Next Article in Journal
Mixed-Delay-Dependent Augmented Functional for Synchronization of Uncertain Neutral-Type Neural Networks with Sampled-Data Control
Previous Article in Journal
Optimizing Service Areas in 6G mmWave/THz Systems with Dual Blockage and Micromobility
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Nijenhuis Operators and Abelian Extensions of Hom-δ-Jordan Lie Supertriple Systems

School of Science, Qiqihar University, Qiqihar 161006, China
*
Author to whom correspondence should be addressed.
Mathematics 2023, 11(4), 871; https://doi.org/10.3390/math11040871
Submission received: 14 December 2022 / Revised: 17 January 2023 / Accepted: 2 February 2023 / Published: 8 February 2023
(This article belongs to the Section Algebra, Geometry and Topology)

Abstract

:
Representations and cohomologies of Hom- δ -Jordan Lie supertriple systems are established. As an application, Nijenhuis operators and abelian extensions of Hom- δ -Jordan Lie supertriple systems are discussed. We obtain the infinitesimal deformation generated by virtue of a Nijenhuis operator. It is obtained that the sufficient and necessary condition for the equivalence of abelian extensions of Hom- δ -Jordan Lie supertriple systems.

1. Introduction

In this paper, we pay our main attention to Hom- δ -Jordan Lie supertriple systems over an arbitrary field. As is well-known, Lie triple systems have important applications in elementary particle theory and the theory of quantum mechanics [1]. Some results on Lie triple systems, including simple Lie triple systems over an algebraically closed field [2], the Yamaguti cohomology theory [3,4], infinitesimal deformations, abelian extensions [5], etc. were studied. Okubo reformulated the para-statistics as Lie supertriple systems and explained the relationship between Lie supertriple systems and ortho-symplectic supertriple systems [6]. In [7], the authors introduced δ -Jordan Lie supertriple systems, which are a generalization of Lie supertriple systems. Some examples of quasi-classical δ -Lie supertriple systems were given over a field of characteristic not two [8]. The Jordan superalgebra of F-type from Jordan Lie supertriple systems were discussed [9]. Later, Ma and Chen obtained the cohomology and deformations of δ -Jordan Lie triple systems in 2017 [10]. In [11], the authors determined derivations and deformations of δ -Jordan Lie supertriple systems. In 2022, we obtained 1-parameter formal deformations and abelian extensions of Lie color triple systems [12].
In recent years, structures and representations of many Hom-type algebras have been obtained [13,14,15,16,17,18,19,20,21,22,23,24]. In particular, the notion of Hom-Lie triple systems was introduced in [14]. Hom-Lie triple systems are ternary Hom–Nambu algebras whose triple product is left anti-symmetric. When the twisting maps of Hom–Lie triple systems are all equal to the identity map, one recovers Lie triple systems. In 2019, Chen and his students gave that cohomologies and 1-parameter formal deformations of Hom- δ -Jordan Lie triple systems [25]. In 2022, we obtained central extensions and Nijenhuis operators of Hom- δ -Jordan Lie triple systems [26].
The purpose of this paper is to consider the cohomology theory and deformations of Hom- δ -Jordan Lie supertriple systems based on some work in [3,4,10,12,13,25,26,27]. The paper is organized as follows. Section 2 is devoted to some basic definitions and the cohomology theory of multiplicative Hom- δ -Jordan Lie supertriple systems. In Section 3, we discuss Nijenhuis operators of Hom- δ -Jordan Lie supertriple systems and obtain the infinitesimal deformation generated using a Nijenhuis operator. Section 4 is dedicated to the abelian extension theory of multiplicative Hom- δ -Jordan Lie supertriple systems. We show the sufficient and necessary condition for the equivalence of abelian extensions.
Throughout this paper, F denotes an arbitrary field, and its characteristic is zero.

2. Preliminaries

We first recall some basic facts and definitions of Hom-Lie triple systems.
Definition 1
([14]). A Hom-Lie triple system ( T , [ · , · , · ] , α = ( α 1 , α 2 ) ) consists of an F -vector space T, a trilinear map [ · , · , · ] : T × T × T T , and linear maps α i : T T for i = 1 , 2 , called twisted maps, such that for all x , y , z , u , v T ,
[ x , x , z ] = 0 ,
[ x , y , z ] + [ y , z , x ] + [ z , x , y ] = 0 ,
[ α 1 ( u ) , α 2 ( v ) , [ x , y , z ] ] = [ [ u , v , x ] , α 1 ( y ) , α 2 ( z ) ] + [ α 1 ( x ) , [ u , v , y ] , α 2 ( z ) ] + [ α 1 ( x ) , α 2 ( y ) , [ u , v , z ] ] .
If | x | occurs in some expression in this paper, we always regard x as a Z 2 -homogeneous element and | x | as the Z 2 -degree of x.
Definition 2
([28]). A Hom-Lie supertriple system ( T , [ · , · , · ] , α = ( α 1 , α 2 ) ) consists of a Z 2 -graded vector space T = T 0 ¯ T 1 ¯ over F together with a trilinear map [ · , · , · ] : T × T × T T , and even linear maps α i : T T for i = 1 , 2 , called twisted maps, such that for all x , y , z , u , v T ,
[ x , y , z ] = ( 1 ) | x | | y | [ y , x , z ] ,
( 1 ) | x | | z | [ x , y , z ] + ( 1 ) | y | | x | [ y , z , x ] + ( 1 ) | z | | y | [ z , x , y ] = 0 ,
[ α 1 ( u ) , α 2 ( v ) , [ x , y , z ] ] = [ [ u , v , x ] , α 1 ( y ) , α 2 ( z ) ] + ( 1 ) | x | ( | u | + | v | ) [ α 1 ( x ) , [ u , v , y ] , α 2 ( z ) ] + ( 1 ) ( | u | + | v | ) ( | x | + | y | ) [ α 1 ( x ) , α 2 ( y ) , [ u , v , z ] ] .
Definition 3.
A Hom-δ-Jordan Lie supertriple system ( T , [ · , · , · ] , α = ( α 1 , α 2 ) ) consists of a Z 2 -graded vector space T = T 0 ¯ T 1 ¯ over F together with a trilinear map [ · , · , · ] : T × T × T T , and even linear maps α i : T T for i = 1 , 2 , called twisted maps, such that for all x , y , z , u , v T , δ = ± 1 ,
[ x , y , z ] = δ ( 1 ) | x | | y | [ y , x , z ] ,
( 1 ) | x | | z | [ x , y , z ] + ( 1 ) | y | | x | [ y , z , x ] + ( 1 ) | z | | y | [ z , x , y ] = 0 ,
[ α 1 ( u ) , α 2 ( v ) , [ x , y , z ] ] = [ [ u , v , x ] , α 1 ( y ) , α 2 ( z ) ] + ( 1 ) | x | ( | u | + | v | ) [ α 1 ( x ) , [ u , v , y ] , α 2 ( z ) ] + δ ( 1 ) ( | u | + | v | ) ( | x | + | y | ) [ α 1 ( x ) , α 2 ( y ) , [ u , v , z ] ] .
Clearly, T 0 ¯ is a Hom- δ -Jordan Lie triple system, and the case of α = id ,   δ = 1 defines a Lie triple system, so any Hom- δ -Jordan Lie supertriple system is the generalization of a Lie triple system.
A Hom- δ -Jordan Lie supertriple system is said to be multiplicative if α 1 = α 2 = α and α ( [ x , y , z ] ) = [ α ( x ) , α ( y ) , α ( z ) ] , and denoted by ( T , [ · , · , · ] , α ) .
A morphism f : ( T , [ · , · , · ] , α = ( α 1 , α 2 ) ) ( T , [ · , · , · ] , α = ( α 1 , α 2 ) ) of Hom- δ -Jordan Lie supertriple system is a linear map satisfying f ( [ x , y , z ] ) = [ f ( x ) , f ( y ) , f ( z ) ] and f α i = α i f for i = 1 , 2 . An isomorphism is a bijective morphism.
Following the representation theory of Lie triple systems was studied by Yamaguti, we generalize the notion of the representation to Hom- δ -Jordan Lie supertriple systems.
Definition 4.
Let ( T , [ · , · , · ] , α ) be a multiplicative Hom-δ-Jordan Lie supertriple system, V a Z 2 -graded vector space over F , and A End ( V ) . V is called a ( T , [ · , · , · ] , α ) -module with respect to A if there exists a bilinear map θ : T × T End ( V ) , ( a , b ) θ ( a , b ) such that for all a , b , c , d T ,
θ ( α ( a ) , α ( b ) ) A = A θ ( a , b ) , ( 1 ) ( | a | + | b | ) ( | c | + | d | ) θ ( α ( c ) , α ( d ) ) θ ( a , b ) δ ( 1 ) | a | | b | + | d | ( | a | + | c | ) θ ( α ( b ) , α ( d ) ) θ ( a , c )
θ ( α ( a ) , [ b , c , d ] ) A + ( 1 ) | a | ( | b | + | c | ) D ( α ( b ) , α ( c ) ) θ ( a , d ) = 0 , δ ( 1 ) ( | a | + | b | ) ( | c | + | d | ) θ ( α ( c ) , α ( d ) ) D ( a , b ) δ D ( α ( a ) , α ( b ) ) θ ( c , d )
+ θ ( [ a , b , c ] , α ( d ) ) A + δ ( 1 ) | c | ( | a | + | b | ) θ ( α ( c ) , [ a , b , d ] ) A = 0 , δ ( 1 ) ( | a | + | b | ) ( | c | + | d | ) D ( α ( c ) , α ( d ) ) D ( a , b ) D ( α ( a ) , α ( b ) ) D ( c , d )
+ δ D ( [ a , b , c ] , α ( d ) ) A + δ ( 1 ) | c | ( | a | + | b | ) D ( α ( c ) , [ a , b , d ] ) A = 0 ,
where D ( a , b ) = ( 1 ) | a | | b | θ ( b , a ) δ θ ( a , b ) .
Then, θ is called the representation of ( T , [ · , · , · ] , α ) on V with respect to A. In the case θ = 0 , V is called the trivial ( T , [ · , · , · ] , α ) -module with respect to A.
In particular, let V = T , A = α , and θ ( x , y ) ( z ) = ( 1 ) | z | ( | x | + | y | ) [ z , x , y ] . Then, D ( x , y ) ( z ) = δ [ x , y , z ] and (7)–(10) hold. In this case, T is said to be the adjoint ( T , [ · , · , · ] , α ) -module and θ is called the adjoint representation of ( T , [ · , · , · ] , α ) on itself with respect to α .
As is the case of general algebras, we introduce the semidirect product of a multiplicative Hom- δ -Jordan Lie supertriple systems and its module.
Proposition 1.
Let θ be a representation of a multiplicative Hom-δ-Jordan Lie supertriple system ( T , [ · , · , · ] , α ) on V with respect to A. Define the operation [ · , · , · ] V : ( T V ) × ( T V ) × ( T V ) T V by
[ ( x , a ) , ( y , b ) , ( z , c ) ] V = ( [ x , y , z ] , ( 1 ) | x | ( | y | + | z | ) θ ( y , z ) ( a ) δ ( 1 ) | y | | z | θ ( x , z ) ( b ) + δ D ( x , y ) ( c ) ) ;
and define the twisted map α + A : T V T V by
( α + A ) ( x , a ) = ( α ( x ) , A ( a ) ) .
Then T V is a multiplicative Hom-δ-Jordan Lie supertriple system.
Proof. 
Using D ( x , y ) = ( 1 ) | x | | y | θ ( y , x ) δ θ ( x , y ) , we obtain
[ ( x , a ) , ( y , b ) , ( z , c ) ] V = ( [ x , y , z ] , ( 1 ) | x | ( | y | + | z | ) θ ( y , z ) ( a ) δ ( 1 ) | y | | z | θ ( x , z ) ( b ) + δ D ( x , y ) ( c ) ) = δ ( 1 ) | x | | y | ( [ y , x , z ] , ( 1 ) | y | ( | x | + | z | ) θ ( x , z ) ( b ) δ ( 1 ) | x | | z | θ ( y , z ) ( a ) ( 1 ) | x | | y | D ( x , y ) ( c ) ) = δ ( 1 ) | x | | y | ( [ y , x , z ] , ( 1 ) | y | ( | x | + | z | ) θ ( x , z ) ( b ) δ ( 1 ) | x | | z | θ ( y , z ) ( a ) + δ D ( y , x ) ( c ) ) = δ ( 1 ) | x | | y | [ ( y , b ) , ( x , a ) , ( z , c ) ] V ,
and
( 1 ) | x | | z | [ ( x , a ) , ( y , b ) , ( z , c ) ] V + ( 1 ) | y | | x | [ ( y , b ) , ( z , c ) , ( x , a ) ] V + ( 1 ) | z | | y | [ ( z , c ) , ( x , a ) , ( y , b ) ] V = ( ( 1 ) | x | | z | [ x , y , z ] , ( 1 ) | x | | y | θ ( y , z ) ( a ) δ ( 1 ) | z | ( | x | + | y | ) θ ( x , z ) ( b ) + δ ( 1 ) | x | | z | D ( x , y ) ( c ) ) + ( ( 1 ) | y | | x | [ y , z , x ] , ( 1 ) | y | | z | θ ( z , x ) ( b ) δ ( 1 ) | x | ( | y | + | z | ) θ ( y , x ) ( c ) + δ ( 1 ) | y | | x | D ( y , z ) ( a ) ) + ( ( 1 ) | z | | y | [ z , x , y ] , ( 1 ) | z | | x | θ ( x , y ) ( c ) δ ( 1 ) | y | ( | x | + | z | ) θ ( z , y ) ( a ) + δ ( 1 ) | z | | y | D ( z , x ) ( b ) ) = ( 0 , ( 1 ) | x | | y | θ ( y , z ) ( a ) δ ( 1 ) | y | ( | x | + | z | ) θ ( z , y ) ( a ) + δ ( 1 ) | y | | x | D ( y , z ) ( a ) + ( 1 ) | y | | z | θ ( z , x ) ( b ) δ ( 1 ) | z | ( | x | + | y | θ ( x , z ) ( b ) + δ ( 1 ) | z | | y | D ( z , x ) ( b ) + ( 1 ) | z | | x | θ ( x , y ) ( c ) δ ( 1 ) | x | ( | y | + | z | ) θ ( y , x ) ( c ) + δ ( 1 ) | x | | z | D ( x , y ) ( c ) ) = ( 0 , 0 ) .
By (8)–(10), it follows that
[ [ ( x , a ) , ( y , b ) , ( u , c ) ] V , ( α + A ) ( v , d ) , ( α + A ) ( w , e ) ] V = [ ( [ x , y , u ] , ( 1 ) | x | ( | y | + | u | ) θ ( y , u ) ( a ) δ ( 1 ) | y | | u | θ ( x , u ) ( b ) + δ D ( x , y ) ( c ) ) , ( α ( v ) , A ( d ) ) , ( α ( w ) , A ( e ) ) ] V = ( [ [ x , y , u ] , α ( v ) , α ( w ) ] , ( 1 ) ( | x | + | y | + | u | ) ( | v | + | w | ) θ ( α ( v ) , α ( w ) ) ( ( 1 ) | x | ( | y | + | u | ) θ ( y , u ) ( a ) δ ( 1 ) | y | | u | θ ( x , u ) ( b ) + δ D ( x , y ) ( c ) ) δ ( 1 ) | v | | w | θ ( [ x , y , u ] , α ( w ) ) ( A ( d ) ) + δ D ( [ x , y , u ] , α ( v ) ) ( A ( e ) ) ) ,
( 1 ) | u | ( | x | + | y | ) [ ( α + A ) ( u , c ) , [ ( x , a ) , ( y , b ) , ( v , d ) ] V , ( α + A ) ( w , e ) ] V = ( 1 ) | u | ( | x | + | y | ) [ ( α ( u ) , A ( c ) ) , ( [ x , y , v ] , ( 1 ) | x | ( | y | + | v | ) θ ( y , v ) ( a ) δ ( 1 ) | y | | v | θ ( x , v ) ( b ) + δ D ( x , y ) ( d ) ) , ( α ( w ) , A ( e ) ) ] V = ( 1 ) | u | ( | x | + | y | ) ( [ α ( u ) , [ x , y , v ] , α ( w ) ] , ( 1 ) | u | ( | x | + | y | + | v | + | w | ) θ ( [ x , y , v ] , α ( w ) ) ( A ( c ) ) δ ( 1 ) ( | x | + | y | + | v | ) | w | θ ( α ( u ) , α ( w ) ) ( ( 1 ) | x | ( | y | + | v | ) θ ( y , v ) ( a ) δ ( 1 ) | y | | v | θ ( x , v ) ( b ) + δ D ( x , y ) ( d ) ) + δ D ( α ( u ) , [ x , y , v ] ) ( A ( e ) ) ) ,
δ ( 1 ) ( | x | + | y | ) ( | u | + | v | ) [ ( α + A ) ( u , c ) , ( α + A ) ( v , d ) , [ ( x , a ) , ( y , b ) , ( w , e ) ] V ] V = δ ( 1 ) ( | x | + | y | ) ( | u | + | v | ) [ ( α ( u ) , A ( c ) ) , ( α ( v ) , A ( d ) ) , ( [ x , y , w ] , ( 1 ) | x | ( | y | + | w | ) θ ( y , w ) ( a ) δ ( 1 ) | y | | w | θ ( x , w ) ( b ) + δ D ( x , y ) ( e ) ) ] V = δ ( 1 ) ( | x | + | y | ) ( | u | + | v | ) ( [ α ( u ) , α ( v ) , [ x , y , w ] ] , ( 1 ) | u | ( | v | + | x | + | y | + | w | ) θ ( α ( v ) , [ x , y , w ] ) ( A ( c ) ) δ ( 1 ) | v | ( | x | + | y | + | w | ) θ ( α ( u ) , [ x , y , w ] ) ( A ( d ) ) + δ D ( α ( u ) , α ( v ) ) ( ( 1 ) | x | ( | y | + | w | ) θ ( y , w ) ( a ) δ ( 1 ) | y | | w | θ ( x , w ) ( b ) + δ D ( x , y ) ( e ) ) ) ,
[ ( α + A ) ( x , a ) , ( α + A ) ( y , b ) , [ ( u , c ) , ( v , d ) , ( w , e ) ] V ] V = [ ( α ( x ) , A ( a ) ) , ( α ( y ) , A ( b ) ) , ( [ u , v , w ] , ( 1 ) | u | ( | v | + | w | ) θ ( v , w ) ( c ) δ ( 1 ) | v | | w | θ ( u , w ) ( d ) + δ D ( u , v ) ( e ) ) ] V = ( [ α ( x ) , α ( y ) , [ u , v , w ] ] , ( 1 ) | x | ( | y | + | u | + | v | + | w | ) θ ( α ( y ) , [ u , v , w ] ) ( A ( a ) ) δ ( 1 ) | y | ( | u | + | v | + | w | ) θ ( α ( x ) , [ u , v , w ] ) ( A ( b ) ) + δ D ( α ( x ) , α ( y ) ) ( ( 1 ) | u | ( | v | + | w | ) θ ( v , w ) ( c ) δ ( 1 ) | v | | w | θ ( u , w ) ( d ) + δ D ( u , v ) ( e ) ) ) .
The calculation above shows that (1)–(3) hold.
Note that α + A is a linear map and, using (7), we have
( α + A ) [ ( x , a ) , ( y , b ) , ( z , c ) ] V = ( α + A ) ( [ x , y , z ] , ( 1 ) | x | ( | y | + | z | ) θ ( y , z ) ( a ) δ ( 1 ) | y | | z | θ ( x , z ) ( b ) + δ D ( x , y ) ( c ) ) = ( α ( [ x , y , z ] ) , A ( ( 1 ) | x | ( | y | + | z | ) θ ( y , z ) ( a ) δ ( 1 ) | y | | z | θ ( x , z ) ( b ) + δ D ( x , y ) ( c ) ) ) = ( [ α ( x ) , α ( y ) , α ( z ) ] , ( 1 ) | x | ( | y | + | z | ) θ ( α ( y ) , α ( z ) ) A ( a ) δ ( 1 ) | y | | z | θ ( α ( x ) , α ( z ) ) A ( b ) + δ D ( α ( x ) , α ( y ) ) A ( c ) ) = [ ( α ( x ) , A ( a ) ) , ( α ( y ) , A ( b ) ) , ( α ( z ) , A ( c ) ) ] V = [ ( α + A ) ( x , a ) , ( α + A ) ( y , b ) , ( α + A ) ( z , c ) ] V .
Thus, ( T V , [ · , · , · ] V , α + A ) is a multiplicative Hom- δ -Jordan Lie supertriple system. □
Let θ be a representation of ( T , [ · , · , · ] , α ) on V with respect to A. If an n-linear map f : T × × T n times V satisfies
A ( f ( x 1 , , x n ) ) = f ( α ( x 1 ) , , α ( x n ) ) ,
f ( x 1 , , x , y , x n 2 ) = ( 1 ) | x | | y | f ( x 1 , , y , x , x n 2 ) ,
( 1 ) | x | | z | f ( x 1 , , x n 3 , x , y , z ) + ( 1 ) | y | | x | f ( x 1 , , x n 3 , y , z , x ) + ( 1 ) | z | | y | f ( x 1 , , x n 3 , z , x , y ) = 0 ,
then f is called an n-Hom-cochain on T. Denote by C α , A n ( T , V ) the set of all n-Hom-cochains, n 1 .
Definition 5.
For n = 1 , 2 , 3 , 4 , the coboundary operator d h o m n : C α , A n ( T , V ) C α , A n + 2 ( T , V ) is defined as follows.
  • If f C α 1 ( T , V ) , then
    d h o m 1 f ( x 1 , x 2 , x 3 ) = ( 1 ) ( | f | + | x 1 | ) ( | x 2 | + | x 3 | ) θ ( x 2 , x 3 ) f ( x 1 ) δ ( 1 ) | x 2 | | x 3 | + | f | ( | x 1 | + | x 3 | ) θ ( x 1 , x 3 ) f ( x 2 ) + δ ( 1 ) | f | ( | x 1 | + | x 2 | ) D ( x 1 , x 2 ) f ( x 3 ) f ( [ x 1 , x 2 , x 3 ] ) .
  • If f C α 2 ( T , V ) , then
    d h o m 2 f ( y , x 1 , x 2 , x 3 ) = ( 1 ) ( | f | + | y | + | x 1 | ) ( | x 2 | + | x 3 | ) θ ( α ( x 2 ) , α ( x 3 ) ) f ( y , x 1 ) δ ( 1 ) | x 2 | | x 3 | + ( | f | + | y 1 | ) ( | x 1 | + | x 3 | ) θ ( α ( x 1 ) , α ( x 3 ) ) f ( y , x 2 ) + δ ( 1 ) ( | f | + | y | ) ( | x 1 | + | x 2 | ) D ( α ( x 1 ) , α ( x 2 ) ) f ( y , x 3 ) f ( α ( y ) , [ x 1 , x 2 , x 3 ] ) .
  • If f C α 3 ( T , V ) , then
    d h o m 3 f ( x 1 , x 2 , x 3 , x 4 , x 5 ) = ( 1 ) ( | f | + | x 1 | + | x 2 | + | x 3 | ) ( | x 4 | + | x 5 | ) θ ( α ( x 4 ) , α ( x 5 ) ) f ( x 1 , x 2 , x 3 ) δ ( 1 ) ( | f | + | x 1 | + | x 2 | ) ( | x 3 | + | x 5 | ) + | x 4 | | x 5 | θ ( α ( x 3 ) , α ( x 5 ) ) f ( x 1 , x 2 , x 4 ) δ ( 1 ) | f | ( | x 1 | + | x 2 | ) D ( α ( x 1 ) , α ( x 2 ) ) f ( x 3 , x 4 , x 5 ) + ( 1 ) ( | f | + | x 1 | + | x 2 | ) ( | x 3 | + | x 4 | ) D ( α ( x 3 ) , α ( x 4 ) ) f ( x 1 , x 2 , x 5 ) + f ( [ x 1 , x 2 , x 3 ] , α ( x 4 ) , α ( x 5 ) ) + ( 1 ) | x 3 | ( | x 1 | + | x 2 | ) f ( α ( x 3 ) , [ x 1 , x 2 , x 4 ] , α ( x 5 ) ) + δ ( 1 ) ( | x 1 | + | x 2 | ) ( | x 3 | + | x 4 | ) f ( α ( x 3 ) , α ( x 4 ) , [ x 1 , x 2 , x 5 ] ) f ( α ( x 1 ) , α ( x 2 ) , [ x 3 , x 4 , x 5 ] ) .
  • If f C α 4 ( T , V ) , then
    d h o m 4 f ( y , x 1 , x 2 , x 3 , x 4 , x 5 ) = ( 1 ) ( | f | + | y | + | x 1 | + | x 2 | + | x 3 | ) ( | x 4 | + | x 5 | ) θ ( α 2 ( x 4 ) , α 2 ( x 5 ) ) f ( y , x 1 , x 2 , x 3 ) δ ( 1 ) ( | f | + | y | + | x 1 | + | x 2 | ) ( | x 3 | + | x 5 | ) + | x 4 | | x 5 | θ ( α 2 ( x 3 ) , α 2 ( x 5 ) ) f ( y , x 1 , x 2 , x 4 ) δ ( 1 ) ( | f | + | y | ) ( | x 1 | + | x 2 | ) D ( α 2 ( x 1 ) , α 2 ( x 2 ) ) f ( y , x 3 , x 4 , x 5 ) + ( 1 ) ( | f | + | y | + | x 1 | + | x 2 | ) ( | x 3 | + | x 4 | ) D ( α 2 ( x 3 ) , α 2 ( x 4 ) ) f ( y , x 1 , x 2 , x 5 ) + f ( α ( y ) , [ x 1 , x 2 , x 3 ] , α ( x 4 ) , α ( x 5 ) ) + ( 1 ) | x 3 | ( | x 1 | + | x 2 | ) f ( α ( y ) , α ( x 3 ) , [ x 1 , x 2 , x 4 ] , α ( x 5 ) ) + δ ( 1 ) ( | x 1 | + | x 2 | ) ( | x 3 | + | x 4 | ) f ( α ( y ) , α ( x 3 ) , α ( x 4 ) , [ x 1 , x 2 , x 5 ] ) f ( α ( y ) , α ( x 1 ) , α ( x 2 ) , [ x 3 , x 4 , x 5 ] ) .
Theorem 1.
The coboundary operator d h o m n defined above satisfies d h o m n + 2 d h o m n = 0 ,   n = 1 , 2 .
Proof. 
From the definition of the coboundary operator it follows immediately that d h o m 3 d h o m 1 = 0 implies d h o m 4 d h o m 2 = 0 . Then we only need to prove d h o m 3 d h o m 1 = 0 . In fact, by (7)–(10), we get
d h o m 3 ( d h o m 1 f ) ( x 1 , x 2 , x 3 , x 4 , x 5 ) = ( 1 ) ( | f | + | x 1 | + | x 2 | + | x 3 | ) ( | x 4 | + | x 5 | ) θ ( α ( x 4 ) , α ( x 5 ) ) ( d h o m 1 f ) ( x 1 , x 2 , x 3 ) δ ( 1 ) ( | f | + | x 1 | + | x 2 | ) ( | x 3 | + | x 5 | ) + | x 4 | | x 5 | θ ( α ( x 3 ) , α ( x 5 ) ) ( d h o m 1 f ) ( x 1 , x 2 , x 4 ) δ ( 1 ) | f | ( | x 1 | + | x 2 | ) D ( α ( x 1 ) , α ( x 2 ) ) ( d h o m 1 f ) ( x 3 , x 4 , x 5 ) + ( 1 ) ( | f | + | x 1 | + | x 2 | ) ( | x 3 | + | x 4 | ) D ( α ( x 3 ) , α ( x 4 ) ) ( d h o m 1 f ) ( x 1 , x 2 , x 5 ) + ( d h o m 1 f ) ( [ x 1 , x 2 , x 3 ] , α ( x 4 ) , α ( x 5 ) ) + ( 1 ) | x 3 | ( | x 1 | + | x 2 | ) ( d h o m 1 f ) ( α ( x 3 ) , [ x 1 , x 2 , x 4 ] , α ( x 5 ) ) + δ ( 1 ) ( | x 1 | + | x 2 | ) ( | x 3 | + | x 4 | ) ( d h o m 1 f ) ( α ( x 3 ) , α ( x 4 ) , [ x 1 , x 2 , x 5 ] ) ( d h o m 1 f ) ( α ( x 1 ) , α ( x 2 ) , [ x 3 , x 4 , x 5 ] ) = ( 1 ) ( | f | + | x 1 | + | x 2 | + | x 3 | ) ( | x 4 | + | x 5 | ) θ ( α ( x 4 ) , α ( x 5 ) ) ( ( 1 ) ( | f | + | x 1 | ) ( | x 2 | + | x 3 | ) θ ( x 2 , x 3 ) f ( x 1 ) δ ( 1 ) | x 2 | | x 3 | + | f | ( | x 1 | + | x 3 | ) θ ( x 1 , x 3 ) f ( x 2 ) + δ ( 1 ) | f | ( | x 1 | + | x 2 | ) D ( x 1 , x 2 ) f ( x 3 ) f ( [ x 1 , x 2 , x 3 ] ) ) δ ( 1 ) ( | f | + | x 1 | + | x 2 | ) ( | x 3 | + | x 5 | ) + | x 4 | | x 5 | θ ( α ( x 3 ) , α ( x 5 ) ) ( ( 1 ) ( | f | + | x 1 | ) ( | x 2 | + | x 4 | ) θ ( x 2 , x 4 ) f ( x 1 ) δ ( 1 ) | x 2 | | x 4 | + | f | ( | x 1 | + | x 4 | ) θ ( x 1 , x 4 ) f ( x 2 ) + δ ( 1 ) | f | ( | x 1 | + | x 2 | ) D ( x 1 , x 2 ) f ( x 4 ) f ( [ x 1 , x 2 , x 4 ] ) ) δ ( 1 ) | f | ( | x 1 | + | x 2 | ) D ( α ( x 1 ) , α ( x 2 ) ) ( ( 1 ) ( | f | + | x 3 | ) ( | x 4 | + | x 5 | ) θ ( x 4 , x 5 ) f ( x 3 ) δ ( 1 ) | x 4 | | x 5 | + | f | ( | x 3 | + | x 5 | ) θ ( x 3 , x 5 ) f ( x 4 ) + δ ( 1 ) | f | ( | x 3 | + | x 4 | ) D ( x 3 , x 4 ) f ( x 5 ) f ( [ x 3 , x 4 , x 5 ] ) ) + ( 1 ) ( | f | + | x 1 | + | x 2 | ) ( | x 3 | + | x 4 | ) D ( α ( x 3 ) , α ( x 4 ) ) ( ( 1 ) ( | f | + | x 1 | ) ( | x 2 | + | x 5 | ) θ ( x 2 , x 5 ) f ( x 1 ) δ ( 1 ) | x 2 | | x 5 | + | f | ( | x 1 | + | x 5 | ) θ ( x 1 , x 5 ) f ( x 2 ) + δ ( 1 ) | f | ( | x 1 | + | x 2 | ) D ( x 1 , x 2 ) f ( x 5 ) f ( [ x 1 , x 2 , x 5 ] ) ) + ( 1 ) ( | f | + | x 1 | + | x 2 | + | x 3 | ) ( | x 4 | + | x 5 | ) ( θ ( α ( x 4 ) , α ( x 5 ) ) f ( [ x 1 , x 2 , x 3 ] ) δ ( 1 ) | x 4 | | x 5 | + | f | ( | x 1 | + | x 2 | + | x 3 | + | x 5 | ) θ ( [ x 1 , x 2 , x 3 ] , α ( x 5 ) ) f ( α ( x 4 ) ) + δ ( 1 ) | f | ( | x 1 | + | x 2 | + | x 3 | + | x 4 | ) D ( [ x 1 , x 2 , x 3 ] , α ( x 4 ) ) f ( α ( x 5 ) ) f ( [ [ x 1 , x 2 , x 3 ] , α ( x 4 ) , α ( x 5 ) ] ) ) + ( 1 ) | x 3 | ( | x 1 | + | x 2 | ) + ( | f | + | x 3 | ) ( | x 1 | + | x 2 | + | x 4 | + | x 5 | ) ( θ ( [ x 1 , x 2 , x 4 ] , α ( x 5 ) ) f ( α ( x 3 ) ) δ ( 1 ) ( | f | + | x 1 | + | x 2 | ) ( | x 3 | + | x 5 | ) + | x 4 | | x 5 | θ ( α ( x 3 ) , α ( x 5 ) ) f ( [ x 1 , x 2 , x 4 ] ) + δ ( 1 ) | x 3 | ( | x 1 | + | x 2 | ) + | f | ( | x 1 | + | x 2 | + | x 3 | + | x 4 | ) D ( α ( x 3 ) , [ x 1 , x 2 , x 4 ] ) f ( α ( x 5 ) ) ( 1 ) | x 3 | ( | x 1 | + | x 2 | ) f ( [ α ( x 3 ) , [ x 1 , x 2 , x 4 ] , α ( x 5 ) ] ) ) + δ ( 1 ) ( | x 1 | + | x 2 | ) ( | x 3 | + | x 4 | ) ( ( 1 ) ( | f | + | x 3 | ) ( | x 1 | + | x 2 | + | x 4 | + | x 5 | ) θ ( α ( x 4 ) , [ x 1 , x 2 , x 5 ] ) f ( α ( x 3 ) ) δ ( 1 ) | x 4 | ( | x 1 | + | x 2 | + | x 5 | ) + | f | ( | x 1 | + | x 2 | + | x 3 | + | x 5 | ) θ ( α ( x 3 ) , [ x 1 , x 2 , x 5 ] ) f ( α ( x 4 ) ) + δ ( 1 ) | f | ( | x 3 | + | x 4 | ) D ( α ( x 3 ) , α ( x 4 ) ) f ( [ x 1 , x 2 , x 5 ] ) f ( [ α ( x 3 ) , α ( x 4 ) , [ x 1 , x 2 , x 5 ] ] ) ) ( ( 1 ) ( | f | + | x 1 | ) ( | x 2 | + | x 3 | + | x 4 | + | x 5 | ) θ ( α ( x 2 ) , [ x 3 , x 4 , x 5 ] ) f ( α ( x 1 ) ) δ ( 1 ) | f | ( | x 1 | + | x 3 | + | x 4 | + | x 5 | ) + | x 2 | ( | x 3 | + | x 4 | + | x 5 | ) θ ( α ( x 1 ) , [ x 3 , x 4 , x 5 ] ) f ( α ( x 2 ) ) + δ ( 1 ) | f | ( | x 1 | + | x 2 | ) D ( α ( x 1 ) , α ( x 2 ) ) f ( [ x 3 , x 4 , x 5 ] ) f ( [ α ( x 1 ) , α ( x 2 ) , [ x 3 , x 4 , x 5 ] ] ) ) = f ( [ [ x 1 , x 2 , x 3 ] , α ( x 4 ) , α ( x 5 ) ] ) ( 1 ) | x 3 | ( | x 1 | + | x 2 | ) f ( [ α ( x 3 ) , [ x 1 , x 2 , x 4 ] , α ( x 5 ) ] ) δ ( 1 ) ( | x 1 | + | x 2 | ) ( | x 3 | + | x 4 | ) f ( [ α ( x 3 ) , α ( x 4 ) , [ x 1 , x 2 , x 5 ] ] ) + f ( [ α ( x 1 ) , α ( x 2 ) , [ x 3 , x 4 , x 5 ] ] ) + ( 1 ) ( | f | + | x 1 | + | x 2 | + | x 3 | ) ( | x 4 | + | x 5 | ) + ( | f | + | x 1 | ) ( | x 2 | + | x 3 | ) θ ( α ( x 4 ) , α ( x 5 ) ) θ ( x 2 , x 3 ) f ( x 1 ) δ ( 1 ) ( | f | + | x 1 | + | x 2 | ) ( | x 3 | + | x 5 | ) + | x 4 | | x 5 | + ( | f | + | x 1 | ) ( | x 2 | + | x 4 | ) θ ( α ( x 3 ) , α ( x 5 ) ) θ ( x 2 , x 4 ) f ( x 1 ) + ( 1 ) ( | f | + | x 1 | + | x 2 | ) ( | x 3 | + | x 4 | ) + ( | f | + | x 1 | ) ( | x 2 | + | x 5 | ) D ( α ( x 3 ) , α ( x 4 ) ) θ ( x 2 , x 5 ) f ( x 1 ) ( 1 ) ( | f | + | x 1 | ) ( | x 2 | + | x 3 | + | x 4 | + | x 5 | ) θ ( α ( x 2 ) , [ x 3 , x 4 , x 5 ] ) f ( α ( x 1 ) ) δ ( 1 ) ( | f | + | x 1 | + | x 2 | + | x 3 | ) ( | x 4 | + | x 5 | ) + | x 2 | | x 3 | + | f | ( | x 1 | + | x 3 | ) θ ( α ( x 4 ) , α ( x 5 ) ) θ ( x 1 , x 3 ) f ( x 2 ) + ( 1 ) ( | f | + | x 1 | + | x 2 | ) ( | x 3 | + | x 5 | ) + | x 4 | ( | x 2 | + | x 5 | ) + | f | ( | x 1 | + | x 4 | ) θ ( α ( x 3 ) , α ( x 5 ) ) θ ( x 1 , x 4 ) f ( x 2 ) δ ( 1 ) ( | f | + | x 1 | + | x 2 | ) ( | x 3 | + | x 4 | ) + | x 2 | | x 5 | + | f | ( | x 1 | + | x 5 | ) D ( α ( x 3 ) , α ( x 4 ) ) θ ( x 1 , x 5 ) f ( x 2 ) + δ ( 1 ) | f | ( | x 1 | + | x 3 | + | x 4 | + | x 5 | ) + | x 2 | ( | x 3 | + | x 4 | + | x 5 | ) θ ( α ( x 1 ) , [ x 3 , x 4 , x 5 ] ) f ( α ( x 2 ) ) + δ ( 1 ) ( | f | + | x 1 | + | x 2 | + | x 3 | ) ( | x 4 | + | x 5 | ) + | f | ( | x 1 | + | x 2 | ) θ ( α ( x 4 ) , α ( x 5 ) ) D ( x 1 , x 2 ) f ( x 3 ) δ ( 1 ) | f | ( | x 1 | + | x 2 | ) + ( | f | + | x 3 | ) ( | x 4 | + | x 5 | ) D ( α ( x 1 ) , α ( x 2 ) ) θ ( x 4 , x 5 ) f ( x 3 ) + ( 1 ) | x 3 | ( | x 1 | + | x 2 | ) + ( | f | + | x 3 | ) ( | x 1 | + | x 2 | + | x 4 | + | x 5 | ) θ ( [ x 1 , x 2 , x 4 ] , α ( x 5 ) ) f ( α ( x 3 ) ) + δ ( 1 ) ( | x 1 | + | x 2 | ) ( | x 3 | + | x 4 | ) + ( | f | + | x 3 | ) ( | x 1 | + | x 2 | + | x 4 | + | x 5 | ) θ ( α ( x 4 ) , [ x 1 , x 2 , x 5 ] ) f ( α ( x 3 ) ) ( 1 ) ( | f | + | x 1 | + | x 2 | ) ( | x 3 | + | x 5 | ) + | x 4 | | x 5 | + | f | ( | x 1 | + | x 2 | ) θ ( α ( x 3 ) , α ( x 5 ) ) D ( x 1 , x 2 ) f ( x 4 ) + ( 1 ) | f | ( | x 1 | + | x 2 | ) + | x 4 | | x 5 | + | f | ( | x 3 | + | x 5 | ) D ( α ( x 1 ) , α ( x 2 ) ) θ ( x 3 , x 5 ) f ( x 4 ) δ ( 1 ) | x 4 | | x 5 | + | f | ( | x 1 | + | x 2 | + | x 3 | + | x 5 | ) θ ( [ x 1 , x 2 , x 3 ] , α ( x 5 ) ) f ( α ( x 4 ) ) ( 1 ) ( | x 1 | + | x 2 | ) ( | x 3 | + | x 4 | ) + | x 4 | ( | x 1 | + | x 2 | + | x 5 | ) + | f | ( | x 1 | + | x 2 | + | x 3 | + | x 5 | ) θ ( α ( x 3 ) , [ x 1 , x 2 , x 5 ] ) f ( α ( x 4 ) ) ( 1 ) | f | ( | x 1 | + | x 2 | + | x 3 | + | x 4 | ) D ( α ( x 1 ) , α ( x 2 ) ) D ( x 3 , x 4 ) f ( x 5 ) + δ ( 1 ) ( | f | + | x 1 | + | x 2 | ) ( | x 3 | + | x 4 | ) + | f | ( | x 1 | + | x 2 | ) D ( α ( x 3 ) , α ( x 4 ) ) D ( x 1 , x 2 ) f ( x 5 ) + δ ( 1 ) | f | ( | x 1 | + | x 2 | + | x 3 | + | x 4 | ) D ( [ x 1 , x 2 , x 3 ] , α ( x 4 ) ) f ( α ( x 5 ) ) + δ ( 1 ) | x 3 | ( | x 1 | + | x 2 | ) + | f | ( | x 1 | + | x 2 | + | x 3 | + | x 4 | ) D ( α ( x 3 ) , [ x 1 , x 2 , x 4 ] ) f ( α ( x 5 ) ) ( 1 ) ( | f | + | x 1 | + | x 2 | + | x 3 | ) ( | x 4 | + | x 5 | ) θ ( α ( x 4 ) , α ( x 5 ) ) f ( [ x 1 , x 2 , x 3 ] ) + δ ( 1 ) ( | f | + | x 1 | + | x 2 | ) ( | x 3 | + | x 5 | ) + | x 4 | | x 5 | θ ( α ( x 3 ) , α ( x 5 ) ) f ( [ x 1 , x 2 , x 4 ] ) + δ ( 1 ) | f | ( | x 1 | + | x 2 | ) D ( α ( x 1 ) , α ( x 2 ) ) f ( [ x 3 , x 4 , x 5 ] ) ( 1 ) | f | ( | x 3 | + | x 4 | ) + ( | x 1 | + | x 2 | ) ( | x 3 | + | x 4 | ) D ( α ( x 3 ) , α ( x 4 ) ) f ( [ x 1 , x 2 , x 5 ] ) + ( 1 ) ( | f | + | x 1 | + | x 2 | + | x 3 | ) ( | x 4 | + | x 5 | ) θ ( α ( x 4 ) , α ( x 5 ) ) f ( [ x 1 , x 2 , x 3 ] ) δ ( 1 ) ( | f | + | x 1 | + | x 2 | ) ( | x 3 | + | x 5 | ) + | x 4 | | x 5 | θ ( α ( x 3 ) , α ( x 5 ) ) f ( [ x 1 , x 2 , x 4 ] ) + ( 1 ) | f | ( | x 3 | + | x 4 | ) + ( | x 1 | + | x 2 | ) ( | x 3 | + | x 4 | ) D ( α ( x 3 ) , α ( x 4 ) ) f ( [ x 1 , x 2 , x 5 ] ) δ ( 1 ) | f | ( | x 1 | + | x 2 | ) D ( α ( x 1 ) , α ( x 2 ) ) f ( [ x 3 , x 4 , x 5 ] ) = 0 .
Therefore, the proof is complete. □
For n = 1 , 2 , 3 , 4 , the map f C α , A n ( T , V ) is called an n-Hom-cocycle if d h o m n f = 0 . We denote by Z α , A n ( T , V ) the subspace spanned by n-Hom-cocycles and B α , A n ( T , V ) = d h o m n 2 C α , A n 2 ( T , V ) .
Since d h o m n + 2 d h o m n = 0 , B α , A n ( T , V ) is a subspace of Z α , A n ( T , V ) . Hence, we can define a cohomology space H α , A n ( T , V ) of ( T , [ · , · , · ] , α ) as the factor space Z α , A n ( T , V ) / B α , A n ( T , V ) .

3. Nijenhuis Operators of Hom- δ -Jordan Lie Supertriple Systems

In this section, we study infinitesimal deformations of Hom- δ -Jordan Lie supertriple systems. We introduce the notion of Nijenhuis operators for Hom- δ -Jordan Lie supertriple systems, and obtain trivial deformations using this kind of Nijenhuis operators.
Let ( T , [ · , · , · ] , α ) be a Hom- δ -Jordan Lie supertriple system and ψ : T × T × T T be an even trilinear map. Consider a λ -parametrized family of linear operations:
[ x 1 , x 2 , x 3 ] λ = [ x 1 , x 2 , x 3 ] + λ ψ ( x 1 , x 2 , x 3 ) ,
where λ is a formal variable, and λ 0 .
If [ · , · , · ] λ endow T with Hom- δ -Jordan Lie supertriple system structure, which is denoted by T λ , then we call that ψ generates a λ -parameter infinitesimal deformation of Hom- δ -Jordan Lie supertriple system.
Theorem 2.
ψ generates a λ-parameter infinitesimal deformation of Hom-δ-Jordan Lie supertriple system T is equivalent to (i) ψ itself defines a Hom-δ-Jordan Lie supertriple system structure on T and (ii) ψ is a 3-Hom-cocycle of T.
Proof. 
[ x 1 , x 2 , x 3 ] λ = [ x 1 , x 2 , x 3 ] + λ ψ ( x 1 , x 2 , x 3 ) ,
and
δ ( 1 ) | x 1 | | x 2 | [ x 2 , x 1 , x 3 ] λ = δ ( 1 ) | x 1 | | x 2 | [ x 2 , x 1 , x 3 ] δ λ ( 1 ) | x 1 | | x 2 | ψ ( x 2 , x 1 , x 3 ) ,
we have
ψ ( x 1 , x 2 , x 3 ) = δ ( 1 ) | x 1 | | x 2 | ψ ( x 2 , x 1 , x 3 ) .
From the equality
0 = ( 1 ) | x 1 | | x 3 | [ x 1 , x 2 , x 3 ] λ + ( 1 ) | x 2 | | x 1 | [ x 2 , x 3 , x 1 ] λ + ( 1 ) | x 3 | | x 2 | [ x 3 , x 1 , x 2 ] λ = ( 1 ) | x 1 | | x 3 | [ x 1 , x 2 , x 3 ] + ( 1 ) | x 2 | | x 1 | [ x 2 , x 3 , x 1 ] + ( 1 ) | x 3 | | x 2 | [ x 3 , x 1 , x 2 ] + λ ( ( 1 ) | x 1 | | x 3 | ψ ( x 1 , x 2 , x 3 ) + ( 1 ) | x 2 | | x 1 | ψ ( x 2 , x 3 , x 1 ) + ( 1 ) | x 3 | | x 2 | ψ ( x 3 , x 1 , x 2 ) ) ,
it follows that
( 1 ) | x 1 | | x 3 | ψ ( x 1 , x 2 , x 3 ) + ( 1 ) | x 2 | | x 1 | ψ ( x 2 , x 3 , x 1 ) + ( 1 ) | x 3 | | x 2 | ψ ( x 3 , x 1 , x 2 ) = 0 .
For the equality
[ α ( x 1 ) , α ( x 2 ) , [ y 1 , y 2 , y 3 ] λ ] λ = [ [ x 1 , x 2 , y 1 ] λ , α ( y 2 ) , α ( y 3 ) ] λ + ( 1 ) | y 1 | ( | x 1 | + | x 2 | ) [ α ( y 1 ) , [ x 1 , x 2 , y 2 ] λ , α ( y 3 ) ] λ + δ ( 1 ) ( | x 1 | + | x 2 | ) ( | y 1 | + | y 2 | ) [ α ( y 1 ) , α ( y 2 ) , [ x 1 , x 2 , y 3 ] λ ] λ ,
the left hand side is equal to
[ α ( x 1 ) , α ( x 2 ) , [ y 1 , y 2 , y 3 ] + λ ψ ( y 1 , y 2 , y 3 ) ] λ = [ α ( x 1 ) , α ( x 2 ) , [ y 1 , y 2 , y 3 ] ] + λ ψ ( α ( x 1 ) , α ( x 2 ) , [ y 1 , y 2 , y 3 ] ) + [ α ( x 1 ) , α ( x 2 ) , λ ψ ( y 1 , y 2 , y 3 ) ] + λ ψ ( α ( x 1 ) , α ( x 2 ) , λ ψ ( y 1 , y 2 , y 3 ) ) = [ α ( x 1 ) , α ( x 2 ) , [ y 1 , y 2 , y 3 ] ] + λ ( ψ ( α ( x 1 ) , α ( x 2 ) , [ y 1 , y 2 , y 3 ] ) + [ α ( x 1 ) , α ( x 2 ) , ψ ( y 1 , y 2 , y 3 ) ] ) + λ 2 ψ ( α ( x 1 ) , α ( x 2 ) , ψ ( y 1 , y 2 , y 3 ) ) ,
and the right hand side is equal to
[ [ x 1 , x 2 , y 1 ] + λ ψ ( x 1 , x 2 , y 1 ) , α ( y 2 ) , α ( y 3 ) ] λ + ( 1 ) | y 1 | ( | x 1 | + | x 2 | ) [ α ( y 1 ) , [ x 1 , x 2 , y 2 ] + λ ψ ( x 1 , x 2 , y 2 ) , α ( y 3 ) ] λ + δ ( 1 ) ( | x 1 | + | x 2 | ) ( | y 1 | + | y 2 | ) [ α ( y 1 ) , α ( y 2 ) , [ x 1 , x 2 , y 3 ] + λ ψ ( x 1 , x 2 , y 3 ) ] λ = [ [ x 1 , x 2 , y 1 ] , α ( y 2 ) , α ( y 3 ) ] + ( 1 ) | y 1 | ( | x 1 | + | x 2 | ) [ α ( y 1 ) , [ x 1 , x 2 , y 2 ] , α ( y 3 ) ] + δ ( 1 ) ( | x 1 | + | x 2 | ) ( | y 1 | + | y 2 | ) [ α ( y 1 ) , α ( y 2 ) , [ x 1 , x 2 , y 3 ] ] + λ ( ψ ( [ x 1 , x 2 , y 1 ] , α ( y 2 ) , α ( y 3 ) ) + [ ψ ( x 1 , x 2 , y 1 ) , α ( y 2 ) , α ( y 3 ) ] + ( 1 ) | y 1 | ( | x 1 | + | x 2 | ) ψ ( α ( y 1 ) , [ x 1 , x 2 , y 2 ] , α ( y 3 ) ) + ( 1 ) | y 1 | ( | x 1 | + | x 2 | ) [ α ( y 1 ) , ψ ( x 1 , x 2 , y 2 ) , α ( y 3 ) ] + δ ( 1 ) ( | x 1 | + | x 2 | ) ( | y 1 | + | y 2 | ) ψ ( α ( y 1 ) , α ( y 2 ) , [ x 1 , x 2 , y 3 ] ) + δ ( 1 ) ( | x 1 | + | x 2 | ) ( | y 1 | + | y 2 | ) [ α ( y 1 ) , α ( y 2 ) , ψ ( x 1 , x 2 , y 3 ) ] ) + λ 2 ( ψ ( ψ ( x 1 , x 2 , y 1 ) , α ( y 2 ) , α ( y 3 ) ) + ( 1 ) | y 1 | ( | x 1 | + | x 2 | ) ψ ( α ( y 1 ) , ψ ( x 1 , x 2 , y 2 ) , α ( y 3 ) ) + δ ( 1 ) ( | x 1 | + | x 2 | ) ( | y 1 | + | y 2 | ) ψ ( α ( y 1 ) , α ( y 2 ) , ψ ( x 1 , x 2 , y 3 ) ) ) .
Thus, we have
ψ ( α ( x 1 ) , α ( x 2 ) , [ y 1 , y 2 , y 3 ] ) + δ D ( α ( x 1 ) , α ( x 2 ) ) ψ ( y 1 , y 2 , y 3 ) = ψ ( [ x 1 , x 2 , y 1 ] , α ( y 2 ) , α ( y 3 ) ) + ( 1 ) ( | x 1 | + | x 2 | + | y 1 | ) ( | y 2 | + | y 3 | ) θ ( α ( y 2 ) , α ( y 3 ) ) ψ ( x 1 , x 2 , y 1 ) + ( 1 ) | y 1 | ( | x 1 | + | x 2 | ) ψ ( α ( y 1 ) , [ x 1 , x 2 , y 2 ] , α ( y 3 ) ) δ ( 1 ) | y 1 | ( | x 1 | + | x 2 | ) θ ( α ( y 1 ) , α ( y 3 ) ) ψ ( x 1 , x 2 , y 2 ) + δ ( 1 ) ( | x 1 | + | x 2 | ) ( | y 1 | + | y 2 | ) ψ ( α ( y 1 ) , α ( y 2 ) , [ x 1 , x 2 , y 3 ] ) + ( 1 ) ( | x 1 | + | x 2 | ) ( | y 1 | + | y 2 | ) D ( α ( y 1 ) , α ( y 2 ) ) ψ ( x 1 , x 2 , y 3 ) .
and
ψ ( α ( x 1 ) , α ( x 2 ) , ψ ( y 1 , y 2 , y 3 ) ) = ψ ( ψ ( x 1 , x 2 , y 1 ) , α ( y 2 ) , α ( y 3 ) ) + ( 1 ) | y 1 | ( | x 1 | + | x 2 | ) ψ ( α ( y 1 ) , ψ ( x 1 , x 2 , y 2 ) , α ( y 3 ) ) + δ ( 1 ) ( | x 1 | + | x 2 | ) ( | y 1 | + | y 2 | ) ψ ( α ( y 1 ) , α ( y 2 ) , ψ ( x 1 , x 2 , y 3 ) ) .
Therefore, ψ defines a Hom- δ -Jordan Lie supertriple system structure on T by (11)–(14). Furthermore, by (13) ψ is a 3-Hom-cocycle. □
A deformation is said to be trivial if there exists an even linear map N : T T such that for φ λ = id + λ N : T λ T we have
φ λ [ x 1 , x 2 , x 3 ] λ = [ φ λ x 1 , φ λ x 2 , φ λ x 3 ] .
It is clear that
φ λ [ x 1 , x 2 , x 3 ] λ = [ x 1 , x 2 , x 3 ] + λ ψ ( x 1 , x 2 , x 3 ) + λ N ( [ x 1 , x 2 , x 3 ] + λ ψ ( x 1 , x 2 , x 3 ) ) = [ x 1 , x 2 , x 3 ] + λ ( ψ ( x 1 , x 2 , x 3 ) + N [ x 1 , x 2 , x 3 ] ) + λ 2 N ψ ( x 1 , x 2 , x 3 ) ,
and
[ φ λ x 1 , φ λ x 2 , φ λ x 3 ] = [ x 1 + λ N x 1 , x 2 + λ N x 2 , x 3 + λ N x 3 ] = [ x 1 , x 2 , x 3 ] + λ ( [ N x 1 , x 2 , x 3 ] + [ x 1 , N x 2 , x 3 ] + [ x 1 , x 2 , N x 3 ] ) + λ 2 ( [ N x 1 , N x 2 , x 3 ] + [ N x 1 , x 2 , N x 3 ] + [ x 1 , N x 2 , N x 3 ] ) + λ 3 [ N x 1 , N x 2 , N x 3 ] .
Thus, we have
ψ ( x 1 , x 2 , x 3 ) = [ N x 1 , x 2 , x 3 ] + [ x 1 , N x 2 , x 3 ] + [ x 1 , x 2 , N x 3 ] N [ x 1 , x 2 , x 3 ] = ( 1 ) | x 1 | ( | x 2 | + | x 3 | ) θ ( x 2 , x 3 ) N ( x 1 ) δ ( 1 ) | x 2 | | x 3 | θ ( x 1 , x 3 ) N ( x 2 ) + δ D ( x 1 , x 2 ) N ( x 3 ) N [ x 1 , x 2 , x 3 ]
N ψ ( x 1 , x 2 , x 3 ) = [ N x 1 , N x 2 , x 3 ] + [ N x 1 , x 2 , N x 3 ] + [ x 1 , N x 2 , N x 3 ]
0 = [ N x 1 , N x 2 , N x 3 ]
From the cohomology theory discussed in Section 2, (16) can be represented in terms of 1-coboundary as ψ = d h o m 1 N . Moreover, it follows from (16) and (17) that N must satisfy the following condition
N 2 [ x 1 , x 2 , x 3 ] = N [ N x 1 , x 2 , x 3 ] + N [ x 1 , N x 2 , x 3 ] + N [ x 1 , x 2 , N x 3 ] ( [ N x 1 , N x 2 , x 3 ] + [ N x 1 , x 2 , N x 3 ] + [ x 1 , N x 2 , N x 3 ] ) .
In the following, we denote by
ψ ( x 1 , x 2 , x 3 ) = [ x 1 , x 2 , x 3 ] N ,
then (17) is equivalent to
N [ x 1 , x 2 , x 3 ] N = [ N x 1 , N x 2 , x 3 ] + [ N x 1 , x 2 , N x 3 ] + [ x 1 , N x 2 , N x 3 ] .
Definition 6.
An even linear operator N : T T is called a Nijenhuis operator if and only if N α = α N and (18) and (19) hold.
Theorem 3.
Let N be a Nijenhuis operator for T. Then, a deformation of T can be obtained by putting
ψ ( x 1 , x 2 , x 3 ) = ( 1 ) | x 1 | ( | x 2 | + | x 3 | ) θ ( x 2 , x 3 ) N ( x 1 ) δ ( 1 ) | x 2 | | x 3 | θ ( x 1 , x 3 ) N ( x 2 ) + δ D ( x 1 , x 2 ) N ( x 3 ) N [ x 1 , x 2 , x 3 ] .
Furthermore, this deformation is a trivial one.
Proof. 
It is obvious that ψ = d N and d ψ = d 2 N = 0 . Thus, ψ is a 3-Hom-cocycle of T. Now, we check that (3) holds for ψ . Considering (16), (20) and (21), it follows that
ψ ( α ( x 1 ) , α ( x 2 ) , ψ ( y 1 , y 2 , y 3 ) ) = [ α ( x 1 ) , α ( x 2 ) , [ N y 1 , y 2 , y 3 ] + [ y 1 , N y 2 , y 3 ] + [ y 1 , y 2 , N y 3 ] N [ y 1 , y 2 , y 3 ] ] N = [ α ( x 1 ) , α ( x 2 ) , [ N y 1 , y 2 , y 3 ] ] N + [ α ( x 1 ) , α ( x 2 ) , [ y 1 , N y 2 , y 3 ] ] N + [ α ( x 1 ) , α ( x 2 ) , [ y 1 , y 2 , N y 3 ] ] N [ α ( x 1 ) , α ( x 2 ) , N [ y 1 , y 2 , y 3 ] ] N = [ N α ( x 1 ) , α ( x 2 ) , [ N y 1 , y 2 , y 3 ] ] + [ α ( x 1 ) , N α ( x 2 ) , [ N y 1 , y 2 , y 3 ] ] + [ α ( x 1 ) , α ( x 2 ) , N [ N y 1 , y 2 , y 3 ] ] N [ α ( x 1 ) , α ( x 2 ) , [ N y 1 , y 2 , y 3 ] ] + [ N α ( x 1 ) , α ( x 2 ) , [ y 1 , N y 2 , y 3 ] ] + [ α ( x 1 ) , N α ( x 2 ) , [ y 1 , N y 2 , y 3 ] ] + [ α ( x 1 ) , α ( x 2 ) , N [ y 1 , N y 2 , y 3 ] ] N [ α ( x 1 ) , α ( x 2 ) , [ y 1 , N y 2 , y 3 ] ] + [ N α ( x 1 ) , α ( x 2 ) , [ y 1 , y 2 , N y 3 ] ] + [ α ( x 1 ) , N α ( x 2 ) , [ y 1 , y 2 , N y 3 ] ] + [ α ( x 1 ) , α ( x 2 ) , N [ y 1 , y 2 , N y 3 ] ] N [ α ( x 1 ) , α ( x 2 ) , [ y 1 , y 2 , N y 3 ] ] [ N α ( x 1 ) , α ( x 2 ) , N [ y 1 , y 2 , y 3 ] ] [ α ( x 1 ) , N α ( x 2 ) , N [ y 1 , y 2 , y 3 ] ] [ α ( x 1 ) , α ( x 2 ) , N 2 [ y 1 , y 2 , y 3 ] ] + N [ α ( x 1 ) , α ( x 2 ) , N [ y 1 , y 2 , y 3 ] ] = [ N α ( x 1 ) , α ( x 2 ) , [ N y 1 , y 2 , y 3 ] ] + [ α ( x 1 ) , N α ( x 2 ) , [ N y 1 , y 2 , y 3 ] ] N [ α ( x 1 ) , α ( x 2 ) , [ N y 1 , y 2 , y 3 ] ] + [ N α ( x 1 ) , α ( x 2 ) , [ y 1 , N y 2 , y 3 ] ] + [ α ( x 1 ) , N α ( x 2 ) , [ y 1 , N y 2 , y 3 ] ] N [ α ( x 1 ) , α ( x 2 ) , [ y 1 , N y 2 , y 3 ] ] + [ N α ( x 1 ) , α ( x 2 ) , [ y 1 , y 2 , N y 3 ] ] + [ α ( x 1 ) , N α ( x 2 ) , [ y 1 , y 2 , N y 3 ] ] N [ α ( x 1 ) , α ( x 2 ) , [ y 1 , y 2 , N y 3 ] ] [ N α ( x 1 ) , α ( x 2 ) , N [ y 1 , y 2 , y 3 ] ] [ α ( x 1 ) , N α ( x 2 ) , N [ y 1 , y 2 , y 3 ] ] + N [ α ( x 1 ) , α ( x 2 ) , N [ y 1 , y 2 , y 3 ] ] + [ α ( x 1 ) , α ( x 2 ) , [ N y 1 , N y 2 , y 3 ] + [ α ( x 1 ) , α ( x 2 ) , [ N y 1 , y 2 , N y 3 ] + [ α ( x 1 ) , α ( x 2 ) , [ y 1 , N y 2 , N y 3 ] ] .
Similarly, a direct computation shows that
ψ ( ψ ( x 1 , x 2 , y 1 ) , α ( y 2 ) , α ( y 3 ) ) = [ [ N x 1 , N x 2 , y 1 ] , α ( y 2 ) , α ( y 3 ) ] + [ [ N x 1 , x 2 , N y 1 ] , α ( y 2 ) , α ( y 3 ) ] + [ [ x 1 , N x 2 , N y 1 ] , α ( y 2 ) , α ( y 3 ) ] + [ [ N x 1 , x 2 , y 1 ] , N α ( y 2 ) , α ( y 3 ) ] + [ [ N x 1 , x 2 , y 1 ] , α ( y 2 ) , N α ( y 3 ) ] N [ [ N x 1 , x 2 , y 1 ] , α ( y 2 ) , α ( y 3 ) ] + [ [ x 1 , N x 2 , y 1 ] , N α ( y 2 ) , α ( y 3 ) ] + [ [ x 1 , N x 2 , y 1 ] , α ( y 2 ) , N α ( y 3 ) ] N [ [ x 1 , N x 2 , y 1 ] , α ( y 2 ) , α ( y 3 ) ] + [ [ x 1 , x 2 , N y 1 ] , N α ( y 2 ) , α ( y 3 ) ] + [ [ x 1 , x 2 , N y 1 ] , α ( y 2 ) , N α ( y 3 ) ] N [ [ x 1 , x 2 , N y 1 ] , α ( y 2 ) , α ( y 3 ) ] [ N [ x 1 , x 2 , y 1 ] , N α ( y 2 ) , α ( y 3 ) ] [ N [ x 1 , x 2 , y 1 ] , α ( y 2 ) , N α ( y 3 ) ] + N [ N [ x 1 , x 2 , y 1 ] , α ( y 2 ) , α ( y 3 ) ] ,
( 1 ) | y 1 | ( | x 1 | + | x 2 | ) ψ ( α ( y 1 ) , ψ ( x 1 , x 2 , y 2 ) , α ( y 3 ) ) = ( 1 ) | y 1 | ( | x 1 | + | x 2 | ) ( [ N α ( y 1 ) , [ N x 1 , x 2 , y 2 ] , α ( y 3 ) ] + [ α ( y 1 ) , [ N x 1 , x 2 , y 2 ] , N α ( y 3 ) ] N [ α ( y 1 ) , [ N x 1 , x 2 , y 2 ] , α ( y 3 ) ] + [ N α ( y 1 ) , [ x 1 , N x 2 , y 2 ] , α ( y 3 ) ] + [ α ( y 1 ) , [ x 1 , N x 2 , y 2 ] , N α ( y 3 ) ] N [ α ( y 1 ) , [ x 1 , N x 2 , y 2 ] , α ( y 3 ) ] + [ N α ( y 1 ) , [ x 1 , x 2 , N y 2 ] , α ( y 3 ) ] + [ α ( y 1 ) , [ x 1 , x 2 , N y 2 ] , N α ( y 3 ) ] N [ α ( y 1 ) , [ x 1 , x 2 , N y 2 ] , α ( y 3 ) ] [ N α ( y 1 ) , N [ x 1 , x 2 , y 2 ] , α ( y 3 ) ] [ α ( y 1 ) , N [ x 1 , x 2 , y 2 ] , N α ( y 3 ) ] + N [ α ( y 1 ) , N [ x 1 , x 2 , y 2 ] , α ( y 3 ) ] + [ α ( y 1 ) , [ N x 1 , N x 2 , y 2 ] , α ( y 3 ) ] + [ α ( y 1 ) , [ N x 1 , x 2 , N y 2 ] , α ( y 3 ) ] + [ α ( y 1 ) , [ x 1 , N x 2 , N y 2 ] , α ( y 3 ) ] ) ,
and
δ ( 1 ) ( | x 1 | + | x 2 | ) ( | y 1 | + | y 2 | ) ψ ( α ( y 1 ) , α ( y 2 ) , ψ ( x 1 , x 2 , y 3 ) ) = δ ( 1 ) ( | x 1 | + | x 2 | ) ( | y 1 | + | y 2 | ) ( [ N α ( y 1 ) , α ( y 2 ) , [ N x 1 , x 2 , y 3 ] ] + [ α ( y 1 ) , N α ( y 2 ) , [ N x 1 , x 2 , y 3 ] ] N [ α ( y 1 ) , α ( y 2 ) , [ N x 1 , x 2 , y 3 ] ] + [ N α ( y 1 ) , α ( y 2 ) , [ x 1 , N x 2 , y 3 ] ] + [ α ( y 1 ) , N α ( y 2 ) , [ x 1 , N x 2 , y 3 ] ] N [ α ( y 1 ) , α ( y 2 ) , [ x 1 , N x 2 , y 3 ] ] + [ N α ( y 1 ) , α ( y 2 ) , [ x 1 , x 2 , N y 3 ] ] + [ α ( y 1 ) , N α ( y 2 ) , [ x 1 , x 2 , N y 3 ] ] N [ α ( y 1 ) , α ( y 2 ) , [ x 1 , x 2 , N y 3 ] ] [ N α ( y 1 ) , α ( y 2 ) , N [ x 1 , x 2 , y 3 ] ] [ α ( y 1 ) , N α ( y 2 ) , N [ x 1 , x 2 , y 3 ] ] + N [ α ( y 1 ) , α ( y 2 ) , N [ x 1 , x 2 , y 3 ] ] + [ α ( y 1 ) , α ( y 2 ) , [ N x 1 , N x 2 , y 3 ] ] + [ α ( y 1 ) , α ( y 2 ) , [ N x 1 , x 2 , N y 3 ] ] + [ α ( y 1 ) , α ( y 2 ) , [ x 1 , N x 2 , N y 3 ] ] ) .
By the definition of N, we know that N α = α N . Using (3) and (21), and Theorem 2, it follows that
ψ ( α ( x 1 ) , α ( x 2 ) , ψ ( y 1 , y 2 , y 3 ) ) ψ ( ψ ( x 1 , x 2 , y 1 ) , α ( y 2 ) , α ( y 3 ) ) ( 1 ) | y 1 | ( | x 1 | + | x 2 | ) ψ ( α ( y 1 ) , ψ ( x 1 , x 2 , y 2 ) , α ( y 3 ) ) δ ( 1 ) ( | x 1 | + | x 2 | ) ( | y 1 | + | y 2 | ) ψ ( α ( y 1 ) , α ( y 2 ) , ψ ( x 1 , x 2 , y 3 ) ) = 0 .
The proof of the theorem is complete. □

4. Abelian Extensions of Hom- δ -Jordan Lie Supertriple Systems

In this section, we show that associated with any abelian extension, there is a representation and a 3-Hom-cocycle.
An ideal of a Hom- δ -Jordan Lie supertriple system T is a subspace I such that [ I , T , T ] I . An ideal I of a Hom- δ -Jordan Lie supertriple system is called an abelian ideal if, moreover, [ T , I , I ] = 0 . Notice that [ T , I , I ] = 0 implies that [ I , T , I ] = 0 and [ I , I , T ] = 0 .
Definition 7.
Let ( T , [ · , · , · ] T , δ ) , ( V , [ · , · , · ] V , δ ) , and ( T ^ , [ · , · , · ] T ^ , δ ) be Hom-δ-Jordan Lie supertriple systems and i : V T ^ , p : T ^ T be homomorphisms. The following sequence of Hom-δ-Jordan Lie supertriple systems is a short exact sequence if Im ( i ) = Ker ( p ) ,   Ker ( i ) = 0 and Im ( p ) = T ,
0 V i T ^ p T 0 .
In this case, we call T ^ an extension of T by V, and denote it by E T ^ . It is called an abelian extension if V is an abelian ideal of T ^ , i.e., [ u , v , · ] T ^ = [ u , · , v ] T ^ = [ · , u , v ] T ^ = 0 , for all u , v V .
A section σ : T T ^ of p : T ^ T consists of linear maps σ : T T ^ such that p σ = id T ,   α ^ σ = σ α .
Definition 8.
Two extensions of Hom-δ-Jordan Lie supertriple systems E T ^ : 0 V i T ^ p T 0 and E T ˜ : 0 V j T ˜ q T 0 are equivalent. If there exists a Hom-δ-Jordan Lie supertriple system homomorphism F : T ^ T ˜ such that the following diagram commutes
Mathematics 11 00871 i001
Let T ^ be an abelian extension of T by V, and a linear mapping σ : T T ^ be a section. Define maps T T E n d ( V ) by
D ( x 1 , x 2 ) ( u ) = δ [ σ ( x 1 ) , σ ( x 2 ) , u ] T ^ ,
θ ( x 1 , x 2 ) ( u ) = ( 1 ) | u | ( | x 1 | + | x 2 | ) [ u , σ ( x 1 ) , σ ( x 2 ) ] T ^
Clearly, the following fact holds, i.e.,
D ( x 1 , x 2 ) ( u ) = ( 1 ) | x 1 | | x 2 | θ ( x 2 , x 1 ) ( u ) δ θ ( x 1 , x 2 ) ( u ) ,
for all ( x 1 , x 2 ) T T , u V .
Let σ : T T ^ be a section of the abelian extension. Define the following map ω : T × T × T T ^ :
ω ( x 1 , x 2 , x 3 ) = [ σ ( x 1 ) , σ ( x 2 ) , σ ( x 3 ) ] T ^ σ ( [ x 1 , x 2 , x 3 ] T ) ,
for all x 1 , x 2 , x 3 T .
Theorem 4.
Let 0 V T ^ T 0 be an abelian extension of T by V. Then, ω defined by (25) is a 3-Hom-cocycle of T with coefficients in V, where the representation θ is given by (24).
Proof. 
By the equality
[ α ^ ( σ ( x 1 ) ) , α ^ ( σ ( x 2 ) ) , [ σ ( y 1 ) , σ ( y 2 ) , σ ( y 3 ) ] T ^ ] T ^ = [ [ σ ( x 1 ) , σ ( x 2 ) , σ ( y 1 ) ] T ^ , α ^ ( σ ( y 2 ) ) , α ^ ( σ ( y 3 ) ) ] T ^ + ( 1 ) | y 1 | ( | x 1 | + | x 2 | ) [ α ^ ( σ ( y 1 ) ) , [ σ ( x 1 ) , σ ( x 2 ) , σ ( y 2 ) ] T ^ , α ^ ( σ ( y 3 ) ) ] T ^ + δ ( 1 ) ( | x 1 | + | x 2 | ) ( | y 1 | + | y 2 | ) [ α ^ ( σ ( y 1 ) ) , α ^ ( σ ( y 2 ) ) , [ σ ( x 1 ) , σ ( x 2 ) , σ ( y 3 ) ] T ^ ] T ^ .
The left hand side shows that
[ α ^ ( σ ( x 1 ) ) , α ^ ( σ ( x 2 ) ) , [ σ ( y 1 ) , σ ( y 2 ) , σ ( y 3 ) ] T ^ ] T ^ = [ α ^ ( σ ( x 1 ) ) , α ^ ( σ ( x 2 ) ) , ω ( y 1 , y 2 , y 3 ) + σ ( [ y 1 , y 2 , y 3 ] T ) ] T ^ = δ D ( α ^ ( x 1 ) , α ^ ( x 2 ) ) ω ( y 1 , y 2 , y 3 ) + [ α ^ ( σ ( x 1 ) ) , α ^ ( σ ( x 2 ) ) , σ ( [ y 1 , y 2 , y 3 ] T ) ] T ^ = δ D ( α ^ ( x 1 ) , α ^ ( x 2 ) ) ω ( y 1 , y 2 , y 3 ) + [ σ ( α ( x 1 ) ) , σ ( α ( x 2 ) ) , σ ( [ y 1 , y 2 , y 3 ] ) ] = δ D ( α ( x 1 ) , α ( x 2 ) ) ω ( y 1 , y 2 , y 3 ) + ω ( α ( x 1 ) , α ( x 2 ) , [ y 1 , y 2 , y 3 ] T ) + σ ( [ α ( x 1 ) , α ( x 2 ) , [ y 1 , y 2 , y 3 ] T ] T ) .
Similarly, the right side is equal to
[ [ σ ( x 1 ) , σ ( x 2 ) , σ ( y 1 ) ] T ^ , α ^ ( σ ( y 2 ) ) , α ^ ( σ ( y 3 ) ) ] T ^ + ( 1 ) | y 1 | ( | x 1 | + | x 2 | ) [ α ^ ( σ ( y 1 ) ) , [ σ ( x 1 ) , σ ( x 2 ) , σ ( y 2 ) ] T ^ , α ^ ( σ ( y 3 ) ) ] T ^ + δ ( 1 ) ( | x 1 + x 2 | ) ( | y 1 + y 2 | ) [ α ^ ( σ ( y 1 ) ) , α ^ ( σ ( y 2 ) ) , [ σ ( x 1 ) , σ ( x 2 ) , σ ( y 3 ) ] T ^ ] T ^ = [ ω ( x 1 , x 2 , y 1 ) + σ ( [ x 1 , x 2 , y 1 ] T ) , α ^ ( σ ( y 2 ) ) , α ^ ( σ ( y 3 ) ) ] T ^ + ( 1 ) | y 1 | ( | x 1 | + | x 2 | ) ( [ α ^ ( σ ( y 1 ) ) , ω ( x 1 , x 2 , y 2 ) + σ ( [ x 1 , x 2 , y 2 ] T ) , α ^ ( σ ( y 3 ) ) ] T ^ + δ ( 1 ) ( | x 1 + x 2 | ) ( | y 1 + y 2 | ) [ α ^ ( σ ( y 1 ) ) , α ^ ( σ ( y 2 ) ) , ω ( x 1 , x 2 , y 3 ) + σ ( [ x 1 , x 2 , y 3 ] T ) ] T ^ = [ ω ( x 1 , x 2 , y 1 ) , α ^ ( σ ( y 2 ) ) , α ^ ( σ ( y 3 ) ) ] T ^ + [ σ ( [ x 1 , x 2 , y 1 ] T ) , α ^ ( σ ( y 2 ) ) , α ^ ( σ ( y 3 ) ) ] T ^ + ( 1 ) | y 1 | ( | x 1 | + | x 2 | ) [ α ^ ( σ ( y 1 ) ) , ω ( x 1 , x 2 , y 2 ) , α ^ ( σ ( y 3 ) ) ] T ^ + ( 1 ) | y 1 | ( | x 1 | + | x 2 | ) [ α ^ ( σ ( y 1 ) ) , σ ( [ x 1 , x 2 , y 2 ] T ) , α ^ ( σ ( y 3 ) ) ] T ^ + δ ( 1 ) ( | x 1 + x 2 | ) ( | y 1 + y 2 | ) [ α ^ ( σ ( y 1 ) ) , α ^ ( σ ( y 2 ) ) , ω ( x 1 , x 2 , y 3 ) ] T ^ + δ ( 1 ) ( | x 1 + x 2 | ) ( | y 1 + y 2 | ) [ α ^ ( σ ( y 1 ) ) , α ^ ( σ ( y 2 ) ) , σ ( [ x 1 , x 2 , y 3 ] T ) ] T ^ = [ ω ( x 1 , x 2 , y 1 ) , σ ( α ( y 2 ) ) , σ ( α ( y 3 ) ) ] T ^ + [ σ ( [ x 1 , x 2 , y 1 ] T ) , σ ( α ( y 2 ) ) , σ ( α ( y 3 ) ) ] T ^ + ( 1 ) | y 1 | ( | x 1 | + | x 2 | ) [ σ ( α ( y 1 ) ) , ω ( x 1 , x 2 , y 2 ) , σ ( α ( y 3 ) ) ] T ^ + ( 1 ) | y 1 | ( | x 1 | + | x 2 | ) [ σ ( α ( y 1 ) ) , σ ( [ x 1 , x 2 , y 2 ] T ) , σ ( α ( y 3 ) ) ] T ^ + δ ( 1 ) ( | x 1 + x 2 | ) ( | y 1 + y 2 | ) [ σ ( α ( y 1 ) ) , σ ( α ( y 2 ) ) , ω ( x 1 , x 2 , y 3 ) ] T ^ + δ ( 1 ) ( | x 1 + x 2 | ) ( | y 1 + y 2 | ) [ σ ( α ( y 1 ) ) , σ ( α ( y 2 ) ) , σ ( [ x 1 , x 2 , y 3 ] T ) ] T ^ = ( 1 ) ( | x 1 | + | x 2 | + | y 1 | ) ( | y 2 | + | y 3 | ) θ ( α ( y 2 ) , α ( y 3 ) ) ω ( x 1 , x 2 , y 1 ) + σ ( [ [ x 1 , x 2 , y 1 ] T , α ( y 2 ) , α ( y 3 ) ] T ) + ω ( [ [ x 1 , x 2 , y 1 ] T , α ( y 2 ) , α ( y 3 ) ] T ) δ ( 1 ) | y 1 | ( | x 1 | + | x 2 | ) + | y 3 | ( | x 1 | + | x 2 | + | y 2 | ) θ ( α ( y 1 ) , α ( y 3 ) ) ω ( x 1 , x 2 , y 2 ) + ( 1 ) | y 1 | ( | x 1 | + | x 2 | ) ω ( α ( y 1 ) , [ x 1 , x 2 , y 2 ] T , α ( y 3 ) ) + ( 1 ) | y 1 | ( | x 1 | + | x 2 | ) σ ( [ α ( y 1 ) , [ x 1 , x 2 , y 2 ] T , α ( y 3 ) ] T ) + ( 1 ) ( | x 1 + x 2 | ) ( | y 1 + y 2 | ) D ( α ( y 1 ) , α ( y 2 ) ) ω ( x 1 , x 2 , y 3 ) + δ ( 1 ) ( | x 1 + x 2 | ) ( | y 1 + y 2 | ) ω ( α ( y 1 ) , α ( y 2 ) , [ x 1 , x 2 , y 3 ] T ) + δ ( 1 ) ( | x 1 + x 2 | ) ( | y 1 + y 2 | ) σ ( [ α ( y 1 ) , α ( y 2 ) , [ x 1 , x 2 , y 3 ] T ] T ) .
Thus, it follows that
ω ( [ x 1 , x 2 , y 1 ] T , α ( y 2 ) , α ( y 3 ) ) + ( 1 ) | y 1 | ( | x 1 | + | x 2 | ) ω ( α ( y 1 ) , [ x 1 , x 2 , y 2 ] T , α ( y 3 ) ) + δ ( 1 ) ( | x 1 | + | x 2 | ) ( | y 1 | + | y 2 | ) ω ( α ( y 1 ) , α ( y 2 ) , [ x 1 , x 2 , y 3 ] T ) + ( 1 ) ( | x 1 | + | x 2 | + | y 1 | ) ( | y 2 | + | y 3 | ) θ ( α ( y 2 ) , α ( y 3 ) ) ω ( x 1 , x 2 , y 1 ) δ ( 1 ) ( | x 1 | + | x 2 | ) ( | y 1 + y 3 | ) + | y 2 | | y 3 | θ ( α ( y 1 ) , α ( y 3 ) ) ω ( x 1 , x 2 , y 2 ) + ( 1 ) ( | x 1 | + | x 2 | ) ( | y 1 | + | y 2 | ) D ( α ( y 1 ) , α ( y 2 ) ) ω ( x 1 , x 2 , y 3 ) ω ( α ( x 1 ) , α ( x 2 ) , [ y 1 , y 2 , y 3 ] T ) δ D ( α ( x 1 ) , α ( x 2 ) ) ω ( y 1 , y 2 , y 3 ) = 0 .
Therefore, ω is a 3-Hom-cocycle. □
Theorem 5.
Let T be a Hom-δ-Jordan Lie surpetriple system, ( V , θ ) be a T-module and ω be a 3-Hom-cocycle, then T V is a Hom-δ-Jordan Lie surpetriple system under the following multiplication:
[ x 1 + u 1 , x 2 + u 2 , x 3 + u 3 ] ω = [ x 1 , x 2 , x 3 ] + ω ( x 1 , x 2 , x 3 ) + δ D ( x 1 , x 2 ) ( u 3 ) δ ( 1 ) | x 2 | | x 3 | θ ( x 1 , x 3 ) ( u 2 ) + ( 1 ) | x 1 | ( | x 2 | + | x 3 | ) θ ( x 2 , x 3 ) ( u 1 ) .
and
( α + A ) ( x + u ) = α ( x ) + A ( u ) .
Proof. 
Similar to the proof of Proposition 1, we obtain (4)–(6) hold. □
Theorem 6.
Two abelian extensions of Hom -δ- Jordan Lie supertriple systems E T ^ : 0 V i T ^ p T 0 and E T ˜ : 0 V j T ˜ q T 0 are equivalent ⟺ ω and ω are in the same cohomology class.
Proof. 
) Let F : T ω V T ω V be the corresponding homomorphism. Thus,
F [ x 1 , x 2 , x 3 ] ω = [ F ( x 1 ) , F ( x 2 ) , F ( x 3 ) ] ω .
Note that F is an equivalence of extensions, so there is ρ : T V such that
F ( x i + u i ) = x i + ρ ( x i ) + u i , i = 1 , 2 , 3 .
The left hand side of (26) is equal to
F ( [ x 1 , x 2 , x 3 ] + ω ( x 1 , x 2 , x 3 ) ) = [ x 1 , x 2 , x 3 ] + ω ( x 1 , x 2 , x 3 ) + ρ ( [ x 1 , x 2 , x 3 ] ) ,
and the right hand side of (26) is equal to
[ x 1 + ρ ( x 1 ) , x 2 + ρ ( x 2 ) , x 3 + ρ ( x 3 ) ] ω = [ x 1 , x 2 , x 3 ] + ω ( x 1 , x 2 , x 3 ) + δ D ( x 1 , x 2 ) ρ ( x 3 ) δ ( 1 ) | x 2 | | x 3 | θ ( x 1 , x 3 ) ρ ( x 2 ) + ( 1 ) | x 1 | ( | x 2 | + | x 3 | ) θ ( x 2 , x 3 ) ρ ( x 1 ) .
Then we obtain that
( ω ω ) ( x 1 , x 2 , x 3 ) = δ D ( x 1 , x 2 ) ρ ( x 3 ) δ ( 1 ) | x 2 | | x 3 | θ ( x 1 , x 3 ) ρ ( x 2 ) + ( 1 ) | x 1 | ( | x 2 | + | x 3 | ) θ ( x 2 , x 3 ) ρ ( x 1 ) ρ ( [ x 1 , x 2 , x 3 ] ) .
Therefore, ω ω = d 1 ρ , we get ω and ω are in the same cohomology class.
) If ω and ω are in the same cohomology class, we assume that ω ω = d 1 ρ , then F defined by (27) is an equivalence. □

Author Contributions

Writing—original draft, Q.L.; Writing—review & editing, L.M. All authors have read and agreed to the published version of the manuscript.

Funding

Supported by NNSF of China (No. 11801211), Science Foundation of Heilongjiang Province (No. QC2016008), the Fundamental Research Funds in Heilongjiang Provincial Universities (No. 145209132).

Data Availability Statement

Not applicable.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Bars, I.; Gundaydin, M. Construction of Lie algebras and Lie superalgebras form ternary algebras. J. Math. Phys. 1997, 20, 1977–1993. [Google Scholar] [CrossRef]
  2. Lister, W. A structure theory of Lie triple systems. Trans. Am. Math. Soc. 1952, 72, 217–242. [Google Scholar] [CrossRef]
  3. Yamaguti, K. On the cohomology space of Lie triple system. Kumamoto J. Sci. Ser. A 1960, 5, 44–52. [Google Scholar]
  4. Kubo, F.; Taniguchi, Y. A controlling cohomology of the deformation theory of Lie triple systems. J. Algebra 2004, 278, 242–250. [Google Scholar] [CrossRef]
  5. Zhang, T. Notes on cohomologies of Lie triple systems. J. Lie Theory 2014, 24, 909–929. [Google Scholar]
  6. Okubo, S. Parastatistics as Lie supertriple systems. J. Math. Phys. 1994, 35, 2785–2803. [Google Scholar] [CrossRef]
  7. Okubo, S.; Kamiya, N. Jordan-Lie superalgebra and Jordan-Lie triple system. J. Algebra 1997, 198, 388–411. [Google Scholar] [CrossRef]
  8. Okubo, S.; Kamiya, N. Quasi-classical Lie superalgebras and Lie supertriple systems. Comm. Algebra 2002, 30, 3825–3850. [Google Scholar] [CrossRef]
  9. Kamiya, N.; Okubo, S. A construction of simple Jordan superalgebra of F type from a Jordan-Lie triple system. Ann. Mat. Pura. Appl. 2002, 181, 339–348. [Google Scholar] [CrossRef]
  10. Ma, L.; Chen, L. On δ-Jordan Lie triple systems. Linear Multilinear Algebra 2017, 65, 731–751. [Google Scholar] [CrossRef]
  11. Wang, S.; Zhang, X.; Guo, S. Derivations and deformations of δ-Jordan Lie supertriple systems. Adv. Math. Phys. 2019, 3295462, 15. [Google Scholar] [CrossRef]
  12. Li, Q.; Ma, L. 1-parameter formal deformations and abelian extensions of Lie color triple systems. Electron. Res. Arch. 2022, 30, 2524–2539. [Google Scholar] [CrossRef]
  13. Sheng, Y. Representations of hom-Lie algebras. Algebra Represent. Theory 2012, 15, 1081–1098. [Google Scholar] [CrossRef]
  14. Yau, D. On n-ary Hom-Nambu and Hom-Nambu-Lie algebras. J. Geom. Phys. 2012, 62, 506–522. [Google Scholar] [CrossRef]
  15. Yuan, J.; Sun, L.; Liu, W. Hom-Lie superalgebra structures on infinite-dimensional simple Lie superalgebras of vector fields. J. Geom. Phys. 2014, 84, 1–7. [Google Scholar] [CrossRef]
  16. Ammar, F.; Mabrouk, S.; Makhlouf, A. Cohomology and deformations of Hom-algebras. J. Lie Theory 2011, 21, 813–836. [Google Scholar]
  17. Benayadi, S.; Makhlouf, A. Hom-Lie algebras with invariant nondegenerate bilinear forms. J. Geom. Phys. 2014, 76, 38–60. [Google Scholar] [CrossRef]
  18. Elhamdadi, M.; Makhlouf, A. Deformations of Hom-alternative and Hom-Malcev algebras. Algebras Groups Geom. 2011, 28, 117–145. [Google Scholar]
  19. Hartwig, J.; Larsson, D.; Silvestrov, S. Deformations of Lie algebras using σ-derivations. J. Algebra 2006, 295, 314–361. [Google Scholar] [CrossRef]
  20. Jin, Q.; Li, X. Hom-Lie algebra structures on semi-simple Lie algebras. J. Algebra 2008, 319, 1398–1408. [Google Scholar] [CrossRef]
  21. Larsson, D.; Silvestrov, S. Quasi-hom-Lie algebras, central extensions and 2-cocycle-like identities. J. Algebra 2005, 288, 321–344. [Google Scholar] [CrossRef]
  22. Ma, L.; Chen, L.; Zhao, J. δ-Hom-Jordan Lie superalgebras. Comm. Algebra 2018, 46, 1668–1697. [Google Scholar] [CrossRef]
  23. Makhlouf, A.; Silvestrov, S. Notes on 1-parameter formal deformations of Hom-associative and Hom-Lie algebras. Forum Math. 2010, 22, 715–739. [Google Scholar] [CrossRef]
  24. Sun, B.; Chen, L.; Liu, Y. T*-extensions and abelian extensions of Hom-Lie color algebras. Rev. Union. Mat. Argent. 2018, 59, 123–142. [Google Scholar] [CrossRef] [Green Version]
  25. Chen, L.; Yi, Y.; Chen, M.; Tang, Y. Cohomology and 1-parameter formal deformations of Hom-δ-Lie triple systems. Adv. Appl. Clifford Algebras 2019, 29, 1–14. [Google Scholar] [CrossRef]
  26. Li, Q.; Ma, L. Central extensions and Nijenhuis operators of Hom-δ-Jordan Lie triple systems. Adv. Math. Phys. 2022, 2706774, 9. [Google Scholar] [CrossRef]
  27. Ma, Y.; Chen, L.; Lin, J. Central extensions and deformations of Hom-Lie triple systems. Comm. Algebra 2018, 46, 1212–1230. [Google Scholar] [CrossRef] [Green Version]
  28. Gaparayi, D.; Attan, S.; Issa, A.N. Hom-Lie-Yamaguti superalgebras. Korean J. Math. 2019, 2, 175–192. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Li, Q.; Ma, L. Nijenhuis Operators and Abelian Extensions of Hom-δ-Jordan Lie Supertriple Systems. Mathematics 2023, 11, 871. https://doi.org/10.3390/math11040871

AMA Style

Li Q, Ma L. Nijenhuis Operators and Abelian Extensions of Hom-δ-Jordan Lie Supertriple Systems. Mathematics. 2023; 11(4):871. https://doi.org/10.3390/math11040871

Chicago/Turabian Style

Li, Qiang, and Lili Ma. 2023. "Nijenhuis Operators and Abelian Extensions of Hom-δ-Jordan Lie Supertriple Systems" Mathematics 11, no. 4: 871. https://doi.org/10.3390/math11040871

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop