Next Article in Journal
New Generalizations and Results in Shift-Invariant Subspaces of Mixed-Norm Lebesgue Spaces \({L_{\vec{p}}(\mathbb{R}^d)}\)
Next Article in Special Issue
On the Ninth Coefficient of the Inverse of a Convex Function
Previous Article in Journal
An Analysis of a KNN Perturbation Operator: An Application to the Binarization of Continuous Metaheuristics
Previous Article in Special Issue
Subclasses of Multivalent Analytic Functions Associated with a q-Difference Operator
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Differential Subordination and Superordination Results Associated with Mittag–Leffler Function

1
Department of Mathematics, College of Science, University of Ha’il, Ha’il 81451, Saudi Arabia
2
Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
3
Department of Mathematics and Computer Science, Faculty of Science, Port Said University, Port Said 42521, Egypt
4
Department of Mathematics, College of Science and Humanities in Al-Aflaj, Prince Sattam Bin Abdulaziz University, Al-Aflaj 11912, Saudi Arabia
5
Department of Mathematics, Faculty of Science, Damietta University, New Damietta 34517, Egypt
*
Author to whom correspondence should be addressed.
Mathematics 2021, 9(3), 226; https://doi.org/10.3390/math9030226
Submission received: 23 December 2020 / Revised: 21 January 2021 / Accepted: 22 January 2021 / Published: 25 January 2021
(This article belongs to the Special Issue Complex Analysis and Geometric Function Theory)

Abstract

:
In this paper, we derive a number of interesting results concerning subordination and superordination relations for certain analytic functions associated with an extension of the Mittag–Leffler function.

1. Definitions and Preliminaries

Let H be the class of analytic functions in the open unit disc U = z : z < 1 . Also, let H [ a , n ] denote the subclass of the functions f H of the form
f ( z ) = a + a n z n + a n + 1 z n + 1 + ( a C ) .
Furthermore, let
A m = f H | f ( z ) = z + a m + 1 z m + 1 + a m + 2 z m + 2 + .
Moreover, assume that A = A 1 which is the subclass of the functions f H of the form
f ( z ) = z + a 2 z 2 + .
For f , g H , we say that the function f is subordinate to g, written symbolically as follows:
f g or f ( z ) g ( z ) ,
if there exists a Schwarz function w, which (by definition) is analytic in U with w ( 0 ) = 0 and w ( z ) < 1 ( z U ) , such that f ( z ) = g ( w ( z ) ) for all z U . In particular, if the function g is univalent in U , then we have the following equivalence relation (cf., e.g., [1,2]; see also [3]):
f ( z ) g ( z ) f ( 0 ) g ( 0 ) a n d f ( U ) g ( U ) .
Let λ and h be two analytic functions in U , suppose
Φ ( r , s , t ; z ) : C 3 × U C .
If λ and Φ ( λ ( z ) , z λ ( z ) , z 2 λ ( z ) ; z ) are univalent functions in U and if λ satisfies the second-order superordination
h ( z ) Φ ( λ ( z ) , z λ ( z ) , z 2 λ ( z ) ; z ) ,
then λ is called to be a solution of the differential superordination (3). (If f is subordinate to F, then F is superordination to f). An analytic function μ is called a subordinant of (3), if μ λ for all the functions λ satisfying (3). A univalent subordinant μ ˜ that satisfies μ μ ˜ for all of the subordinants μ of (3), is called the best subordinant (cf., e.g., [2], see also [3]).
Miller and Mocanu [4] obtained sufficient conditions on the functions h, μ and Φ for which the following statement holds:
h ( z ) Φ ( λ ( z ) , z λ ( z ) , z 2 λ ( z ) ; z ) μ ( z ) λ ( z ) .
The results of Miller and Mocanu [4] and Bulboaca [5] considered certain families of first-order differential superordination whenever superordination preserves integral operators [6]. Moreover, Ali et al. [7], used Bulboaca’s results [5] and obtained the sufficient conditions for normalized analytic functions f to satisfy
μ 1 ( z ) z f ( z ) f ( z ) μ 2 ( z ) ,
where μ 1 and μ 2 are given univalent functions in U with μ 1 ( 0 ) = 1 . Also, Shanmugam et al. [8] obtained sufficient conditions for normalized analytic functions f to satisfy
μ 1 ( z ) f ( z ) z f ( z ) μ 2 ( z ) ,
and
μ 1 ( z ) z 2 f ( z ) f ( z ) 2 μ 2 ( z ) ,
where μ 1 and μ 2 are given univalent functions in U with μ 1 ( 0 ) = 1 and μ 2 ( 0 ) = 1 , while Obradovic and Owa [9] obtained some results of subordinations associated with f ( z ) z δ .
Let f A . Attiya [10] introduced the operator H α , β γ , k ( f ) , where H α , β γ , k ( f ) : A A is defined by
H α , β γ , k ( f ) = μ α , β γ , k * f ( z ) ( z U ) ,
with β , γ C , Re ( α ) > max { 0 , Re ( k ) 1 } and Re ( k ) > 0 . Also, Re ( α ) = 0 when Re ( k ) = 1 ; β 0 . Here, μ α , β γ , k is the generalized Mittag–Leffler function defined by [11], see also [10] and the symbol ( * ) denotes the Hadamard product or convolution.
Due to the importance of Mittag–Leffler function, it is involved in many problems in natural and applied science.
A detailed investigation of Mittag–Leffler function has been studied by many authors see e.g., [11,12,13,14,15,16].
Attiya [10] noted that
H α , β γ , k ( f ) ( z ) = z + n = 2 Γ ( γ + n k ) Γ ( α + β ) Γ ( γ + k ) Γ ( β + α n ) n ! a n z n .
From (6) follows (see [10])
z ( H α , β γ , k ( f ) ( z ) ) = ( γ + k k ) ( H α , β γ + 1 , k ( f ) ( z ) ) γ k ( H α , β γ , k ( f ) ( z ) )
and
α z ( H α , β + 1 γ , k ( f ) ( z ) ) = ( α + β ) ( H α , β γ , k ( f ) ( z ) ) β ( H α , β + 1 γ , k ( f ) ( z ) ) .
In order to derive our results, we will use the following known definitions and lemmas.
Definition 1.
Ref [4]. Denote by μ the set of all functions f that are analytic and injective on U ¯ \ E ( f ) , where
E ( f ) = { ζ : ζ U a n d lim z ζ f ( z ) = } ,
with f ( ζ ) 0 for ζ U \ E ( f ) .
Lemma 1.
Ref [3]. Let the function μ be univalent in the unit disc U , and let θ and φ be analytic in a domain D containing μ ( U ) , with φ ( w ) 0 when w μ ( U ) . Set μ ( z ) = z μ ( z ) φ ( μ ( z ) ) , h ( z ) = θ ( μ ( z ) ) + μ ( z ) and suppose that
(i) 
μ is a starlike function in U (i.e, Re z μ ( z ) μ ( z ) > 0 f o r z U ),
(ii) 
Re z h ( z ) μ ( z ) > 0 f o r z U .
If λ is analytic in U with λ ( 0 ) = μ ( 0 ) , λ ( U ) D and
θ ( λ ( z ) ) + z λ ( z ) φ ( λ ( z ) ) θ ( μ ( z ) ) + z μ ( z ) φ ( μ ( z ) ) ,
then λ ( z ) μ ( z ) , and μ is the best dominant.
Lemma 2.
Ref [6].Let μ be a convex univalent function in the unit disc U and let ϑ and φ be analytic in a domain D containing μ ( U ) . Suppose that
(i) 
Re ϑ ( μ ( z ) ) φ ( μ ( z ) ) > 0 for z U ;
(ii) 
z μ ( z ) φ ( μ ( z ) ) is starlike in U .
If λ H [ μ ( 0 ) , 1 ] μ with λ ( U ) D , and ϑ ( λ ( z ) ) + z λ ( z ) φ ( λ ( z ) ) is univalent in U , and
ϑ ( μ ( z ) ) + z μ ( z ) φ ( μ ( z ) ) ϑ ( λ ( z ) ) + z λ ( z ) φ ( λ ( z ) ) ,
then μ ( z ) λ ( z ) , and μ is the best subordinant.
Lemma 3.
Ref [4]. Let μ be a convex function in U and let ψ C with ϰ C * = C \ { 0 } with
Re 1 + z μ ( z ) μ ( z ) > max 0 ; Re ψ ϰ z U .
If λ is analytic in U , and
ψ λ ( z ) + δ z λ ( z ) ψ μ ( z ) + ϰ z μ ( z ) ,
then λ ( z ) μ ( z ) , and μ is the best dominant.
Lemma 4.
Ref [17] Let μ be convex univalent in U and let δ C , with Re δ > 0 . If λ H [ μ ( 0 ) , 1 ] μ and λ ( z ) + δ z λ ( z ) is univalent in U , then
μ ( z ) + δ z μ ( z ) λ ( z ) + δ z λ ( z ) ,
implies
μ ( z ) λ ( z ) ( z U )
and μ is the best subordinant.
In this paper we drive a number of interesting results concerning subordination and superordination relations for the operator H α , β γ , k ( f ) ( z ) . Also, some of interesting sandwich results of the operator H α , β γ , k ( f ) ( z ) have been obtained.

2. Subordination and Superordination Results with H α , β γ , k ( f ) ( z )

Theorem 1.
Let μ be convex univalent in U , with μ ( 0 ) = 1 , ρ C * , δ > 0 . Suppose μ satisfies
Re 1 + z μ ( z ) μ ( z ) > max 0 ; Re δ ρ .
If f A satisfies the following subordination relation
H α , β γ , k ( f ) ( z ) z δ + ρ ( γ + k ) k H α , β γ , k ( f ) ( z ) z δ H α , β γ + 1 , k ( f ) ( z ) H α , β γ , k ( f ) ( z ) 1 . μ ( z ) + ρ δ z μ ( z )
then
H α , β γ , k ( f ) ( z ) z δ μ ( z )
and μ ( z ) is the best dominant of (14).
Proof. 
Define the function λ by
λ ( z ) = H α , β γ , k ( f ) ( z ) z δ ( z U ) .
The function λ is analytic in U and λ ( 0 ) = 1 . Differentiating the function λ with respect to z logarithmically, we have
z λ ( z ) λ ( z ) = δ z H α , β γ , k ( f ) ( z ) H α , β γ , k ( f ) ( z ) 1 .
In the resulting equation by using the identity (7), we have
z λ ( z ) λ ( z ) = δ γ + k k H α , β γ + 1 , k ( f ) ( z ) H α , β γ , k ( f ) ( z ) 1 .
Therefore,
z λ ( z ) δ = ( γ + k ) k H α , β γ + 1 , k ( f ) ( z ) H α , β γ , k ( f ) ( z ) 1 H α , β γ , k ( f ) ( z ) z δ .
It follows from (14) that
λ ( z ) + ρ δ z λ ( z ) μ ( z ) + ρ δ z μ ( z ) .
Thus, an application of Lemma 3 with ψ = 1 and ϰ = ρ δ , we obtain (15). □
In view of (8), and by using the similar method of proof the Theorem 1, we get the proof of Theorem 2.
Theorem 2.
Let μ be convex univalent in U , with μ ( 0 ) = 1 , ρ C * , δ > 0 . Suppose μ satisfies (13). If f A satisfies the subordination
H α , β + 1 γ , k ( f ) ( z ) z δ + ρ ( α + β ) α H α , β + 1 γ , k ( f ) ( z ) z δ H α , β γ , k ( f ) ( z ) H α , β + 1 γ , k ( f ) ( z ) 1 . μ ( z ) + ρ δ z μ ( z )
then
H α , β + 1 γ , k ( f ) ( z ) z δ μ ( z )
and μ ( z ) is the best dominant of (18).
Theorem 3.
Let ζ i C ( i = 1 , 2 , 3 , 4 ) , δ > 0 , ξ > 0 (ξ is a real number) and μ be convex univalent in U , with μ ( 0 ) = 1 , μ ( z ) 0 ( z U ) and assume that μ satisfies
1 + ζ 2 ξ μ ( z ) + 2 ζ 3 ξ μ 2 ( z ) + 3 ζ 4 ξ μ 3 ( z ) + z μ ( z ) μ ( z ) z μ ( z ) μ ( z ) > 0 .
Suppose that z μ ( z ) μ ( z ) is starlike univalent in U . Also, if f A satisfies the following subordination relation:
Ω ( ζ 1 , ζ 2 , ζ 3 , ζ 4 , ξ , δ , γ , k , α , β ; z ) ζ 1 + ζ 2 μ ( z ) + ζ 3 μ 2 ( z ) + ζ 4 μ 3 ( z ) + ξ z μ ( z ) μ ( z ) ,
where
Ω ( ζ 1 , ζ 2 , ζ 3 , ζ 4 , ξ , δ , γ , k , α , β ; z ) ζ 1 + ζ 2 H α , β γ + 1 , k ( f ) ( z ) H α , β γ , k ( f ) ( z ) δ + ζ 3 H α , β γ + 1 , k ( f ) ( z ) H α , β γ , k ( f ) ( z ) 2 δ
+ ζ 4 H α , β γ + 1 , k ( f ) ( z ) H α , β γ , k ( f ) ( z ) 3 δ + ξ δ ( γ + k ) k H α , β γ + 2 , k ( f ) ( z ) H α , β γ + 1 , k ( f ) ( z ) H α , β γ + 1 , k ( f ) ( z ) H α , β γ , k ( f ) ( z ) + ξ δ k H α , β γ + 2 , k ( f ) ( z ) H α , β γ + 1 , k ( f ) ( z ) 1 ,
then
H α , β γ + 1 , k ( f ) ( z ) H α , β γ , k ( f ) ( z ) δ μ ( z )
and μ ( z ) is the best dominant of (20).
Proof. 
Define the function λ by
λ ( z ) = H α , β γ + 1 , k ( f ) ( z ) H α , β γ , k ( f ) ( z ) δ ( z U ) .
The function λ is analytic in U and we note that λ ( 0 ) = 1 .
After some computation and using (7), we have
ζ 1 + ζ 2 λ ( z ) + ζ 3 λ 2 ( z ) + ζ 4 λ 3 ( z ) + ξ z λ ( z ) λ ( z ) = Ω ( ζ 1 , ζ 2 , ζ 3 , ζ 4 , ξ , δ , γ , k , α , β ; z ) ,
where Ω ( ζ 1 , ζ 2 , ζ 3 , ζ 4 , ξ , δ , γ , k , α , β ; z ) is given by (21).
From (20) and (23) we obtain
ζ 1 + ζ 2 λ ( z ) + ζ 3 λ 2 ( z ) + ζ 4 λ 3 ( z ) + ξ z λ ( z ) λ ( z ) ζ 1 + ζ 2 μ ( z ) + ζ 3 μ 2 ( z ) + ζ 4 μ 3 ( z ) + ξ z μ ( z ) μ ( z ) .
By setting
θ ( w ) = ζ 1 + ζ 2 w + ζ 3 w 2 + ζ 4 w 3 a n d ϕ ( w ) = ξ w , w 0 ,
we see that θ is analytic in the complex plane C and ϕ is analytic in C * , also, ϕ ( w ) 0 , w C * . Moreover
μ ( z ) = z μ ( z ) ϕ ( μ ( z ) ) = ξ z μ ( z ) μ ( z )
and
h ( z ) = θ ( μ ( z ) ) + μ ( z ) = ζ 1 + ζ 2 μ ( z ) + ζ 3 μ 2 ( z ) + ζ 4 μ 3 ( z ) + ξ z μ ( z ) μ ( z ) .
It is clear that μ ( z ) is starlike univalent in U ,
Re z h ( z ) μ ( z ) = Re 1 + ζ 2 ξ μ ( z ) + 2 ζ 3 ξ μ 2 ( z ) + 3 ζ 4 ξ μ 3 ( z ) + z μ ( z ) μ ( z ) z μ ( z ) μ ( z ) > 0 .
Thus, from Lemma 1, we have λ ( z ) μ ( z ) . By using (22), we obtain the required result. □
In view of (8), and by using the similar method of proof of Theorem 3, we get the proof of Theorem 4
Theorem 4.
Let ζ i C ( i = 1 , 2 , 3 , 4 ) , δ > 0 , ξ > 0 (ξ is a real number) and μ be convex univalent function in U , with μ ( 0 ) = 1 , μ ( z ) 0 ( z U ) and assume that the function μ satisfies (19). Also, let z μ ( z ) μ ( z ) be starlike univalent in U . If f A satisfies (20), where
Ω ( ζ 1 , ζ 2 , ζ 3 , ζ 4 , ξ , δ , γ , k , α , β ; z ) ζ 1 + ζ 2 H α , β + 2 γ , k ( f ) ( z ) H α , β + 1 γ , k ( f ) ( z ) δ + ζ 3 H α , β + 2 γ , k ( f ) ( z ) H α , β + 1 γ , k ( f ) ( z ) 2 δ
+ ζ 4 H α , β + 2 γ , k ( f ) ( z ) H α , β + 1 γ , k ( f ) ( z ) 3 δ + ξ δ α + β α H α , β + 1 γ , k ( f ) ( z ) H α , β + 2 γ , k ( f ) ( z ) H α , β γ , k ( f ) ( z ) H α , β + 1 γ , k ( f ) ( z ) + ξ δ α H α , β + 1 γ , k ( f ) ( z ) H α , β + 2 γ , k ( f ) ( z ) 1 ,
then
H α , β + 2 γ , k ( f ) ( z ) H α , β + 1 γ , k ( f ) ( z ) δ μ ( z )
and μ ( z ) is the best dominant of (20).
Theorem 5.
Let ζ i C ( i = 1 , 2 , 3 , 4 ) , ξ > 0 (ξ is a real number) and μ be convex univalent in U , with μ ( 0 ) = 1 , μ ( z ) 0 ( z U ) and assume that μ satisfies (19). Also, if z μ ( z ) μ ( z ) is starlike univalent in U . Moreover, if f A satisfies (20), where
Ω ( ζ 1 , ζ 2 , ζ 3 , ζ 4 , ξ , δ , γ , k , α , β ; z ) ζ 1 + ζ 2 z H α , β γ + 1 , k ( f ) ( z ) H α , β γ , k ( f ) ( z ) 2 + ζ 3 z 2 H α , β γ + 1 , k ( f ) ( z ) 2 H α , β γ , k ( f ) ( z ) 4
+ ζ 4 z 3 H α , β γ + 1 , k ( f ) ( z ) 3 H α , β γ , k ( f ) ( z ) 6 + ξ γ + k k 1 + H α , β γ + 2 , k ( f ) ( z ) H α , β γ + 1 , k ( f ) ( z ) 2 H α , β γ + 1 , k ( f ) ( z ) H α , β γ , k ( f ) ( z ) + ξ k H α , β γ + 2 , k ( f ) ( z ) H α , β γ + 1 , k ( f ) ( z ) 1 ,
then
z H α , β γ + 1 , k ( f ) ( z ) H α , β γ , k ( f ) ( z ) 2 μ ( z )
and μ ( z ) is the best dominant of (20).
Proof. 
Define the function λ by
λ ( z ) = z H α , β γ + 1 , k ( f ) ( z ) H α , β γ , k ( f ) ( z ) 2 ( z U ) .
Then the function λ is analytic in U and λ ( 0 ) = 1 .
We note that
ζ 1 + ζ 2 λ ( z ) + ζ 3 λ 2 ( z ) + ζ 4 λ 3 ( z ) + ξ z λ ( z ) λ ( z ) = Ω ( ζ 1 , ζ 2 , ζ 3 , ζ 4 , ξ , δ , γ , k , α , β ; z ) ,
where Ω ( ζ 1 , ζ 2 , ζ 3 , ζ 4 , ξ , δ , γ , k , α , β ; z ) is given by (25).
From (20) and (27) we obtain
ζ 1 + ζ 2 λ ( z ) + ζ 3 λ 2 ( z ) + ζ 4 λ 3 ( z ) + ξ z λ ( z ) λ ( z ) ζ 1 + ζ 2 μ ( z ) + ζ 3 μ 2 ( z ) + ζ 4 μ 3 ( z ) + ξ z μ ( z ) μ ( z ) .
The remaining part of the proof of Theorem 5 is similar to that of Theorem 3 and hence we omit it. □
In view of (8), and by using the similar method of proof of Theorem 5, we get the proof Theorem 6.
Theorem 6.
Let ζ i C ( i = 1 , 2 , 3 , 4 ) , ξ > 0 ; real and μ be convex univalent function in U , with μ ( 0 ) = 1 , μ ( z ) 0 ( z U ) and assume that μ satisfies (19). Also, let z μ ( z ) μ ( z ) be starlike univalent in U . If f A satisfies (20), where
Ω ( ζ 1 , ζ 2 , ζ 3 , ζ 4 , ξ , δ , γ , k , α , β ; z ) ζ 1 + ζ 2 z H α , β + 2 γ , k ( f ) ( z ) H α , β + 1 γ , k ( f ) ( z ) 2 + ζ 3 z 2 H α , β + 2 γ , k ( f ) ( z ) 2 H α , β + 1 γ , k ( f ) ( z ) 4
+ ζ 4 z 3 H α , β + 2 γ , k ( f ) ( z ) 3 H α , β + 1 γ , k ( f ) ( z ) 6 + ξ α + β α H α , β + 1 γ , k ( f ) ( z ) H α , β + 2 γ , k ( f ) ( z ) 2 H α , β γ , k ( f ) ( z ) H α , β + 1 γ , k ( f ) ( z ) + ξ α H α , β + 1 γ , k ( f ) ( z ) H α , β + 2 γ , k ( f ) ( z ) 1 ,
then
z H α , β + 2 γ , k ( f ) ( z ) H α , β + 1 γ , k ( f ) ( z ) 2 μ ( z )
and μ ( z ) is the best dominant of (20).
Remark 1.
Superordination results associated with H α , β γ , k ( f ) ( z ) can be done analogously by using Lemmas 2 and 4.

3. Sandwich Results

Combining results of differential subordinations and superordinations, we get the following sandwich theorem.
Theorem 7.
Let μ 1 and μ 2 be convex univalent in U , with μ 1 ( 0 ) = μ 2 ( 0 ) = 1 . Suppose μ 2 satisfies (13), δ > 0 and Re { ρ } > 0 . Let f A satisfies
H α , β γ , k ( f ) ( z ) z δ H [ 1 , 1 ] μ
and
H α , β γ , k ( f ) ( z ) z δ + ρ ( γ + k ) k H α , β γ , k ( f ) ( z ) z δ H α , β γ + 1 , k ( f ) ( z ) H α , β γ , k ( f ) ( z ) 1
be univalent in U . If
μ 1 ( z ) + ρ δ z μ 1 ( z ) H α , β γ , k ( f ) ( z ) z δ + ρ ( γ + k ) k H α , β γ , k ( f ) ( z ) z δ H α , β γ + 1 , k ( f ) ( z ) H α , β γ , k ( f ) ( z ) 1 μ 2 ( z ) + ρ δ z μ 2 ( z )
then
μ 1 ( z ) H α , β γ , k ( f ) ( z ) z δ μ 2 ( z )
and μ 1 and μ 2 are respectively the best subordinate and best dominant.
Theorem 8.
Let μ 1 and μ 2 be convex univalent in U , with μ 1 ( 0 ) = μ 2 ( 0 ) = 1 . Suppose μ 2 satisfies (13), δ > 0 and Re { ρ } > 0 . Let f A satisfies
H α , β + 1 γ , k ( f ) ( z ) z δ H [ 1 , 1 ] μ
and
( 1 ρ β α ) H α , β + 1 γ , k ( f ) ( z ) z δ + ρ ( β + α ) α H α , β + 1 γ , k ( f ) ( z ) z δ H α , β γ , k ( f ) ( z ) H α , β + 1 γ , k ( f ) ( z )
be univalent in U . If
μ 1 ( z ) + ρ δ z μ 1 ( z ) ( 1 ρ β α ) H α , β + 1 γ , k ( f ) ( z ) z δ + ρ ( β + α ) α H α , β + 1 γ , k ( f ) ( z ) z δ H α , β γ , k ( f ) ( z ) H α , β + 1 γ , k ( f ) ( z ) μ 2 ( z ) + ρ δ z μ 2 ( z ) ,
then
μ 1 ( z ) H α , β + 1 γ , k ( f ) ( z ) z δ μ 2 ( z )
and μ 1 and μ 2 are respectively the best subordinate and best dominant.
Theorem 9.
Let μ 1 and μ 2 be convex univalent functions in U , with μ 1 ( 0 ) = μ 2 ( 0 ) = 1 . Suppose μ 1 satisfies
ζ 2 ξ μ 1 ( z ) + 2 ζ 3 ξ μ 1 2 ( z ) + 3 ζ 4 ξ μ 1 3 ( z ) > 0 .
and μ 2 satisfies (19). Let f A satisfies H α , β γ + 1 , k ( f ) ( z ) H α , β γ , k ( f ) ( z ) δ H [ 1 , 1 ] μ , and Ω ( ζ 1 , ζ 2 , ζ 3 , ζ 4 , ξ , δ , γ , k , α , β ; z ) is univalent in U , where Ω ( ζ 1 , ζ 2 , ζ 3 , ζ 4 , ξ , δ , γ , k , α , β ; z ) is given by (21). If
ζ 1 + ζ 2 μ 1 ( z ) + ζ 3 μ 1 2 ( z ) + ζ 4 μ 1 3 ( z ) + ξ z μ 1 ( z ) μ 1 ( z ) Ω ( ζ 1 , ζ 2 , ζ 3 , ζ 4 , ξ , δ , γ , k , α , β ; z ) ζ 1 + ζ 2 μ 2 ( z ) + ζ 3 μ 2 2 ( z ) + ζ 4 μ 2 3 ( z ) + ξ z μ 2 ( z ) μ 2 ( z ) ,
then
μ 1 ( z ) H α , β γ + 1 , k ( f ) ( z ) H α , β γ , k ( f ) ( z ) δ μ 2 ( z )
and μ 1 and μ 2 are respectively the best subordinate and best dominant.
Theorem 10.
Let μ 1 and μ 2 be convex univalent in U , with μ 1 ( 0 ) = μ 2 ( 0 ) = 1 . Suppose μ 1 satisfies (29), and μ 2 satisfies (19). Let f A satisfies H α , β + 1 γ , k ( f ) ( z ) H α , β + 2 γ , k ( f ) ( z ) δ H [ 1 , 1 ] μ and Ω ( ζ 1 , ζ 2 , ζ 3 , ζ 4 , ξ , δ , γ , k , α , β ; z ) is univalent in U , where Ω ( ζ 1 , ζ 2 , ζ 3 , ζ 4 , ξ , δ , γ , k , α , β ; z ) is given by (24). If (30) has been satisfied,
then
μ 1 ( z ) H α , β + 1 γ , k ( f ) ( z ) H α , β + 2 γ , k ( f ) ( z ) δ μ 2 ( z )
and μ 1 and μ 2 are respectively the best subordinate and best dominant.
Theorem 11.
Let μ 1 and μ 2 be convex univalent in U , with μ 1 ( 0 ) = μ 2 ( 0 ) = 1 . Suppose μ 1 satisfies (29), and μ 2 satisfies (19). Let f A satisfies z H α , β γ + 1 , k ( f ) ( z ) H α , β γ , k ( f ) ( z ) 2 H [ 1 , 1 ] μ and Ω ( ζ 1 , ζ 2 , ζ 3 , ζ 4 , ξ , δ , γ , k , α , β ; z ) is univalent in U , where Ω ( ζ 1 , ζ 2 , ζ 3 , ζ 4 , ξ , δ , γ , k , α , β ; z ) is given by (25). If (30) has been satisfied,
then
μ 1 ( z ) z H α , β γ + 1 , k ( f ) ( z ) H α , β γ , k ( f ) ( z ) 2 μ 2 ( z )
and μ 1 and μ 2 are respectively the best subordinate and best dominant.
Theorem 12.
Let μ 1 and μ 2 be convex univalent in U , with μ 1 ( 0 ) = μ 2 ( 0 ) = 1 . Suppose μ 1 satisfies (29), and μ 2 satisfies (19). Let f A satisfies z H α , β + 2 γ , k ( f ) ( z ) H α , β + 1 γ , k ( f ) ( z ) 2 H [ 1 , 1 ] μ and Ω ( ζ 1 , ζ 2 , ζ 3 , ζ 4 , ξ , δ , γ , k , α , β ; z ) is univalent in U , where Ω ( ζ 1 , ζ 2 , ζ 3 , ζ 4 , ξ , δ , γ , k , α , β ; z ) is given by (28). If (30) has been satisfied,
then
μ 1 ( z ) z H α , β + 2 γ , k ( f ) ( z ) H α , β + 1 γ , k ( f ) ( z ) 2 μ 2 ( z )
and μ 1 and μ 2 are respectively the best subordinate and best dominant.
Remark 2.
By specifying the function Ω and selecting the particular values of α , β , γ and k we can derive a number of known results. Some of them are given below.
(i) 
If we put γ = k = 1 and α = 0 in Theorem 1, we obtain the results obtained by Murugusundaramoorthy and Magesh ([18], Corollary 3.3),
(ii) 
If we put γ = k = 1 and α = 0 in Theorem 7 we obtain the results obtained by Raducanu and Nechita ([19], Corollary 3.10 ).

4. Conclusions

We obtained a number of interesting results concerning subordination and superordination relations for the operator H α , β γ , k ( f ) ( z ) of analytic functions associated with an extension of the Mittag–Leffler function in the open unit disk U . Also, some of interesting sandwich results of the operator H α , β γ , k ( f ) ( z ) have been obtained.

Author Contributions

The authors contributed equally to the writing of this paper. All authors have read and agreed to the published version of the manuscript.

Funding

This research has been funded by Scientific Research Deanship at University of Hai’l-Saudi Arabia through project number RG-20020.

Acknowledgments

This research has been funded by Scientific Research Deanship at University of Hai’l- Saudi Arabia through project number RG-20020. The authors would like to thank the referees for their valuable comments.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Bulboacă, T. Differential Subordinations and Superordinations New Results; House of Scientific Boook Publ.: Cluj-Napoca, Romania, 2005. [Google Scholar]
  2. Miller, S.S.; Mocanu, P.T. Differential subordinations and univalent functions. Mich. Math. J. 1981, 28, 157–171. [Google Scholar] [CrossRef]
  3. Miller, S.S.; Mocanu, P.T. Differential Subordinations Theory and Applications; Series on Monographs and Textbooks in Pure and Applied Mathematics, No. 225; Marcel Dekker Inc.: New York, NY, USA; Basel, Switzerland, 2000. [Google Scholar]
  4. Miller, S.S.; Mocanu, P.T. Subordinations of differential superordinations. Complex Var. 2003, 48, 815–826. [Google Scholar]
  5. Bulboacă, T. Classes of first-order differential subordinations. Demonstr. Math. 2002, 35, 287–392. [Google Scholar]
  6. Bulboacă, T. A class of superordination preserving integral operators. Indag. Math. New Ser. 2002, 13, 301–311. [Google Scholar] [CrossRef] [Green Version]
  7. Ali, R.M.; Ravichandran, V.; Khan, M.H.; Subramaniam, K.G. Differential sandwich theorems for certain analytic functions. Far East J. Math. Sci. 2004, 15, 87–94. [Google Scholar]
  8. Shanmugam, T.N.; Ravichandran, V.; Sivasubramanian, S. Differential sandwich theorems for some subclasses of analyitc functions. Austral. J. Math. Anal. Appl. 2006, 3, 1–11. [Google Scholar]
  9. Obradovic, M.; Owa, S. On certain properties for some classes of starlike functions. J. Math. Anal. Appl. 1990, 145, 357–364. [Google Scholar] [CrossRef] [Green Version]
  10. Attiya, A.A. Some Application of Mittag–Leffler Function in the unit disk. Filomat 2016, 30, 2075–2081. [Google Scholar] [CrossRef] [Green Version]
  11. Srivastava, H.M.; Tomovski, Z. Fractional calculus with an itegral operator containing a generalized Mittag–Leffler function in the kernal. Appl. Math Comp. 2009, 211, 198–210. [Google Scholar] [CrossRef]
  12. Aouf, M.K.; Seoudy, T.M. Certain subclasses of multivalently non-Bazilevic functions involving a generalized Mittag–Leffler function. ROMAI J. 2019, 15, 13–24. [Google Scholar]
  13. Aouf, M.K.; Mostafa, A.O. Certain inequalities of meromorphic univalent functions associated with the Mittag–Leffler function. J. Appl. Anal. 2019, 25, 173–178. [Google Scholar] [CrossRef]
  14. Yassen, M.F. Subordination results for certain class of analytic functions associated with Mittag–Leffler function. J. Comp. Anal. Appl. 2019, 26, 738–746. [Google Scholar]
  15. Yassen, M.F.; Attiya, A.A.; Agarwal, P. Subordination and Superordination Properties for Certain Family of Analytic Functions Associated with Mittag–Leffler Function. Symmetry 2020, 12, 1724. [Google Scholar] [CrossRef]
  16. Zayed, H.M.; Aouf, M.K. Subclasses of analytic functions of complex order associated with q-Mittag Leffler function. J. Egypt. Math. Soc. 2018, 26, 278–286. [Google Scholar] [CrossRef] [Green Version]
  17. Libera, R.J. Some classes of regular univalent functions. Proc. Am. Math. Soc. 1965, 16, 755–758. [Google Scholar] [CrossRef]
  18. Murugusundaramoorthy, G.; Magesh, N. Differential subordinations and superordinations for analytic functions defined by Dziok-Srivastava linear operator. J. Ineq. Pure Appl. Math. 2006, 7, 1–20. [Google Scholar]
  19. Rducanu, D.; Nechita, V.O. A differential sandwich theorem for analytic functions defined by the generalized Salagean operator. Aust. J. Math. Anal. Appl. 2012, 9, 1–7. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Attiya, A.A.; Aouf, M.K.; Ali, E.E.; Yassen, M.F. Differential Subordination and Superordination Results Associated with Mittag–Leffler Function. Mathematics 2021, 9, 226. https://doi.org/10.3390/math9030226

AMA Style

Attiya AA, Aouf MK, Ali EE, Yassen MF. Differential Subordination and Superordination Results Associated with Mittag–Leffler Function. Mathematics. 2021; 9(3):226. https://doi.org/10.3390/math9030226

Chicago/Turabian Style

Attiya, Adel A., Mohamed K. Aouf, Ekram E. Ali, and Mansour F. Yassen. 2021. "Differential Subordination and Superordination Results Associated with Mittag–Leffler Function" Mathematics 9, no. 3: 226. https://doi.org/10.3390/math9030226

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop