33521 26 01 6 36
(0,21,13,26,29)813 21 01 9 44521 26 131 6 49326 29 131 4 44326 29 01 4 31821 29 01 9 36
(0,13,18,32,35)513 18 01 6 44513 18 321 6 20332 35 181 4 43332 35 01 4 25130 13 351 14 36
(0,17,7,23,26)70 7 171 8 18617 23 71 7 47323 26 71 4 41323 26 01 4 34917 26 01 10 40
(0,38,4,22,25)40 4 381 5 391622 38 41 17 39322 25 41 4 39322 25 01 4 351325 38 01 14 32
(0,6,13,28,32)60 6 131 7 1476 13 281 8 23428 32 131 5 42428 32 01 5 2960 6 321 7 33
(0,7,20,26,31)70 7 201 8 21620 26 71 7 44526 31 201 6 51526 31 01 6 3170 7 311 8 32
(0,21,12,28,33)912 21 01 10 45721 28 121 8 48528 33 121 6 41528 33 01 6 291221 33 01 13 36
(0,34,5,21,27)50 5 341 6 351321 34 51 14 41621 27 51 7 41621 27 01 7 36727 34 01 8 30
(0,26,38,11,18)1226 38 01 13 311226 38 111 13 42711 18 381 8 28711 18 01 8 46818 26 01 9 39
(0,29,46,14,23)1046 0 291 11 401514 29 461 16 33914 23 461 10 33914 23 01 10 43623 29 01 7 34
(0,27,44,9,19)1244 0 271 13 401727 44 91 18 39109 19 441 11 3690 9 191 10 20819 27 01 9 38
(0,28,41,9,20)1328 41 01 14 291328 41 91 14 38119 20 411 12 3390 9 201 10 21820 28 01 9 37
(0,32,47,16,27)947 0 321 10 421532 47 161 16 411116 27 471 12 321116 27 01 12 41527 32 01 6 30
(0,20,53,13,25)353 0 201 4 24713 20 531 8 411213 25 531 13 411213 25 01 13 44520 25 01 6 37
(0,26,47,6,20)947 0 261 10 361547 6 261 16 36146 20 471 15 4260 6 201 7 21620 26 01 7 37
(0,19,45,12,26)1145 0 191 12 31712 19 451 8 341412 26 451 15 34120 12 261 13 27719 26 01 8 38
(0,15,38,11,25)150 15 381 16 39411 15 381 5 281325 38 111 14 43110 11 251 12 261015 25 01 11 42
(0,18,45,8,23)1145 0 181 12 30108 18 451 11 38158 23 451 16 3880 8 231 9 24518 23 01 6 39
(0,22,47,8,24)947 0 221 10 32148 22 471 15 40168 24 471 17 4080 8 241 9 25222 24 01 3 35
(0,18,46,9,25)1046 0 181 11 2999 18 461 10 38169 25 461 17 3890 9 251 10 26718 25 01 8 39

References

  1. Bailey, R.F.; Stevens, B. Hamiltonian decompositions of complete k-uniform hypergraphs. Discret. Math. 2010, 310, 3088–3095. [Google Scholar] [CrossRef] [Green Version]
  2. Meszka, M.; Rosa, A. Decomposing complete 3-uniform hypergraphs into Hamiltonian cycles. Australas. J. Comb. 2009, 45, 291–302. [Google Scholar]
  3. Guan, M.; Xu, C.; Jirimutu. Decomposing complete 3-uniform hypergraph K 44 ( 3 ) into 7-cycles. In Advances in Computer Science Research, Proceedings of the 7th International Conference on Mechatronics, Computer and Education Informationization (MCEI 2017); Shenyang, China, 3–5 November 2017, Atlantis Press: Amsterdam The Netherlands, 2017; Volume 75, pp. 860–865. [Google Scholar]
  4. Hong, Y.; Jirimutu. Decomposing complete 3-uniform hypergraph K n ( 3 ) into 7-cycles. In Proceedings of the International Conference on Logistics Engineering, Management and Computer Science (LEMCS 2015), Shenyang, China, 29–31 July 2015; Atlantis Press: Amsterdam The Netherlands, 2015; pp. 1272–1274. [Google Scholar]
  5. Meihua; Guan, M.; Jirimutu. Decomposing complete 3-uniform hypergraph K n ( 3 ) into 7-cycles. Opusc. Math. 2019, 39, 383–393. [Google Scholar] [CrossRef]
  6. Narisu; Guan, M.; Jirimutu. Decomposing complete 3-uniform hypergraph K 58 ( 3 ) into 7-cycles with computer aid. In Proceedings of the 9th International Conference on Management and Computer Science (ICMCS 2019), Shenyang, China, 15–17 March 2019; pp. 123–129. [Google Scholar]
  7. Yu, D.; Jirimutu. Decomposing complete 3-uniform hypergraph K 45 ( 3 ) into 7-cycles. In Proceedings of the International Conference on Energy, Environment and Sustainable Development (EESD 2017), Phuket, Thailand, 21–22 April 2017; DEStech Transactions on Environment, Energy and Earth Sciences. pp. 176–181. [Google Scholar]
  8. Mullin, R.C.; Rosa, A. Orthogonal Steiner systems and generalized Room squares. In Proceedings of the 6th Manitoba Conference on Numerical Mathematics, Winnipeg, MB, Canada, 29 September–2 October 1976; pp. 315–323. [Google Scholar]
  9. Gionfriddo, M.; Milazzo, L.; Tuza, Z.S. Hypercycle systems. In Proceedings of the 21st Workshop on Cycles and colorings, Nový Smokovec, Slovakia, 9–14 September 2012; p. 40. [Google Scholar]
  10. Gionfriddo, M.; Milazzo, L.; Tuza, Z.S. Hypercycle systems. Australas. J. Comb. 2020, 77, 336–354. [Google Scholar]
  11. Li, G.R.; Lei, Y.M.; Jirimutu. Decomposing complete 3-uniform hypergraph K n into 5-cycles. Appl. Mech. Mater. 2014, 672–674, 1935–1939. [Google Scholar]
  12. Lei, Y.M.; Li, G.R.; Jirimutu. The decomposition of complete 3-uniform hypergraph K 32 ( 3 ) into 5-cycles. J. Inn. Mong. Univ. Natl. 2016, 31, 1–5,20. Available online: http://113.31.19.23/Qikan/Article/Detail?id=78777783504849544849484850 (accessed on 23 February 2021). (In Chinese).
  13. Li, G.R.; Lei, Y.M.; Yang, Y.S.; Jirimutu. Decomposing complete 3-uniform hypergraphs into cycles. J. Math. Res. Appl. 2016, 36, 9–14. [Google Scholar] [CrossRef]
  14. Keevash, P. The existence of designs. arXiv 2014, arXiv:1401.3665. [Google Scholar]
  15. Glock, S.; Kühn, D.; Lo, A.; Osthus, D. Hypergraph F-designs for arbitrary F. arXiv 2017, arXiv:1706.01800. [Google Scholar]
  16. Keevash, P. The existence of designs II. arXiv 2018, arXiv:1802.05900. [Google Scholar]
  17. Colbourn, C.J.; Dinitz, J.H. Handbook of Combinatorial Designs, 2nd ed.; Discrete Mathematics and Its Applications; Chapman and Hall/CRC: Boca Raton, FL, USA, 2006. [Google Scholar]
  18. Pless, V. On the uniqueness of the Golay code. J. Comb. Theory 1968, 5, 215–228. [Google Scholar] [CrossRef] [Green Version]
  19. Kou, Y.; Lin, S.; Fossorier, M.P.C. Low-density parity-check codes based on finite geometries: A rediscovery and new results. IEEE Trans. Inf. Theory 2001, 47, 2711–2736. [Google Scholar] [CrossRef] [Green Version]
  20. Arias, F.; de la Cruz, J.; Rosenthal, J.; Willems, W. On q-Steiner systems from rank metric codes. Discret. Math. 2018, 341, 2729–2734. [Google Scholar] [CrossRef]
  21. Yang, J.; Xu, X. A robust anti-collusion coding in digital fingerprinting system. In Proceedings of the 8th International Conference on Signal Processing, Singapore, 4–7 December 2006; Volume 3, pp. 996–999. [Google Scholar]
Figure 1. C ( 3 , 5 , 20 ) construction step 1. (a) Inside each of A , B , C , and D, we take C ( 3 , 5 , 5 ) . The families of crossing triples of A B , B C , C D , and D A are decomposable into 5-cycles since we know there exists a 2-split system of order 10 (see [10]). (b) The remaining triples either connect A and C, or B and D or meet exactly three of A , B , C , and D. The latter is called an ABC type (which can mean any of A B C , B C D , C D A , and D A B ) and the former two together are an A A C type (which can mean A A C , B B D , C C A , and D D B ).
Figure 1. C ( 3 , 5 , 20 ) construction step 1. (a) Inside each of A , B , C , and D, we take C ( 3 , 5 , 5 ) . The families of crossing triples of A B , B C , C D , and D A are decomposable into 5-cycles since we know there exists a 2-split system of order 10 (see [10]). (b) The remaining triples either connect A and C, or B and D or meet exactly three of A , B , C , and D. The latter is called an ABC type (which can mean any of A B C , B C D , C D A , and D A B ) and the former two together are an A A C type (which can mean A A C , B B D , C C A , and D D B ).
Mathematics 09 00484 g001
Figure 2. C ( 3 , 5 , 20 ) construction step 2. Two of the seven base cycles of Table 1a are illustrated.
Figure 2. C ( 3 , 5 , 20 ) construction step 2. Two of the seven base cycles of Table 1a are illustrated.
Mathematics 09 00484 g002
Figure 3. The v 10 v construction. (a) Two vertex-disjoint copies of a C ( 3 , 5 , 5 v ) are created. The details are explained in the proof of Theorem 2. Within the green rectangles, the two C ( 3 , 5 , 5 ) subsystems are kept with crossing cycles of a 2-split C ( 3 , 5 , 10 ) between them. (b) For all 1 i < j v , we also keep the crossing cycles of a 2-split C ( 3 , 5 , 10 ) inside X 1 , i X 1 , j as well as inside X 2 , i X 2 , j . The remaining triples inside X 1 , i X 1 , j X 2 , i X 2 , j together form a hypergraph isomorphic to H 4 × 5 .
Figure 3. The v 10 v construction. (a) Two vertex-disjoint copies of a C ( 3 , 5 , 5 v ) are created. The details are explained in the proof of Theorem 2. Within the green rectangles, the two C ( 3 , 5 , 5 ) subsystems are kept with crossing cycles of a 2-split C ( 3 , 5 , 10 ) between them. (b) For all 1 i < j v , we also keep the crossing cycles of a 2-split C ( 3 , 5 , 10 ) inside X 1 , i X 1 , j as well as inside X 2 , i X 2 , j . The remaining triples inside X 1 , i X 1 , j X 2 , i X 2 , j together form a hypergraph isomorphic to H 4 × 5 .
Mathematics 09 00484 g003
Figure 4. C ( 3 , 5 , 40 ) construction as described in the proof of Theorem 3.
Figure 4. C ( 3 , 5 , 40 ) construction as described in the proof of Theorem 3.
Mathematics 09 00484 g004
Figure 5. C ( 3 , 5 , 32 ) : base cycles (0,2,18,14,30) and (0,1,5,8,13).
Figure 5. C ( 3 , 5 , 32 ) : base cycles (0,2,18,14,30) and (0,1,5,8,13).
Mathematics 09 00484 g005
Table 1. Subsystem H 4 × 5 inside C ( 3 , 5 , 20 ) .
Table 1. Subsystem H 4 × 5 inside C ( 3 , 5 , 20 ) .
(a) Seven base cycles: three ACACB cycles and four ACABD cycles.
Base Cycles (5 Vertices)
v1v2v3v4v5
a1c1a2c2b1
a1c1a3c5b3
a1c2a3c1b4
a2c5a1b1d4
a3c5a1b5d4
a4c1a1b2d4
a4c2a1b2d3
(b) Generating 20 cycles from the green base cycle of type ACACB.
ACACB cyclesBDBDC cyclesCACAD cyclesDBDBA cycles
v1v2v3v4v5v1v2v3v4v5v1v2v3v4v5v1v2v3v4v5
a1c1a2c2b1b1d1b2d2c1c1a1c2a2d1d1b1d2b2a1
a2c2a3c3b2b2d2b3d3c2c2a2c3a3d2d2b2d3b3a2
a3c3a4c4b3b3d3b4d4c3c3a3c4a4d3d3b3d4b4a3
a4c4a5c5b4b4d4b5d5c4c4a4c5a5d4d4b4d5b5a4
a5c5a1c1b5b5d5b1d1c5c5a5c1a1d5d5b5d1b1a5
(c) Generating 20 cycles from the purple base cycle of type ACABD.
ACABD cyclesBDBCA cyclesCACDB cyclesDBDAC cycles
v1v2v3v4v5v1v2v3v4v5v1v2v3v4v5v1v2v3v4v5
a2c5a1b1d4b2d5b1c1a4c2a5c1d1b4d2b5d1a1c4
a3c1a2b2d5b3d1b2c2a5c3a1c2d2b5d3b1d2a2c5
a4c2a3b3d1b4d2b3c3a1c4a2c3d3b1d4b2d3a3c1
a5c3a4b4d2b5d3b4c4a2c5a3c4d4b2d5b3d4a4c2
a1c4a5b5d3b1d4b5c5a3c1a4c5d5b3d1b4d5a5c3
Table 2. Disqualified triplet types: S = symmetric triplet, and M = multiply covered triplet.
Table 2. Disqualified triplet types: S = symmetric triplet, and M = multiply covered triplet.
Divisor of vDifference TripletReason of Conflicti of Cycle That Covers Triplet
5 ( v / 5 , v / 5 , 2 v / 5 ) S v / 5
5 ( v / 5 , 2 v / 5 , 2 v / 5 ) S 2 v / 5
7 ( v / 7 , v / 7 , 2 v / 7 ) S 2 v / 7
7 ( 2 v / 7 , 2 v / 7 , 3 v / 7 ) S 3 v / 7
7 ( 3 v / 7 , 3 v / 7 , v / 7 ) S v / 7
7 ( v / 7 , 2 v / 7 , 3 v / 7 ) M v / 7 , 2 v / 7 , 3 v / 7
11 ( v / 11 , 2 v / 11 , 3 v / 11 ) M 3 v / 11 , 5 v / 11
11 ( v / 11 , 3 v / 11 , 4 v / 11 ) M v / 11 , 2 v / 11
11 ( v / 11 , 4 v / 11 , 5 v / 11 ) M 3 v / 11 , 4 v / 11
11 ( 2 v / 11 , 3 v / 11 , 5 v / 11 ) M 2 v / 11 , 4 v / 11
11 ( 2 v / 11 , 4 v / 11 , 5 v / 11 ) M v / 11 , 5 v / 11
13 ( v / 13 , 3 v / 13 , 4 v / 13 ) M v / 13 , 3 v / 13 , 4 v / 13
13 ( 2 v / 13 , 5 v / 13 , 6 v / 13 ) M 2 v / 13 , 5 v / 13 , 6 v / 13
Table 3. Covered vertex triples and their difference triplets of ( 0 , i , v 3 i , 3 i , v i ) for v = 7 .
Table 3. Covered vertex triples and their difference triplets of ( 0 , i , v 3 i , 3 i , v i ) for v = 7 .
cycle for i = 1 ( 0 , 1 , 4 , 3 , 6 )
covered vertex triples { 0 , 1 , 4 } { 1 , 3 , 4 } { 3 , 4 , 6 } { 0 , 3 , 6 } { 0 , 1 , 6 }
difference triplets ( 1 , 3 , 3 ) ( 2 , 1 , 3 ) ( 1 , 2 , 3 ) ( 3 , 3 , 1 ) ( 1 , 1 , 2 )
cycle for i = 2 ( 0 , 2 , 1 , 6 , 5 )
covered vertex triples { 0 , 1 , 2 } { 1 , 2 , 6 } { 1 , 5 , 6 } { 0 , 5 , 6 } { 0 , 2 , 5 }
difference triplets ( 1 , 1 , 2 ) ( 2 , 1 , 3 ) ( 1 , 2 , 3 ) ( 1 , 1 , 2 ) ( 2 , 2 , 3 )
cycle for i = 3 ( 0 , 3 , 5 , 2 , 4 )
covered vertex triples { 0 , 3 , 5 } { 2 , 3 , 5 } { 2 , 4 , 5 } { 0 , 2 , 4 } { 0 , 3 , 4 }
difference triplets ( 2 , 2 , 3 ) ( 1 , 2 , 3 ) ( 2 , 1 , 3 ) ( 2 , 2 , 3 ) ( 3 , 3 , 1 )
Table 4. Characteristics of difference triplets depending on i / v .
Table 4. Characteristics of difference triplets depending on i / v .
Interval ( 0 , i , v 3 i ) Cycle ( i , v 3 i , 3 i ) Cycle
[ a , b ] SmallMiddleLargePositionSmallMiddleLargePosition
[ 0 , 1 / 12 ] i 3 i 4 i N 2 i 4 i 6 i N
[ 1 / 12 , 1 / 10 ] N 2 i 4 i v 6 i E
[ 1 / 10 , 1 / 8 ] N 2 i v 6 i 4 i E
[ 1 / 8 , 1 / 7 ] i 3 i v 4 i E v 6 i 2 i v 4 i N
[ 1 / 7 , 1 / 6 ] i v 4 i 3 i E N
[ 1 / 6 , 1 / 5 ] i v 4 i v 3 i N 6 i v v 4 i 2 i N
[ 1 / 5 , 1 / 4 ] v 4 i i v 3 i N v 4 i 6 i v 2 i N
[ 1 / 4 , 2 / 7 ] 4 i v v 3 i iN 4 i v 2 v 6 i v 2 i N
[ 2 / 7 , 3 / 10 ] v 3 i 4 i v iN N
[ 3 / 10 , 1 / 3 ] N 2 v 6 i 4 i v v 2 i N
[ 1 / 3 , 3 / 8 ] 3 i v i 4 i v N 6 i 2 v v 2 i 4 i v N
[ 3 / 8 , 2 / 5 ] 3 i v i 2 v 4 i E v 2 i 6 i 2 v 2 v 4 i E
[ 2 / 5 , 5 / 12 ] 3 i v 2 v 4 i iE v 2 i 2 v 4 i 6 i 2 v E
[ 5 / 12 , 3 / 7 ] E v 2 i 2 v 4 i 3 v 6 i N
[ 3 / 7 , 1 / 2 ] 2 v 4 i 3 i v iE N
Table 5. Infeasibility of pairs of normal triplets.
Table 5. Infeasibility of pairs of normal triplets.
PNMLKJHGFEDCB
A 2 v 2 v 13 3 v 13 2 v 11 2 v 3 v 3 v 2 v contrinterv
B 2 v 2 v 2 v 5 5 2 v 5 11 2 v intervinterv 2 v
C 2 v 2 v 2 v 2 v 2 v 2 v 2 v 2 v 2 v 2 v 2 v
D 3 v interv 3 v 2 v interv 2 v 2 v 3 v 11 interv
E 2 v 11 7 2 v 2 v intervcontr 2 v 3 v
F 2 v 7 2 v 2 v 2 v 7 2 v 2 v
G 3 v 2 v 3 v 2 v 2 v 2 v 2 v
H 2 v 2 v 2 v 5 5 2 v
J 2 v 7 2 v 2 v contr
K 2 v 3 v 13 5
L 2 v 2 v contr
M 3 v 2 v
N 2 v
Table 6. Infeasibility of pairs of extra triplets.
Table 6. Infeasibility of pairs of extra triplets.
ZYXVUTSR
Q 3 v 2 v 2 v interv 2 v 2 v contr 7
R 13 2 v 2 v 2 v 13 contr 2 v
S 11 2 v 2 v 2 v 2 v 2 v
T 3 v 2 v 2 v 2 v 2 v
U 13 5 5 5
V 7 5 5
X 2 v 5
Y 2 v
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Keszler, A.; Tuza, Z. Hypercycle Systems of 5-Cycles in Complete 3-Uniform Hypergraphs. Mathematics 2021, 9, 484. https://doi.org/10.3390/math9050484

AMA Style

Keszler A, Tuza Z. Hypercycle Systems of 5-Cycles in Complete 3-Uniform Hypergraphs. Mathematics. 2021; 9(5):484. https://doi.org/10.3390/math9050484

Chicago/Turabian Style

Keszler, Anita, and Zsolt Tuza. 2021. "Hypercycle Systems of 5-Cycles in Complete 3-Uniform Hypergraphs" Mathematics 9, no. 5: 484. https://doi.org/10.3390/math9050484

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop