# The Scalar Curvature of a Riemannian Almost Paracomplex Manifold and Its Conformal Transformations

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. A Riemannian Orthogonal Paracomplex Manifold and Its Scalar Curvature

**Remark**

**1.**

**Theorem**

**1.**

**Example**

**1.**

**Example**

**2.**

**Example**

**3.**

**Remark**

**2.**

## 3. Conformal Transformations of Metrics of Riemannian Almost Paracomplex Manifolds

**Proposition**

**1.**

**Theorem**

**2.**

**Theorem**

**3.**

**Corollary**

**1.**

**Theorem**

**4.**

**Theorem**

**5.**

**Theorem**

**6.**

**Proof.**

## 4. A Riemannian Almost Paracomplex Manifold Conformally Related to the Product of Riemannian Manifolds

**Theorem**

**7.**

**Theorem**

**8.**

**Theorem**

**9.**

**Remark**

**3.**

**Theorem**

**10.**

**Theorem**

**11.**

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## References

- Cruceanu, V.; Fortuny, P.; Gadea, P.M. A survey on paracomplex geometry. Rocky Mt. J. Math.
**1996**, 26, 83–115. [Google Scholar] [CrossRef] - Alekseevskii, D.V.; Medori, K.; Tomassini, A. Homogeneous para-Kählerian Einstein manifolds. Uspekhi Mat. Nauk
**2009**, 64, 3–50. [Google Scholar] - Kornev, E.S. The bundle of paracomplex structures. Sib. Mat. Zhurnal
**2020**, 61, 867–879. [Google Scholar] [CrossRef] - Combe, N.; Combe, P.; Nencka, H. Frobenius Statistical Manifolds, Geometric Invariants and Hidden Symmetries; Max-Planck-Institut für Mathematik in den Naturwissenschaften, Preprint No. 3: Leipzig, Germany, 2021; p. 17. [Google Scholar]
- Stepanov, S.; Mikeš, J. A brief review of publications on the differential geometry of statistical manifolds. COJ Tech. Sci. Res.
**2020**, 2, COJTS 000543. [Google Scholar] - Goldberg, S.I. Curvature and Homology; Dover Publications, Inc.: New York, NY, USA, 1998. [Google Scholar]
- Mikeš, J. Differential Geometry of Special Mappings; Palacký University Press: Olomouc, Czech Republic, 2019. [Google Scholar]
- Rocamora, A.H. Some geometric consequences of the Weitzenbock formula on Riemannian almost-product manifolds; weak-harmonic distributions. Ill. J. Math.
**1988**, 32, 654–671. [Google Scholar] [CrossRef] - Rovenski, V. Foliations on Riemannian Manifolds and Submanifolds; Birkhäuser: Basel, Switzerland, 1998. [Google Scholar]
- Stepanov, S.; Tsyganok, I. The remark on mixed scalar curvature of a manifold with two orthogonal totally umbilical distributions. Adv. Geom.
**2019**, 19, 291–296. [Google Scholar] [CrossRef] - Rovenski, V.; Walczak, P. Extrinsic Geometry of Foliations, Progress in Mathematics; Birkhäuser: Basel, Switzerland, 2021. [Google Scholar]
- Reinhart, B.L. Differential Geometry of Foliations; Springer: Berlin/Heidelberg, Germany, 1983. [Google Scholar]
- Stepanov, S.E. Riemannian almost product manifolds and submersions. J. Math. Sci. N. Y.
**2000**, 99, 1788–1810. [Google Scholar] [CrossRef] - Stepanov, S.E. An integral formula for a Riemannian almost-product manifold. Tensor N.S.
**1994**, 55, 209–214. [Google Scholar] - Chen, B.-Y. Differential geometry of identity maps. Surv. Math.
**2020**, 8, 1264. [Google Scholar] - Besse, A.L. Einstein Manifolds; Reprint of the 1987 Edition; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Grigor’yan, A. Heat Kernel and Analysis on Manifolds; AMS/IP: Boston, MA, USA, 2009. [Google Scholar]
- Adams, S.R. Superharmonic functions on foliations. Trans. AMS
**1992**, 330, 625–635. [Google Scholar] [CrossRef] - Yau, S.T. Some function-theoretic properties of complete Riemannian manifolds and their applications to geometry. Indiana Univ. Math. J.
**1976**, 25, 659–670. [Google Scholar] [CrossRef] - Chen, B.-Y. Some new obstructions to minimal and Lagrangian isometric immersions. Jpn. J. Math.
**2000**, 26, 105–127. [Google Scholar] [CrossRef] [Green Version] - Chen, B.-Y.; Dillen, F.; Verstraelen, L.; Vrancken, L. Characterizations of Riemannian space forms, Einstein spaces and conformally spaces. Proc. AMS
**1999**, 128, 589–598. [Google Scholar] [CrossRef] - Baird, P.; Fardoun, A.; Ouakkas, S. Biharmonic maps from biconformal transformations with respect to isoparametric functions. Differ. Geom. Its Appl.
**2017**, 50, 155–166. [Google Scholar] [CrossRef] - Stepanov, S.E. A class of Riemannian almost-product structures. Sov. Math. Iz. VUZ
**1989**, 33, 51–59. [Google Scholar] - Stepanov, S.E. Bochner’s technique in the theory of Riemannian almost product structures. Math. Notes Acad. Sci. USSR
**1990**, 48, 778–781. [Google Scholar] [CrossRef] - Naveira, N.; Rocamora, A.H. A geometrical obstruction to the existence of two totally umbilical complementary foliations in compact manifolds. In Differential Geometric Methods in Math. Physics, (Clausthal, 1983), LNM 1139; Springer: Berlin/Heidelberg, Germany, 1985; pp. 263–279. [Google Scholar]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Rovenski, V.; Mikeš, J.; Stepanov, S.
The Scalar Curvature of a Riemannian Almost Paracomplex Manifold and Its Conformal Transformations. *Mathematics* **2021**, *9*, 1379.
https://doi.org/10.3390/math9121379

**AMA Style**

Rovenski V, Mikeš J, Stepanov S.
The Scalar Curvature of a Riemannian Almost Paracomplex Manifold and Its Conformal Transformations. *Mathematics*. 2021; 9(12):1379.
https://doi.org/10.3390/math9121379

**Chicago/Turabian Style**

Rovenski, Vladimir, Josef Mikeš, and Sergey Stepanov.
2021. "The Scalar Curvature of a Riemannian Almost Paracomplex Manifold and Its Conformal Transformations" *Mathematics* 9, no. 12: 1379.
https://doi.org/10.3390/math9121379