Next Article in Journal
A Hybrid Method for All Types of Solutions of the System of Cauchy-Type Singular Integral Equations of the First Kind
Next Article in Special Issue
On the Study of Starlike Functions Associated with the Generalized Sine Hyperbolic Function
Previous Article in Journal
On the Concept of Equilibrium in Sanctions and Countersanctions in a Differential Game
Previous Article in Special Issue
Geometric Properties of Certain Classes of Analytic Functions with Respect to (x,y)-Symmetric Points
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Boundedness and Compactness of Weighted Composition Operators from α-Bloch Spaces to Bers-Type Spaces on Generalized Hua Domains of the First Kind

School of Mathematics and Statistics, Jiangsu Normal University, Xuzhou 221116, China
*
Author to whom correspondence should be addressed.
Mathematics 2023, 11(20), 4403; https://doi.org/10.3390/math11204403
Submission received: 2 September 2023 / Revised: 18 October 2023 / Accepted: 19 October 2023 / Published: 23 October 2023
(This article belongs to the Special Issue Complex Analysis and Geometric Function Theory, 2nd Edition)

Abstract

:
We address weighted composition operators ψ C ϕ from α -Bloch spaces to Bers-type spaces of bounded holomorphic functions on Y, where Y is a generalized Hua domain of the first kind, and obtain some necessary and sufficient conditions for the boundedness and compactness of those operators.

1. Introduction

Let Ω be a bounded domain of C n and H ( Ω ) the class of all holomorphic functions on Ω . Then, consider a holomorphic self-map ϕ of Ω and a function ψ H ( Ω ) . The linear operator
( ψ C ϕ f ) ( z ) = ψ ( z ) f ( ϕ ( z ) ) ,
is referred to as a weighted composition operator for f H ( Ω ) . If ψ ( z ) 1 , it reduces to the composition operator, whereas for ϕ ( z ) = z , it becomes the multiplication operator. For any given holomorphic function f, ( ψ C ϕ f ) ( z ) represents a generalized composition/multiplication operator. The reader is referred to book [1] for an extensive introduction to the topic.
In this paper, we study the boundedness and the compactness of weighted composition operators from α -Bloch spaces B α to Bers-type spaces built on generalized Hua domains of the first kind. On GHE I the α -Bloch space B α consists of all f H ( GHE I ) , such that
f B α : = | f ( 0 , 0 ) | + sup ( Z , ξ ) GHE I [ det ( I Z Z ¯ ) k ξ p 2 ] α | f ( Z , ξ ) | < ,
where
f ( Z , ξ ) = f ( Z , ξ ) z 11 , f ( Z , ξ ) z 12 , , f ( Z , ξ ) z m n , f ( Z , ξ ) ξ 1 , , f ( Z , ξ ) ξ r .
It is clear that B α ( GHE I ) is a Banach space.
In 1930, Cartan [2] was the the first to characterize the six types of irreducible bounded symmetric domains, which consist of four types of bounded symmetric classical domains, also referred to as Cartan domains, and two exceptional domains, whose complex dimension are 16 and 27, respectively. The Cartan domains are defined as follows:
I ( m , n ) : = Z C m × n : I m Z Z ¯ > 0 , II ( p ) : = Z C p ( p + 1 ) 2 : I m Z Z ¯ > 0 , Z = Z , III ( q ) : = Z C q ( q 1 ) 2 : I m Z Z ¯ > 0 , Z = Z , IV ( n ) : = z C n : 1 + | z z | 2 2 z z ¯ > 0 , 1 | z z | 2 > 0 ,
where Z denotes the transpose of Z, Z ¯ denotes the conjugate of Z, and m , n , p , q are positive integers. In 1998, building on the notion of bounded symmetric domains, Yin and Roos constructed a new type of domain called the Cartan–Hartogs domain [3], and Yin introduced the so-called Hua domains [4], which include the Cartan–Hartogs domains, the Cartan–Egg domains, the Hua domains, the generalized Hua domains, and the Hua construction. The generalized Hua domains are defined as follows:
GHE I ( N 1 , N 2 , , N r ; m , n ; p 1 , p 2 , , p r ; k ) = ξ j C N j , Z I ( m , n ) : j = 1 r | ξ j | 2 p j < det ( I Z Z ¯ ) k , j = 1 , 2 , , r GHE II ( N 1 , N 2 , , N r ; p ; p 1 , p 2 , , p r ; k ) = ξ j C N j , Z II ( p ) : j = 1 r | ξ j | 2 p j < det ( I Z Z ¯ ) k , j = 1 , 2 , , r GHE III ( N 1 , N 2 , , N r ; q ; p 1 , p 2 , , p r ; k ) = ξ j C N j , Z III ( q ) : j = 1 r | ξ j | 2 p j < det ( I + Z Z ¯ ) k , j = 1 , 2 , , r GHE IV ( N 1 , N 2 , , N r ; n ; p 1 , p 2 , , p r ; k ) = ξ j C N j , z IV ( n ) : j = 1 r | ξ j | 2 p j < ( 1 + | z z | 2 2 z z ¯ ) k , j = 1 , 2 , , r
where ξ j = ( ξ j 1 , , ξ j N j ) , j = 1 , , r , I ( m , n ) , II ( p ) , III ( q ) , IV ( n ) denote, respectively, the Cartan domains of the first type, second type, third type, and fourth type, Z denotes the transpose of Z, Z ¯ denotes the conjugate of Z, N 1 , , N r , m , n , p , q are positive integers, and p 1 , , p r are positive real numbers. For k = 1 , m = 1 , p 1 = = p r = 1 , the generalized Hua domain of the first kind reduces to the unit ball. Without loss of generality, we may assume that N j = 1 , then ξ j C , j = 1 , , r , ξ = ( ξ 1 , , ξ r ) and ξ p 2 = j = 1 r | ξ j | 2 p j . We define
ξ , t p = ξ 1 , t 1 p 1 + ξ 2 , t 2 p 2 + + ξ r , t r p r .
We also write
| ξ , t p | | ξ 1 , t 1 p 1 | + | ξ 2 , t 2 p 2 | + + | ξ r , t r p r | | ξ 1 | p 1 | t 1 | p 1 + + | ξ r | p r | t r | p r = | α , β | | α | | β | = ξ p t p ,
where | ξ i | p i = α i , | t i | p i = β i ( i = 1 , , r ) , α = ( α 1 , , α r ) , β = ( β 1 , , β r ) .
For the sake of convenience, the four types of generalized Hua domains will be referred to as GHE I , GHE II , GHE III , and GHE IV .
On GHE I , a Bers-type space A β consists of all f H ( GHE I ) , such that
f A β : = sup ( Z , ξ ) GHE I [ det ( I Z Z ¯ ) k ξ p 2 ] β | f ( Z , ξ ) | < .
It is easy to see that A β ( GHE I ) is a Banach space with norm · .
The boundedness and the compactness of weighted composition operators on (or between) spaces of holomorphic functions on various domains have received considerable attention. Wang and Liu [5] studied the boundedness and the compactness of the weighted composition operators on the Bers-type space on the open unit disc, whereas Zhou and Xu [6] characterized the boundedness and the compactness of the weighted composition operators between α -Bloch space and β -Bloch space, Li [7] investigated the boundedness and the compactness of the weighted composition operators from Hardy space to Bers-type space, and Zhu [8] characterized the boundedness and compactness of D ϕ , u n : B H α . For the unit poly-disk, Li and Stević [9,10] presented some necessary and sufficient conditions for the boundedness and the compactness of the weighted composition operators between H and α -Bloch space, whereas for the open unit ball, Li and Stević [11] studied the boundedness and the compactness of the weighted composition operators between H and Bloch space (see also [12,13,14,15]).
The boundness and compactness of weighted composition have wide applications in differential equations, functional analysis, numerical mathematics, and control theory. For example, in differential equations, the compactness of the operator plays a vital role in proving the global existence of weak/strong solutions of fluid mechanics, see for example, the well-known Aubin–Lions argument [16]; in functional analysis, the compactness of the operator is crucial for the existence of critical points in studying the existence and multiplicity of periodic solutions of nonlinear Dirac equations [17]; in numerical mathematics, the boundness and compactness of the operator are applied in an implicit robust numerical scheme with graded meshes for the modified Burgers model with nonlocal dynamic properties [18], a space-time spectral order sinc-collocation method for the fourth-order nonlocal heat model arising in viscoelasticity [19], and a high-order and efficient numerical technique for the nonlocal neutron diffusion equation representing neutron transport in a nuclear reactor [20].
Jiang [21] has characterized the boundedness and the compactness of the weighted composition operators on the Bers-type space on the Hua domains. Yet, the boundedness and the compactness of the weighted composition operators from α -Bloch to A β have not been studied in detail. In this paper, we obtain some necessary and sufficient conditions for the boundedness and the compactness of the weighted composition operators from α -Bloch to A β on generalized Hua domain of the first kind by using a generalization of Hua’s inequalities.

2. Preliminaries

Lemma 1.
Let β > 0 , then
| f ( Z , ξ ) | f A β [ det ( I Z Z ¯ ) k ξ p 2 ] β ,
for all ( Z , ξ ) GHE I and f A β ( GHE I ) .
Proof. 
By the very definition of Bers-type space A β , we know that
f A β = sup ( Z , ξ ) GHE I [ det ( I Z Z ¯ ) k ξ p 2 ] β | f ( Z , ξ ) | < ,
and so,
| f ( Z , ξ ) | f A β [ det ( I Z Z ¯ ) k ξ p 2 ] β .
Lemma 2.
Let 0 < a 1 , 0 < b 1 , and b a , with q as a positive integer, then
a b q ( a 1 q b 1 q ) .
Proof. 
a b = ( a 1 q ) q ( b 1 q ) q = ( a 1 q b 1 q ) ( a 1 q × ( q 1 ) + a 1 q × ( q 2 ) b 1 q + + b 1 q × ( q 1 ) ) q ( a 1 q b 1 q ) .
Lemma 3
(see [22]). Let x 1 , if 0 < α 1 , then
( 1 + x ) α 1 + α x ,
if α < 0 or α > 1 , then
( 1 + x ) α 1 + α x ,
and “=” holds if and only if x = 0 or α = 1 .
Lemma 4
(see [22]). Let a k 0 , k = 1 , 2 , , m , then
( a 1 · a 2 a m ) 1 m a 1 + a 2 + + a m m ,
where the equality holds if and only if a 1 = a 2 = = a m .
Lemma 5
(see [22]). Let a k C , if p 1 , then
k = 1 n | a k | p k = 1 n | a k | p n p 1 k = 1 n | a k | p .
If 0 < p < 1 , then
k = 1 n | a k | p k = 1 n | a k | p n p 1 k = 1 n | a k | p ,
where the equality holds if and only if p > 1 , then | a 1 | = = | a n | . If p = 1 , the equality always holds. If 0 < p < 1 , then at most one of the a 1 , , a n is not zero.
Lemma 6
(see [23]). Let
Z = z 11 z 12 z 1 n z 21 z 22 z 2 n z m 1 z m 2 z m n
be an m × n matrix ( m n ) . Then, there exists an m × m unitary matrix U and an n × n unitary matrix V, such that
Z = U λ 1 0 0 0 0 0 λ 2 0 0 0 0 0 λ m 0 0 V ( λ 1 λ 2 λ m 0 ) ,
and
Z Z ¯ = U λ 1 2 0 0 0 λ 2 2 0 0 0 λ m 2 U ¯ ,
where λ 1 2 , , λ m 2 are the characteristic values of Z Z ¯ . I Z Z ¯ > 0 λ 1 < 1 .
Lemma 7
(see [23]). Let
Λ 1 = λ 1 0 0 0 λ 2 0 0 0 0 λ m ( λ 1 λ 2 λ m 0 ) ,
Λ 2 = μ 1 0 0 0 μ 2 0 0 0 0 μ m ( μ 1 μ 2 μ m 0 ) ,
satisfying
λ j μ k < 1 ( j , k = 1 , , m ) .
Then, there exists a square matrix P, such that
inf U U ¯ = I , V V ¯ = I | det ( I Λ 1 U Λ 2 U ¯ V ) | = | det ( I Λ 1 P Λ 2 P ) | ,
and the minimum value is obtained for U = Θ P and V = I , where
Θ = e i θ 1 0 0 0 e i θ 2 0 0 0 0 e i θ m .
Lemma 8
(see [22], the Minkowski inequality of integration formula). Let a k , b k 0 , k = 1 , 2 , n , then
k = 1 n ( a k + b k ) 1 n k = 1 n a k 1 n + k = 1 n b k 1 n ,
where the equal sign holds if and only if a k = c b k , k = 1 , 2 , , n .
Lemma 9.
Let p i   ( i = 1 , 2 , , r ) be positive integers, 0 < k m 1 , and t [ 0 , 1 ] , then
1 det ( I t 2 Z Z ¯ ) k + t ξ p 2 t 2 1 det ( I Z Z ¯ ) k + ξ p 2 ,
for ( Z , ξ ) GHE I .
Proof. 
Decomposition in polar coordinates gives
det ( I t Z Z ¯ ) k = i = 1 m ( 1 t λ i 2 ) k .
Given λ i 2 = ħ i , i = 1 , 2 , , m , we may consider the function
f ( t ) = i = 1 m ( 1 t ħ i ) k , t [ 0 , 1 ]
ln f ( t ) = k i = 1 m ln ( 1 t ħ i ) .
Upon differentiating with respect to t, we obtain
f ( t ) = f ( t ) k i = 1 m ħ i 1 t ħ i 0 , f ( t ) = f ( t ) k i = 1 m ħ i 1 t ħ i f ( t ) k i = 1 m ħ i 2 ( 1 t ħ i ) 2 = f ( t ) k 2 i = 1 m ħ i 1 t ħ i 2 f ( t ) k i = 1 m ħ i 2 ( 1 t ħ i ) 2 = f ( t ) k k i = 1 m ħ i 1 t ħ i 2 i = 1 m ħ i 2 ( 1 t ħ i ) 2 .
An application of (6) then gives
f ( t ) = f ( t ) k k i = 1 m ħ i 1 t ħ i 2 i = 1 m ħ i 2 ( 1 t ħ i ) 2 f ( t ) k ( k m 1 ) i = 1 m ħ i 2 ( 1 t ħ i ) 2 0 .
This shows that f ( t ) is a concave function. It follows that
g ( t ) = 1 f ( t ) = 1 i = 1 m ( 1 t ħ i ) k , t [ 0 , 1 ] ,
is a convex function, and we have
1 i = 1 m ( 1 t ħ i ) k t [ 1 i = 1 m ( 1 ħ i ) k ] .
The very definition of ξ p 2 shows that
t ξ p 2 = | t ξ 1 | 2 p 1 + | t ξ 2 | 2 p 2 + + | t ξ r | 2 p r t 2 ( | ξ 1 | 2 p 1 + | ξ 2 | 2 p 2 + + | ξ r | 2 p r ) = t 2 ξ p 2 .
Hence, by inequalities (9) and (10), we obtain
1 det ( I t 2 Z Z ¯ ) k + t ξ p 2 t 2 1 det ( I Z Z ¯ ) k + ξ p 2 .
Lemma 10.
Let us consider 0 < m k 1 , some positive intergers p j ( j = 1 , 2 , , r ) , t [ 0 , 1 ] , ( Z , ξ ) GHE I , q = max { p 1 , p 2 , , p r } . Then, the following inequality holds
| ( Z , ξ ) ¯ | M 1 det ( I Z Z ¯ ) k q + ξ p 2 q ,
where M = max { q k , r 1 1 q } .
Proof. 
If t [ 0 , 1 ] , ( Z , ξ ) GHE I , then ( t Z , t ξ ) GHE I , | Z | 2 = tr ( Z Z ¯ ) = λ 1 2 + λ 2 2 + + λ m 2 . By Lemma 4 and (3), we obtain
det ( I Z Z ¯ ) k q = i = 1 m ( 1 λ i 2 ) k q = i = 1 m ( 1 λ i 2 ) 1 m m k q 1 m ( m i = 1 m λ i 2 ) m k q = ( 1 1 m i = 1 m λ i 2 ) m k q 1 m k q · 1 m | Z | 2 = 1 k q | Z | 2 .
Then,
| Z | 2 q k [ 1 det ( I Z Z ¯ ) k q ] .
Using (7), one has
ξ p 2 q = ( | ξ 1 | 2 p 1 + | ξ 2 | 2 p 2 + + | ξ r | 2 p r ) 1 q r 1 q 1 ( | ξ 1 | 2 p 1 q + | ξ 2 | 2 p 2 q + + | ξ r | 2 p r q ) r 1 q 1 ( | ξ 1 | 2 + | ξ 2 | 2 + + | ξ r | 2 ) = r 1 q 1 | ξ | 2 .
Then,
| ξ | 2 r 1 1 q ξ p 2 q .
Therefore, by combining (11) and (12), we have
| ( Z , ξ ) ¯ | = | Z | 2 + | ξ | 2 q k [ 1 det ( I Z Z ¯ ) k q ] + r 1 1 q ξ p 2 q M 1 det ( I Z Z ¯ ) k q + ξ p 2 q ,
where M = max { q k , r 1 1 q } . □
Lemma 11.
Given 0 < k m 1 , p j some positive integers ( j = 1 , 2 , , r ) , ( Z , ξ ) GHE I , q = max { p 1 , p 2 , , p r } , and f a holomorphic function on B α ( GHE I ) , then there exists a constant C, such that
| f ( Z , ξ ) | C f B α 0 < α < 1 C f B α ln 2 q det ( I Z Z ¯ ) k ξ p 2 α = 1 C f B α 1 [ det ( I Z Z ¯ ) k ξ p 2 ] α 1 α > 1
where ( Z , ξ ) = ( z 11 , z 12 , , z m n , ξ 1 , ξ 2 , , ξ r ) .
Proof. 
According to Lemmas 2 and 9 and (13),
| f ( Z , ξ ) | = | f ( 0 , 0 ) + 0 1 f ( t Z , t ξ ) , ( Z , ξ ) ¯ d t | | f ( 0 , 0 ) | + 0 1 | f ( t Z , t ξ ) | | ( Z , ξ ) ¯ | d t = | f ( 0 , 0 ) | + | ( Z , ξ ) ¯ | 0 1 [ det ( I t 2 Z Z ¯ ) k t ξ p 2 ] α | f ( t Z , t ξ ) | [ det ( I t 2 Z Z ¯ ) k t ξ p 2 ] α d t 1 + 0 1 | ( Z , ξ ) ¯ | [ det ( I t 2 Z Z ¯ ) k t ξ p 2 ] α d t f B α = 1 + 0 1 | ( Z , ξ ) ¯ | [ 1 ( 1 det ( I t 2 Z Z ¯ ) k + t ξ p 2 ) ] α d t f B α 1 + M 0 1 1 det ( I Z Z ¯ ) k q + ξ p 2 q [ 1 t 2 ( 1 det ( I Z Z ¯ ) k + ξ p 2 ) ] α d t f B α 1 + M 0 1 1 1 q ( det ( I Z Z ¯ ) k ξ p 2 ) [ 1 t 2 ( 1 1 q ( det ( I Z Z ¯ ) k ξ p 2 ) ) ] α d t f B α = 1 + M 0 1 [ 1 t 2 2 ] α d t f B α = 1 + M 0 1 [ ( 1 t ) ( 1 + t ) ] α d t f B α 1 + M 0 1 ( 1 t ) α d t f B α ,
where = 1 1 q ( det ( I Z Z ¯ ) k ξ p 2 ) .
Case 1: 0 < α < 1 ,
| f ( Z , ξ ) | 1 + M 1 α [ 1 ( 1 ) 1 α ] f B α ( 1 + M 1 α ) f B α C f B α ,
where C = 1 + M 1 α .
Case 2:  α = 1 ,
| f ( Z , ξ ) | 1 + M 0 1 1 t d t f B α = 1 + M ln 1 1 f B α = 1 + M ln 1 + ( 1 ) ( 1 + ) f B α
1 + M ln 2 1 2 f B α 1 ln 2 ln 2 1 2 + M ln 2 1 2 f B α 1 ln 2 + M ln 2 1 2 f B α = C f B α ln 2 q det ( I Z Z ¯ ) k ξ p 2 ,
where C = 1 ln 2 + M .
Case 3: α > 1 ,
| f ( Z , ξ ) | 1 + M α 1 1 ( 1 ) α 1 1 f B α C + C 1 ( 1 ) α 1 1 f B α = C f B α 1 ( 1 ) α 1 = C f B α ( 1 + ) α 1 [ ( 1 ) ( 1 + ) ] α 1 2 α 1 C f B α 1 ( 1 2 ) α 1 = C f B α 1 [ det ( I Z Z ¯ ) k ξ p 2 ] α 1
where C = ( 2 q ) α 1 C , C = max { 1 , M α 1 } .
By combining (15)–(17), the proof of the Lemma is complete. □
Lemma 12.
Let ϕ = ( ϕ 11 , ϕ 12 ϕ m n + r ) be a holomorphic self-map of GHE I and ψ H ( GHE I ) . The weighted composition operator ψ C ϕ : B α ( GHE I ) A β ( GHE I ) is compact if and only if ψ C ϕ is bounded and for any bounded sequence { f n } n 1 in B α ( GHE I ) converging to 0 uniformly on compact subsets of GHE I , ψ C ϕ f n A β 0 as n .
Proof. 
Assume that ψ C ϕ : B α ( GHE I ) A β ( GHE I ) is compact. Let { f n } n 1 be a bounded sequence in B α ( GHE I ) and f n 0 uniformly on compact subsets of GHE I as n .
If ψ C ϕ f n A β 0 as n , then there exists a subsequence { f n j } j 1 of { f n } n 1 , such that
inf j N ψ C ϕ f n j A β > 0 .
Since ψ C ϕ is compact, there exists a subsequence of the bounded sequence { f n j } j 1 (without loss of generality, we still write { f n j } j 1 ), such that
lim j ψ C ϕ f n j f A β = 0 , f A β ( GHE I ) .
Let K be a compact subspace of GHE I . From Lemma 1, it follows that
| ( ψ C ϕ f n j f ) ( Z , ξ ) | ψ C ϕ f n j f A β [ det ( I Z Z ¯ ) k ξ p 2 ] β , j
for ( Z , ξ ) K GHE I . Thus, ψ C ϕ f n j f 0 uniformly on K. This means that for arbitrary ε > 0 , N 1 > 0 , such that for j > N 1 , we have
| ψ ( Z , ξ ) f n j ( ϕ ( Z , ξ ) ) f ( Z , ξ ) | < ε ,
for all ( Z , ξ ) K . Since f n j 0 on compact subsets of GHE I as j , there also exists a positive integer N 2 , | f n j ( ϕ ( Z , ξ ) ) | < ε for ( Z , ξ ) K whenever j > N 2 . Let N = max { N 1 , N 2 } and M = max ( Z , ξ ) K | ψ ( Z , ξ ) | , whenever j > N , we have
| f ( Z , ξ ) | | f n j ( ϕ ( Z , ξ ) ) | max ( Z , ξ ) K | ψ ( Z , ξ ) | + ε ( M + 1 ) ε , ( Z , ξ ) K .
From the arbitrariness of ε , we obtain f ( Z , ξ ) 0 , ( Z , ξ ) K . By the uniqueness theorem of analytic functions, we have f ( Z , ξ ) 0 , ( Z , ξ ) GHE I . This shows that lim j ψ C ϕ f n j A β = 0 , which contradicts the assumption inf j N ψ C ϕ f n j A β > 0 .
Conversely, suppose that { f n } n 1 is a bounded sequence in B α ( GHE I ) , then f n B α D 1 for all n. Clearly { f n } n 1 is uniformly bounded on compact subsets of GHE I . By Montel’s theorem, there exists a subsequence { f n j } j 1 of { f n } n 1 , such that f n j f uniformly on every compact subset of GHE I and f B α ( GHE I ) . For all ( Z 0 , ξ 0 ) GHE I , there exists a compact set K ( Z 0 , ξ 0 ) , such that ( Z 0 , ξ 0 ) K ( Z 0 , ξ 0 ) GHE I . By Weierstrass’ theorem and because f n j f as j , for ( Z , ξ ) K ( Z 0 , ξ 0 ) , we obtain f n j f as j . Then, there exists a J 0 > 0 , such that for j > J 0 , we have | f n j ( Z , ξ ) f ( Z , ξ ) | < 1 for ( Z , ξ ) K ( Z 0 , ξ 0 ) . In addition, | f ( Z 0 , ξ 0 ) | | f ( Z 0 , ξ 0 ) f n j ( Z 0 , ξ 0 ) | + | f n j ( Z 0 , ξ 0 ) | , which suffices to obtain
[ det ( I Z 0 Z 0 ¯ ) k ξ 0 p 2 ] α | f ( Z 0 , ξ 0 ) | [ det ( I Z 0 Z 0 ¯ ) k ξ 0 p 2 ] α | f ( Z 0 , ξ 0 ) f n j ( Z 0 , ξ 0 ) | + [ det ( I Z 0 Z 0 ¯ ) k ξ 0 p 2 ] α | f n j ( Z 0 , ξ 0 ) | 1 + f n j B α 1 + D 1 .
For all ( Z , ξ ) GHE I , [ det ( I Z Z ¯ ) k ξ p 2 ] α | f ( Z , ξ ) | 1 + D 1 . We thus have f B α 1 + D 1 and f n j f B α f n j B α + f B α 2 D 1 + 1 and f n j f 0 on every compact subset of GHE I as j . Consequently, we have
lim j ψ C ϕ ( f n j f ) A β = lim j ψ C ϕ f n j ψ C ϕ f A β = 0 ,
which shows that ψ C ϕ : B α ( GHE I ) A β ( GHE I ) is compact. □
Lemma 13.
Let ( Z , ξ ) , ( S , t ) GHE I , if 0 < k m 1 , then
det ( I m Z Z ¯ ) k + det ( I m S S ¯ ) k 2 | det ( I m Z S ¯ ) k | ,
and “=” holds if and only if ( Z , ξ ) = ( S , t ) . If k m > 1 , then
det ( I m Z Z ¯ ) k + det ( I m S S ¯ ) k 2 m k | det ( I m Z S ¯ ) k | .
Proof. 
For m = n , since ( Z , ξ ) , ( S , t ) GHE I , there exists two m × m unitary matrices U 1 , U 2 and two n × n unitary matrices V 1 , V 2 (by Lemma 6), such that
Z = U 1 λ 1 0 0 0 λ 2 0 0 0 λ m V 1 = U 1 Λ 1 V 1 ( 1 > λ 1 λ 2 λ m 0 )
S = U 2 μ 1 0 0 0 μ 2 0 0 0 μ m V 2 = U 2 Λ 2 V 2 ( 1 > μ 1 μ 2 μ m 0 ) .
Then, one has
det ( I Z S ¯ ) = det ( I U 1 Λ 1 V 1 V 2 ¯ Λ 2 ¯ U 2 ¯ ) = det ( U 1 U 1 ¯ U 1 Λ 1 V 1 V 2 ¯ Λ 2 ¯ U 2 ¯ ) = det U 1 det ( U 1 ¯ Λ 1 V 1 V 2 ¯ Λ 2 ¯ U 2 ¯ ) = det ( I Λ 1 V 1 V 2 ¯ Λ 2 ¯ V 2 V 1 ¯ V 1 V 2 ¯ U 2 ¯ U 1 ) .
By Lemma 7, there exists a square matrix P, such that
| det ( I Z S ¯ ) | | det ( I Λ 1 P Λ 2 P ) | = i = 1 m ( 1 λ i μ k i ) ,
where k 1 , k 2 , , k m is a permutation of 1 , 2 , , m .
If 0 < k m 1 , and using (7) and Lemma 8, we obtain
2 | det ( I Z S ¯ ) k | = 2 1 m k · 2 m k | det ( I Z S ¯ ) k | = 2 1 m k [ 2 m | det ( I Z S ¯ ) | ] k 2 1 m k 2 m i = 1 m ( 1 λ i μ k i ) k 2 1 m k { i = 1 m [ ( 1 λ i 2 ) + ( 1 μ k i 2 ) ] } 1 m m k 2 1 m k i = 1 m ( 1 λ i 2 ) 1 m + i = 1 m ( 1 μ k i 2 ) 1 m m k 2 1 m k · 2 m k 1 i = 1 m ( 1 λ i 2 ) 1 m × m k + i = 1 m ( 1 μ k i 2 ) 1 m × m k = i = 1 m ( 1 λ i 2 ) k + i = 1 m ( 1 μ k i 2 ) k = det ( I Z Z ¯ ) k + det ( I S S ¯ ) k .
If k m > 1 , by using (6) and Lemma 8, we obtain
2 m k | det ( I Z S ¯ ) k | = [ 2 m | det ( I Z S ¯ ) | ] k 2 m i = 1 m ( 1 λ i μ k i ) k { i = 1 m [ ( 1 λ i 2 ) + ( 1 μ k i 2 ) ] } 1 m m k i = 1 m ( 1 λ i 2 ) 1 m + i = 1 m ( 1 μ k i 2 ) 1 m m k i = 1 m ( 1 λ i 2 ) 1 m × m k + i = 1 m ( 1 μ k i 2 ) 1 m × m k = i = 1 m ( 1 λ i 2 ) k + i = 1 m ( 1 μ k i 2 ) k = det ( I Z Z ¯ ) k + det ( I S S ¯ ) k .
For m < n , there exists a unitary matrix U ( n ) , such that
Z = ( Z 1 ( m ) , 0 ) U , S = ( S 1 ( m ) , S 2 ) U .
According to (20), we have
2 | det ( I Z S ¯ ) k | = 2 | det ( I Z 1 S 1 ¯ ) k | det ( I Z 1 Z 1 ¯ ) k + det ( I S 1 S 1 ¯ ) k det ( I Z 1 Z 1 ¯ ) k + det ( I S 1 S 1 ¯ S 2 S 2 ¯ ) k = det ( I Z Z ¯ ) k + det ( I S S ¯ ) k .
Thus, the inequality
2 | det ( I Z S ¯ ) k | det ( I Z Z ¯ ) k + det ( I S S ¯ ) k ,
holds when m n , whereas the equal sign holds if and only if Z = S .
According to (21), we see that
2 m k | det ( I Z S ¯ ) k | = 2 m k | det ( I Z 1 S 1 ¯ ) k | det ( I Z 1 Z 1 ¯ ) k + det ( I S 1 S 1 ¯ ) k det ( I Z 1 Z 1 ¯ ) k + det ( I S 1 S 1 ¯ S 2 S 2 ¯ ) k = det ( I Z Z ¯ ) k + det ( I S S ¯ ) k .
Thus, the inequality
2 m k | det ( I Z S ¯ ) k | det ( I Z Z ¯ ) k + det ( I S S ¯ ) k ,
holds when m n , with the equality holding if and only if Z = S and m k = 1 . □
Lemma 14.
Assume ( Z , ξ ) , ( S , t ) GHE I and 0 < k m 1 , then
[ det ( I m Z Z ¯ ) k ξ p 2 ] + [ det ( I m S S ¯ ) k t p 2 ] 2 | | det ( I m Z S ¯ ) k | ξ p t p | ,
with equality that holds if and only if ( Z , ξ ) = ( S , t ) .
Proof. 
Starting from the inequality a 2 + b 2 2 a b , we obtain
ξ p 2 + t p 2 2 ξ p t p .
Then, by (18), we have
2 | | det ( I Z S ¯ ) k | ξ p t p | = 2 | det ( I Z S ¯ ) k | 2 ξ p t p det ( I Z Z ¯ ) k + det ( I S S ¯ ) k ξ p 2 t p 2 = [ det ( I Z Z ¯ ) k ξ p 2 ] + [ det ( I S S ¯ ) k t p 2 ] .
This completes the proof. □
Lemma 15.
Assume ( Z , ξ ) , ( S , t ) GHE I and 0 < k m 1 , then
det ( I m Z Z ¯ ) k ξ p 2 det ( I m S S ¯ ) k t p 2 | | det ( I m Z S ¯ ) k | ξ p t p | 2 ,
Proof. 
By the elementary inequality a + b 2 a b and Lemma 14, we have
det ( I m Z Z ¯ ) k ξ p 2 det ( I m S S ¯ ) k t p 2 [ det ( I m Z Z ¯ ) k ξ p 2 ] + [ det ( I m S S ¯ ) k t p 2 ] 2 2 | | det ( I m Z S ¯ ) k | ξ p t p | 2
Lemma 16
(see [24]). Assume Z , S I ( m , n ) , then there exists a constant C, such that
| det ( I m Z S ¯ ) | 1 g m 1 l n | tr [ ( I m Z S ¯ ) 1 I g l S ¯ ] | 2 1 2 C ,
where I g l is an m × n matrix, where the elements of the gth row and lth column are one and the other elements are zero.

3. Boundedness of ψ C ϕ : B α A β

Theorem 1.
Assume that α = 1 , β > 0 , 0 < k m 1 , and that p j ( j = 1 , 2 , , r ) are positive integers. Let ϕ = ( ϕ 11 , ϕ 12 ϕ m n + r ) be a holomorphic self-map of GHE I , with ψ H ( GHE I ) and ( Z ϕ , ξ ϕ ) = ϕ ( Z , ξ ) . If
K 1 : = sup ( Z , ξ ) GHE I | ψ ( Z , ξ ) | [ det ( I Z Z ¯ ) k ξ p 2 ] β ln 2 q det ( I Z ϕ Z ϕ ¯ ) k ξ ϕ p 2 < .
Then, the weighted composition operator ψ C ϕ : B α ( GHE I ) A β ( GHE I ) is bounded.
Conversely, if the weighted composition operator ψ C ϕ : B α ( GHE I ) A β ( GHE I ) is bounded, then
K 2 : = sup ( Z , ξ ) GHE I | ψ ( Z , ξ ) | [ det ( I Z Z ¯ ) k ξ p 2 ] β det ( I Z ϕ Z ϕ ¯ ) 1 k × ln 2 det ( I Z ϕ Z ϕ ¯ ) k ξ ϕ p 2 < .
Proof. 
Assume that (27) holds. By Lemma 11 and for f B α ( GHE I ) , we know that
[ det ( I Z Z ¯ ) k ξ p 2 ] β | ( ψ C ϕ f ) ( Z , ξ ) | = [ det ( I Z Z ¯ ) k ξ p 2 ] β | ψ ( Z , ξ ) | | f ( ϕ ( Z , ξ ) ) | C | ψ ( Z , ξ ) | [ det ( I Z Z ¯ ) k ξ p 2 ] β × ln 2 q det ( I Z ϕ Z ϕ ¯ ) k ξ ϕ p 2 f B α C K 1 f B α .
For all ( Z , ξ ) GHE I , we have
ψ C ϕ f A β = sup ( Z , ξ ) GHE I [ det ( I Z Z ¯ ) k ξ p 2 ] β | ( ψ C ϕ f ) ( Z , ξ ) | C K 1 f B α ,
which implies that ψ C ϕ : B α ( GHE I ) A β ( GHE I ) is bounded.
Conversely, assume that ψ C ϕ : B α ( GHE I ) A β ( GHE I ) is bounded. For any ( S , t ) GHE I , let us introduce a test function f ( S , t ) H ( GHE I ) , such that
f ( S , t ) ( Z , ξ ) : = det ( I S S ¯ ) 1 k ln 2 det ( I Z S ¯ ) k ξ , t p .
This means that
f ( S , t ) z g l = k · det ( I Z S ¯ ) k 1 · det ( I S S ¯ ) 1 k det ( I Z S ¯ ) k ξ , t p × det ( I Z S ¯ ) tr [ ( I Z S ¯ ) 1 I g l S ¯ ] , 1 g m , 1 l n , f ( S , t ) ξ j = det ( I S S ¯ ) 1 k · p j ξ j p j 1 t j ¯ p j det ( I Z S ¯ ) k ξ , t p , j = 1 , , r .
In view of (18), it follows that
2 | det ( I Z S ¯ ) | 1 m det ( I Z Z ¯ ) 1 m + det ( I S S ¯ ) 1 m .
Then,
2 m ( 1 k ) [ | det ( I Z S ¯ ) | 1 m ] m ( 1 k ) [ det ( I Z Z ¯ ) 1 m + det ( I S S ¯ ) 1 m ] m ( 1 k ) [ det ( I S S ¯ ) 1 m ] m ( 1 k ) ,
which means that
2 m ( 1 k ) | det ( I Z S ¯ ) | 1 k det ( I S S ¯ ) 1 k .
According to (29) and Lemmas 14 and 16, there exists a constant C 1 > 0 , such that
[ det ( I Z Z ¯ ) k ξ p 2 ] | f ( S , t ) ( Z , ξ ) | = det ( I Z Z ¯ ) k ξ p 2 | det ( I Z S ¯ ) k ξ , t p | × det ( I S S ¯ ) 1 k × { k 2 | det ( I Z S ¯ ) k 1 | 2 × 1 g m 1 l n | det ( I Z S ¯ ) tr [ ( I Z S ¯ ) 1 I g l S ¯ ] | 2 + j = 1 r | p j ξ j p j 1 t j ¯ p j | 2 } 1 2 [ det ( I Z Z ¯ ) k ξ p 2 ] × det ( I S S ¯ ) 1 k | | det ( I Z S ¯ ) k | | ξ , t p | | × { k | det ( I Z S ¯ ) | k 1 × 1 g m 1 l n | det ( I Z S ¯ ) | 2 | tr [ ( I Z S ¯ ) 1 I g l S ¯ ] | 2 1 2 + j = 1 r | p j ξ j p j 1 t j ¯ p j | 2 1 2 } [ det ( I Z Z ¯ ) k ξ p 2 ] | | det ( I Z S ¯ ) k | ξ p t p | × k C 1 | det ( I Z S ¯ ) | k 1 × det ( I S S ¯ ) 1 k + j = 1 r | p j ξ j p j 1 t j ¯ p j | 2 1 2 × det ( I S S ¯ ) 1 k 2 [ det ( I Z Z ¯ ) k ξ p 2 ] [ det ( I Z Z ¯ ) k ξ p 2 ] + [ det ( I S S ¯ ) k t p 2 ] × 2 m ( 1 k ) k C 1 + j = 1 r | p j | 2 1 2 2 [ det ( I Z Z ¯ ) k ξ p 2 ] det ( I Z Z ¯ ) k ξ p 2 × 2 m ( 1 k ) k C 1 + j = 1 r | p j | 2 1 2 2 × 2 m ( 1 k ) k C 1 + j = 1 r | p j | 2 1 2 C .
Since f ( S , t ) ( 0 , 0 ) ln 2 , one has
f ( S , t ) B α = | f ( S , t ) ( 0 , 0 ) | + sup ( Z , ξ ) GHE I [ det ( I Z Z ¯ ) k ξ p 2 ] α | f ( S , t ) ( Z , ξ ) | C + ln 2 .
Therefore, we have
> ( C + ln 2 ) ψ C ϕ B α A β ψ C ϕ f ( S , t ) A β = sup ( Z , ξ ) GHE I [ det ( I Z Z ¯ ) k ξ p 2 ] β | ψ ( Z , ξ ) f ( S , t ) ( ϕ ( Z , ξ ) ) | | ψ ( Z , ξ ) | [ det ( I Z Z ¯ ) k ξ p 2 ] β det ( I S S ¯ ) 1 k × | ln 2 det ( I Z ϕ S ¯ ) k ξ ϕ , t p | .
Let us now consider
( S , t ) = ( Z ϕ , ξ ϕ ) = ϕ ( Z , ξ ) ,
so that
sup ( Z , ξ ) GHE I | ψ ( Z , ξ ) | [ det ( I Z Z ¯ ) k ξ p 2 ] β det ( I Z ϕ Z ϕ ¯ ) 1 k ln 2 det ( I Z ϕ Z ϕ ¯ ) k ξ ϕ p 2 < .
The proof is thus completed. □
Theorem 2.
Assume that α > 1 , β > 0 , 0 < k m 1 , and that p j are positive integers ( j = 1 , 2 , , r ) . Let ϕ = ( ϕ 11 , ϕ 12 ϕ m n + r ) be a holomorphic self-map of GHE I , with ψ H ( GHE I ) and ( Z ϕ , ξ ϕ ) = ϕ ( Z , ξ ) . If
K 3 : = sup ( Z , ξ ) GHE I | ψ ( Z , ξ ) | [ det ( I Z Z ¯ ) k ξ p 2 ] β [ det ( I Z ϕ Z ϕ ¯ ) k ξ ϕ p 2 ] α 1 < ,
then, the weighted composition operator ψ C ϕ : B α ( GHE I ) A β ( GHE I ) is bounded.
Conversely, if the weighted composition operator ψ C ϕ : B α ( GHE I ) A β ( GHE I ) is bounded, then,
K 4 : = sup ( Z , ξ ) GHE I | ψ ( Z , ξ ) | [ det ( I Z Z ¯ ) k ξ p 2 ] β det ( I Z ϕ Z ϕ ¯ ) 1 k [ det ( I Z ϕ Z ϕ ¯ ) k ξ ϕ p 2 ] α 1 < .
Proof. 
Assume that (30) holds. By Lemma 11 and for f B α ( GHE I ) , we have
[ det ( I Z Z ¯ ) k ξ p 2 ] β | ( ψ C ϕ f ) ( Z , ξ ) | = [ det ( I Z Z ¯ ) k ξ p 2 ] β | ψ ( Z , ξ ) · ( C ϕ f ) ( Z , ξ ) | = [ det ( I Z Z ¯ ) k ξ p 2 ] β | ψ ( Z , ξ ) | | f ( ϕ ( Z , ξ ) ) | C | ψ ( Z , ξ ) | [ det ( I Z Z ¯ ) k ξ p 2 ] β [ det ( I Z ϕ Z ϕ ¯ ) k ξ ϕ p 2 ] α 1 f B α C K 3 f B α .
For all ( Z , ξ ) GHE I , we obtain
ψ C ϕ f A β = sup ( Z , ξ ) GHE I [ det ( I Z Z ¯ ) k ξ p 2 ] β | ( ψ C ϕ f ) ( Z , ξ ) | C K 3 f B α .
This implies that ψ C ϕ : B α ( GHE I ) A β ( GHE I ) is bounded.
Conversely, assume that ψ C ϕ : B α ( GHE I ) A β ( GHE I ) is bounded. For ( S , t ) GHE I , define a test function f ( S , t ) H ( GHE I ) , such that
f ( S , t ) ( Z , ξ ) : = det ( I S S ¯ ) 1 k [ det ( I Z S ¯ ) k ξ , t p ] α 1 .
For the test function f, we have
f ( S , t ) z g l = k ( α 1 ) · det ( I Z S ¯ ) k 1 · det ( I S S ¯ ) 1 k [ det ( I Z S ¯ ) k ξ , t p ] α × det ( I Z S ¯ ) tr [ ( I Z S ¯ ) 1 I g l S ¯ ] , 1 g m , 1 l n , f ( S , t ) ξ j = ( α 1 ) p j ξ j p j 1 t j ¯ p j · det ( I S S ¯ ) 1 k [ det ( I Z S ¯ ) k ξ , t p ] α , j = 1 , , r .
From (29) and Lemmas 14 and 16, there exists a constant C 1 > 0 , such that
[ det ( I Z Z ¯ ) k ξ p 2 ] α | f ( S , t ) ( Z , ξ ) | = [ det ( I Z Z ¯ ) k ξ p 2 ] α | det ( I Z S ¯ ) k ξ , t p | α × det ( I S S ¯ ) 1 k × ( α 1 ) × { k 2 | det ( I Z S ¯ ) k 1 | 2 × 1 g m 1 l n | det ( I Z S ¯ ) tr [ ( I Z S ¯ ) 1 I g l S ¯ ] | 2 + j = 1 r | p j ξ j p j 1 t j ¯ p j | 2 } 1 2 [ det ( I Z Z ¯ ) | k ξ p 2 ] α × det ( I S S ¯ ) 1 k | | det ( I Z S ¯ ) | k | ξ , t p | | α × ( α 1 ) × { k | det ( I Z S ¯ ) | k 1 × 1 g m 1 l n | det ( I Z S ¯ ) | 2 | tr [ ( I Z S ¯ ) 1 I g l S ¯ ] | 2 1 2 + j = 1 r | p j ξ j p j 1 t j ¯ p j | 2 1 2 } [ det ( I Z Z ¯ ) k ξ p 2 ] α | | det ( I Z S ¯ ) | k ξ p t p | α × ( α 1 ) × { k C 1 det ( I S S ¯ ) 1 k | det ( I Z S ¯ ) | k 1 + j = 1 r | p j ξ j p j 1 t j ¯ p j | 2 1 2 det ( I S S ¯ ) 1 k } 2 [ det ( I Z Z ¯ ) k ξ p 2 ] [ det ( I Z Z ¯ ) k ξ p 2 ] + [ det ( I S S ¯ ) k ξ p 2 ] α ( α 1 ) × ( k C 1 2 m ( 1 k ) + C 2 ) 2 [ det ( I Z Z ¯ ) k ξ p 2 ] det ( I Z Z ¯ ) p ξ p 2 α ( α 1 ) × ( k C 1 2 m ( 1 k ) + C 2 ) 2 α ( α 1 ) C 3 = C 4 .
Since f ( S , t ) ( 0 , 0 ) 1 , we obtain
f ( S , t ) B α =   | f ( S , t ) ( 0 , 0 ) | + sup ( Z , ξ ) GHE I [ det ( I Z Z ¯ ) k ξ p 2 ] α | f ( S , t ) ( Z , ξ ) | C 4 + 1 .
It follows that
> ( C 4 + 1 ) ψ C ϕ B α A β   ψ C ϕ f ( S , t ) A β = sup ( Z , ξ ) GHE I [ det ( I Z Z ¯ ) k ξ p 2 ] β | ψ ( Z , ξ ) f ( S , t ) ( ϕ ( Z , ξ ) ) | | ψ ( Z , ξ ) | [ det ( I Z Z ¯ ) k ξ p 2 ] β det ( I S S ¯ ) 1 k | det ( I Z ϕ S ¯ ) k ξ ϕ , t p | α 1 .
We write ( S , t ) = ( Z ϕ , ξ ϕ ) = ϕ ( Z , ξ ) , then
sup ( Z , ξ ) GHE I | ψ ( Z , ξ ) | [ det ( I Z Z ¯ ) k ξ p 2 ] β det ( I Z ϕ Z ϕ ¯ ) 1 k [ det ( I Z ϕ Z ϕ ¯ ) k ξ ϕ | p 2 ] α 1 < .
This completes the proof of the theorem. □
Corollary 1.
For α > 1 , k = m = 1 , p 1 = = p r = 1 , we have the case of the unit ball B = { z C n + r : | z | 2 < 1 } and ψ C ϕ : B α ( B ) A β ( B ) is bounded if and only if
sup z B | ψ ( z ) | ( 1 | z | 2 ) β ( 1 | ϕ ( z ) | 2 ) α 1 < ,
when β = 0 . This result is equivalent to that obtained by Li and Stević in [11].

4. Compactness of ψ C ϕ : B α A β

Theorem 3.
Assume that α = 1 , β > 0 , 0 < k m 1 , and that p j ( j = 1 , 2 , , r ) are positive integers. Let ϕ = ( ϕ 11 , ϕ 12 ϕ m n + r ) be a holomorphic self-map of GHE I , with ψ H ( GHE I ) and ( Z ϕ , ξ ϕ ) = ϕ ( Z , ξ ) . If ψ A β and
lim ϕ ( Z , ξ ) GHE I | ψ ( Z , ξ ) | [ det ( I Z Z ¯ ) k ξ p 2 ] β ln 2 q det ( I Z ϕ Z ϕ ¯ ) k ξ ϕ p 2 = 0 ,
then the weighted composition operator ψ C ϕ : B α ( GHE I ) A β ( GHE I ) is compact.
Conversely, if the weighted composition operator ψ C ϕ : B α ( GHE I ) A β ( GHE I ) is compact, then ψ A β and
lim ϕ ( Z , ξ ) GHE I | ψ ( Z , ξ ) | [ det ( I Z Z ¯ ) k ξ p 2 ] β det ( I Z ϕ Z ϕ ¯ ) 1 k × ln 2 det ( I Z ϕ Z ϕ ¯ ) k ξ ϕ p 2 = 0 .
Proof. 
Assume that (32) holds. We have
sup ( Z , ξ ) GHE I | ψ ( Z , ξ ) | [ det ( I Z Z ¯ ) k ξ p 2 ] β ln 2 q det ( I Z ϕ Z ϕ ¯ ) k ξ ϕ p 2 < .
If ψ C ϕ is bounded, consider the bounded sequence { f k } k 1 in B α ( GHE I ) , which converges to 0 uniformly on compact subsets of GHE I . Hence, there exists M 1 > 0 , such that f k B α M 1 , k = 1 , 2 , . By (32), this means that ε > 0 , δ ( 0 , 1 ) , such that for dist ( ϕ ( Z , ξ ) , GHE I ) < δ , we have
| ψ ( Z , ξ ) | [ det ( I Z Z ¯ ) k ξ p 2 ] β ln 2 q det ( I Z ϕ Z ϕ ¯ ) k ξ ϕ p 2 < ε .
According to Lemma 11, we obtain
[ det ( I Z Z ¯ ) k ξ p 2 ] β | ( ψ C ϕ f k ) ( Z , ξ ) | = [ det ( I Z Z ¯ ) k ξ p 2 ] β | ψ ( Z , ξ ) · ( C ϕ f k ) ( Z , ξ ) | = [ det ( I Z Z ¯ ) k ξ p 2 ] β | ψ ( Z , ξ ) | | f k ( ϕ ( Z , ξ ) ) | C | ψ ( Z , ξ ) | [ det ( I Z Z ¯ ) k ξ p 2 ] β f k B α × ln 2 q det ( I Z ϕ Z ϕ ¯ ) k ξ ϕ p 2 C M 1 ε .
On the other hand, let us introduce the set
E δ : = { ( Z , ξ ) GHE I : dist ( ϕ ( Z , ξ ) , GHE I ) δ } ,
which is a compact subset of GHE I . By the assumptions, f k converges to 0 uniformly on any compact subset of GHE I . From this, and since ψ A β , for such ε , we have
[ det ( I Z Z ¯ ) k ξ p 2 ] β | ( ψ C ϕ f k ) ( Z , ξ ) | = [ det ( I Z Z ¯ ) k ξ p 2 ] β | ψ ( Z , ξ ) · ( C ϕ f k ) ( Z , ξ ) | = [ det ( I Z Z ¯ ) k ξ p 2 ] β | ψ ( Z , ξ ) | | f k ( ϕ ( Z , ξ ) ) | ψ A β ε .
Combining (35) and (36), we have
ψ C ϕ f k A β = sup ( Z , ξ ) GHE I [ det ( I Z Z ¯ ) k ξ p 2 ] β | ( ψ C ϕ f k ) ( Z , ξ ) | 0 , k .
Consequently, making use of Lemma 12, we finally have that ψ C ϕ : B α ( GHE I ) A β ( GHE I ) is compact.
Conversely, suppose ψ C ϕ : B α ( GHE I ) A β ( GHE I ) is compact. Let f 1 , we have
[ det ( I Z Z ¯ ) k ξ p 2 ] β | ψ ( Z , ξ ) | = [ det ( I Z Z ¯ ) k ξ p 2 ] β | ( ψ C ϕ f ) ( Z , ξ ) | < .
This shows that ψ A β . Consider now a sequence ( S i , t i ) = ϕ ( Z i , ξ i ) in GHE I , such that ϕ ( Z i , ξ i ) GHE I as i . If such a sequence does not exist, then condition (33) obviously holds. Moreover, let us introduce the following sequence of test functions { f i } i 1 :
f i ( Z , ξ ) = ln 2 det ( I S i S i ¯ ) k t i p 2 1 × ln 2 det ( I Z S i ¯ ) k ξ , t i p 2 × det ( I S i S i ¯ ) 1 k .
Differentiation gives
f i z g l = 2 k × det ( I Z S i ¯ ) k 1 det ( I S i S i ¯ ) 1 k det ( I Z S i ¯ ) k ξ , t i p × ln 2 det ( I Z S i ¯ ) k ξ , t i p ln 2 det ( I S i S i ¯ ) k t i p 2 × det ( I Z S i ¯ ) × tr [ ( I Z S i ¯ ) 1 I g l S i ¯ ] , 1 g m , 1 l n , f i ξ j = 2 p j ξ j p j 1 t j ¯ p j × det ( I S i S i ¯ ) 1 k det ( I Z S i ¯ ) k ξ , t i p × ln 2 det ( I Z S i ¯ ) k ξ , t i p ln 2 det ( I S i S i ¯ ) k t i p 2 , j = 1 , , r . i = 1 , 2 ,
From (29) and Lemmas 14 and 16, there exists a constant C 5 > 0 , such that
[ det ( I Z Z ¯ ) k ξ | p 2 ] | f i ( Z , ξ ) | = [ det ( I Z Z ¯ ) k ξ p 2 ] det ( I S i S i ¯ ) 1 k | det ( I Z S i ¯ ) k ξ , t i p | × | ln 2 det ( I Z S i ¯ ) k ξ , t i p ln 2 det ( I S i S i ¯ ) k t i p 2 | × { 4 k 2 | det ( I Z S i ¯ ) k 1 | 2 × 1 g m 1 l n | det ( I Z S i ¯ ) tr [ ( I Z S i ¯ ) 1 I g l S i ¯ ] | 2 + 4 j = 1 r | p j ξ j p j 1 t j ¯ p j | 2 } 1 2 [ det ( I Z Z ¯ ) k ξ p 2 ] [ det ( I S i S i ¯ ) 1 k | | det ( I Z S i ¯ ) k | | ξ , t i p | | × | ln 2 | det ( I Z S i ¯ ) k ξ , t i p | | + π ln 2 det ( I S i S i ¯ ) k t i p 2 × { 2 k | det ( I Z S i ¯ ) | k 1 × 1 g m 1 l n | det ( I Z S i ¯ ) tr [ ( I Z S i ¯ ) 1 I g l S i ¯ ] | 2 1 2 + 2 j = 1 r | p j ξ j p j 1 t j ¯ p j | 2 1 2 } det ( I Z Z ¯ ) k ξ p 2 | | det ( I Z S i ¯ ) k | ξ p t i p | × | ln 2 | det ( I Z S i ¯ ) k ξ , t i p | | + π ln 2 det ( I S i S i ¯ ) k t i p 2 × 2 k C 5 | det ( I Z S i ¯ ) | k 1 det ( I S i S i ¯ ) 1 k + 2 j = 1 r | p j ξ j p j 1 t j ¯ p j | 2 1 2 det ( I S i S i ¯ ) 1 k 2 [ det ( I Z Z ¯ ) k ξ p 2 ] [ det ( I Z Z ¯ ) k ξ p 2 ] + [ det ( I S i S i ¯ ) k t p 2 ] × | ln 2 | det ( I Z S i ¯ ) k ξ , t i p | | + π ln 2 det ( I S i S i ¯ ) k t i p 2 × 2 k C 5 | det ( I Z S i ¯ ) | k 1 det ( I S i S i ¯ ) 1 k + C 6 2 [ det ( I Z Z ¯ ) k ξ p 2 ] det ( I Z Z ¯ ) k ξ p 2 × | ln 2 | det ( I Z S i ¯ ) k ξ , t i p | | + π ln 2 det ( I S i S i ¯ ) k t i p 2 × ( 2 k C 5 · 2 m ( 1 k ) + C 6 ) 2 × ( 2 k C 5 · 2 m ( 1 k ) + C 6 ) × | ln 2 | det ( I Z S i ¯ ) k ξ , t i p | | + π ln 2 det ( I S i S i ¯ ) k t i p 2 C 7 × | ln 2 | det ( I Z S i ¯ ) k ξ , t i p | | + π ln 2 det ( I S i S i ¯ ) k t i p 2 .
We now have two cases.
Case A 1 . If | det ( I Z S i ¯ ) k ξ , t i p | 2 , then
| ln 2 | det ( I Z S i ¯ ) k ξ , t i p | | + π ln 2 det ( I S i S i ¯ ) k t i p 2 ln 2 | det ( I Z S i ¯ ) k | | ξ , t i p | + π ln 2 det ( I S i S i ¯ ) k t i p 2 ln 2 | det ( I Z S i ¯ ) k | ξ p t i p + π ln 2 det ( I S i S i ¯ ) k t i p 2 ln 4 [ det ( I Z Z ¯ ) k | ξ p 2 ] + [ det ( I S i S i ¯ ) k t i 2 ] p + π ln 2 det ( I S i S i ¯ ) k t i p 2 ln 4 det ( I S i S i ¯ ) k t i p 2 + π ln 2 det ( I S i S i ¯ ) k t i p 2 2 + π ln 2 det ( I S i S i ¯ ) k t i p 2 C 8 ,
where C 8 = 2 + π ln 2 .
Case A 2 . If | det ( I Z S i ¯ ) k ξ , t i p | > 2 , then
| ln 2 | det ( I Z S i ¯ ) k ξ , t i p | | + π ln 2 det ( I S i S i ¯ ) k t i p 2 = | ln 2 ln | det ( I Z S i ¯ ) k ξ , t i p | | + π ln 2 det ( I S i S i ¯ ) k t i p 2
ln | det ( I Z S i ¯ ) k ξ , t i p | + π ln 2 det ( I S i S i ¯ ) k t i p 2 ln ( | det ( I Z S i ¯ ) k | + | ξ , t i p | ) + π ln 2 .
Since Z S i ¯ = C = ( c i j ) m × m ,   c i j = g = 1 n z i g s j g ( i , j = 1 , , m ) , we may write I C = D = ( d i j ) m × m with
d i j = 1 ( g = 1 n z i g s j g ) i = j g = 1 n z i g s j g i j
Using (39), we have det ( I C ) = j 1 j 2 j m ( 1 ) τ ( j 1 j 2 j m ) d 1 j 1 d 2 j 2 d m j m and
| det ( I C ) | m ! ( n + 1 ) m = G
Hence,
| ln 2 | det ( I Z S i ¯ ) k ξ , t i p | | + π ln 2 det ( I S i S i ¯ ) k t i p 2 ln ( G k + ξ p t i p ) + π ln 2 ln ( G k + 1 ) + π ln 2 C 9 .
By using both cases A 1 and A 2 , we have [ det ( I Z Z ¯ ) ξ p 2 ] | f i ( Z , ξ ) | Q C 7 and then f i B α Q C 7 , which means that f i B α is bounded, where Q = max { C 8 , C 9 } . It follows that { f i } i 1 B α ( GHE I ) and
| f i ( Z , ξ ) | = ln 2 det ( I S i S i ¯ ) k t i p 2 1 × | ln 2 det ( I Z S i ¯ ) k ξ , t i p | 2 × det ( I S i S i ¯ ) 1 k ln 2 det ( I S i S i ¯ ) k t i p 2 1 × det ( I S i S i ¯ ) 1 k × | ln 2 | det ( I Z S i ¯ ) k ξ , t i p | | + π 2 .
If | det ( I Z S i ¯ ) k ξ , t i p | 2 , then
| f i ( Z , ξ ) | ln 2 det ( I S i S i ¯ ) k t i p 2 1 × det ( I S i S i ¯ ) 1 k × ln 2 | det ( I Z S i ¯ ) k | | ξ , t i p | + π 2 ln 2 det ( I S i S i ¯ ) k t i p 2 1 × det ( I S i S i ¯ ) 1 k × ln 2 | det ( I Z S i ¯ ) k | ξ p t i p + π 2 ln 2 det ( I S i S i ¯ ) k t i p 2 1 × det ( I S i S i ¯ ) 1 k × ln 4 [ det ( I Z Z ¯ ) k ξ p 2 ] + [ det ( I S i S i ¯ ) k t i p 2 ] + π 2 ln 2 det ( I S i S i ¯ ) k t i p 2 1 × det ( I S i S i ¯ ) 1 k × ln 4 det ( I Z Z ¯ ) k ξ p 2 + π 2
Since 0 < det ( I S i S i ¯ ) 1 k 1 , we take i and obtain ( S i , t i ) GHE I . This implies det ( I S i S i ¯ ) k t i p 2 0 , then ln 2 det ( I S i S i ¯ ) k t i p 2 1 0 . Let us now consider a compact subset E of GHE I . For ( Z , ξ ) E , it is easy to see that det ( I Z Z ¯ ) k ξ p 2 has a positive lower bound. Thus, we have f i ( Z , ξ ) 0 , i on all compact subsets of GHE I . If | det ( I Z S i ¯ ) k ξ , t i p | > 2 , then
| f i ( Z , ξ ) | ln 2 det ( I S i S i ¯ ) k t i p 2 1 × det ( I S i S i ¯ ) 1 k × | ln 2 ln ( | det ( I Z S i ¯ ) k ξ , t i p | ) | + π 2 ln 2 det ( I S i S i ¯ ) k t i p 2 1 × det ( I S i S i ¯ ) 1 k × ln ( | det ( I Z S i ¯ ) k | + | ξ , t i p | ) + π 2 ln 2 det ( I S i S i ¯ ) k t i p 2 1 × det ( I S i S i ¯ ) 1 k × { ln ( G k + 1 ) + π } 2
From 0 < det ( I S i S i ¯ ) 1 k 1 and ln 2 det ( I S i S i ¯ ) k t i p 2 1 0 as i , one concludes that f i ( Z , ξ ) 0 , i .
The above proof shows that f i ( Z , ξ ) 0 , i on all compact subsets of GHE I . By Lemma 12, this implies that ψ C ϕ f i A β 0 . Therefore, we conclude that
0 ψ C ϕ f i A β = sup ϕ ( Z , ξ ) GHE I [ det ( I Z Z ¯ ) k ξ p 2 ] β | ψ ( Z , ξ ) | ln 2 det ( I S i S i ¯ ) k t i p 2 1 × | ln 2 det ( I Z ϕ S i ¯ ) k ξ ϕ , t i p | 2 × det ( I S i S i ¯ ) 1 k [ det ( I Z i Z i ¯ ) k ξ i p 2 ] β | ψ ( Z i , ξ i ) | ln 2 det ( I S i S i ¯ ) k t i p 2 1 × ln 2 det ( I S i S i ¯ ) k t i p 2 2 × det ( I S i S i ¯ ) 1 k = | ψ ( Z i , ξ i ) | [ det ( I Z i Z i ¯ ) k ξ i p 2 ] β det ( I S i S i ¯ ) 1 k × ln 2 det ( I S i S i ¯ ) k t i p 2 .
Theorem 4.
Assume that α > 1 , β > 0 , 0 < k m 1 , and that p j are some positive integers ( j = 1 , 2 , , r ) . Let ϕ = ( ϕ 11 , ϕ 12 ϕ m n + r ) be a holomorphic self-map of GHE I , with ψ H ( GHE I ) and ( Z ϕ , ξ ϕ ) = ϕ ( Z , ξ ) . If ψ A β and
lim ϕ ( Z , ξ ) GHE I | ψ ( Z , ξ ) | [ det ( I Z Z ¯ ) k ξ p 2 ] β [ det ( I Z ϕ Z ϕ ¯ ) k ξ ϕ p 2 ] α 1 = 0 ,
then the weighted composition operator ψ C ϕ : B α ( GHE I ) A β ( GHE I ) is compact.
Conversely, if the weighted composition operator ψ C ϕ : B α ( GHE I ) A β ( GHE I ) is compact, then ψ A β and
lim ϕ ( Z , ξ ) GHE I | ψ ( Z , ξ ) | [ det ( I Z Z ¯ ) k ξ p 2 ] β [ det ( I Z ϕ Z ϕ ¯ ) k ξ ϕ p 2 ] α 1 k = 0 .
Proof. 
Assume that (40) holds. We have
sup ( Z , ξ ) GHE I | ψ ( Z , ξ ) | [ det ( I Z Z ¯ ) k ξ p 2 ] β [ det ( I Z ϕ Z ϕ ¯ ) k ξ ϕ p 2 ] α 1 < .
From Theorem 2, it follows that ψ C ϕ : B α ( GHE I ) A β ( GHE I ) is bounded. Let { f k } k 1 be a bounded sequence in B α ( GHE I ) with f k that converges to 0 uniformly on compact subsets of GHE I . There exists M 2 > 0 , such that f k B α M 2 , k = 1 , 2 , . By (40), for any ε > 0 , there is a constant δ ( 0 , 1 ) , such that
| ψ ( Z , ξ ) | [ det ( I Z Z ¯ ) k ξ p 2 ] β [ det ( I Z ϕ Z ϕ ¯ ) k ξ ϕ p 2 ] α 1 < ε ,
for dist ( ϕ ( Z , ξ ) , GHE I ) < δ . Using Lemma 11, we have
[ det ( I Z Z ¯ ) k ξ p 2 ] β | ( ψ C ϕ f k ) ( Z , ξ ) | = [ det ( I Z Z ¯ ) k ξ p 2 ] β | ψ ( Z , ξ ) · ( C ϕ f k ) ( Z , ξ ) | = [ det ( I Z Z ¯ ) k ξ p 2 ] β | ψ ( Z , ξ ) | | f k ( ϕ ( Z , ξ ) ) | C | ψ ( Z , ξ ) | f k B α [ det ( I Z Z ¯ ) k ξ p 2 ] β [ det ( I Z ϕ Z ϕ ¯ ) k ξ ϕ p 2 ] α 1 C M 2 ε .
On the other hand, if we set
E δ : = { ( Z , ξ ) GHE I : dist ( ϕ ( Z , ξ ) , GHE I ) δ } ,
we have that E δ is a compact subset of GHE I . For ε defined in (42), f k converges to 0 uniformly on any compact subset of GHE I . For ψ A β , we have
[ det ( I Z Z ¯ ) k ξ p 2 ] β | ( ψ C ϕ f k ) ( Z , ξ ) | = [ det ( I Z Z ¯ ) k ξ p 2 ] β | ψ ( Z , ξ ) · ( C ϕ f k ) ( Z , ξ ) | = [ det ( I Z Z ¯ ) k ξ p 2 ] β | ψ ( Z , ξ ) | | f k ( ϕ ( Z , ξ ) ) | ψ A β ε .
According to inequalities (43) and (44), we see that
ψ C ϕ f k A β = sup ( Z , ξ ) GHE I [ det ( I Z Z ¯ ) k ξ p 2 ] β | ( ψ C ϕ f k ) ( Z , ξ ) | 0 , k .
Consequently, making use of Lemma 12, we have that ψ C ϕ : B α ( GHE I ) A β ( GHE I ) is compact.
Conversely, suppose that ψ C ϕ : B α ( GHE I ) A β ( GHE I ) is compact. Then, ψ C ϕ : B α ( GHE I ) A β ( GHE I ) is bounded. Let f 1 , we obtain
[ det ( I Z Z ¯ ) k ξ p 2 ] β | ψ ( Z , ξ ) | = [ det ( I Z Z ¯ ) k ξ p 2 ] β | ( ψ C ϕ f ) ( Z , ξ ) | < .
This shows that ψ A β . Consider now a sequence ( S i , t i ) = ϕ ( Z i , ξ i ) in GHE I such that ϕ ( Z i , ξ i ) GHE I as i . If such a sequence does not exist, then condition (41) obviously holds.
Moreover, let us introduce a sequence of test functions { f i } i 1 :
f i ( Z , ξ ) : = [ det ( I S i S i ¯ ) k t i p 2 ] 1 k 1 + α [ det ( I Z S i ¯ ) k ξ , t i p ] 2 α 1 .
Differentiation gives
f i z g l = ( 2 α 1 ) k · det ( I Z S i ¯ ) k 1 [ det ( I S i S i ¯ ) k t i p 2 ] 1 k 1 + α [ det ( I Z S i ¯ ) k ξ , t i p ] 2 α × det ( I Z S i ¯ ) tr [ ( I Z S i ¯ ) 1 I g l S i ¯ ] , f i ξ j = ( 2 α 1 ) p j ξ j p j 1 t j ¯ p j [ det ( I S i S i ¯ ) k t i p 2 ] 1 k 1 + α [ det ( I Z S i ¯ ) k ξ , t i p ] 2 α .
From (29) and Lemma 15, it follows that there exists a constant C 10 > 0 , such that
[ det ( I Z Z ¯ ) k ξ p 2 ] α | f i ( Z , ξ ) | = ( 2 α 1 ) [ det ( I Z Z ¯ ) k ξ p 2 ] α [ det ( I S i S i ¯ ) k t i p 2 ] 1 k 1 + α | det ( I Z S i ¯ ) k ξ , t i p | 2 α × { k 2 | det ( I Z S i ¯ ) k 1 | 2 × 1 g m 1 l n | det ( I Z S i ¯ ) tr [ ( I Z S i ¯ ) 1 I g l S i ¯ ] | 2 + j = 1 r | p j ξ j p j 1 t j ¯ p j | 2 } 1 2 ( 2 α 1 ) [ det ( I Z Z ¯ ) k ξ p 2 ] α [ det ( I S i S i ¯ ) k t i p 2 ] α | det ( I Z S i ¯ ) k ξ , t i p | 2 α × { k | det ( I Z S i ¯ ) | k 1 × [ det ( I S i S i ¯ ) k t i p 2 ] 1 k 1 × 1 g m 1 l n | det ( I Z S i ¯ ) tr [ ( I Z S i ¯ ) 1 I g l S i ¯ ] | 2 1 2 + j = 1 r | p j ξ j p j 1 t j ¯ p j | 2 1 2 × [ det ( I S i S i ¯ ) k t i p 2 ] 1 k 1 } ( 2 α 1 ) × k · C 1 | det ( I Z S i ¯ ) | k 1 [ det ( I S i S i ¯ ) k ] 1 k 1 + C 10 ( 2 α 1 ) × k · C 1 | det ( I Z S i ¯ ) | k 1 det ( I S i S i ¯ ) 1 k + C 10 ( 2 α 1 ) × C 1 · k · 2 m ( 1 k ) + C 10 C .
This shows that f i B α ( GHE I ) , i = 1 , 2 , and
| f i ( Z , ξ ) | = [ det ( I S i S i ¯ ) k t i p 2 ] 1 k 1 + α | det ( I Z S i ¯ ) k ξ , t i p | 2 α 1 [ det ( I S i S i ¯ ) k t i p 2 ] 1 k 1 + α | | det ( I Z S i ¯ ) k | | ξ , t i p | | 2 α 1 [ det ( I S i S i ¯ ) k t i p 2 ] 1 k 1 + α | det ( I Z S i ¯ ) k | ξ p t i p | 2 α 1 2 2 α 1 [ det ( I S i S i ¯ ) k t i p 2 ] 1 k 1 + α [ det ( I Z Z ¯ ) k ξ p 2 + det ( I S i S i ¯ ) k t i p 2 ] 2 α 1 2 2 α 1 [ det ( I S i S i ¯ ) k t i p 2 ] 1 k 1 + α [ det ( I Z Z ¯ ) k ξ p 2 ] 2 α 1 .
Taking i , we have ( S i , t i ) GHE I . This implies that det ( I S i S i ¯ ) k t i p 2 0 . If E is a compact subset of GHE I , for ( Z , ξ ) E , we have that det ( I Z Z ¯ ) k ξ p 2 has a positive lower bound. Thus, we have f i ( Z , ξ ) 0 , i on all compact subsets of GHE I . According to Lemma 12, we have that ψ C ϕ f i A β 0 . Hence,
0 ψ C ϕ f i A β = sup ϕ ( Z , ξ ) GHE I [ det ( I Z Z ¯ ) k ξ p 2 ] β | ψ ( Z , ξ ) | [ det ( I S i S i ¯ ) k t i p 2 ] 1 k 1 + α | det ( I Z ϕ S i ¯ ) k ξ ϕ , t i p | 2 α 1 [ det ( I Z i Z i ¯ ) k ξ i p 2 ] β | ψ ( Z i , ξ i ) | [ det ( I Z ϕ i Z ϕ i ¯ ) k ξ ϕ i p 2 ] α 1 k .
Corollary 2.
For α > 1 , k = m = 1 , p 1 = = p r = 1 , we are back to the case of the unit ball B = { z C n + r : | z | 2 < 1 } , and ψ C ϕ : B α ( B ) A β ( B ) is compact if and only if ψ A β and
lim ϕ ( z ) B | ψ ( z ) | ( 1 | z | 2 ) β ( 1 | ϕ ( z ) | 2 ) α 1 = 0 ,
when β = 0 . Also, in this case, the result is analog to that obtained by Li and Stević in [11].

Author Contributions

Writing—original draft, J.W. and J.S. All authors have read and agreed to the published version of the manuscript.

Funding

This research was supported by The National Natural Science Foundation of China, Grant/Award Numbers: 11771184; Postgraduate Research & Practice Innovation Program of Jiangsu Province, Grant/Award Numbers: KYCX20 2210.

Data Availability Statement

Our arguments and results are all self innovative except for citations and we don’t have any experimental data.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Cowen, C.; MacCluer, B. Composition Operators on Spaces of Analytic Functions; CRC Press: Boca Raton, FL, USA, 1995. [Google Scholar]
  2. Cartan, E. Sur les domaines bornés homogènes de l’espace de n variables complexes. In Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg; Springer: Berlin/Heidelberg, Germany, 1935; Volume 11, pp. 116–162. [Google Scholar]
  3. Yin, W. From Cartan Domains to Hua Domains; Capital Normal University Press: Beijing, China, 2003. (In Chinese) [Google Scholar]
  4. Yin, W.; Su, J. Extremal problem on super-Cartan domain of the first type. Compiez Var. 2003, 48, 441–452. [Google Scholar]
  5. Wang, M.; Liu, Y. Weighted composition operators between Bers-type spaces. Acta Math. Sci. Ser. A 2007, 27, 665–671. [Google Scholar]
  6. Xu, N.; Zhou, Z. Difference of weighted composition operators from α-Bloch spaces to β-Bloch spaces. Rocky Mt. J. Math. 2021, 51, 2237–2250. [Google Scholar] [CrossRef]
  7. Li, S. Weighted composition operators from Hardy space to the Bers-type space. J. Huzhou Norm. Univ. 2004, 1, 8–11. [Google Scholar]
  8. Zhu, X. Generalized weighted composition operators from Bloch spaces into Bers-type spaces. Filomat 2012, 26, 1163–1169. [Google Scholar] [CrossRef]
  9. Li, S.; Stević, S. Weighted composition operators from H to the Bloch space on the polydisc. Abstr. Appl. Anal. 2007, 2007, 048478. [Google Scholar] [CrossRef]
  10. Li, S.; Stević, S. Weighted composition operators from α-Bloch space to H on the polydisc. Numer. Funct. Anal. Optim. 2007, 28, 911–925. [Google Scholar] [CrossRef]
  11. Li, S.; Stević, S. Weighted composition operators between H and α-Bloch spaces in the unit ball. Taiwan. J. Math. 2008, 12, 1625–1639. [Google Scholar] [CrossRef]
  12. Li, S.; Wulan, H.; Zhao, R.; Zhu, K. A characterization of Bergman spaces on the unit ball of C n. Glas. Math. J. 2009, 51, 315–330. [Google Scholar] [CrossRef]
  13. Li, H.; Liu, P. Weighted composition operators between H and generally weighted Bloch spaces on polydisks. Int. J. Math. 2010, 21, 687–699. [Google Scholar] [CrossRef]
  14. Zhang, M.; Chen, H. Weighted composition operators of H into α-Bloch spaces on the unit ball. Acta. Math. Sin. Engl. Ser. 2009, 25, 265–278. [Google Scholar] [CrossRef]
  15. Zhu, X. Generalized weighted composition operators from H to the logarithmic Bloch space. Filomat 2016, 30, 3867–3874. [Google Scholar] [CrossRef]
  16. Wu, J.; Xu, X.; Ye, Z. Global smooth solutions to the n-dimensional damped models of incompressible fluid mechanics with small initial datum. J. Nonlinear Sci. 2015, 25, 157–192. [Google Scholar] [CrossRef]
  17. Ding, Y.; Liu, X. Periodic waves of nonlinear Dirac equations. Nonlinear Anal. 2014, 109, 252–267. [Google Scholar] [CrossRef]
  18. Tian, Q.; Yang, X.; Zhang, H.; Xu, D. An implicit robust numerical scheme with graded meshes for the modified Burgers model with nonlocal dynamic properties. Comput. Appl. Math. 2023, 42, 246. [Google Scholar] [CrossRef]
  19. Yang, X.; Wu, L.; Zhang, H. A space-time spectral order sinc-collocation method for the fourth-order nonlocal heat model arising in viscoelasticity. Appl. Math. Comput. 2023, 457, 128192. [Google Scholar] [CrossRef]
  20. Wang, W.; Zhang, H.; Jiang, X.; Yang, X. A high-order and efficient numerical technique for the nonlocal neutron diffusion equation representing neutron transport in a nuclear reactor. Ann. Nucl. Energy 2024, 195, 110163. [Google Scholar] [CrossRef]
  21. Jiang, Z.; Li, Z. Weighted composition operators on Bers-type spaces of Loo-Keng Hua domains. Bull. Korean Math. Soc. 2020, 57, 583–595. [Google Scholar]
  22. Kung, J. Applied Inequalities; Shandong Science and Technology Press: Qingdao, China, 2004. (In Chinese) [Google Scholar]
  23. Lu, Q. The Classical Manifolds and the Classical Domains; Science Press: Beijing, China, 2011. (In Chinese) [Google Scholar]
  24. Wu, X. Weighted Composition Operators from u-Bloch Spaces to v-Bloch Spaces on Hartogs Domains; Jiangsu Normal University: Xuzhou, China, 2020. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Wang, J.; Su, J. Boundedness and Compactness of Weighted Composition Operators from α-Bloch Spaces to Bers-Type Spaces on Generalized Hua Domains of the First Kind. Mathematics 2023, 11, 4403. https://doi.org/10.3390/math11204403

AMA Style

Wang J, Su J. Boundedness and Compactness of Weighted Composition Operators from α-Bloch Spaces to Bers-Type Spaces on Generalized Hua Domains of the First Kind. Mathematics. 2023; 11(20):4403. https://doi.org/10.3390/math11204403

Chicago/Turabian Style

Wang, Jiaqi, and Jianbing Su. 2023. "Boundedness and Compactness of Weighted Composition Operators from α-Bloch Spaces to Bers-Type Spaces on Generalized Hua Domains of the First Kind" Mathematics 11, no. 20: 4403. https://doi.org/10.3390/math11204403

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop