Next Article in Journal
Imperceptible–Visible Watermarking to Information Security Tasks in Color Imaging
Previous Article in Journal
An Investigation of an Integral Equation Involving Convex–Concave Nonlinearities
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

New Bounds for the Sine Function and Tangent Function

Department of Mathematics, Zhejiang Gongshang University, Hangzhou 310018, China
Mathematics 2021, 9(19), 2373; https://doi.org/10.3390/math9192373
Submission received: 4 September 2021 / Revised: 22 September 2021 / Accepted: 22 September 2021 / Published: 24 September 2021

Abstract

:
Using the power series expansion technique, this paper established two new inequalities for the sine function and tangent function bounded by the functions x 2 sin ( λ x ) / ( λ x ) α and x 2 tan ( μ x ) / ( μ x ) β . These results are better than the ones in the previous literature.

1. Introduction

Because of the fact the functions cos x and ( sin x ) / x are less than 1 for x ( 0 , π / 2 ) , in order to determine this relationship ( sin x ) / x and the weighted geometric mean of cos x and 1, we examine the Taylor expansion of the following function:
sin x x cos x β = 1 2 β 1 6 x 2 + 1 8 β 2 + 1 12 β + 1 120 x 4 + 1 48 β 3 1 24 β 2 + 1 45 β 1 5040 x 6 + O x 8 .
When choosing β = 1 / 3 in above formula we can obtain the following fact
sin x x cos x 1 / 3 = 1 45 x 4 + 19 5670 x 6 + O ( x 8 ) ,
which will motivate us to prove the following inequality
sin x x > cos x 1 / 3
holds for 0 < x < π / 2 . The above inequality was confirmed by Mitrinović and Adamović in [1], so we call it Mitrinović–Adamović inequality. On the other hand, the relationship between ( sin x ) / x and the weighted arithmetic mean of cos x and 1 has been discussed in Zhu [2] just published, described as the following inequality similarly:
sin x x < 2 3 + 1 3 cos x
or
3 sin x 2 + cos x < x .
In 1451, using a geometrical method Nicolaus De Cusa (1401–1464) discovered (3), and in 1664 when considering the estimation of π Christian Huygens (1629–1695) confirmed (2). In view of the above historical facts (see [3,4,5,6,7,8,9,10]), we call the inequality (2) Cusa-Huygens inequality.
In 2018, Zhu [11] shown two improvements to (3) as follows: the inequalities
1 180 x 5 < x 3 sin x 2 + cos x
and
1 2100 x 7 < x 3 sin x 2 + cos x 1 + ( 1 cos x ) 2 9 ( 3 + 2 cos x )
hold for all x 0 , π , where 1 / 180 and 1 / 2100 are the best constants in previous inequalities, respectively. Two results of previous proposition are corrections of Theorem 3.4.20 from monograph Mitrinović [9]. Malešević et al. [12] made a bilateral supplement to the above two inequalities. Chen and Cheung [13] obtained the bounds for sin x / x in term of 2 + cos x / 3 δ as follows
2 + cos x 3 θ 0 < sin x x < 2 + cos x 3 ϑ 0
holds for all 0 < x < π / 2 , where ϑ 0 = 1 and θ 0 = ( ln π ln 2 ) / ( ln 3 ln 2 ) are the best possible constants in (6). The double inequality (6) was proved by Bagul [14] and Zhu [15] in different ways. In Zhu [15] some new improvements to inequality (2) can be found:
1 x 3 π 3 2 + cos x 3 < sin x x < 1 x 4 180 cos x + 2 3 ,
1 + 8 π 3 π 3 x 2 2 + cos x 3 8 π 3 π 3 x 2 < sin x x < 1 + 1 30 x 2 2 + cos x 3 1 30 x 2 ,
and
1 + 1 30 x 2 + 2 240 π π 3 720 15 π 5 x 4 2 + cos x 3 1 30 x 2 + 2 240 π π 3 720 15 π 5 x 4 < sin x x < 1 + 1 30 x 2 + 1 840 x 4 2 + cos x 3 1 30 x 2 + 1 840 x 4
hold for 0 < x < π / 2 .
Bercu [16] used the truncations of Fourier cosine series to the inequality (2) and obtained an enhanced form of (2):
sin x x 2 + cos x 3 < 1 45 1 cos x 2 , 0 < x < π 2 .
Bagul et al. [17] draw two conclusions about the improvement of inequality (2):
2 3 2 π 1 π / 2 1 x sin x < sin x x 2 + cos x 3 < 2 3 2 π 1 π / 2 1 2 x sin x 2
and
2 3 2 π sin x x cos x < sin x x 2 + cos x 3 < 2 3 2 π sin x x cos x 2
hold for 0 < x < π / 2 .
Recently, Zhu [2] improved the famous inequality (2) using two different technology paths and draw two results as follows: for 0 < x < π / 2 , the two inequalities
sin x x 2 + cos x 3 < 1 180 x 4 sin x x 2 / 7
and
sin x x 2 + cos x 3 < 2 3 2 π sin x x cos x π 2 12 / 3 π 2 π 3
hold with the best constant 1 / 180 and 2 / 3 2 / π respectively.
Inequalities on two functions sin x / x and tan x / x arouse great enthusiasm of researchers. Interested readers can refer to these literatures [18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61] and monograph [62] which was edited by Rassias and Andrica.
This paper focuses on some new bounds for the functions sin x / x and tan ( x ) / x and wants to improve the following inequalities:
1 sin x x > 0 and tan x x 1 > 0 .
Recently, Wu and Bercu [63] thought of Fourier series technology to approximate these two functions. They considered the power series expansion of the following function
1 sin x x a + b cos x + c cos 2 x + d cos 3 x = a + b + c + d + x 2 1 2 b + 2 c + 9 2 d + 1 6 x 4 1 24 b + 2 3 c + 27 8 d + 1 120 + x 6 1 720 b + 4 45 c + 81 80 d + 1 5040 + O x 8 .
To obtain a slightly higher precision approximation, they let
a + b + c + d = 0 1 2 b + 2 c + 9 2 d + 1 6 = 0 1 24 b + 2 3 c + 27 8 d + 1 120 = 0 1 720 b + 4 45 c + 81 80 d + 1 5040 = 0
to obtain these constants
a = 359 945 ,   b = 167 420 ,   c = 2 105 ,   d = 1 756
and find
1 sin x x 359 945 167 420 cos x + 2 105 cos 2 x 1 756 cos 3 x = 23 226 800 x 8 + O x 10 ,
which leads them to prove
1 sin x x > 359 945 167 420 cos x + 2 105 cos 2 x 1 756 cos 3 x = 1 cos x 31 cos x + 5 cos 2 x + 341 945 .
This technique can be used to deal with the approximation problem of another function tan ( x ) / x 1 , and then they obtain the following results.
Proposition 1
([63]). The following inequalities
1 sin x x > 1 cos x 31 cos x + 5 cos 2 x + 341 945 ,
tan x x 1 > 1 cos x 604 cos 2 x 1817 cos x + 1843 945 ,
1 sin x x > 1 2 + cos x 3 1 180 x 4 + 1 3780 x 6 > 1 1 + 1 cos x 5 cos 2 x + 31 cos x 341 945 > 1 2 + cos x 3
hold for all x 0 , π / 2 .
In this paper, we want to obtain an approximation with appropriate accuracy about these two functions. We examine the power series expansion of function in the following form
1 sin x x a x 2 sin b x b x c = x 2 a 1 6 + x 4 1 6 a b 2 c 1 120 + x 6 a 1 180 b 4 c 1 72 b 4 c 2 + 1 5040 + x 8 1 45 360 a b 6 c 35 c 2 42 c + 16 1 362 880 + O x 10 ,
and let
a 1 6 = 0 1 6 a b 2 c 1 120 = 0 a 1 180 b 4 c 1 72 b 4 c 2 + 1 5040 = 0
to determine
a = 1 6 ,   b = ± 7 14 ,   c = 42 5 .
We can obtain that
1 sin x x 1 6 x 2 sin 7 14 x 7 14 x 42 5 = 1 4 116 000 x 8 + O x 10 .
In the same way, we obtain
tan x x 1 1 3 x 2 tan 43 7 x 43 7 x 294 215 = 12 416 18 907 875 x 8 + O x 10 .
With the above foreshadowing, we can now announce the main work of this paper which established two inequalities of exponential type for the functions 1 sin x / x and tan x / x 1 bounded by the function x 2 sin ( λ x ) / ( λ x ) α and x 2 tan ( μ x ) / ( μ x ) β as follows.
Theorem 1.
Let 0 < x < π / 2 , ϕ = 1 and
φ = 24 5 π 27 π 2 5 4 42 7 21 sin 7 28 π 42 1 / 5 > 1 .
Then the double inequality
ϕ 1 6 x 2 sin 1 2 7 x 1 2 7 x 42 5 < 1 sin x x < φ 1 6 x 2 sin 1 2 7 x 1 2 7 x 42 5
holds with the best constants ϕ and φ.
Theorem 2.
Let 0 < x < π / 2 . Then
tan x x 1 > 1 3 x 2 tan 43 7 x 43 7 x 294 215
holds with the best constant 1 / 3 .

2. Lemmas

The proof of the main conclusions (Theorems 1 and 2) of this paper needs the following lemmas as the basis.
Lemma 1.
Let n 3 , n N ,
σ 1 = 7 + 14 14 1.1890 , σ 2 = 14 7 14 0.81102 , σ 3 = 7 14 0.18898 ,
and for k 4 ,
a k = 27 2 7 σ 1 2 k + 2 2 k + 2 ! + 27 2 7 σ 2 2 k + 2 2 k + 2 ! 21 σ 3 2 k 2 k ! + 32 7 σ 3 2 k + 1 2 k + 1 ! + 5 7 + 21 2 σ 2 2 k + 1 2 k + 1 ! + 21 5 7 2 σ 1 2 k + 1 2 k + 1 ! .
Then 2 a 2 n 5 a 2 n + 1 > 0 .
Proof. 
Since
a 2 n = 27 2 7 σ 1 4 n + 2 4 n + 2 ! + 27 2 7 σ 2 4 n + 2 4 n + 2 ! 21 σ 3 4 n 4 n ! + 32 7 σ 3 4 n + 1 4 n + 1 ! + 5 7 + 21 2 σ 2 4 n + 1 4 n + 1 ! + 21 5 7 2 σ 1 4 n + 1 4 n + 1 ! , a 2 n + 1 = 27 2 7 σ 1 4 n + 4 4 n + 4 ! + 27 2 7 σ 2 4 n + 4 4 n + 4 ! 21 σ 3 4 n + 2 4 n + 2 ! + 32 7 σ 3 4 n + 3 4 n + 3 ! + 5 7 + 21 2 σ 2 4 n + 3 4 n + 3 ! + 21 5 7 2 σ 1 4 n + 3 4 n + 3 ! ,
we compute to obtain
4 n + 4 ! 2 a 2 n 5 a 2 n + 1 = 5 2 u ( n ) σ 1 4 n + 1 512 v ( n ) σ 3 4 n + 5 2 w ( n ) σ 2 4 n + 1 ,
where
u ( n ) = 2688 5 128 7 n 3 2304 5 7 5616 5 n 2 17 559 35 7 3277 5 n 19 459 140 7 31 019 280 , v ( n ) = n + 1 21 n 3 + 55 2 n 2 + 1193 128 n + 1445 3584 , w ( n ) = 128 7 + 2688 5 n 3 + 2304 5 7 + 5616 5 n 2 + 17 559 35 7 + 3277 5 n + 14 436 973 109 760 7 + 75 065 784
are positive for n 3 . In order to prove Lemma 1, it suffices to prove that for n 3 ,
5 2 u ( n ) σ 1 4 n + 1 512 v ( n ) σ 3 4 n > 0 σ 1 σ 3 4 n > 1024 5 σ 1 v ( n ) u ( n ) .
To note the fact
σ 1 σ 3 = 1 + 2 7 6.2915 ,
we only need to prove
6 4 n > 1024 5 σ 1 v ( n ) u ( n ) .
By mathematical induction, we can prove the inequality (23). First, the inequality (23) is obviously true for n = 3 . Assume that (23) holds for n = m 3 , that is,
6 4 m > 1024 5 σ 1 v ( m ) u ( m )
holds. In the following, we shall prove that (23) holds for n = m + 1 . Since
6 4 m + 1 = 6 4 × 6 4 m > 1296 1024 5 σ 1 v ( m ) u ( m ) ,
we can complete the proof of (23) when showing that
1296 1024 5 σ 1 v ( m ) u ( m ) > 1024 5 σ 1 v ( m + 1 ) u ( m + 1 ) ,
or
A B : = 1296 v ( m ) u ( m ) > v ( m + 1 ) u ( m + 1 ) : = C D
In fact,
A D B C = 1296 v ( m ) u ( m + 1 ) v ( m + 1 ) u ( m ) = 48 280 304 638 987 025 200 704 7 757 241 843 454 045 100 352 7 + 12 227 207 591 977 687 28 672 1 898 338 908 715 519 14 336 7 m 3 + 11 559 549 671 546 923 35 840 10 809 910 365 147 112 7 m 3 2 + 17 268 465 300 163 128 24 831 245 768 359 640 7 m 3 3 + 674 131 077 463 20 18 578 001 121 2 7 m 3 4 + 5 030 226 642 6 621 922 062 5 7 m 3 5 + 2 075 901 072 5 104 111 168 7 m 3 6 + 14 620 032 3 480 960 7 m 3 7 > 0
holds for all m 3 . This completes the proof of Lemma 1.  □
It is not difficult to prove the following conclusion in the similar way.
Lemma 2.
Let n 2 , n N ,
ρ 1 = 2 7 43 + 2 3.8736 , ρ 2 = 2 7 43 1.8736 , ρ 3 = 2 2 7 43 0.12645 ,
and for k 4 ,
b k = 17 43 903 × 2 ρ 1 2 k + 1 2 k + 1 ! 117 43 4816 ρ 1 2 k + 2 2 k + 2 ! + 1 2 2 2 k 2 k ! 1 2 2 2 k + 1 2 k + 1 ! + 283 43 3612 ρ 2 2 k + 1 2 k + 1 ! 17 43 903 × 2 ρ 3 2 k + 1 2 k + 1 ! + 117 43 4816 ρ 3 2 k + 2 2 k + 2 ! .
Then 2 b 2 n 5 b 2 n + 2 > 0 .

3. Proofs of Theorems 1 and 2

Proof of Theorem 1.
Let
F ( x ) = ln 1 sin x x ln 1 6 x 2 sin 1 2 7 x 1 2 7 x 42 5 ,
where 0 < x < π / 2 . Since this function F ( x ) is even, let’s consider the problem on interval ( 0 , π / 2 ) . We compute to obtain
F ( x ) = 2 7 35 f ( x ) x cos σ 1 x cos σ 2 x + 2 x sin σ 3 x ,
where
f ( x ) = 27 2 7 cos σ 1 x 27 2 7 cos σ 2 x 21 x 2 cos σ 3 x + 32 7 x sin σ 3 x + 5 2 7 + 21 2 x sin σ 2 x 5 2 7 21 2 x sin σ 1 x .
and σ i   i = 1 , 2 , 3 are defined as (21). Substituting
sin x = k = 0 1 k 2 k + 1 ! x 2 k + 1 , cos x = k = 0 1 k 2 k ! x 2 k
into (26), we can obtain that
f ( x ) : = k = 4 1 k a k x 2 k + 2 = n = 2 a 2 n x 4 n + 2 a 2 n + 1 x 4 n + 4 = 1 274 400 x 10 163 1 521 273 600 x 12 + n = 3 a 2 n x 4 n + 2 a 2 n + 1 x 4 n + 4 ,
where a k is defined by (22). Since
1 274 400 x 10 163 1 521 273 600 x 12 > 0
for all x 0 , π / 2 , we can determine the positive definiteness of the function f ( x ) on ( 0 , π / 2 ) when proving
a 2 n x 4 n + 2 a 2 n + 1 x 4 n + 4 > 0 x 2 < a 2 n a 2 n + 1
for n 3 . Since
x 2 < π 2 2 2.4674 < 5 2 ,
we can prove (28) when proving that for n 3 ,
5 2 < a 2 n a 2 n + 1 ,
or
2 a 2 n 5 a 2 n + 1 > 0 ,
which comes from Lemma 1.
So f ( x ) > 0 and F ( x ) is increasing on ( 0 , π / 2 ) . In view of
F ( 0 + ) = 0 , F ( 1 ) = 1 5 ln 24 5 π 27 π 2 5 4 42 7 21 sin 7 28 π 42 > 0 ,
the proof of Theorem 1 is complete.  □
Proof of Theorem 2.
Let
G ( x ) = ln tan x x 1 ln 1 3 x 2 tan 43 7 x 43 7 x 294 215 , 0 < x < π 2 .
Then
G ( x ) = 1806 43 9245 g ( x ) x tan 43 7 x tan x x cos 2 43 7 x cos 2 x ,
where
g ( x ) = 117 43 4816 cos ρ 1 x 117 43 4816 cos ρ 3 x 1 2 x sin 2 x + 1 2 x 2 cos 2 x + 1 2 x 2 + 283 43 3612 x sin ρ 2 x + 17 43 903 × 2 x sin ρ 1 x 17 43 903 × 2 x sin ρ 3 x ,
where ρ i   i = 1 , 2 , 3 are defined as (24). Substituting (27) into (29), we can obtain that
g ( x ) = : k = 4 1 k b k x 2 k + 2 ,
where b k is defined by (25). We can rewrite g ( x ) as
g ( x ) = n = 2 b 2 n x 4 n + 2 b 2 n + 1 x 4 n + 4 .
Then, we determine the positive definiteness of the function g ( x ) on ( 0 , π / 2 ) when proving
b 2 n x 4 n + 2 b 2 n + 1 x 4 n + 4 > 0 x 2 < b 2 n b 2 n + 1
for n 3 . Since
x 2 < π 2 2 = π 2 4 2.4674 < 5 2 ,
we can prove (30) when proving that for n 3 ,
5 2 < b 2 n b 2 n + 1 ,
which is the result of Lemma 2. So g ( x ) > 0 and G ( x ) is strictly increasing on ( 0 , π / 2 ) . Therefore G ( x ) > G ( 0 + ) = 0 . Considering the reason
lim x 0 + tan x x 1 x 2 tan 43 7 x 43 7 x 294 215 = 1 3 ,
the proof of Theorem 2 is completed.  □

4. Comparison of New and Old Results

When letting ϕ = 1 in (19) we can obtain
1 sin x x > 1 6 x 2 sin 1 2 7 x 1 2 7 x 42 5 .
By using the similar proof method of Theorem 1 it is not difficult to prove the following results:
1 6 x 2 sin 1 2 7 x 1 2 7 x 42 5 > 1 2 + cos x 3 1 180 x 4 + 1 3780 x 6 ,
1 3 x 2 tan 43 7 x 43 7 x 294 215 > 1 cos x 604 cos 2 x 1817 cos x + 1843 945
hold for all x 0 , π / 2 . So new results (19) and (20) are better that the old ones (16) and (17), respectively. In addition, there are deeper conclusions:
1 sin x x > 1 6 x 2 sin 1 2 7 x 1 2 7 x 42 5 > 1 2 + cos x 3 1 180 x 4 + 1 3780 x 6 > 1 cos x 5 cos 2 x 31 cos x + 341 945 > 1 2 + cos x 3 .

Funding

This paper is supported by the Natural Science Foundation of China grants No. 61772025.

Acknowledgments

The author is thankful to reviewers for reviewers’ careful corrections to and valuable comments on the original version of this paper. This paper is supported by the Natural Science Foundation of China (No. 61772025).

Conflicts of Interest

The author declares that he has no conflict of interest.

References

  1. Mitrinović, D.S.; Adamović, D.D. Sur une inégalité élémentaire où interviennent des fonctions trigonométriques. Publ. Elektroteh. Fak. Ser. Mat. Fiz. 1965, 143–155, 23–34. [Google Scholar]
  2. Zhu, L. New Inequalities of Cusa–Huygens Type. Mathematics 2021, 9, 2101. [Google Scholar] [CrossRef]
  3. Campan, F.T. The Story of Number π; Editura Albatros: Bucuresti, Romania, 1977. [Google Scholar]
  4. Iuskevici, A.P. History of Mathematics in 16th and 16th Centuries; National Publishing House: Moscow, Russia, 1961. [Google Scholar]
  5. Cajori, F. A History of Mathematics; MacMillan and Co.: New York, NY, USA; London, UK, 1894. [Google Scholar]
  6. Huygens, C. Oeuvres Completes, Publiees par la Societe Hollandaise des Science; M. Nijhoff: Haga, Sweden, 1988; Volume 20. [Google Scholar]
  7. Queries–Replies. Math. Comput. 1949, 3, 561–563. [CrossRef] [Green Version]
  8. Vahlen, K.T. Konstruktionen und Approximationen in Systematischer Darstellung; BG Teubner: Leipzig, Germany, 1911; pp. 188–190. [Google Scholar]
  9. Mitrinović, D.S. Analytic Inequalities; Springer: Berlin/Heidelberg, Germany, 1970. [Google Scholar]
  10. Sándor, J.; Bencze, M. On Huygens’ trigonometric inequality. RGMIA Res. Rep. Collect. 2005, 8, 1–4. [Google Scholar]
  11. Zhu, L. On Frame’s inequalities. J. Inequal. Appl. 2018, 2018, 94. [Google Scholar] [CrossRef] [Green Version]
  12. Malesevic, B.; Nenezic, M.; Zhu, L.; Banjac, B.; Petrovic, M. Some new estimates of precision of Cusa-Huygens and Huygens approximations. Appl. Anal. Discret. Math. 2021, 15, 243–259. [Google Scholar] [CrossRef]
  13. Chen, C.-P.; Cheung, W.-S. Sharp Cusa and Becker–Stark inequalities. J. Inequal. Appl. 2011, 2011, 136. [Google Scholar] [CrossRef] [Green Version]
  14. Bagul, Y.J. Remark on the paper of Zheng Jie Sun and Ling Zhu. J. Math. Inequal. 2019, 13, 801–803. [Google Scholar] [CrossRef] [Green Version]
  15. Zhu, L. New Cusa-Huygens type inequalities. AIMS Math. 2020, 5, 4874–4888. [Google Scholar] [CrossRef]
  16. Bercu, G. Fourier series method related to Wilker–Cusa–Huygens inequalities. Math. Inequal. Appl. 2019, 22, 1091–1098. [Google Scholar] [CrossRef] [Green Version]
  17. Bagul, Y.J.; Banjac, B.; Chesneau, C.; Kostic, M.; Malesević, B. New refinements of Cusa-Huygens inequality. Results Math. 2021, 76, 107. [Google Scholar] [CrossRef]
  18. Zhu, L. A source of inequalities for circular functions. Comput. Math. Appl. 2009, 58, 1998–2004. [Google Scholar] [CrossRef] [Green Version]
  19. Mortici, C. The natural approach of Wilker-Cusa-Huygens inequalities. Math. Inequal. Appl. 2011, 14, 535–541. [Google Scholar] [CrossRef] [Green Version]
  20. Chen, X.-D.; Shi, J.; Wang, Y.; Xiang, P. A New Method for Sharpening the Bounds of Several Special Functions. Results Math. 2017, 72, 695–702. [Google Scholar] [CrossRef]
  21. Chen, X.-D.; Ma, J.; Jin, J.; Wang, Y. A two-point-Pade-approximant-based method for bounding some trigonometric functions. J. Inequal. Appl. 2018, 2018, 140. [Google Scholar] [CrossRef] [Green Version]
  22. Chen, X.-D.; Ma, J.; Li, Y. Approximating trigonometric functions by using exponential inequalities. J. Inequal. Appl. 2019, 2019, 53. [Google Scholar] [CrossRef] [Green Version]
  23. Banjac, B. System for Automatic Proving of Some Classes of Analytic Inequalities. Ph.D. Thesis, School of Electrical Engineering, Belgrade, Serbia, May 2019. Available online: http://nardus.mpn.gov.rs/ (accessed on 17 July 2021). (In Serbian).
  24. Wang, M.-K.; Wang, Z.-K.; Chu, Y.-M. An optimal double inequality between geometric and identric means. Appl. Math. Lett. 2012, 25, 471–475. [Google Scholar] [CrossRef] [Green Version]
  25. Qiu, Y.-F.; Wang, M.-K.; Chu, Y.-M.; Wang, G.-D. Two sharp inequalities for Lehmer mean, identric mean and logarithmic mean. J. Math. Inequal. 2011, 5, 301–306. [Google Scholar] [CrossRef] [Green Version]
  26. Chu, Y.-M.; Long, B.-Y. Sharp inequalities between means. Math. Inequal. Appl. 2011, 14, 647–655. [Google Scholar] [CrossRef]
  27. Wang, M.-K.; Hong, M.-Y.; Xu, Y.-F.; Shen, Z.-H.; Chu, Y. Inequalities for generalized trigonometric and hyperbolic functions with one parameter. J. Math. Inequal. 2020, 14, 1–21. [Google Scholar] [CrossRef]
  28. Lv, Y.-P.; Wang, G.-D.; Chu, Y.-M. A note on Jordan type inequalities for hyperbolic functions. Appl. Math. Lett. 2012, 25, 505–508. [Google Scholar] [CrossRef] [Green Version]
  29. Neuman, E.; Sándor, J. On some inequalities involving trigonometric and hyperbolic functions with emphasis on the Cusa-Huygens, Wilker, and Huygens inequalities. Math. Inequal. Appl. 2010, 13, 715–723. [Google Scholar] [CrossRef] [Green Version]
  30. Zhu, L. Some new inequalities of the Huygens type. Comput. Math. Appl. 2009, 58, 1180–1182. [Google Scholar] [CrossRef] [Green Version]
  31. Bercu, G. Padé approximant related to remarkable inequalities involving trigonometric functions. J. Inequal. Appl. 2016, 2016, 99. [Google Scholar] [CrossRef] [Green Version]
  32. Bercu, G. The natural approach of trigonometric inequalities-Padé approximant. J. Math. Inequal. 2017, 11, 181–191. [Google Scholar] [CrossRef] [Green Version]
  33. Bercu, G. Sharp bounds on the sinc function via the Fourier series method. J. Math. Inequal. 2019, 13, 495–504. [Google Scholar] [CrossRef] [Green Version]
  34. Wu, S.-H.; Li, S.-G.; Bencze, M. Sharpened versions of Mitrinović-Adamović, Lazarević and Wilker’s inequalities for trigonometric and hyperbolic functions. J. Nonlinear Sci. Appl. 2016, 9, 2688–2696. [Google Scholar] [CrossRef] [Green Version]
  35. Wu, S.-H.; Srivastava, H.M. A weighted and exponential generalization of Wilker’s inequality and its applications. Int. Trans. Spec. Funct. 2008, 18, 529–535. [Google Scholar] [CrossRef]
  36. Chen, C.-P. Sharp Wilker and Huygens type inequalities for inverse trigonometric and inverse hyperbolic functions. Int. Trans. Spec. Funct. 2012, 23, 865–873. [Google Scholar] [CrossRef]
  37. Chen, C.-P.; Cheung, W.-S. Wilker- and Huygens-type inequalities and solution to Oppenheim’s problem. Int. Trans. Spec. Funct. 2012, 23, 325–336. [Google Scholar] [CrossRef]
  38. Huang, W.-K.; Chen, X.-D.; Mao, X.-Y.; Chen, L.-Q. New inequalities for hyperbolic functions based on reparameterization. RACSAM 2021, 115, 3. [Google Scholar] [CrossRef]
  39. Mortici, C. A Subtly Analysis of Wilker Inequality. Appl. Math. Comput. 2014, 231, 516–520. [Google Scholar] [CrossRef] [Green Version]
  40. Nenezić, M.; Malešević, B.; Mortici, C. New approximations of some expressions involving trigonometric functions. Appl. Math. Comput. 2016, 283, 299–315. [Google Scholar] [CrossRef] [Green Version]
  41. Zhu, L. Some new Wilker-type inequalities for circular and hyperbolic functions. Abstr. Appl. Anal. 2009, 2009, 485842. [Google Scholar] [CrossRef]
  42. Wu, S.-H.; Debnath, L. A generalization of L’Hôspital-type rules for monotonicity and its application. Appl. Math. Lett. 2009, 22, 284–290. [Google Scholar] [CrossRef] [Green Version]
  43. Malešević, B.; Lutovac, T.; Rašajski, M.; Mortici, C. Extensions of the natural approach to refinements and generalizations of some trigonometric inequalities. Adv. Differ. Equ. 2018, 2018, 90. [Google Scholar] [CrossRef]
  44. Lutovac, T.; Malešević, B.; Mortici, C. The natural algorithmic approach of mixed trigonometric-polynomial problems. J. Inequal. Appl. 2017, 2017, 116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  45. Lutovac, T.; Malešević, B.; Rašajski, M. A new method for proving some inequalities related to several special functions. Results Math. 2018, 73, 100. [Google Scholar] [CrossRef] [Green Version]
  46. Malešević, B.; Rašajski, M.; Lutovac, T. Refinements and generalizations of some inequalities of Shafer-Fink’s type for the inverse sine function. J. Inequal. Appl. 2017, 2017, 275. [Google Scholar] [CrossRef]
  47. Rašajski, M.; Lutovac, T.; Malešević, B. About some exponential inequalities related to the sinc function. J. Inequal. Appl. 2018, 2018, 150. [Google Scholar] [CrossRef] [PubMed]
  48. Banjac, B.; Makragić, M.; Malešević, B. Some notes on a method for proving inequalities by computer. Results Math. 2016, 69, 161–176. [Google Scholar] [CrossRef] [Green Version]
  49. Zhu, L. New inequalities of Wilker’s type for circular functions. AIMS Math. 2020, 5, 4874–4888. [Google Scholar] [CrossRef]
  50. Wu, S.; Srivastava, H.M. A further refinement of a Jordan type inequality and its application. Appl. Math. Comput. 2008, 197, 914–923. [Google Scholar] [CrossRef]
  51. Wu, S.; Srivastava, H.M.; Debnath, L. Some refined families of Jordan type inequalities and their applications. Integral Transform. Spec. Funct. 2008, 19, 183–193. [Google Scholar] [CrossRef]
  52. Wu, S.; Debnath, L. Wilker-type inequalities for hyperbolic functions. Appl. Math. Lett. 2012, 25, 837–842. [Google Scholar] [CrossRef] [Green Version]
  53. Wu, S.; Baricz, Á. Generalizations of Mitrinović, Adamović and Lazarević’s inequalities and their applications. Publ. Math. Debr. 2009, 75, 447–458. [Google Scholar]
  54. Bagul, Y.J.; Chesneau, C. Marko Kostić, On the Cusa–Huygens inequality. RACSAM 2021, 115, 29. [Google Scholar] [CrossRef]
  55. Pinelis, I. L’Hospital rules for monotonicity and the Wilker-Anglesio inequality. Am. Math. Mon. 2004, 111, 905–909. [Google Scholar] [CrossRef]
  56. Chouikha, A.R. Sharp inequalities on circular and hyperbolic functions using Bernoulli inequality types. Rev. Real Acad. Cienc. Exactas FíSicas Nat. Ser. Matemáticas 2021, 115, 143. [Google Scholar]
  57. Bagul, Y.J.; Chesneau, C. Some New Simple Inequalities Involving Exponential, Trigonometric and Hyperbolic Functions. CUBO Math. J. 2019, 21, 21–35. [Google Scholar] [CrossRef] [Green Version]
  58. Becker, M.; Stark, E.L. On a hierarchy of quolynomial inequalities for tan x. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. 1978, 602–633, 133–138. [Google Scholar]
  59. Zhu, L. A refinement of the Becker–Stark inequalities. Math. Notes 2013, 93, 421–425. [Google Scholar] [CrossRef]
  60. Zhu, L. Sharp Becker–Stark-Type inequalities for Bessel functions. J. Inequal. Appl. 2010, 2010, 838740. [Google Scholar] [CrossRef] [Green Version]
  61. Nenezić, M.; Zhu, L. Some improvements of Jordan-Stečkin and Becker–Stark Inequalities. Appl. Anal. Discret. Math. 2018, 12, 244–256. [Google Scholar] [CrossRef] [Green Version]
  62. Rassias, T.M.; Andrica, D. (Eds.) Differential and Integral Inequalities. In Springer Optimization and Its Applications; Springer: Berlin/Heidelberg, Germany, 2019; Volume 151. [Google Scholar]
  63. Wu, Y.T.; Bercu, G. New refinements of Becker–Stark and Cusa-Huygens inequalities via trigonometric polynomials method. RACSAM 2021, 115, 87. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Zhu, L. New Bounds for the Sine Function and Tangent Function. Mathematics 2021, 9, 2373. https://doi.org/10.3390/math9192373

AMA Style

Zhu L. New Bounds for the Sine Function and Tangent Function. Mathematics. 2021; 9(19):2373. https://doi.org/10.3390/math9192373

Chicago/Turabian Style

Zhu, Ling. 2021. "New Bounds for the Sine Function and Tangent Function" Mathematics 9, no. 19: 2373. https://doi.org/10.3390/math9192373

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop