Next Article in Journal
Locally Balanced G-Designs
Next Article in Special Issue
Nonlinear Oscillations of a Composite Stepped Piezoelectric Cantilever Plate with Aerodynamic Force and External Excitation
Previous Article in Journal
Dynamical Behavior of a Cancer Growth Model with Chemotherapy and Boosting of the Immune System
Previous Article in Special Issue
Slow–Fast Dynamics Behaviors under the Comprehensive Effect of Rest Spike Bistability and Timescale Difference in a Filippov Slow–Fast Modified Chua’s Circuit Model
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Multi-Frequency Homotopy Analysis Method for Coupled Van der Pol-Duffing System with Time Delay

1
College of Mathematics, Physics and Information Engineering, Zhejiang Normal University, Jinhua 321004, China
2
College of Mathematics, Xiamen University of Technology, Xiamen 361024, China
*
Author to whom correspondence should be addressed.
Mathematics 2023, 11(2), 407; https://doi.org/10.3390/math11020407
Submission received: 8 December 2022 / Revised: 6 January 2023 / Accepted: 10 January 2023 / Published: 12 January 2023
(This article belongs to the Special Issue Modeling and Analysis in Dynamical Systems and Bistability)

Abstract

:
This paper mainly studied the analytical solutions of three types of Van der Pol-Duffing equations. For a system with parametric excitation frequency, we knew that the ordinary homotopy analysis method would be unable to find the analytical solution. Thus, we primarily used the multi-frequency homotopy analysis method (MFHAM). First, the MFHAM was introduced, and the solution of the system was expressed by constructing auxiliary linear operators. Then, the method was applied to three specific systems. We compared the numerical solution obtained using the Runge–Kutta method with the analytical solution to verify the correctness of the latter. Periodic solutions, with and without time delay, were also compared under the same parameters. The results demonstrated that it was both effective and correct to use the MFHAM to find analytical solutions to Van der Pol-Duffing systems, which were classical systems. By comparison, the MFHAM proved to be effective for time delay systems.

1. Introduction

In recent years, time delay-coupled dynamical systems have become an increasingly important research object. The main reasons for this have been high-tech demands, such as precision machining, social demands, such as solving traffic jams, and scientific demands for the development of systems biology. These factors mean that time delays in the process of system coupling cannot be ignored. The dynamical behavior of differential systems with time delays has attracted the attention of researchers in many fields, such as mathematics, physics, mechanical engineering, and biology [1,2,3,4,5,6]. Hu et al. [7] emphasized singular perturbation methods. By comparing them with other methods, the authors concluded that this method could more easily calculate and accurately predict the local dynamics of systems with time delays near Hopf bifurcation. Sharma [8] studied parameter mismatch and time delay, showing that they affected the collective dynamics of nonlinear oscillation. In the context of ecology, they found that the predator–prey mechanism controlled global interactions, through appropriate time delays and parameter mismatches, to obtain constant populations. Jin et al. [9] presented an identification approach to time delays in linear systems. Ning [10] solved the problem of global adaptive control of nonlinear systems with time delay through the HOPA system method.
The Van der Pol-Duffing system has a long history of application in the physical and biological sciences [11,12,13]. For example, Fitzhugh [14] treated the equation as a model of neuronal action potentials. These equations were also used in seismology to model two plates in geological faults [15], in addition to applications in physics. In recent years, period-doubling solutions and quasi-periodic solutions of forced Van der Pol-Duffing oscillators have also received extensive attention and research. Cui et al. [16] combined the homotopy analysis method (HAM) with the multi-scale analysis method to study the analytical solution of the forced Van der Pol-Duffing oscillators.
The HAM was proposed by Liao [17,18] in 1992. Cui et al. [19] studied its stability in the Van der Pol–Duffing forced oscillator and periodic solutions. Shahram et al. [20] used the HAM to study the fourth order nonlinear free vibration of Timoshenko beams. Shukla et al. [21] proposed an improved HAM to solve quasi-periodic solutions and limit cycles in a forced Van der Pol-Duffing oscillator. Fu et al. [22] obtained a periodic solution for a coupled Duffing system using the MFHAM.
In Section 1, we introduced the systems and methods studied in this paper. In Section 2, we described the process of the MFHAM, which was used to calculate a two-degree-of-freedom coupled Duffing system. In Section 3, Section 4 and Section 5, we offered three specific examples. In Section 6, we provided our summary.

2. Multi-Frequency Homotopy Analysis Method

First, we considered the following two-degree-of-freedom Duffing system:
x 1 + c x 1 + F 1 x 1 , x 2 = f 1 c o s   Ω t x 2 + c x 2 + F 2 x 1 , x 2 = f 2 c o s   Ω t ,
where x 1 t , x 2 t are unknow real functions, F 1 x 1 , x 2 , F 2 x 1 , x 2 are coupling functions, f 1 , f 2 are the amplitudes of excitation, Ω is the frequency of the parametric excitation, and c is a known physical parameter.
Based on the MFHAM, we constructed the following n-order auxiliary linear differential operator
L n x 1 x 2 = x 1 ( 2 n ) x 2 ( 2 n ) + i = 1 n   Ω i 2 x 1 ( 2 n 2 ) x 2 ( 2 n 2 ) + i j n   Ω i 2 Ω j 2 x 1 ( 2 n 4 ) x 2 ( 2 n 4 ) + i j r n   Ω i 2 Ω j 2 Ω r 2 x 1 ( 2 n 6 ) x 2 ( 2 n 6 ) + + i = 1 n   Ω i 2 x 1 x 2 ,
where Ω i ( i = 1,2 , . . . , n ) are the fundamental frequencies.
The characteristic polynomial of Equation (2) is
P λ = r = 1 n   λ + r Ω i λ r Ω i .
The root of the characteristic polynomial in Equation (3) is the frequency under consideration multiplied by the imaginary unit i , so it was necessary to eliminate the long-term term formed by any sinusoidal term of the frequency under consideration on the right side of the differential operator L n x .
When the solution of the equation contains a constant term, Equation (2) can be written as follows.
L n + 1 x 1 x 2 = x 1 ( 2 n + 1 ) x 2 ( 2 n + 1 ) + i = 1 n   Ω i 2 x 1 ( 2 n 1 ) x 2 ( 2 n 1 ) + i j n   Ω i 2 Ω j 2 x 1 ( 2 n 3 ) x 2 ( 2 n 3 ) + i j r n   Ω i 2 Ω j 2 Ω r 2 x 1 ( 2 n 5 ) x 2 ( 2 n 5 ) + + i = 1 n   Ω i 2 x 1 x 2 .
We constructed the following homotopy expression
( 1 q ) L n + 1 x 1 g 1,0 ( t ) x 2 g 2,0 ( t ) q N x 1 x 2 = 0 ,
where q [ 0,1 ] is the embedding variable, g i , 0 t i = 1,2 are the intial solutions of x i t i = 1,2 respectively, and is the auxiliary parameter.
Assuming that the power series solution of Equation (1) is
x i = x i , 0 + q x i , 1 + q 2 x i , 2 + i = 1,2 .
Substituting Equation (6) into Equation (5), and then merging the same term of q , we were able to obtain
q 0 : L n + 1 x 1,0 g 1,0 ( t ) x 2,0 g 2,0 ( t ) = 0 ,
q 1 : L n + 1 x 1,1 g 1,0 ( t ) x 2,1 g 2,0 ( t ) = L n + 1 x 1,0 g 1,0 ( t ) x 2,0 g 2,0 ( t ) + N x 1,0 x 2,0 ,
q 2 : L n + 1 x 1,2 g 1,0 ( t ) x 2,2 g 2,0 ( t ) = L n + 1 x 1,1 g 1,0 ( t ) x 2,1 g 2,0 ( t ) + N x 1 x 2 q q = 0 .
Let the solution to Equation (7) be
x i , 0 ( t ) = g i , 0 ( t ) + A 0 + l = 1   A l s i n   Ω l t + ϕ l ,
where A 0 , A l , ϕ l ( l = 1,2 , . . . , n ) are constants.
First, substituting Equations (7) and (10) into Equation (8), and eliminating the secular terms, we obtained L n + 1 x 1 x 2 . Second, substituting L n + 1 x 1 x 2 into Equation (2) or Equation (4), x i ( t ) ( i = 1,2 ) was obtained. Finally, we obtained the value of A 0 , A l , ϕ l ( l = 1,2 , . . . , n ) by solving the equations consisting of secular terms.
In a similar way, x i , r ( t ) ( i = 1,2 ) can be determined one by one. The solution of Equation (5) was
x i ( t ) = l i m q 1   x i ( t , q ) = x i , 0 ( t ) + x i , 1 ( t ) + x i , 2 ( t ) + .

3. Analyzing the Coupling Van der Pol-Duffing System with MFHAM

We considered the following system by the MFHAM
x ¨ 1 ( t ) μ 1 x 1 2 ( t ) x ˙ 1 ( t ) + α x 2 ( t ) + β x 1 3 ( t ) = f c o s   Ω t x ¨ 2 ( t ) μ 1 x 2 2 ( t ) x ˙ 2 ( t ) + α x 1 ( t ) + β x 2 3 ( t ) = f c o s   Ω t ,
where the prime denotes the differential with respect to the time t , x 1 ( t ) , x 2 ( t ) are unknow real functions, Ω is the frequency of the parametric excitation, and μ > 0 ,   f is the amplitudes of excitation.
For the single period, the characteristic polynomial is
p ( λ ) = λ r = 1 3   ( λ + r Ω i ) ( λ r Ω i ) .
The corresponding auxiliary linear differential operator is
L 4 x 1 x 2 = x 1 ( 7 ) x 2 ( 7 ) + 14 Ω 2 x 1 ( 5 ) x 2 ( 5 ) + 49 Ω 4 x 1 ( 3 ) x 2 ( 3 ) + 36 Ω 6 x 1 x 2 .
Then, we constructed the homotopy expression
Γ x 1 q x 2 q = L 4 x 1 x 2 q L 4 x 1 x 2 q x ¨ 1 ( t ) μ 1 x 1 2 ( t ) x ˙ 1 ( t ) + α x 2 ( t ) + β x 1 3 ( t ) f c o s   Ω t x ¨ 2 ( t ) μ 1 x 2 2 ( t ) x ˙ 2 ( t ) + α x 1 ( t ) + β x 2 3 ( t ) f c o s   Ω t ,
where is the auxiliary parameter, and q 0,1 is the embedding variable.
Supposing the solution to Equation (12) was
x i = x i , 0 + q x i , 1 + q 2 x i , 2 + ( i = 1,2 ) ,
then, substituting Equation (16) into Equation (15) and merging the same power terms of q , we obtained
q 0 : L 4 x 1,0 x 2,0 = 0 ,
q 1 : L 4 x 1,1 x 2,1 = L 4 x 1,0 x 2,0 + x ¨ 1,0 μ 1 x 1,0 2 x ˙ 1,0 + α x 2,0 + β x 1,0 3 f cos   Ω t x ¨ 2,0 μ 1 x 2,0 2 x ˙ 2,0 + α x 1,0 + β x 2,0 3 f cos   Ω t .
Assuming that the solution Equation (17) could be expressed by
x 1,0 = a 1 + b 1 c o s   Ω t + ϕ 1 + b 2 c o s   2 Ω t + ϕ 2 + b 3 c o s   3 Ω t + ϕ 3 x 2,0 = a 2 + d 1 c o s   Ω t + γ 1 + d 2 c o s   2 Ω t + γ 2 + d 3 c o s   3 Ω t + γ 3 ,
where a 1 , a 2 , b i , d i , ϕ i , γ i ( i = 1,2 , 3 ) are unknown parameters.
Substituting Equations (17) and (19) into Equation (18), we obtained the following equations:
L 4 ( x 1,1 ) = { f C o s   [ t Ω ] + α a 2 + d 1 C o s t Ω + γ 1 + d 2 C o s 2 t Ω + γ 2 + d 3 C o s 3 t Ω + γ 3 b 1 Ω 2 C o s t Ω + ϕ 1 4 b 2 Ω 2 C o s 2 t Ω + ϕ 2 9 b 3 Ω 2 C o s 3 t Ω + ϕ 3 + β a 1 + b 1 C o s t Ω + ϕ 1 + b 2 C o s 2 t Ω + ϕ 2 + b 3 C o s 3 t Ω + ϕ 3 3 μ 1 a 1 + b 1 C o s t Ω + ϕ 1 + b 2 C o s 2 t Ω + ϕ 2 + b 3 C o s 3 t Ω + ϕ 3 2 b 1 Ω S i n t Ω + ϕ 1 2 b 2 Ω S i n 2 t Ω + ϕ 2 3 b 3 Ω S i n 3 t Ω + ϕ 3 } ,
L 4 ( x 2,1 ) = { f C o s   [ t Ω ] + β a 2 + d 1 C o s t Ω + γ 1 + d 2 C o s 2 t Ω + γ 2 + d 3 C o s 3 t Ω + γ 3 3 Ω 2 d 1 C o s t Ω + γ 1 + 4 d 2 C o s 2 t Ω + γ 2 + 9 d 3 C o s 3 t Ω + γ 3 + α a 1 + b 1 C o s t Ω + ϕ 1 + b 2 C o s 2 t Ω + ϕ 2 + b 3 C o s 3 t Ω + ϕ 3 μ 1 a 2 + d 1 C o s t Ω + γ 1 + d 2 C o s 2 t Ω + γ 2 + d 3 C o s 3 t Ω + γ 3 2 d 1 Ω S i n t Ω + γ 1 2 d 2 Ω S i n 2 t Ω + γ 2 3 d 3 Ω S i n 3 t Ω + γ 3 } .
To eliminate the secular terms in x i , 1 ( t ) ( i = 1,2 ) , we expanded the Equations (20) and (21), obtaining the equations as follows:
b 1 μ Ω + a 1 2 b 1 μ Ω + 1 4 b 1 3 μ Ω + 1 2 b 1 b 2 2 μ Ω + 1 2 b 1 b 3 2 μ Ω + a 1 b 1 b 2 μ Ω C o s   [ 2 ϕ 1 ϕ 2 ] + b 3 Ω 1 4 b 1 2 μ C o s   [ 3 ϕ 1 ϕ 3 ] + a 1 b 2 μ C o s   [ ϕ 1 + ϕ 2 ϕ 3 ] + 1 4 b 2 2 μ C o s   [ ϕ 1 2 ϕ 2 + ϕ 3 ] + d 1 α S i n   [ γ 1 ϕ 1 ] + f S i n   [ ϕ 1 ] 3 a 1 b 1 b 2 β S i n   [ 2 ϕ 1 ϕ 2 ] 3 4 b 1 2 b 3 β S i n   [ 3 ϕ 1 ϕ 3 ] 3 a 1 b 2 b 3 β S i n   [ ϕ 1 + ϕ 2 ϕ 3 ] 3 4 b 2 2 b 3 β S i n   [ ϕ 1 2 ϕ 2 + ϕ 3 ] = 0 ,
2 b 2 μ Ω + 2 a 1 2 b 2 μ Ω + b 1 2 b 2 μ Ω + 1 2 b 2 3 μ Ω + b 2 b 3 2 μ Ω + a 1 b 1 2 μ Ω C o s   [ 2 ϕ 1 ϕ 2 ] + 2 a 1 b 1 b 3 μ Ω C o s   [ ϕ 1 + ϕ 2 ϕ 3 ] + b 1 b 2 b 3   μ Ω C o s   [ ϕ 1 2 ϕ 2 + ϕ 3 ] + d 2 α S i n   [ γ 2 ϕ 2 ] + b 1 β 3 2 a 1 b 1 S i n   [ 2 ϕ 1 ϕ 2 ] 3 a 1 b 3 S i n   [ ϕ 1 + ϕ 2 ϕ 3 ] + 3 2 b 2 b 3 S i n   [ ϕ 1 2 ϕ 2 + ϕ 3 ] = 0 ,
3 b 3 μ Ω + 3 a 1 2 b 3 μ Ω + 3 2 b 1 2 b 3 μ Ω + 3 2 b 2 2 b 3 μ Ω + 3 4 b 3 3 μ Ω + 1 4 b 1 3 μ Ω C o s   [ 3 ϕ 1 ϕ 3 ] + 3 a 1 b 1 b 2 μ Ω C o s   [ ϕ 1 + ϕ 2 ϕ 3 ] + 3 4 b 1 b 2 2 μ Ω C o s   [ ϕ 1 2 ϕ 2 + ϕ 3 ] + d 3 α S i n   [ γ 3 ϕ 3 ] + 1 4 b 1 3 β S i n   [ 3 ϕ 1 ϕ 3 ] + 3 a 1 b 1 b 2 β S i n   [ ϕ 1 + ϕ 2 ϕ 3 ] 3 4 b 1 b 2 2 β S i n   [ ϕ 1 2 ϕ 2 + ϕ 3 ] = 0 ,
3 a 1 2 b 1 β 3 b 1 3 β 4 3 2 b 1 b 2 2 β 3 2 b 1 b 3 2 β + b 1 Ω 2 d 1 α C o s   [ γ 1 ϕ 1 ] + f C o s   [ ϕ 1 ] 3 a 1 b 1 b 2 β C o s   [ 2 ϕ 1 ϕ 2 ] 3 4 b 1 2 b 3 β C o s   [ 3 ϕ 1 ϕ 3 ] 3 a 1 b 2 b 3 β C o s   [ ϕ 1 + ϕ 2 ϕ 3 ] 3 4 b 2 2 b 3 β C o s   [ ϕ 1 2 ϕ 2 + ϕ 3 ] a 1 b 1 b 2 μ Ω S i n   [ 2 ϕ 1 ϕ 2 ] 1 4 b 1 2 b 3 μ Ω S i n   [ 3 ϕ 1 ϕ 3 ] a 1 b 2 b 3 μ Ω S i n   [ ϕ 1 + ϕ 2 ϕ 3 ] 1 4 b 2 2 b 3 μ Ω S i n   [ ϕ 1 2 ϕ 2 + ϕ 3 ] = 0 ,
3 a 1 2 b 2 β 3 2 b 1 2 b 2 β 3 b 2 3 β 4 3 2 b 2 b 3 2 β + 4 b 2 Ω 2 d 2 α C o s   [ γ 2 ϕ 2 ] 3 2 a 1 b 1 2 β C o s   [ 2 ϕ 1 ϕ 2 ] 3 a 1 b 1 b 3 β C o s   [ ϕ 1 + ϕ 2 ϕ 3 ] 3 2 b 1 b 2 b 3 β C o s   [ ϕ 1 2 ϕ 2 + ϕ 3 ] + μ Ω a 1 b 1 2 S i n   [ 2 ϕ 1 ϕ 2 ] 2 a 1 b 1 b 3 S i n   [ ϕ 1 + ϕ 2 ϕ 3 ] + b 1 b 2 b 3 S i n   [ ϕ 1 2 ϕ 2 + ϕ 3 ] = 0 ,
3 a 1 2 b 3 β 3 2 b 1 2 b 3 β 3 2 b 2 2 b 3 β 3 b 3 3 β 4 + 9 b 3 Ω 2 d 3 α C o s   [ γ 3 ϕ 3 ] 1 4 b 1 3 β C o s   [ 3 ϕ 1 ϕ 3 ] 3 a 1 b 1 b 2 β C o s   [ ϕ 1 + ϕ 2 ϕ 3 ] 3 4 b 1 b 2 2 β C o s   [ ϕ 1 2 ϕ 2 + ϕ 3 ] + μ Ω 1 4 b 1 3 S in   [ 3 ϕ 1 ϕ 3 ] + 3 a 1 b 1 b 2 S i n   [ ϕ 1 + ϕ 2 ϕ 3 ] 3 4 b 1 b 2 2 S i n [ ϕ 1 2 ϕ 2 + ϕ 3 ] = 0 ,
d 1 μ Ω + a 2 2 d 1 μ Ω + 1 4 d 1 3 μ Ω + 1 2 d 1 d 2 2 μ Ω + 1 2 d 1 d 3 2 μ Ω + a 2 d 1 d 2 μ Ω C o s   [ 2 γ 1 γ 2 ] + 1 4 d 1 2 d 3 μ Ω C o s   [ 3 γ 1 γ 3 ] + a 2 d 2 d 3 μ Ω C o s   [ γ 1 + γ 2 γ 3 ] + 1 4 d 2 2 d 3 μ Ω C o s   [ γ 1 2 γ 2 + γ 3 ] + f   S i n [ γ 1 ] 3 a 2 d 1 d 2 β S i n [ 2 γ 1 γ 2 ] 3 4 d 1 2 d 3 β S i n [ 3 γ 1 γ 3 ] 3 a 2 d 2 d 3 β S i n   [ γ 1 + γ 2 γ 3 ] 3 4 d 2 2 d 3 β S i n   [ γ 1 2 γ 2 + γ 3 ] b 1 α S i n   [ γ 1 ϕ 1 ] = 0 ,
2 d 2 μ Ω + 2 a 2 d 2 μ Ω + d 1 2 d 2 μ Ω + 1 2 d 2 3 μ Ω + d 2 d 3 2 μ Ω + a 2 d 1 2 μ Ω C o s   [ 2 γ 1 γ 2 ] + 2 a 2 d 1 d 3 μ Ω C o s   [ γ 1 + γ 2 γ 3 ] + d 1 d 2 d 3 μ Ω C o s   [ γ 1 2 γ 2 + γ 3 ] + 3 2 a 2 d 1 2 β S i n [ 2 γ 1 γ 2 ] 3 a 2 d 1 d 3 β S i n [ γ 1 + γ 2 γ 3 ] + 3 2 d 1 d 2 d 3 β S i n [ γ 1 2 γ 2 + γ 3 ] b 2 α S i n [ γ 2 ϕ 2 ] = 0 ,
3 d 3 μ Ω + 3 a 2 2 d 3 μ Ω + 3 2 d 1 2 d 3 μ Ω + 3 2 d 2 2 d 3 μ Ω + 3 4 d 3 3 μ Ω + 1 4 d 1 3 μ Ω C o s   [ 3 γ 1 γ 3 ] + 3 a 2 d 1 d 2 μ Ω C o s   [ γ 1 + γ 2 γ 3 ] + 3 4 d 1 d 2 2 μ Ω C o s   [ γ 1 2 γ 2 + γ 3 ] + 1 4 d 1 3 β S i n [ 3 γ 1 γ 3 ] + 3 a 2 d 1 d 2 β S i n [ γ 1 + γ 2 γ 3 ] 3 4 d 1 d 2 2 β S i n   [ γ 1 2 γ 2 + γ 3 ] b 3 α S i n [ γ 3 ϕ 3 ] = 0 ,
3 d 1 3 β 4 3 2 d 1 d 2 2 β 3 2 d 1 d 3 2 β + d 1 Ω 2 + f C o s   [ γ 1 ] 3 a 2 d 1 d 2 β C o s   [ 2 γ 1 γ 2 ] 3 4 d 1 2 d 3 β C o s   [ 3 γ 1 γ 3 ] 3 a 2 d 2 d 3 β C o s   [ γ 1 + γ 2 γ 3 ] 3 4 d 2 2 d 3 β C o s   [ γ 1 2 γ 2 + γ 3 ] b 1 α C o s   [ γ 1 ϕ 1 ] a 2 d 1 d 2 μ Ω S i n [ 2 γ 1 γ 2 ] 1 4 d 1 2 d 3 μ Ω S i n [ 3 γ 1 γ 3 ] a 2 d 2 d 3 μ Ω S i n   [ γ 1 + γ 2 γ 3 ] 3 a 2 2 d 1 β 1 4 d 2 2 d 3 μ Ω S i n   [ γ 1 2 γ 2 + γ 3 ] = 0 ,
3 a 2 2 d 2 β 3 2 d 1 2 d 2 β 3 d 2 3 β 4 3 2 d 2 d 3 2 β + 4 d 2 Ω 2 3 2 a 2 d 1 2 β C o s   [ 2 γ 1 γ 2 ] 3 a 2 d 1 d 3 β C o s   γ 1 + γ 2 γ 3 3 2 d 1 d 2 d 3 β C o s   [ γ 1 2 γ 2 + γ 3 ] b 2 α C o s   [ γ 2 ϕ 2 ] + a 2 d 1 2 μ Ω S i n [ 2 γ 1 γ 2 ] 2 a 2 d 1 d 3 μ Ω S i n [ γ 1 + γ 2 γ 3 ] + d 1 d 2 d 3 μ Ω S i n [ γ 1 2 γ 2 + γ 3 ] = 0 ,
3 a 2 2 d 3 β 3 2 d 1 2 d 3 β 3 2 d 2 2 d 3 β 3 d 3 3 β 4 + 9 d 3 Ω 2 1 4 d 1 3 β C o s   [ 3 γ 1 γ 3 ] 3 a 2 d 1 d 2 β C o s   [ γ 1 + γ 2 γ 3 ] 3 4 d 1 d 2 2 β C o s   [ γ 1 2 γ 2 + γ 3 ] b 3 α C o s   [ γ 3 ϕ 3 ] + 1 4 d 1 3 μ Ω S i n [ 3 γ 1 γ 3 ] + 3 a 2 d 1 d 2 μ Ω S i n   [ γ 1 + γ 2 γ 3 ] 3 4 d 1 d 2 2 μ Ω S i n   [ γ 1 2 γ 2 + γ 3 ] = 0 ,
a 1 α a 2 3 β 3 2 a 2 d 1 2 β 3 2 a 2 d 2 2 β 3 2 a 2 d 3 2 β 3 4 d 1 2 d 2 β C o s   [ 2 γ 1 γ 2 ] 3 2 d 1 d 2 d 3 β C o s   [ γ 1 + γ 2 γ 3 ] = 0 ,
a 2 α a 1 3 β 3 2 a 1 b 1 2 β 3 2 a 1 b 2 2 β 3 2 a 1 b 3 2 β 3 4 b 1 2 b 2 β C o s   [ 2 ϕ 1 ϕ 2 ] 3 2 b 1 b 2 b 3 β C o s   [ ϕ 1 + ϕ 2 ϕ 3 ] = 0 .
Eliminating the secular terms, we obtained x 1,1 and x 2,1 , where the set of parameters a 1 , a 2 , b i , d i , ϕ i , γ i ( i = 1,2 , 3 ) could be given by Equations (22)–(35), and the solution for x 1,1 and x 2,1 could be obtained.
Therefore, the first-order approximate solution of x 1 and x 2 was
x i ( t ) = l i m q 1   x 0 + q x 1 = x i , 0 + x i , 1 ( i = 1,2 ) .
Letting
μ = 1 ; α = 3.8 ; β = 1 ; f = 3 ; Ω = 2 ,
the system had a single period solution, as shown in Figure 1. This figure was a superposition of analytical solution and numerical solution. The numerical solution was obtained by directly calling the command of Mathematica 12.0 version, and the parameter values were the same as the analytical solution.
For the period-doubling solution, the characteristic polynomial was
P ( λ ) = λ r = 1 6   λ + r Ω 2 i λ r Ω 2 i .
We used the following corresponding auxiliary linear differential operator
L 7 x 1 x 2 = x 1 ( 13 ) x 2 ( 13 ) + 91 Ω 2 4 x 1 ( 11 ) x 2 ( 11 ) + 3003 Ω 4 16 x 1 ( 9 ) x 2 ( 9 ) + 44473 Ω 6 64 x 1 ( 7 ) x 2 ( 7 ) + 37037 Ω 8 32 x 1 ( 5 ) x 2 ( 5 ) + 48321 Ω 10 64 x 1 ( 3 ) x 2 ( 3 ) + 2025 Ω 12 16 x 1 x 2 .
Next, we constructed
Γ x 1 q x 2 q = L 7 x 1 x 2 q L 7 x 1 x 2 q x ¨ 1 ( t ) μ 1 x 1 2 ( t ) x ˙ 1 ( t ) + α x 2 ( t ) + β x 1 3 ( t ) f c o s   Ω t x ¨ 2 ( t ) μ 1 x 2 2 ( t ) x ˙ 2 ( t ) + α x 1 ( t ) + β x 2 3 ( t ) f c o s   Ω t ,
where is the auxiliary parameter and q 0,1 is the embedding variable.
Assuming that the solution of Equation (12) could be expressed as
x i = x i , 0 + q x i , 1 + q 2 x i , 2 + i = 1,2 ,
then, substituting Equation (41) into Equation (40) and merging the same power terms of q , then obtained
q 0 : L 7 x 1,0 x 2,0 = 0 ,
q 1 : L 7 x 1,1 x 2,1 = L 7 x 1,0 x 2,0 + x ¨ 1 ( t ) μ 1 x 1 2 ( t ) x ˙ 1 ( t ) + α x 2 ( t ) + β x 1 3 ( t ) f c o s   Ω t x ¨ 2 ( t ) μ 1 x 2 2 ( t ) x ˙ 2 ( t ) + α x 1 ( t ) + β x 2 3 ( t ) f c o s   Ω t .
The solution to Equation (42) can be expressed by
x 1,0 = a 1 + e 1 c o s   Ω t 2 + ϕ 0 + b 1 c o s   Ω t + ϕ 1 + e 2 c o s   3 Ω t 2 + ϕ 2 + b 2 c o s   2 Ω t + ϕ 3 + e 3 c o s   5 Ω t 2 + ϕ 4 + b 3 c o s   3 Ω t + ϕ 5 ,
x 2,0 = a 2 + f 1 c o s   Ω t 2 + γ 0 + d 1 c o s   Ω t + γ 1 + f 2 c o s   3 Ω t 2 + γ 2 + d 2 c o s   2 Ω t + γ 3 + f 3 c o s   5 Ω t 2 + γ 4 + d 3 c o s   3 Ω t + γ 5 ,
where a 1 , a 2 , b i , d i , e i , f i , ϕ j , γ j ( i = 1,2 , 3 ; j = 0 , 1,2 , 3,4 , 5 ) are unknown parameters.
Substituting Equations (42), (44), and (45) into (43), and eliminating the secular term in x i , 1 ( t ) ( i = 1,2 ) , we obtained the solution of a 1 , a 2 , b i , d i , e i , f i , ϕ j , γ j ( i = 1,2 , 3 ; j = 1,2 , 3,4 , 5 ) .
Taking μ = 1 , α = 3.8 , β = 1 , f = 3 , Ω = 2 , we obtained the double period solution and found that the system had the double period of movement, as shown in Figure 2.

4. Analyzing the Time Delay Van der Pol-Duffing System with MFHAM

We considered the following system by the MFHAM
x ¨ ( t ) μ 1 x 2 ( t ) x ˙ ( t ) + α x ( t τ ) + β x 3 ( t ) = f c o s   Ω t ,
where the prime denotes the differential with respect to the time t , x ( t ) are unknow real functions, τ is the time delay, Ω is the frequency of the parametric excitation, and μ > 0 ,   α , β , f are constant physical parameters.
First, for the single period solution, we have the characteristic polynomial
p ( λ ) = λ r = 1 3   ( λ + r Ω i ) ( λ r Ω i ) .
Then, we obtained the corresponding auxiliary linear differential operator
L 4 x = x ( 7 ) + 14 Ω 2 x ( 5 ) + 49 Ω 4 x ( 3 ) + 36 Ω 6 x .
The homotopy expression was constructed as follows:
Γ x , q = L 4 x q L 4 x q x ¨ t μ 1 x 2 t x ˙ t + α x t τ + β x 3 t f c o s   Ω t ,
where q 0,1 is the embedding variable and is the auxiliary parameter.
We were then able to suppose that the solution to Equation (46) is
x = x 0 + q x 1 + q 2 x 2 + .
Substituting Equation (50) into Equation (49) and combining terms of the same power of q, we obtained
q 0 : L 4 ( x 0 ) = 0 ,
q 1 : L 4 x 1 = L 4 x 0 + x ¨ 0 ( t ) μ 1 x 0 2 ( t ) x ˙ 0 ( t ) + α x 0 ( t τ ) + β x 0 3 ( t ) f c o s   Ω t .
We then supposed the solution to Equation (51) to be
x 0 = a 1 + b 1 c o s   Ω t + ϕ 1 + b 2 c o s   2 Ω t + ϕ 2 + b 3 c o s   3 Ω t + ϕ 3 ,
where a 1 , b i , ϕ i ( i = 1,2 , 3 ) are unknown parameters.
Substituting Equation (53) into Equation (52), we obtained
L 4 ( x 1 ) = { α a 1 + d 1 C o s ( t τ ) Ω + ϕ 1 + d 2 C o s 2 ( t τ ) Ω + ϕ 2 + d 3 C o s 3 ( t τ ) Ω + ϕ 3 ) 4 b 2 Ω 2 C o s 2 t Ω + ϕ 2 9 b 3 Ω 2 C o s 3 t Ω + ϕ 3 b 1 Ω 2 C o s t Ω + ϕ 1 + β a 1 + b 1 C o s t Ω + ϕ 1 + b 2 C o s 2 t Ω + ϕ 2 + b 3 C o s 3 t Ω + ϕ 3 3 f C o s   [ t Ω ] μ 1 a 1 + b 1 C o s t Ω + ϕ 1 + b 2 C o s 2 t Ω + ϕ 2 + b 3 C o s 3 t Ω + ϕ 3 2 b 1 Ω S i n t Ω + ϕ 1 2 b 2 Ω S i n 2 t Ω + ϕ 2 3 b 3 Ω S i n 3 t Ω + ϕ 3 } .
Expanding Equation (54) and eliminating the secular terms in x 1 , we obtained the following equations:
3 b 3   μ Ω 3 a 1 2 b 3 μ Ω 3 2 b 1 2 b 3 μ Ω 3 2 b 2 2 b 3 μ Ω 3 4 b 3 3 μ Ω 1 4 b 1 3 μ Ω c o s   [ 3 ϕ 1 ϕ 3 ] 3 a 1 b 1 b 2 μ Ω c o s   [ ϕ 1 + ϕ 2 ϕ 3 ] 3 4 b 1 b 2 2 μ Ω c o s   [ ϕ 1 2 ϕ 2 + ϕ 3 ] 1 4 b 1 3 β s i n   [ 3 ϕ 1 ϕ 3 ] 3 a 1 b 1 b 2 β s i n   [ ϕ 1 + ϕ 2 ϕ 3 ] + 3 4 b 1 b 2 2 β s i n   [ ϕ 1 2 ϕ 2 + ϕ 3 ] + b 3 α s i n   [ 3 τ Ω ] = 0 ,
3 a 1 b 1 b 3 β s i n   [ ϕ 1 + ϕ 2 ϕ 3 ] b 1 2 b 2 μ Ω 1 2 b 2 3 μ Ω b 2 b 3 2 μ Ω a 1 2 μ Ω c o s   [ 2 ϕ 1 ϕ 2 ] 2 a 1 b 1 b 3 μ Ω c o s   [ ϕ 1 + ϕ 2 ϕ 3 ] b 1 b 2 b 3 μ Ω c o s   [ ϕ 1 2 ϕ 2 + ϕ 3 ] + b 2 α s i n   [ 2 τ Ω ] + 2 b 2 μ Ω 2 a 1 2 b 2 μ Ω 3 2 b 1 b 2 b 3 β s i n   [ ϕ 1 2 ϕ 2 + ϕ 3 ] 3 2 a 1 b 1 2 β s i n   [ 2 ϕ 1 ϕ 2 ] = 0 ,
b 1 μ Ω a 1 2 b 1 μ Ω 1 4 b 1 3 μ Ω 1 2 b 1 b 2 2 μ Ω 1 2 b 1 b 3 2 μ Ω a 1 b 1 b 2 μ Ω c o s   [ 2 ϕ 1 ϕ 2 ] 1 4 b 1 2 b 3 μ Ω c o s   [ 3 ϕ 1 ϕ 3 ] 1 4 b 2 2 b 3 μ Ω c o s   [ ϕ 1 2 ϕ 2 + ϕ 3 ] f s i n   [ ϕ 1 ] + 3 a 1 b 1 b 2 β s i n   [ 2 ϕ 1 ϕ 2 ] a 1 b 2 b 3 μ c o s   [ ϕ 1 + ϕ 2 ϕ 3 ] + 3 4 b 1 2 b 3 β s i n   [ 3 ϕ 1 ϕ 3 ] + 3 a 1 b 2 b 3 β s i n   [ ϕ 1 + ϕ 2 ϕ 3 ] + 3 4 b 2 2 b 3 β s i n   [ ϕ 1 2 ϕ 2 + ϕ 3 ] + b 1 α s i n   [ τ Ω ] = 0 , ,
3 2 b 2 2 b 3 β + 3 b 3 3 β 4 9 b 3 Ω 2 + 1 4 b 1 3 β c o s   [ 3 ϕ 1 ϕ 3 ] + 3 4 b 1 b 2 2 μ Ω s i n   [ ϕ 1 2 ϕ 2 + ϕ 3 ] + 3 a 1 b 1 b 2 β c o s   [ ϕ 1 + ϕ 2 ϕ 3 ] + 3 4 b 1 b 2 2 β c o s   [ ϕ 1 2 ϕ 2 + ϕ 3 ] + b 3 α c o s   [ 3 τ Ω ] 1 4 b 1 3 μ Ω s i n   [ 3 ϕ 1 ϕ 3 ] 3 a 1 b 1 b 2 μ Ω s i n   [ ϕ 1 + ϕ 2 ϕ 3 ] + 3 a 1 2 b 3 β + 3 2 b 1 2 b 3 β = 0 ,
3 a 1 2 b 2 β + 3 2 b 1 2 b 2 β + 3 2 b 2 b 3 2 β 4 b 2 Ω 2 + 3 2 a 1 b 1 2 β c o s   [ 2 ϕ 1 ϕ 2 ] + 3 a 1 b 1 b 3 β c o s   [ ϕ 1 + ϕ 2 ϕ 3 ] + 3 2 b 1 b 2 b 3 β c o s   [ ϕ 1 2 ϕ 2 + ϕ 3 ] + b 2 α c o s   [ 2 τ Ω ] a 1 b 1 2 μ Ω s i n   [ 2 ϕ 1 ϕ 2 ] + 3 b 2 3 β 4 + 2 a 1 b 1 b 3 μ Ω s i n   [ ϕ 1 + ϕ 2 ϕ 3 ] b 1 b 2 b 3 μ Ω s i n   [ ϕ 1 2 ϕ 2 + ϕ 3 ] = 0 ,
3 b 1 3 β 4 + 3 2 b 1 b 3 2 β b 1 Ω 2 f c o s   [ ϕ 1 ] + 3 4 b 1 2 b 3 β c o s   [ 3 ϕ 1 ϕ 3 ] + 3 a 1 b 1 b 2 β c o s   [ 2 ϕ 1 ϕ 2 ] + 3 a 1 b 2 b 3 c o s   [ ϕ 1 + ϕ 2 ϕ 3 ] + 3 a 1 2 b 1 β 3 4 b 2 2 b 3 β c o s   [ ϕ 1 2 ϕ 2 + ϕ 3 ] + b 1 α c o s   [ τ Ω ] + a 1 b 1 b 2 μ Ω s i n   [ 2 ϕ 1 ϕ 2 ] + 1 4 b 1 2 b 3 μ Ω s i n   [ 3 ϕ 1 ϕ 3 ] + a 1 b 2 b 3 μ s i n   [ ϕ 1 + ϕ 2 ϕ 3 ] + 3 2 b 1 b 2 2 β + 1 4 b 2 2 b 3 μ Ω s i n   [ ϕ 1 2 ϕ 2 + ϕ 3 ] = 0 ,
a 1 α + a 1 3 β + 3 2 a 1 b 1 2 β + 3 2 a 1 b 2 2 β + 3 2 a 1 b 3 2 β + 3 4 b 1 2 b 2 β c o s   [ 2 ϕ 1 ϕ 2 ] + 3 4 b 1 2 b 2 β c o s   [ 2 ϕ 1 ϕ 2 ] + 3 2 b 1 b 2 b 3 β c o s   [ ϕ 1 + ϕ 2 ϕ 3 ] = 0 .
Eliminating the secular terms, we obtained x 1 , where the set of parameters a 1 , b i , ϕ i ( i = 1,2 , 3 ) can be given by Equations (55)–(61).
Therefore, the first-order approximate solution of x was
x = l i m q 1   x 0 + q x 1 = x 0 + x 1 .
Selecting a set of parameters, we obtained the periodic solution, as shown in Figure 3. We also obtained the single periodic solution for τ = 0 under the parameter, as shown in Figure 4.
For the period-doubling solution, the characteristic polynomial is
P ( λ ) = λ r = 1 6   λ + r Ω 2 i λ r Ω 2 i .
We used the following corresponding auxiliary linear differential operator
L 7 x = x ( 13 ) + 91 Ω 2 4 x ( 11 ) + 3003 Ω 4 16 x ( 9 ) + 44473 Ω 6 64 x ( 7 ) + 37037 Ω 8 32 x ( 5 ) + 48321 Ω 10 64 x ( 3 ) + 2025 Ω 12 16 x .
Next, we constructed
Γ x q = L 7 x q L 7 x q ( x ¨ ( t ) μ 1 x 2 ( t ) x ˙ ( t ) + α x ( t τ ) + β x 3 ( t ) f c o s   Ω t ) ,
where is the auxiliary parameter, q 0,1 is the embedding variable.
We then assumed that the solution of Equation (46) could be expressed as
x = x 0 + q x 1 + q 2 x 2 + .
Substituting Equation (66) into Equation (65) and merging the same power terms of q , we obtained
q 0 : L 7 ( x 0 ) = 0 ,
q 1 : L 7 x 1 = L 7 x 0 + x ¨ 0 ( t ) μ 1 x 0 2 ( t ) x ˙ 0 ( t ) + α x 0 ( t τ ) + β x 0 3 ( t ) f c o s   Ω t .
We assumed that the solution Equation (67) could be expressed by
x 0 = a 1 + e 1 c o s   Ω t 2 + ϕ 0 + b 1 c o s   Ω t + ϕ 1 + e 2 c o s   3 Ω t 2 + ϕ 2 + b 2 c o s   2 Ω t + ϕ 3 + e 3 c o s   5 Ω t 2 + ϕ 4 + b 3 c o s   3 Ω t + ϕ 5 ,
where a 1 , b i , e i , ϕ j ( i = 1,2 , 3 ; j = 1,2 , 3,4 , 5 ) are unknown parameters.
Substituting Equations (67) and (69) into (68), and eliminating the secular term in x 1 ( t ) , we obtained the solution a 1 , b i , e i , ϕ j ( i = 1,2 , 3 ; j = 0,1 , 2,3 , 4,5 ) .
Taking μ = 1 , α = 3.8 , β = 1 , f = 3 , Ω = 2 , τ = 0.01 , we obtained the double period solution and found that the system had the double period of movement, as shown in Figure 5. We also obtained the double periodic solution for τ = 0 under this parameter, as shown in Figure 6. Therefore, we found that the existence of time delay affected the solution of the system.

5. Analyzing the Time Delay Coupling Van der Pol-Duffing System with MFHAM

The system was as follows
x ¨ 1 ( t ) μ 1 x 1 2 ( t ) x ˙ 1 ( t ) + α x 2 ( t τ ) + β x 1 3 ( t ) = f c o s   Ω t x ¨ 2 t μ 1 x 2 2 t x ˙ 2 t + α x 1 t τ + β x 2 3 t = f c o s   Ω t .
For the single period, the characteristic polynomial is
p ( λ ) = λ r = 1 3   ( λ + r Ω i ) ( λ r Ω i ) .
The corresponding auxiliary linear differential operator is
L 4 x 1 x 2 = x 1 ( 7 ) x 2 ( 7 ) + 14 Ω 2 x 1 ( 5 ) x 2 ( 5 ) + 49 Ω 4 x 1 ( 3 ) x 2 ( 3 ) + 36 Ω 6 x 1 x 2 .
Then, we constructed the homotopy expression
Γ x 1 q x 2 q = L 4 x 1 x 2 q L 4 x 1 x 2 q x ¨ 1 ( t ) μ 1 x 1 2 ( t ) x ˙ 1 ( t ) + α x 2 ( t τ ) + β x 1 3 ( t ) f c o s   Ω t x ¨ 2 ( t ) μ 1 x 2 2 ( t ) x ˙ 2 ( t ) + α x 1 ( t τ ) + β x 2 3 ( t ) f c o s   Ω t ,
where is the auxiliary parameter and q 0,1 is the embedding variable.
We supposed the solution to Equation (70) to be
x i = x i , 0 + q x i , 1 + q 2 x i , 2 + ( i = 1,2 ) .
Substituting Equation (74) into Equation (73) and merging the same power terms of q , we obtained
q 0 : L 4 x 1,0 x 2,0 = 0 ,
q 1 : L 4 x 1,1 x 2,1 = L 4 x 1,0 x 2,0 + x ¨ 1 ( t ) μ 1 x 1 2 ( t ) x ˙ 1 ( t ) + α x 2 ( t τ ) + β x 1 3 ( t ) f c o s Ω t x ¨ 2 ( t ) μ 1 x 2 2 ( t ) x ˙ 2 ( t ) + α x 1 ( t τ ) + β x 2 3 ( t ) f c o s Ω t .
We then assumed that the solution Equation (75) could be expressed by
x 1,0 = a 1 + b 1 c o s   Ω t + ϕ 1 + b 2 c o s   2 Ω t + ϕ 2 + b 3 c o s   3 Ω t + ϕ 3 x 2,0 = a 2 + d 1 cos   Ω t + γ 1 + d 2 cos   2 Ω t + γ 2 + d 3 cos   3 Ω t + γ 3 ,
where a 1 , a 2 , b i , d i , ϕ i , γ i ( i = 1,2 , 3 ) are unknown parameters.
Substituting Equations (75) and (77) into Equation (76), we obtained the following equations
L 4 ( x 1,1 ) = { α a 2 + d 1 C o s ( t τ ) Ω + γ 1 + d 2 C o s 2 ( t τ ) Ω + γ 2 + d 3 C o s 3 ( t τ ) Ω + γ 3 b 1 Ω 2 C o s t Ω + ϕ 1 4 b 2 Ω 2 C o s 2 t Ω + ϕ 2 9 b 3 Ω 2 C o s 3 t Ω + ϕ 3 f C o s   [ t Ω ] + β a 1 + b 1 C o s t Ω + ϕ 1 + b 2 C o s 2 t Ω + ϕ 2 + b 3 C o s 3 t Ω + ϕ 3 3 μ 1 a 1 + b 1 C o s t Ω + ϕ 1 + b 2 C o s 2 t Ω + ϕ 2 + b 3 C o s 3 t Ω + ϕ 3 2 b 1 Ω S i n t Ω + ϕ 1 2 b 2 Ω S i n 2 t Ω + ϕ 2 3 b 3 Ω S i n 3 t Ω + ϕ 3 } ,
L 4 ( x 2,1 ) = { f C o s   [ t Ω ] + β a 2 + d 1 C o s t Ω + γ 1 + d 2 C o s 2 t Ω + γ 2 + d 3 C o s 3 t Ω + γ 3 3 Ω 2 d 1 C o s t Ω + γ 1 + 4 d 2 C o s 2 t Ω + γ 2 + 9 d 3 C o s 3 t Ω + γ 3 + α a 1 + b 1 C o s ( t τ ) Ω + ϕ 1 + b 2 C o s 2 ( t τ ) Ω + ϕ 2 + b 3 C o s 3 ( t τ ) Ω + ϕ 3 μ 1 a 2 + d 1 C o s t Ω + γ 1 + d 2 C o s 2 t Ω + γ 2 + d 3 C o s 3 t Ω + γ 3 2 d 1 Ω S i n t Ω + γ 1 2 d 2 Ω S i n 2 t Ω + γ 2 3 d 3 Ω S i n 3 t Ω + γ 3 } .
Expanding Equations (78) and (79), then eliminating the secular term in Equations (78) and (79), we obtained the Equations (A1)–(A14) in Appendix A.
Eliminating the secular terms, we obtained x 1,1 and x 2,1 , where the set of parameters a 1 , a 2 , b i , d i , ϕ i , γ i ( i = 1,2 , 3 ) can be given by Equations (A1)–(A14).
Therefore, the first-order approximate solution of x 1 and x 2 was
x i ( t ) = l i m q 1   x 0 + q x 1 = x i , 0 + x i , 1 ( i = 1,2 ) .
Selecting a set of parameters, we obtained the periodic solution, as shown in Figure 7. We also obtained the single periodic solution for τ = 0 under this parameter, as shown in Figure 8.
For the period-doubling solution, the characteristic polynomial is
P ( λ ) = λ r = 1 6   λ + r Ω 2 i λ r Ω 2 i .
We used the following corresponding auxiliary linear differential operator as
L 7 x 1 x 2 = x 1 ( 13 ) x 2 ( 13 ) + 91 Ω 2 4 x 1 ( 11 ) x 2 ( 11 ) + 3003 Ω 4 16 x 1 ( 9 ) x 2 ( 9 ) + 44473 Ω 6 64 x 1 ( 7 ) x 2 ( 7 ) + 37037 Ω 8 32 x 1 ( 5 ) x 2 ( 5 ) + 48321 Ω 10 64 x 1 ( 3 ) x 2 ( 3 ) + 2025 Ω 12 16 x 1 x 2 .
Next, we constructed
Γ x 1 q x 2 q = L 7 x 1 x 2 q L 7 x 1 x 2 q x ¨ 1 ( t ) μ 1 x 1 2 ( t ) x ˙ 1 ( t ) + α x 2 ( t τ ) + β x 1 3 ( t ) f c o s Ω t x ¨ 2 ( t ) μ 1 x 2 2 ( t ) x ˙ 2 ( t ) + α x 1 ( t τ ) + β x 2 3 ( t ) f c o s Ω t ,
where is the auxiliary parameter and q 0,1 is the embedding variable.
We assumed that the solution of Equation (70) could be expressed as
x i = x i , 0 + q x i , 1 + q 2 x i , 2 + i = 1,2 .
Substituting Equation (84) into Equation (83) and merging the same power terms of q , we obtained
q 0 : L 7 x 1,0 x 2,0 = 0 ,
q 1 : L 7 x 1,1 x 2,1 = L 7 x 1,0 x 2,0 + x ¨ 1 ( t ) μ 1 x 1 2 ( t ) x ˙ 1 ( t ) + α x 2 ( t τ ) + β x 1 3 ( t ) f c o s Ω t x ¨ 2 ( t ) μ 1 x 2 2 ( t ) x ˙ 2 ( t ) + α x 1 ( t τ ) + β x 2 3 ( t ) f c o s Ω t .
We assumed that the solution Equation (85) can be expressed by
x 1,0 = a 1 + e 1 c o s   Ω t 2 + ϕ 0 + b 1 c o s   Ω t + ϕ 1 + e 2 c o s   3 Ω t 2 + ϕ 2 + b 2 c o s   2 Ω t + ϕ 3 + e 3 c o s   5 Ω t 2 + ϕ 4 + b 3 c o s   3 Ω t + ϕ 5 ,
x 2,0 = a 2 + f 1 c o s   Ω t 2 + γ 0 + d 1 c o s   Ω t + γ 1 + f 2 c o s   3 Ω t 2 + γ 2 + d 2 c o s   2 Ω t + γ 3 + f 3 c o s   5 Ω t 2 + γ 4 + d 3 c o s   3 Ω t + γ 5 ,
where a 1 , a 2 , b i , d i , e i , f i , ϕ j , γ j ( i = 1,2 , 3 ; j = 1,2 , 3,4 , 5 ) are unknown parameters.
Substituting Equations (85), (87) and (88) into Equation (86), and eliminating the secular term in x i , 1 ( t ) ( i = 1,2 ) , we obtained the solution a 1 , a 2 , b i , d i , e i , f i , ϕ j , γ j ( i = 1,2 , 3 ; j = 0,1 , 2,3 , 4,5 ) . Hence, the double period solution was obtained, as shown in Figure 9. We also obtained the double periodic solution for τ = 0 under this parameter, as shown in Figure 10. Therefore, we found that the existence of time delay affected the solution of the system.

6. Conclusions

In this paper, the Van der Pol-Duffing systems contained parametric excitation frequencies. As such, the ordinary HAM was unable to solve the periodic solution of the systems. Therefore, we chose MFHAM to solve the periodic solution of the system, and applied the method to the coupled Van der Pol-Duffing system, single-degree-of-freedom delay Van der Pol-Duffing system, and Van der Pol-Duffing system with coupled time delay. Then, the solution obtained by this method was compared with the Runge–Kutta method. The results showed that the solutions obtained by the MFHAM and the Runge–Kutta method were consistent, and also showed that the time history curve obtained by the MFHAM and the Runge–Kutta method were consistent. Thus, the effectiveness of the MFHAM to study time delay-coupled nonlinear dynamical systems was demonstrated. We also compared the system with and without time delay under the same parameters, and found that the time delay affected the solution of the system and the dynamic behavior of the system. Thus, it was necessary to consider the time delay of the system.

Author Contributions

Formal analysis, S.W.; Writing–original draft, S.W.; Writing–review & editing, Y.Q. and S.C.; Supervision, Y.Q.; Project administration, Y.Q. All authors have read and agreed to the published version of the manuscript.

Funding

The work was supported by the National Natural Science Foundation of China (NNSFC) through grant No. 12172333 and the Natural Science Foundation of Zhejiang through grant No. LY20A020003.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

All date are available from the corresponding author on reasonable request.

Acknowledgments

The authors gratefully acknowledge the support of the National Natural Science Foundation of China (NNSFC) through grant No. 12172333 by Youhua Qian and Shuping Chen, the Natural Science Foundation of Zhejiang through grant No. LY20A020003 by Youhua Qian. The APC was funded by Youhua Qian and Shuping Chen.

Conflicts of Interest

The authors declare that they have no conflict of interest.

Appendix A

For the steps described in time delay coupling Van der Pol-Duffing system system, we can obtain the equations as follows:
3 a 1 2 b 1 β + 3 b 1 3 β 4 + 3 2 b 1 b 2 2 β + 3 2 b 1 b 3 2 b 1 Ω 2 f c o s   [ γ 1 ] + 3 a 1 b 1 b 2 β c o s   [ 2 γ 1 γ 2 ] + 3 4 b 1 2 b 3 β c o s   [ 3 γ 1 γ 3 ] + 3 a 1 b 2 b 3 β c o s   [ γ 1 + γ 2 γ 3 ] + 3 4 b 2 2 b 3 β c o s   [ γ 1 2 γ 2 + γ 3 ] + d 1 α c o s   [ γ 1 ϕ 1 + τ Ω ] + a 1 b 1 b 2 μ Ω s i n   [ 2 γ 1 γ 2 ] + 1 4 b 1 2 b 3 μ Ω s i n   [ 3 γ 1 γ 3 ] + a 1 b 2 b 3 μ Ω s i n   [ γ 1 + γ 2 γ 3 ] + 1 4 b 2 2 b 3 μ Ω s i n   [ γ 1 2 γ 2 + γ 3 ] = 0 ,
3 2 b 1 2 b 2 β + 3 2 b 2 b 3 2 β 4 b 2 Ω 2 + a 1 b 1 2 β c o s   [ 2 γ 1 γ 2 ] b 1 b 2 b 3 μ s i n   [ γ 1 2 γ 2 + γ 3 ] + 3 a 1 b 1 b 3 β c o s   [ γ 1 + γ 2 γ 3 ] + 3 2 b 1 b 2 b 3 β c o s   [ γ 1 2 γ 2 + γ 3 ] + d 2 α c o s   [ γ 2 ϕ 2 + 2 τ Ω ] a 1 b 1 2 μ Ω s i n   [ 2 γ 1 γ 2 ] + 2 a 1 b 1 b 3 μ s i n   [ γ 1 + γ 2 γ 3 ] + 3 a 1 2 b 2 β + 3 b 2 3 β 4 = 0 ,
3 a 1 2 b 3 β + 3 b 3 3 β 4 9 b 3 Ω 2 + 1 4 b 1 3 β c o s   [ 3 γ 1 γ 3 ] + 3 4 b 1 b 2 2 μ Ω s i n   [ γ 1 2 γ 2 + γ 3 ] + 3 a 1 b 1 b 2 β c o s   [ γ 1 + γ 2 γ 3 ] + 3 4 b 1 b 2 2 β c o s   [ γ 1 2 γ 2 + γ 3 ] + d 3 α c o s   [ γ 1 ϕ 3 + 3 τ Ω ] 1 4 b 1 3 μ Ω s i n   [ 3 γ 1 γ 3 ] 3 a 1 b 1 b 2 μ Ω s i n   [ γ 1 + γ 2 γ 3 ] + 3 2 b 1 2 b 3 β + 3 2 b 3 2 b 3 β = 0 ,
b 1 μ Ω a 1 b 1 b 2 μ Ω c o s   [ 2 γ 1 γ 2 ] f s i n   [ γ 1 ] 1 4 b 2 2 b 3 μ Ω c o s   [ γ 1 2 γ 2 + γ 3 ] 1 4 b 1 2 b 3 μ Ω c o s   [ 3 γ 1 γ 3 ] a 1 b 2 b 3 μ c o s   [ γ 1 + γ 2 γ 3 ] 1 2 b 1 b 2 2 μ Ω 1 2 b 1 b 3 2 μ Ω + 3 a 1 b 1 b 2 β s i n   [ 2 γ 1 γ 2 ] + 3 4 b 1 2 b 3 β s i n   [ 3 γ 1 γ 3 ] + 3 a 1 b 2 b 3 β s i n   [ γ 1 + γ 2 γ 3 ] + 3 4 b 2 2 b 3 β s i n   [ γ 1 2 γ 2 + γ 3 ] + d 1 α s i n   [ γ 1 ϕ 1 + τ Ω ] a 1 2 b 1 μ Ω 1 4 b 1 3 μ Ω = 0 ,
2 b 2 μ Ω + d 2 α s i n   [ γ 2 ϕ 2 + 2 τ Ω ] 1 2 b 2 3 μ Ω b 2 b 3 2 μ Ω a 1 b 1 2 μ Ω c o s   [ 2 γ 1 γ 2 ] 2 a 1 b 1 b 3 μ Ω c o s   [ γ 1 + γ 2 γ 3 ] b 1 b 2 b 3 μ Ω c o s   [ γ 1 2 γ 2 + γ 3 ] 3 2 a 1 b 1 2 β s i n   [ 2 γ 1 γ 2 ] + 3 a 1 b 1 b 3 β s i n   [ γ 1 + γ 2 γ 3 ] 3 2 b 1 b 2 b 3 β s i n   [ γ 1 2 γ 2 + γ 3 ] 2 a 1 2 b 2 μ Ω b 1 2 b 2 μ Ω = 0 ,
3 b 3   μ Ω 3 2 b 2 2 b 3 μ Ω 3 4 b 3 3 μ Ω 1 4 b 1 3 μ Ω c o s   [ 3 γ 1 γ 3 ] + d 3 α s i n   [ γ 1 ϕ 3 + 3 τ Ω ] 3 a 1 b 1 b 2 μ Ω c o s   [ γ 1 + γ 2 γ 3 ] 3 4 b 1 b 2 2 μ Ω c o s   [ γ 1 2 γ 2 + γ 3 ] 1 4 b 1 3 β s i n   [ 3 γ 1 γ 3 ] 3 a 1 b 1 b 2 β s i n   [ γ 1 + γ 2 γ 3 ] + 3 4 b 1 b 2 2 β s i n   [ γ 1 2 γ 2 + γ 3 ] 3 a 1 2 b 3 μ Ω 3 2 b 1 2 b 3 μ Ω = 0 ,
3 a 2 2 d 1 β + 3 d 1 3 β 4 + 3 2 d 1 d 2 2 β d 1 Ω 2 f c o s   [ ϕ 1 ] + 3 a 2 d 1 d 2 β c o s   [ 2 ϕ 1 ϕ 2 ] + 3 4 d 1 2 d 3 β c o s   [ 3 ϕ 1 ϕ 3 ] + 3 d 2 d 3 β c o s   [ ϕ 1 + ϕ 2 ϕ 3 ] + 3 4 d 2 2 d 3 β c o s   [ ϕ 1 + 2 ϕ 2 ϕ 3 ] + b 1 α c o s   [ γ 1 ϕ 1 τ Ω ] + a 2 d 1 d 2 μ Ω s i n   [ 2 ϕ 1 ϕ 2 ] + 1 4 d 1 2 d 3 μ Ω s i n   [ 3 ϕ 1 ϕ 3 ] + a 2 d 2 d 3 μ Ω s i n   [ ϕ 1 + ϕ 2 ϕ 3 ] + 1 4 d 2 2 d 3 μ Ω s i n   [ ϕ 1 2 ϕ 2 + ϕ 3 ] + 3 2 d 1 d 3 2 β = 0 ,
3 a 2 2 d 2 β 4 d 2 Ω 2 d 1 d 2 d 3 μ Ω s i n   [ ϕ 1 2 ϕ 2 + ϕ 3 ] + 3 2 a 2 d 1 2 β c o s   [ 2 ϕ 1 ϕ 2 ] + 3 d 2 3 β 4 + 3 a 2 d 1 d 3 β c o s   [ ϕ 1 + ϕ 2 ϕ 3 ] + 3 2 d 1 d 2 d 3 β c o s   [ ϕ 1 2 ϕ 2 + ϕ 3 ] + b 2 α c o s   [ γ 2 ϕ 2 2 τ Ω ] a 2 d 1 2 μ Ω s i n   [ 2 ϕ 1 ϕ 2 ] + 2 a 2 d 1 d 3 μ Ω s i n   [ ϕ 1 + ϕ 2 ϕ 3 ] + 3 2 d 1 2 d 2 β + 3 2 d 2 d 3 2 β = 0 ,
3 a 2 2 d 3 β + 3 2 d 1 2 d 3 β + 3 d 3 3 β 4 9 d 3 Ω 2 + 1 4 d 1 3 β c o s   [ 3 ϕ 1 ϕ 3 ] 1 4 d 1 3 μ Ω s i n   [ 3 ϕ 1 ϕ 3 ] 3 a 2 d 1 d 2 β c o s   [ ϕ 1 + ϕ 2 ϕ 3 ] + 3 4 d 1 d 2 2 β c o s   [ ϕ 1 2 ϕ 2 + ϕ 3 ] + b 3 α c o s   [ γ 3 ϕ 3 3 τ Ω ] + 3 2 d 2 2 d 3 β 3 a 2 d 1 d 2 μ Ω s i n   [ ϕ 1 + ϕ 2 ϕ 3 ] + 3 4 d 1 d 2 2 μ Ω s i n   [ ϕ 1 2 ϕ 2 + ϕ 3 ] = 0 ,
d 1 μ Ω 1 2 d 1 d 2 2 μ Ω 1 2 d 1 d 3 2 μ Ω a 2 d 1 d 2 μ Ω c o s   [ 2 ϕ 1 ϕ 2 ] 1 4 d 1 2 d 3 μ Ω c o s   [ 3 ϕ 1 ϕ 3 ] a 2 d 2 d 3 μ Ω c o s   [ ϕ 1 + ϕ 2 ϕ 3 ] 1 4 d 2 2 d 3 μ Ω c o s   [ ϕ 1 2 ϕ 2 + ϕ 3 ] 1 4 d 1 3 μ Ω + 3 a 2 d 1 d 2 β s i n   [ 2 ϕ 1 ϕ 2 ] + 3 4 d 1 2 d 3 β s i n   [ 3 ϕ 1 ϕ 3 ] + 3 4 d 2 2 d 3 β s i n   [ ϕ 1 + 2 ϕ 2 ϕ 3 ] + 3 d 2 d 3 β s i n   [ ϕ 1 + ϕ 2 ϕ 3 ] b 1 α s i n   [ γ 1 ϕ 1 τ Ω ] a 2 2 d 1 μ Ω f s i n   [ ϕ 1 ] = 0 ,
2 d 2 μ Ω 1 2 d 2 3 μ Ω d 2 d 3 2 μ Ω a 2 d 1 2 μ Ω   c o s   [ 2 ϕ 1 ϕ 2 ] d 1 d 2 d 3 μ Ω c o s   [ ϕ 1 2 ϕ 2 + ϕ 3 ] 2 a 2 d 1 d 3 μ Ω c o s   [ ϕ 1 + ϕ 2 ϕ 3 ] 2 a 2 2 d 2 μ Ω d 1 2 d 2 μ Ω 3 2 d 1 d 2 d 3 β s i n   [ ϕ 1 2 ϕ 2 + ϕ 3 ] + 3 a 2 d 1 d 3 β s i n   [ ϕ 1 + ϕ 2 ϕ 3 ] 3 2 a 2 d 1 2 β s i n   [ 2 ϕ 1 ϕ 2 ] b 2 α s i n   [ γ 2 ϕ 2 2 τ Ω ] = 0 ,
3 d 3 μ Ω 3 2 d 2 2 d 3 μ Ω 3 4 d 3 3 μ Ω + 3 4 d 1 d 2 2 β s i n   [ ϕ 1 2 ϕ 2 + ϕ 3 ] 1 4 d 1 3 μ Ω c o s   [ 3 ϕ 1 ϕ 3 ] 3 a 2 d 1 d 2 μ Ω c o s   [ ϕ 1 + ϕ 2 ϕ 3 ] 3 4 d 1 d 2 2 μ Ω c o s   [ ϕ 1 2 ϕ 2 + ϕ 3 ] 1 4 d 1 3 β s i n   [ 3 ϕ 1 ϕ 3 ] 3 a 2 d 1 d 2 β s i n   [ ϕ 1 + ϕ 2 ϕ 3 ] b 3 α s i n   [ γ 3 ϕ 3 3 τ Ω ] 3 a 2 2 d 3 μ Ω 3 2 d 1 2 d 3 μ Ω = 0 ,
3 d 3 μ Ω 3 a 2 2 d 3 μ Ω 3 2 d 1 2 d 3 μ Ω 3 2 d 2 2 d 3 μ Ω 3 4 d 3 3 μ Ω 1 4 d 1 3 μ Ω c o s [ 3 ϕ 1 ϕ 3 ] 3 a 2 d 1 d 2 μ Ω c o s [ ϕ 1 + ϕ 2 ϕ 3 ] 1 4 d 1 3 β s i n [ 3 ϕ 1 ϕ 3 ] 3 4 d 1 d 2 2 μ Ω c o s [ ϕ 1 2 ϕ 2 + ϕ 3 ] 3 a 2 d 1 d 2 β s i n [ ϕ 1 + ϕ 2 ϕ 3 ] + 3 4 d 1 d 2 2 β s i n [ ϕ 1 2 ϕ 2 + ϕ 3 ] b 3 α s i n [ γ 3 ϕ 3 3 τ Ω ] = 0 ,
3 d 3 μ Ω 3 a 2 2 d 3 μ Ω 3 2 d 1 2 d 3 μ Ω 3 2 d 2 2 d 3 μ Ω 3 4 d 3 3 μ Ω b 3 α s i n   [ γ 3 ϕ 3 3 τ Ω ] 3 a 2 d 1 d 2 μ Ω c o s   [ ϕ 1 + ϕ 2 ϕ 3 ] 3 4 d 1 d 2 2 μ Ω c o s   [ ϕ 1 2 ϕ 2 + ϕ 3 ] 1 4 d 1 3 β s i n   [ 3 ϕ 1 ϕ 3 ] 3 a 2 d 1 d 2 β s i n   [ ϕ 1 + ϕ 2 ϕ 3 ] + 3 4 d 1 d 2 2 β s i n   [ ϕ 1 2 ϕ 2 + ϕ 3 ] 1 4 d 1 3 μ Ω c o s   [ 3 ϕ 1 ϕ 3 ] = 0 .

References

  1. Verhulst, F. Nonlinear Differential Equations and Dynamical Systems; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
  2. Wang, J.; Liu, C. Stabilization of uncertain systems with Markovian modes of time delay and quantization density. IEEE/CAA J. Autom. Sin. 2018, 5, 463–470. [Google Scholar] [CrossRef]
  3. Khan, H.; Liao, S.-J.; Mohapatra, R.N.; Vajravelu, K. An analytical solution for a nonlinear time-delay model in biology. Commun. Nonlinear Sci. Numer. Simul. 2009, 14, 3141–3148. [Google Scholar] [CrossRef]
  4. Vedenov, A.; Ezhov, A.; Levchenko, E. Structure and bi-furcations. In Non-Linear Waves; Gaponov-Grekhov, A., Rabinovich, M., Eds.; Nauka: Moscow, Ruassia, 1987. [Google Scholar]
  5. Jin, L.; Zheng, X.; Luo, X. Neural dynamics for distributed collaborative control of manipulators with time delays. IEEE/CAA J. Autom. Sin. 2022, 9, 854–863. [Google Scholar] [CrossRef]
  6. Saeed, N.A.; Moatimid, G.M.; Elsabaa, F.M.F.; Ellabban, Y.Y. Time-delayed control to suppress a nonlinear system vibration utilizing the multiple scales homotopy approach. Arch. Appl. Mech. 2021, 91, 1193–1215. [Google Scholar] [CrossRef]
  7. Hu, H.Y.; Wang, Z.H. Singular perturbation methods for nonlinear dynamic systems with time delays. Chaos Solitons Fractals 2009, 40, 13–27. [Google Scholar] [CrossRef]
  8. Sharma, A.; Suresh, K.; Thamilmaran, K.; Prasad, A.; Shrimali, D. Effect of parameter mismatch and time delay interaction on density-induced amplitude death in coupled nonlinear oscillators. Nonlinear Dyn. 2014, 76, 1797–1806. [Google Scholar] [CrossRef]
  9. Jin, M.-S.; Sun, Y.-Q.; Song, H.-W.; Xu, J. Experiment-based identification of time delays in linear systems. Acta Mech. Sin. 2017, 33, 429–439. [Google Scholar] [CrossRef]
  10. Ning, P.; Hua, C.; Meng, R. Adaptive control for a class of nonlinear time-delay system based on the fully actuated system approaches. J. Syst. Sci. Complex. 2022, 35, 522–534. [Google Scholar] [CrossRef]
  11. Kimiaeifar, A.; Saidi, A.R.; Bagheri, G.H.; Rahimpour, M.; Domairry, D.G. Analytical solution for Van der Pol-Duffing oscillators. Chaos Solitons Fractals 2009, 42, 2660–2666. [Google Scholar] [CrossRef]
  12. Ghorbanian, P.; Ramakrishnan, S.; Whitman, A.; Ashrafiuon, H. A phenomenological model of EEG based on the dynamics of a stochastic Duffing-van der Pol oscillator network. Biomed. Signal Process. Control. 2015, 15, 1–10. [Google Scholar] [CrossRef]
  13. Attia, N.; Seba, D.; Akgül, A.; Nour, A. Solving Duffing-Van der Pol oscillator equations of fractional order by an accurate technique. J. Appl. Comput. Mech. 2021, 7, 1480–1487. [Google Scholar]
  14. FitzHugh, R. Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1961, 1, 445–466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  15. Cartwright, J.H.E.; Eguíluz, V.M.; Hernández-García, E.; Piro, O. Dynamics of elastic excitable media. Int. J. Bifurc. Chaos 1999, 9, 2197–2202. [Google Scholar] [CrossRef] [Green Version]
  16. Cui, J.; Zhang, W.; Liu, Z.; Sun, J. On the limit cycles, period-doubling, and quasi-periodic solutions of the forced Van der Pol-Duffing oscillator. Numer. Algorithms 2017, 78, 1217–1231. [Google Scholar] [CrossRef]
  17. Liao, S.J.; Liu, Z. A review of the progress of homotopy analysis methods. Adv. Mech. 2019, 49, 201902. [Google Scholar]
  18. Xu, H.; Liao, S.-J.; You, X.-C. Analysis of nonlinear fractional partial differential equations with the homotopy analysis method. Commun. Nonlinear Sci. Numer. Simul. 2009, 14, 1152–1156. [Google Scholar] [CrossRef]
  19. Cui, J.; Liang, J.; Lin, Z. Stability analysis for periodic solutions of the Van der Pol–Duffing forced oscillator. Phys. Scr. 2015, 91, 015201. [Google Scholar] [CrossRef]
  20. Shahlaei-Far, S.; Nabarrete, A.; Balthazar, J.M. Nonlinear vibrations of cantilever Timoshenko beams: A homotopy analysis. Lat. Am. J. Solids Struct. 2016, 13, 1866–1877. [Google Scholar] [CrossRef]
  21. Shukla, A.K.; Ramamohan, T.R.; Srinivas, S. A new analytical approach for limit cycles and quasi-periodic solutions of nonlinear oscillators: The example of the forced Van der Pol Duffing oscillator. Phys. Scr. 2014, 89, 075202. [Google Scholar] [CrossRef]
  22. Fu, H.X.; Qian, Y.H. Study on a multi-frequency homotopy analysis method for period-doubling solutions of nonlinear systems. Int. J. Bifurc. Chaos 2018, 28, 1850049. [Google Scholar] [CrossRef]
Figure 1. The single period solution of the coupling Van der Pol-Duffing system when τ = 0 , μ = 1 , α = 4 , β = 1 , f = 3 , and Ω = 2 . (a) Phase curve; (b) time history response.
Figure 1. The single period solution of the coupling Van der Pol-Duffing system when τ = 0 , μ = 1 , α = 4 , β = 1 , f = 3 , and Ω = 2 . (a) Phase curve; (b) time history response.
Mathematics 11 00407 g001
Figure 2. The double period solution of the coupling Van der Pol-Duffing system when τ = 0 , μ = 0.08 , α = 1 , β = 0 , f = 0.7 and Ω = 0.5 . (a) Phase curve; (b) time history response.
Figure 2. The double period solution of the coupling Van der Pol-Duffing system when τ = 0 , μ = 0.08 , α = 1 , β = 0 , f = 0.7 and Ω = 0.5 . (a) Phase curve; (b) time history response.
Mathematics 11 00407 g002
Figure 3. The single period solution of the time delay coupling Van der Pol-Duffing system when τ = 0.01 , μ = 0.1 , α = 1 , β = 1 , f = 0.01 and Ω = 2 . (a) Phase curve; (b) time history response.
Figure 3. The single period solution of the time delay coupling Van der Pol-Duffing system when τ = 0.01 , μ = 0.1 , α = 1 , β = 1 , f = 0.01 and Ω = 2 . (a) Phase curve; (b) time history response.
Mathematics 11 00407 g003
Figure 4. The single period solution of the time delay coupling Van der Pol-Duffing system when τ = 0 , μ = 0.1 , α = 1 , β = 1 , f = 0.01 and Ω = 2 . (a) Phase curve; (b) time history response.
Figure 4. The single period solution of the time delay coupling Van der Pol-Duffing system when τ = 0 , μ = 0.1 , α = 1 , β = 1 , f = 0.01 and Ω = 2 . (a) Phase curve; (b) time history response.
Mathematics 11 00407 g004
Figure 5. The double period solution of the time delay Van der Pol-Duffing system when τ = 0.1 , μ = 0.08 , α = 1 , β = 0 , f = 0.71 and Ω = 0.5 . (a) Phase curve; (b) time history response.
Figure 5. The double period solution of the time delay Van der Pol-Duffing system when τ = 0.1 , μ = 0.08 , α = 1 , β = 0 , f = 0.71 and Ω = 0.5 . (a) Phase curve; (b) time history response.
Mathematics 11 00407 g005
Figure 6. The double period solution of the time delay Van der Pol-Duffing system when τ = 0 , μ = 0.08 , α = 1 , β = 0 , f = 0.71 and Ω = 0.5 . (a) Phase curve; (b) time history response.
Figure 6. The double period solution of the time delay Van der Pol-Duffing system when τ = 0 , μ = 0.08 , α = 1 , β = 0 , f = 0.71 and Ω = 0.5 . (a) Phase curve; (b) time history response.
Mathematics 11 00407 g006
Figure 7. The single period solution of the time delay Van der Pol-Duffing system when τ = 0.01 , μ = 0.5 , α = 4 , β = 1 , f = 3 and Ω = 2 . (a) Phase curve; (b) time history response.
Figure 7. The single period solution of the time delay Van der Pol-Duffing system when τ = 0.01 , μ = 0.5 , α = 4 , β = 1 , f = 3 and Ω = 2 . (a) Phase curve; (b) time history response.
Mathematics 11 00407 g007
Figure 8. The single period solution of the time delay Van der Pol-Duffing system when τ = 0 , μ = 0.5 , α = 4 , β = 1 , f = 3 and Ω = 2 . (a) Phase curve; (b) time history response.
Figure 8. The single period solution of the time delay Van der Pol-Duffing system when τ = 0 , μ = 0.5 , α = 4 , β = 1 , f = 3 and Ω = 2 . (a) Phase curve; (b) time history response.
Mathematics 11 00407 g008
Figure 9. The double period solution of the time delay coupling Van der Pol-Duffing system when τ = 0.01 , μ = 0.1 , α = 1 , β = 0 , f = 0.5 and Ω = 0.499 . (a) Phase curve; (b) time history response.
Figure 9. The double period solution of the time delay coupling Van der Pol-Duffing system when τ = 0.01 , μ = 0.1 , α = 1 , β = 0 , f = 0.5 and Ω = 0.499 . (a) Phase curve; (b) time history response.
Mathematics 11 00407 g009
Figure 10. The double period solution of the time delay coupling Van der Pol-Duffing system when τ = 0 , μ = 0.1 , α = 1 , β = 0 , f = 0.5 and Ω = 0.499 . (a) Phase curve; (b) time history response.
Figure 10. The double period solution of the time delay coupling Van der Pol-Duffing system when τ = 0 , μ = 0.1 , α = 1 , β = 0 , f = 0.5 and Ω = 0.499 . (a) Phase curve; (b) time history response.
Mathematics 11 00407 g010
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Qian, Y.; Wang, S.; Chen, S. Multi-Frequency Homotopy Analysis Method for Coupled Van der Pol-Duffing System with Time Delay. Mathematics 2023, 11, 407. https://doi.org/10.3390/math11020407

AMA Style

Qian Y, Wang S, Chen S. Multi-Frequency Homotopy Analysis Method for Coupled Van der Pol-Duffing System with Time Delay. Mathematics. 2023; 11(2):407. https://doi.org/10.3390/math11020407

Chicago/Turabian Style

Qian, Youhua, Shuli Wang, and Shuping Chen. 2023. "Multi-Frequency Homotopy Analysis Method for Coupled Van der Pol-Duffing System with Time Delay" Mathematics 11, no. 2: 407. https://doi.org/10.3390/math11020407

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop