Next Article in Journal
A Sustainable Green Supply Chain Model with Carbon Emissions for Defective Items under Learning in a Fuzzy Environment
Next Article in Special Issue
The Two Stage Moisture Diffusion Model for Non-Fickian Behaviors of 3D Woven Composite Exposed Based on Time Fractional Diffusion Equation
Previous Article in Journal
Research on Corporate Indebtedness Determinants: A Case Study of Visegrad Group Countries
Previous Article in Special Issue
A Novel ON-State Resistance Modeling Technique for MOSFET Power Switches
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Exploration of New Optical Solitons in Magneto-Optical Waveguide with Coupled System of Nonlinear Biswas–Milovic Equation via Kudryashov’s Law Using Extended F-Expansion Method

1
Department of Basic Sciences, Higher Institute of Engineering and Technology, Menoufia 32821, Egypt
2
Department of Physics and Engineering Mathematics, Higher Institute of Engineering and Technology, Tanta 34517, Egypt
3
Department of Physics and Engineering Mathematics, Higher Institute of Engineering, El Shorouk Academy, El-Shorouk City 11837, Egypt
*
Author to whom correspondence should be addressed.
Mathematics 2023, 11(2), 300; https://doi.org/10.3390/math11020300
Submission received: 9 December 2022 / Revised: 29 December 2022 / Accepted: 3 January 2023 / Published: 6 January 2023

Abstract

:
Optical soliton solutions in a magneto-optical waveguide and other exact solutions are investigated for the coupled system of the nonlinear Biswas–Milovic equation with Kudryashov’s law using the extended F-expansion method. Various types of solutions are extracted, such as dark soliton solutions, singular soliton solutions, a dark–singular combo soliton, singular combo soliton solutions, Jacobi elliptic solutions, periodic solutions, combo periodic solutions, hyperbolic solutions, rational solutions, exponential solutions and Weierstrass solutions. The obtained different types of wave solutions help in obtaining nonlinear optical fibers in the future. Furthermore, some selected solutions are described graphically to demonstrate the physical nature of the obtained solutions. The results show that the current method gives effectual and direct mathematical tools for resolving the nonlinear problems in the field of nonlinear wave equations.

1. Introduction

Nonlinear evolution equations play a major role in a variety of scientific and engineering fields. The studies of solitary wave solutions for a nonlinear evolution equation attracted many researchers (see [1,2,3]). The theory of optical solitons is the pioneer area of research in the field of nonlinear optics and the telecommunication industry. Studying optical solitons prorogation through waveguides and optical fibers has been of great interest in the research in the past few years (see [4,5,6,7,8,9,10,11,12,13]). Kudryashov’s law of refractive index is used to explain the soliton transmission dynamics across optical fibers. Nikolay Kudryashov proposed six forms of nonlinear refractive index structures (see [14,15,16,17,18]). Recently, the Biswas–Milovic equation (BME) was a generalized version of the nonlinear Schrödinger’s equation (NLSE) (see [19]). Many authors studied the BME by different methods (see [20,21,22,23,24,25,26,27,28,29,30]). Few authors studied the coupled system of a nonlinear BME (see [31,32]).
In the present study, we consider the coupled system of a nonlinear BME with Kudryashov’s refractive index law as follows [31]:
i ( u m ) t + a 1 ( u m ) xx + b 1 u 2 n + c 1 u n + d 1 u n + e 1 u 2 n + f 1 v 2 n + g 1 v n + h 1 v n + k 1 v 2 n u m
= ϱ 1 v m + i α 1 u m u 2 n x + θ 1 ( u 2 n ) x u m + μ 1 u 2 n ( u m ) x + ξ 1 ( u m ) x ,
i ( v m ) t + a 2 ( v m ) xx + b 2 v 2 n + c 2 v n + d 2 v n + e 2 v 2 n + f 2 u 2 n + g 2 u n + h 2 u n + k 2 u 2 n v m
= ϱ 2 u m + i α 2 v m v 2 n x + θ 2 ( v 2 n ) x v m + μ 2 v 2 n ( v m ) x + ξ 2 ( v m ) x ,
where u ( x , t ) and v ( x , t ) are the profiles of the wave; a l ( l = 1 , 2 ) are the coefficients of the chromatic dispersion; b l , c l , d l and e l ( l = 1 , 2 ) are the coefficients of the self-phase modulation; f l , g l , h l and k l ( l = 1 , 2 ) are the cross-phase modulation (XPM); ϱ l ( l = 1 , 2 ) are the coefficients of a magneto-optic; α l ( l = 1 , 2 ) are the coefficients of self-steepening terms; θ l and μ l ( l = 1 , 2 ) are the coefficients of the nonlinear dispersion; ξ l ( l = 1 , 2 ) are the coefficients of the inter-modal dispersion; and n and m are the power nonlinearity and the maximum intensity, respectively.
In this work, the extended F-expansion method scheme is introduced to obtain various and novel solutions for the proposed model. These solutions include dark solitons, singular solitons, dark–singular combo solitons, singular combo solitons, Jacobi elliptic solutions, periodic solutions, combo periodic solutions, hyperbolic solutions, rational solutions, exponential solutions and Weierstrass solutions. Moreover, for the physical illustration, some of the obtained solutions are represented graphically.

2. Extended F-Expansion Method

In this section, a brief description of the extended F-expansion method is introduced (see [33,34]). Assuming the nonlinear partial differential equation (NLPDE) as follows:
F u , u t , u x 1 , u x 1 x 2 , u t x 1 , u t x 2 , = 0 .
Let
u ( t , x 1 , x 2 , x 3 , , x n ) = H ( ϵ ) , ϵ = j = 1 n x j + γ t ,
then, Equation (3) is reduced to:
R ( H , H , H , ) = 0 .
The solution of (5) is written in the following form:
H ( ϵ ) = α 0 + j = 1 N α j χ j ( ϵ ) + β i χ j ( ϵ ) ,
where α 0 , α j and β j are constants, and χ achieves the following equation:
χ 2 ( ϵ ) = s 0 + s 1 χ ( ϵ ) + s 2 χ 2 ( ϵ ) + s 3 χ 3 ( ϵ ) + s 4 χ 4 ( ϵ ) ,
where s l , ( l = 0 , 1 , 2 , 3 , 4 ) are constants.
The integer N in Equation (6) can be estimated from Equation (5) using the balance rule.
Substituting from Equation (6) into Equation (5) with the auxiliary Equation (7), then we obtain a polynomial in χ . In this polynomial, we combine all terms of the same forces and equalize them with zero.
Hence, we obtain a system of algebraic equations that can be solved by Mathematica software to obtain the unknown constants α 0 , α j , β j ( j = 1 , 2 , , N ) , γ and s l ( l = 0 , 1 , 2 , 3 , 4 ) . Therefore, various forms of solutions can be raised for Equation (3).

3. Exact Wave Solutions

Assuming the exact traveling wave solutions of the Equations (1) and (2) are:
u ( x , t ) = F 1 ( ϵ ) e i ( ρ x + t + ϑ ) ,
v ( x , t ) = F 2 ( ϵ ) e i ( ρ x + t + ϑ ) ,
where
ϵ = x + γ t .
The amplitude component of the soliton is F j ( j = 1 , 2 ) . γ , ρ and are the velocity, frequency and wave number of the soliton, while ϑ is the phase constant represent.
Applying (8) and (9) in (1) and (2) then splitting the real and imaginary parts, we obtain:
a 1 m F 1 m 1 F 1 + a 1 m ( m 1 ) F 1 m 2 F 1 2 m a 1 m ρ 2 ρ ξ 1 + F 1 m + m ρ α 1 + μ 1 + e 1 F 1 m + 2 n
+ b 1 F 1 m 2 n + c 1 F 1 m n + d 1 F 1 m + n + f 1 F 1 m F 2 2 n + g 1 F 1 m F 2 n + h 1 F 1 m F 2 n + k 1 F 1 m F 2 2 n ϱ 1 F 2 m = 0 ,
a 2 m F 2 m 1 F 2 + a 2 m ( m 1 ) F 2 m 2 F 2 2 m a 2 m ρ 2 ρ ξ 2 + F 2 m + m ρ α 2 + μ 2 + e 2 F 2 m + 2 n
+ b 2 F 2 m 2 n + c 2 F 2 m n + d 2 F 2 m + n + f 2 F 2 m F 1 2 n + g 2 F 2 m F 1 n + h 2 F 2 m F 1 n + k 2 F 2 m F 1 2 n ϱ 2 F 1 m = 0 ,
and
m γ + 2 a 1 m ρ ξ 1 m α 1 + μ 1 + 2 n α 1 + θ 1 F 1 2 n F 1 m 1 F 1 = 0 ,
m γ + 2 a 2 m ρ ξ 2 m α 2 + μ 2 + 2 n α 2 + θ 2 F 2 2 n F 2 m 1 F 2 = 0 .
When applying the linearly independent principle to Equations (13) and (14), we obtain:
m α j + μ j + 2 n α j + θ j = 0 , ( j = 1 , 2 ) ,
γ = ξ 1 2 a 1 m ρ = ξ 2 2 a 2 m ρ .
Through Equation (16), we obtain:
ρ = ξ 1 ξ 2 2 m a 1 a 2 , a 1 a 2 .
Setting
F 1 = A F 2 ,
where A 0 , 1 , then Equations (11) and (12) are represented as follows:
a 1 m F 1 m 1 F 1 + a 1 m ( m 1 ) F 1 m 2 F 1 2 + c 1 + g 1 A n F 1 m n m a 1 m ρ 2 ξ 1 ρ + + ϱ 1 A m F 1 m
+ b 1 + f 1 A 2 n F 1 m 2 n + d 1 + h 1 A n F 1 m + n + m ρ α 1 + μ 1 + k 1 A 2 n + e 1 F 1 m + 2 n = 0 ,
a 2 m A m F 1 m 1 F 1 + a 2 m ( m 1 ) A m F 1 m 2 ( F 1 ) 2 + A m ( c 2 A n + g 2 ) F 1 m n [ m A m ( a 2 m ρ 2 ξ 2 ρ + ) + ϱ 2 ] F 1 m
+ A m f 2 + b 2 A 2 n F 1 m 2 n + A m h 2 + d 2 A n F 1 m + n + [ k 2 + m ρ ( α 2 + μ 2 ) + e 2 A 2 n ] A m F 1 m + 2 n = 0 .
Equations (19) and (20) have the same form under the following constraints:
a 1 = a 2 A m ,
a 1 m ( m 1 ) = a 2 m A m ( m 1 ) ,
c 1 + g 1 A n = A m c 2 A n + g 2 ,
b 1 + f 1 A 2 n = A m f 2 + b 2 A 2 n ,
m a 1 m ρ 2 ξ 1 ρ + + ϱ 1 A m = m A m a 2 m ρ 2 ξ 2 ρ + + ϱ 2 ,
d 1 + h 1 A n = A m h 2 + d 2 A n ,
m ρ α 1 + μ 1 + k 1 A 2 n + e 1 = k 2 + m ρ α 2 + μ 2 + e 2 A 2 n A m .
Through the Equations (17), (21) and (25), we obtain:
= ξ 1 ξ 2 ξ 2 A m ξ 1 2 a 2 m 1 A m 2 + ϱ 2 ϱ 1 A m m 1 A m , A m 1 and a 2 0 .
When applying the balancing rule between the terms F 1 m + 2 n and F 1 m 1 F 1 in Equation (19), then N = 1 n , so we can use the following transformation:
F 1 ( ϵ ) = H 1 n ( ϵ ) .
Therefore, Equation (19) can be represented as follows:
H H + L 1 H 2 + L 2 + L 3 H L 4 H 2 + L 5 H 3 + L 6 H 4 = 0 ,
where L 1 = m n n , L 2 = n b 1 + f 1 A 2 n a 1 m , L 3 = n c 1 + g 1 A n a 1 m , L 4 = n m a 1 m ρ 2 ξ 1 ρ + + ϱ 1 A m a 1 m , L 5 = n d 1 + h 1 A n a 1 m and L 6 = n m ρ α 1 + μ 1 + k 1 A 2 n + e 1 a 1 m .
So, we can now apply the extended F-expansion method to Equation (30) to obtain the traveling wave solutions of this equation as
H ( ϵ ) = α 0 + α 1 χ ( ϵ ) + β 1 χ ( ϵ ) ,
where α 1 or β 1 0 .
Compensation by Equation (31) with Equation (7) in Equation (30), then we extract exact solutions of (1) and (2) as follows:
Case: 1  s 1 = s 3 = 0 .
L 3 = 2 L 1 2 + 5 L 1 + 2 L 5 L 4 L 6 2 L 1 + 3 2 + L 1 2 + 3 L 1 + 2 L 5 2 2 L 1 + 1 2 L 1 + 3 3 L 6 2 , α 0 = L 1 + 2 L 5 2 2 L 1 + 3 L 6 ,
(1.1) 
α 1 = s 4 L 1 + 2 L 6 , β 1 = 0 , s 2 = 2 L 4 L 6 2 L 1 + 3 2 + 3 L 1 2 + 3 L 1 + 2 L 5 2 2 L 1 + 1 2 L 1 + 3 2 L 6 ,
L 2 = L 1 L 1 + 2 16 s 0 s 4 L 1 + 1 L 6 2 2 L 1 + 3 4 4 L 1 + 2 L 4 L 5 2 L 6 2 L 1 + 3 2 5 L 1 + 1 L 1 + 2 2 L 5 4 16 L 1 + 1 2 L 1 + 3 4 L 6 3 .
(1.2) 
β 1 = s 0 L 1 + 2 L 6 , α 1 = 0 s 2 = 2 L 4 L 6 2 L 1 + 3 2 + 3 L 1 2 + 3 L 1 + 2 L 5 2 2 L 1 + 1 2 L 1 + 3 2 L 6 ,
L 2 = L 1 L 1 + 2 16 s 0 s 4 L 1 + 1 L 6 2 2 L 1 + 3 4 4 L 1 + 2 L 4 L 5 2 L 6 2 L 1 + 3 2 5 L 1 + 1 L 1 + 2 2 L 5 4 16 L 1 + 1 2 L 1 + 3 4 L 6 3 .
(1.3) 
α 1 = s 4 L 1 + 2 L 6 , β 1 = s 0 L 1 + 2 L 6 , s 2 = 2 L 6 2 L 1 + 3 2 6 s 0 s 4 L 1 + 1 + L 4 + 3 L 1 2 + 3 L 1 + 2 L 5 2 2 L 1 + 1 2 L 1 + 3 2 L 6 ,
L 2 = L 1 L 1 + 2 16 s 0 s 4 L 6 2 L 1 + 3 2 + L 1 + 2 L 5 2 4 L 6 2 L 1 + 3 2 4 s 0 s 4 L 1 + 1 + L 4 + 5 L 1 2 + 3 L 1 + 2 L 5 2 16 L 1 + 1 2 L 1 + 3 4 L 6 3 .
From the case(1.1), under the conditions L 6 L 1 + 2 < 0 and L 5 2 L 1 + 3 > 0 , the exact solutions of (1) and (2) are obtained in the following forms:
(1.1,1) 
If s 0 = 1 , s 2 = r 2 + 1 , s 4 = r 2 , and 0 < r 1 ; thus, the Jacobi elliptic solutions are obtained as follows:
u 1.1 , 1 = L 1 + 2 L 6 L 5 L 1 + 2 2 2 L 1 + 3 L 6 + r sn [ x + γ t ] 1 n e i ( ρ x + t + ϑ ) ,
v 1.1 , 1 = A L 1 + 2 L 6 L 5 L 1 + 2 2 2 L 1 + 3 L 6 + r sn [ x + γ t ] 1 n e i ( ρ x + t + ϑ ) ,
or
u 1.1 , 2 = L 1 + 2 L 6 L 5 L 1 + 2 2 2 L 1 + 3 L 6 + r cd [ x + γ t ] 1 n e i ( ρ x + t + ϑ ) ,
v 1.1 , 2 = A L 1 + 2 L 6 L 5 L 1 + 2 2 2 L 1 + 3 L 6 + r cd [ x + γ t ] 1 n e i ( ρ x + t + ϑ ) .
Special case. We extract the dark solitons when r = 1 , as
u 1.1 , 3 = L 1 + 2 L 6 L 5 L 1 + 2 2 2 L 1 + 3 L 6 + tanh [ x + γ t ] 1 n e i ( ρ x + t + ϑ ) ,
v 1.1 , 3 = A L 1 + 2 L 6 L 5 L 1 + 2 2 2 L 1 + 3 L 6 + tanh [ x + γ t ] 1 n e i ( ρ x + t + ϑ ) .
(1.1,2) 
If s 0 = r 2 , s 2 = r 2 + 1 , s 4 = 1 , and 0 r 1 ; thus, the Jacobi elliptic solutions are obtained as follows:
u 1.1 , 4 = L 1 + 2 L 6 L 5 L 1 + 2 2 2 L 1 + 3 L 6 + ns [ x + γ t ] 1 n e i ( ρ x + t + ϑ ) ,
v 1.1 , 4 = A L 1 + 2 L 6 L 5 L 1 + 2 2 2 L 1 + 3 L 6 + ns [ x + γ t ] 1 n e i ( ρ x + t + ϑ ) ,
or
u 1.1 , 5 = L 1 + 2 L 6 L 5 L 1 + 2 2 2 L 1 + 3 L 6 + dc [ x + γ t ] 1 n e i ( ρ x + t + ϑ ) ,
v 1.1 , 5 = A L 1 + 2 L 6 L 5 L 1 + 2 2 2 L 1 + 3 L 6 + dc [ x + γ t ] 1 n e i ( ρ x + t + ϑ ) .
Special case. We derive singular solitons or singular periodic solutions when r = 1 or r = 0 , as
u 1.1 , 6 = L 1 + 2 L 6 L 5 L 1 + 2 2 2 L 1 + 3 L 6 + coth [ x + γ t ] 1 n e i ( ρ x + t + ϑ ) ,
v 1.1 , 6 = A L 1 + 2 L 6 L 5 L 1 + 2 2 2 L 1 + 3 L 6 + coth [ x + γ t ] 1 n e i ( ρ x + t + ϑ ) ,
or
u 1.1 , 7 = L 1 + 2 L 6 L 5 L 1 + 2 2 2 L 1 + 3 L 6 + csc [ x + γ t ] 1 n e i ( ρ x + t + ϑ ) ,
v 1.1 , 7 = A L 1 + 2 L 6 L 5 L 1 + 2 2 2 L 1 + 3 L 6 + csc [ x + γ t ] 1 n e i ( ρ x + t + ϑ ) ,
and
u 1.1 , 8 = L 1 + 2 L 6 L 5 L 1 + 2 2 2 L 1 + 3 L 6 + sec [ x + γ t ] 1 n e i ( ρ x + t + ϑ ) ,
v 1.1 , 8 = A L 1 + 2 L 6 L 5 L 1 + 2 2 2 L 1 + 3 L 6 + sec [ x + γ t ] 1 n e i ( ρ x + t + ϑ ) .
(1.1,3) 
If s 0 = r 2 , s 2 = 2 r 2 1 , s 4 = 1 r 2 , and 0 r < 1 ; thus, the Jacobi elliptic solutions are obtained as follows:
u 1.1 , 9 = L 1 + 2 L 6 L 5 L 1 + 2 2 2 L 1 + 3 L 6 + 1 r 2 nc [ x + γ t ] 1 n e i ( ρ x + t + ϑ ) ,
v 1.1 , 9 = A L 1 + 2 L 6 L 5 L 1 + 2 2 2 L 1 + 3 L 6 + 1 r 2 nc [ x + γ t ] 1 n e i ( ρ x + t + ϑ ) .
(1.1,4) 
If s 0 = 1 , s 2 = 2 r 2 , s 4 = 1 r 2 , and 0 r < 1 ; thus, the Jacobi elliptic solutions are obtained as follows:
u 1.1 , 10 = L 1 + 2 L 6 L 5 L 1 + 2 2 2 L 1 + 3 L 6 + 1 r 2 sc [ x + γ t ] 1 n e i ( ρ x + t + ϑ ) ,
v 1.1 , 10 = A L 1 + 2 L 6 L 5 L 1 + 2 2 2 L 1 + 3 L 6 + 1 r 2 sc [ x + γ t ] 1 n e i ( ρ x + t + ϑ ) .
Special case. We obtain periodic solutions when r = 0 , as
u 1.1 , 11 = L 1 + 2 L 6 L 5 L 1 + 2 2 2 L 1 + 3 L 6 + tan [ x + γ t ] 1 n e i ( ρ x + t + ϑ ) ,
v 1.1 , 11 = A L 1 + 2 L 6 L 5 L 1 + 2 2 2 L 1 + 3 L 6 + tan [ x + γ t ] 1 n e i ( ρ x + t + ϑ ) .
(1.1,5) 
If s 0 = 1 r 2 , s 2 = 2 r 2 , s 4 = 1 , and 0 r 1 ; thus, the Jacobi elliptic solutions are obtained as follows:
u 1.1 , 12 = L 1 + 2 L 6 L 5 L 1 + 2 2 2 L 1 + 3 L 6 + cs [ x + γ t ] 1 n e i ( ρ x + t + ϑ ) ,
v 1.1 , 12 = A L 1 + 2 L 6 L 5 L 1 + 2 2 2 L 1 + 3 L 6 + cs [ x + γ t ] 1 n e i ( ρ x + t + ϑ ) .
Special case. When r = 1 or r = 0 , we derive singular solitons or periodic solutions as
u 1.1 , 13 = L 1 + 2 L 6 L 5 L 1 + 2 2 2 L 1 + 3 L 6 + csc h [ x + γ t ] 1 n e i ( ρ x + t + ϑ ) ,
v 1.1 , 13 = A L 1 + 2 L 6 L 5 L 1 + 2 2 2 L 1 + 3 L 6 + csc h [ x + γ t ] 1 n e i ( ρ x + t + ϑ ) ,
or
u 1.1 , 14 = L 1 + 2 L 6 L 5 L 1 + 2 2 2 L 1 + 3 L 6 + cot [ x + γ t ] 1 n e i ( ρ x + t + ϑ ) ,
v 1.1 , 14 = A L 1 + 2 L 6 L 5 L 1 + 2 2 2 L 1 + 3 L 6 + cot [ x + γ t ] 1 n e i ( ρ x + t + ϑ ) .
(1.1,6) 
If s 0 = r 2 ( 1 r 2 ) , s 2 = 2 r 2 1 , s 4 = 1 , and 0 r 1 ; thus, the Jacobi elliptic solutions are obtained as follows:
u 1.1 , 15 = L 1 + 2 L 6 L 5 L 1 + 2 2 2 L 1 + 3 L 6 + ds [ x + γ t ] 1 n e i ( ρ x + t + ϑ ) ,
v 1.1 , 15 = A L 1 + 2 L 6 L 5 L 1 + 2 2 2 L 1 + 3 L 6 + ds [ x + γ t ] 1 n e i ( ρ x + t + ϑ ) .
Special case. When r = 1 or r = 0 , we obtain singular solitons or periodic solutions as
u 1.1 , 16 = L 1 + 2 L 6 L 5 L 1 + 2 2 2 L 1 + 3 L 6 + c s c h [ x + γ t ] 1 n e i ( ρ x + t + ϑ ) ,
v 1.1 , 16 = A L 1 + 2 L 6 L 5 L 1 + 2 2 2 L 1 + 3 L 6 + c s c h [ x + γ t ] 1 n e i ( ρ x + t + ϑ ) ,
or
u 1.1 , 17 = L 1 + 2 L 6 L 5 L 1 + 2 2 2 L 1 + 3 L 6 + csc [ x + γ t ] 1 n e i ( ρ x + t + ϑ ) ,
v 1.1 , 17 = A L 1 + 2 L 6 L 5 L 1 + 2 2 2 L 1 + 3 L 6 + csc [ x + γ t ] 1 n e i ( ρ x + t + ϑ ) .
(1.1,7) 
If s 0 = 1 4 , s 2 = 1 2 r 2 2 , s 4 = 1 4 , and 0 r 1 ; thus, the Jacobi elliptic solutions are obtained as follows:
u 1.1 , 18 = L 1 + 2 2 L 6 L 5 L 1 + 2 2 L 1 + 3 L 6 + ( ns [ x + γ t ] ± cs [ x + γ t ] ) 1 n e i ( ρ x + t + ϑ ) ,
v 1.1 , 18 = A L 1 + 2 2 L 6 L 5 L 1 + 2 2 L 1 + 3 L 6 + ( ns [ x + γ t ] ± cs [ x + γ t ] ) 1 n e i ( ρ x + t + ϑ ) .
Special case. In the case of r = 1 or r = 0 , we obtain singular solitons and dark solitons or periodic solutions as
u 1.1 , 19 = L 1 + 2 2 L 6 L 5 L 1 + 2 2 L 1 + 3 L 6 + coth [ x + γ t 2 ] 1 n e i ( ρ x + t + ϑ ) ,
v 1.1 , 19 = A L 1 + 2 2 L 6 L 5 L 1 + 2 2 L 1 + 3 L 6 + coth [ x + γ t 2 ] 1 n e i ( ρ x + t + ϑ ) ,
and
u 1.1 , 20 = L 1 + 2 2 L 6 L 5 L 1 + 2 2 L 1 + 3 L 6 + tanh [ x + γ t 2 ] 1 n e i ( ρ x + t + ϑ ) ,
v 1.1 , 20 = A L 1 + 2 2 L 6 L 5 L 1 + 2 2 L 1 + 3 L 6 + tanh [ x + γ t 2 ] 1 n e i ( ρ x + t + ϑ ) ,
or
u 1.1 , 21 = L 1 + 2 2 L 6 L 5 L 1 + 2 2 L 1 + 3 L 6 + cot [ x + γ t 2 ] 1 n e i ( ρ x + t + ϑ ) ,
v 1.1 , 21 = A L 1 + 2 2 L 6 L 5 L 1 + 2 2 L 1 + 3 L 6 + cot [ x + γ t 2 ] 1 n e i ( ρ x + t + ϑ ) ,
and
u 1.1 , 22 = L 1 + 2 2 L 6 L 5 L 1 + 2 2 L 1 + 3 L 6 + tan [ x + γ t 2 ] 1 n e i ( ρ x + t + ϑ ) ,
v 1.1 , 22 = A L 1 + 2 2 L 6 L 5 L 1 + 2 2 L 1 + 3 L 6 + tan [ x + γ t 2 ] 1 n e i ( ρ x + t + ϑ ) .
(1.1,8) 
If s 0 = s 4 = 1 r 2 4 , s 2 = 1 + r 2 2 and 0 r < 1 ; thus, the Jacobi elliptic solutions are obtained as follows:
u 1.1 , 23 = L 1 + 2 2 L 6 L 5 L 1 + 2 2 L 1 + 3 L 6 + 1 r 2 ( nc [ x + γ t ] + sc [ x + γ t ] ) 1 n e i ( ρ x + t + ϑ ) ,
v 1.1 , 23 = A L 1 + 2 2 L 6 L 5 L 1 + 2 2 L 1 + 3 L 6 + 1 r 2 ( nc [ x + γ t ] + sc [ x + γ t ] ) 1 n e i ( ρ x + t + ϑ ) .
Special case. In the case of r = 0 , the combo periodic solutions are obtained as follows:
u 1.1 , 24 = L 1 + 2 2 L 6 L 5 L 1 + 2 2 L 1 + 3 L 6 + ( sec [ x + γ t ] + tan [ x + γ t ] ) 1 n e i ( ρ x + t + ϑ ) ,
v 1.1 , 24 = A L 1 + 2 2 L 6 L 5 L 1 + 2 2 L 1 + 3 L 6 + ( sec [ x + γ t ] + tan [ x + γ t ] ) 1 n e i ( ρ x + t + ϑ ) .
(1.1,9) 
If s 0 = r 2 4 , s 2 = r 2 2 2 , s 4 = 1 4 and 0 r 1 ; thus, the Jacobi elliptic solutions are obtained as follows:
u 1.1 , 25 = L 1 + 2 2 L 6 L 5 L 1 + 2 2 L 1 + 3 L 6 + ( ns [ x + γ t ] ± ds [ x + γ t ] ) 1 n e i ( ρ x + t + ϑ ) ,
v 1.1 , 25 = A L 1 + 2 2 L 6 L 5 L 1 + 2 2 L 1 + 3 L 6 + ( ns [ x + γ t ] ± ds [ x + γ t ] ) 1 n e i ( ρ x + t + ϑ ) .
Special case. In the case of r = 0 , we obtain singular periodic solutions as follows:
u 1.1 , 26 = L 1 + 2 2 L 6 L 5 L 1 + 2 2 L 1 + 3 L 6 + 2 csc [ x + γ t ] 1 n e i ( ρ x + t + ϑ ) ,
v 1.1 , 26 = A L 1 + 2 2 L 6 L 5 L 1 + 2 2 L 1 + 3 L 6 + 2 csc [ x + γ t ] 1 n e i ( ρ x + t + ϑ ) .
(1.1,10) 
If s 0 = s 2 2 4 s 4 , s 2 < 0 and s 4 > 0 ; thus, the dark soliton solutions are obtained as follows:
u 1.1 , 27 = L 1 + 2 L 6 L 5 L 1 + 2 2 2 L 1 + 3 L 6 + s 2 2 tanh ( x + γ t ) s 2 2 1 n e i ( ρ x + t + ϑ ) ,
v 1.1 , 27 = A L 1 + 2 L 6 L 5 L 1 + 2 2 2 L 1 + 3 L 6 + s 2 2 tanh ( x + γ t ) s 2 2 1 n e i ( ρ x + t + ϑ ) .
(1.1,11) 
If s 0 = s 2 2 4 s 4 , s 2 > 0 and s 4 > 0 ; thus, the periodic solutions are obtained as follows:
u 1.1 , 28 = L 1 + 2 L 6 L 5 L 1 + 2 2 2 L 1 + 3 L 6 + s 2 2 tan ( x + γ t ) s 2 2 1 n e i ( ρ x + t + ϑ ) ,
v 1.1 , 28 = A L 1 + 2 L 6 L 5 L 1 + 2 2 2 L 1 + 3 L 6 + s 2 2 tan ( x + γ t ) s 2 2 1 n e i ( ρ x + t + ϑ ) .
(1.1,12) 
If s 0 = r 2 s 2 2 s 4 r 2 + 1 2 , s 2 < 0 , s 4 > 0 and 0 < r 1 ; thus, the Jacobi elliptic solutions are obtained as follows:
u 1.1 , 29 = L 1 + 2 L 6 L 5 L 1 + 2 2 2 L 1 + 3 L 6 + r 2 s 2 r 2 + 1 sn ( x + γ t ) s 2 r 2 + 1 1 n e i ( ρ x + t + ϑ ) ,
v 1.1 , 29 = A L 1 + 2 L 6 L 5 L 1 + 2 2 2 L 1 + 3 L 6 + r 2 s 2 r 2 + 1 sn ( x + γ t ) s 2 r 2 + 1 1 n e i ( ρ x + t + ϑ ) .
(1.1,13) 
If s 0 = s 4 = 1 , s 2 = 2 4 r 2 and 0 r 1 ; thus, the Jacobi elliptic solutions are obtained as follows:
u 1.1 , 30 = L 1 + 2 L 6 L 5 L 1 + 2 2 2 L 1 + 3 L 6 + dn [ x + γ t ] sn [ x + γ t ] cn [ x + γ t ] 1 n e i ( ρ x + t + ϑ ) ,
v 1.1 , 30 = A L 1 + 2 L 6 L 5 L 1 + 2 2 2 L 1 + 3 L 6 + dn [ x + γ t ] sn [ x + γ t ] cn [ x + γ t ] 1 n e i ( ρ x + t + ϑ ) .
(1.1,14) 
If s 0 = ( r + 1 ) 2 4 D 1 2 , s 2 = r 2 6 r + 1 2 , s 4 = D 1 2 ( r + 1 ) 2 4 and 0 r 1 ; thus, the Jacobi elliptic solutions are obtained as follows:
u 1.1 , 31 = L 1 + 2 L 6 L 5 L 1 + 2 2 2 L 1 + 3 L 6 + ( r + 1 ) cn [ x + γ t ] dn [ x + γ t ] 2 ( sn [ x + γ t ] + 1 ) ( 1 r sn [ x + γ t ] ) 1 n e i ( ρ x + t + ϑ ) ,
v 1.1 , 31 = A L 1 + 2 L 6 L 5 L 1 + 2 2 2 L 1 + 3 L 6 + ( r + 1 ) cn [ x + γ t ] dn [ x + γ t ] 2 ( sn [ x + γ t ] + 1 ) ( 1 r sn [ x + γ t ] ) 1 n e i ( ρ x + t + ϑ ) .
Special case. In the case of r = 0 , we thus obtain combo periodic solutions as follows:
u 1.1 , 32 = L 1 + 2 2 L 6 L 5 L 1 + 2 2 L 1 + 3 L 6 + cos [ x + γ t ] sin [ x + γ t ] + 1 1 n e i ( ρ x + t + ϑ ) ,
v 1.1 , 32 = A L 1 + 2 2 L 6 L 5 L 1 + 2 2 L 1 + 3 L 6 + cos [ x + γ t ] sin [ x + γ t ] + 1 1 n e i ( ρ x + t + ϑ ) ,
where D 1 is a constant.
(1.1,15) 
If s 0 = r 4 + 2 r 3 + r 2 , s 2 = r 2 + 6 r + 1 , s 4 = 4 r and 0 < r 1 ; thus, the Jacobi elliptic solutions are obtained as follows:
u 1.1 , 33 = L 1 + 2 L 6 L 5 L 1 + 2 2 2 L 1 + 3 L 6 + 2 r cn [ x + γ t ] dn [ x + γ t ] r sn 2 [ x + γ t ] 1 1 n e i ( ρ x + t + ϑ ) ,
v 1.1 , 33 = A L 1 + 2 L 6 L 5 L 1 + 2 2 2 L 1 + 3 L 6 + 2 r cn [ x + γ t ] dn [ x + γ t ] r sn 2 [ x + γ t ] 1 1 n e i ( ρ x + t + ϑ ) .
(1.1,16) 
If s 0 = r 4 4 D 2 2 + D 3 2 , s 2 = r 2 2 2 , s 4 = D 2 2 + D 3 2 4 and 0 r 1 ; thus, the Jacobi elliptic solutions are obtained as follows:
u 1.1 , 34 = L 1 + 2 2 L 6 L 5 L 1 + 2 2 L 1 + 3 L 6 + D 2 2 + D 3 2 dn [ x + γ t ] + D 3 2 r 2 + D 2 2 + D 3 2 D 3 cn [ x + γ t ] + D 2 sn [ x + γ t ] 1 n e i ( ρ x + t + ϑ ) ,
v 1.1 , 34 = A L 1 + 2 2 L 6 L 5 L 1 + 2 2 L 1 + 3 L 6 + D 2 2 + D 3 2 dn [ x + γ t ] + D 3 2 r 2 + D 2 2 + D 3 2 D 3 cn [ x + γ t ] + D 2 sn [ x + γ t ] 1 n e i ( ρ x + t + ϑ ) ,
where D 2 and D 3 are constant.
Special case. In the case of r = 1 or r = 0 , we extract singular combo solitons or combo periodic solutions as follows:
u 1.1 , 35 = L 1 + 2 2 L 6 L 5 L 1 + 2 2 L 1 + 3 L 6 + D 2 cosh [ x + γ t ] + D 2 2 + D 3 2 D 2 sinh [ x + γ t ] + D 3 1 n e i ( ρ x + t + ϑ ) ,
v 1.1 , 35 = A L 1 + 2 2 L 6 L 5 L 1 + 2 2 L 1 + 3 L 6 + D 2 cosh [ x + γ t ] + D 2 2 + D 3 2 D 2 sinh [ x + γ t ] + D 3 1 n e i ( ρ x + t + ϑ ) .
or
u 1.1 , 36 = L 1 + 2 2 L 6 L 5 L 1 + 2 2 L 1 + 3 L 6 + 2 D 2 2 + D 3 2 D 2 sin [ x + γ t ] + D 3 cos [ x + γ t ] 1 n e i ( ρ x + t + ϑ ) ,
v 1.1 , 36 = A L 1 + 2 2 L 6 L 5 L 1 + 2 2 L 1 + 3 L 6 + 2 D 2 2 + D 3 2 D 2 sin [ x + γ t ] + D 3 cos [ x + γ t ] 1 n e i ( ρ x + t + ϑ ) .
(1.1,17) 
If s 0 = s 4 = 1 r 2 4 , s 2 = 1 + r 2 2 and 0 r < 1 ; thus, the Jacobi elliptic solutions are obtained as
u 1.1 , 37 = L 1 + 2 2 L 6 L 5 L 1 + 2 2 L 1 + 3 L 6 + 1 r 2 cn [ x + γ t ] 1 + sn [ x + γ t ] 1 n e i ( ρ x + t + ϑ ) ,
v 1.1 , 37 = A L 1 + 2 2 L 6 L 5 L 1 + 2 2 L 1 + 3 L 6 + 1 r 2 cn [ x + γ t ] 1 + sn [ x + γ t ] 1 n e i ( ρ x + t + ϑ ) ,
or
u 1.1 , 38 = L 1 + 2 2 L 6 L 5 L 1 + 2 2 L 1 + 3 L 6 + 1 r 2 ( nc [ x + γ t ] + sc [ x + γ t ] ) 1 n e i ( ρ x + t + ϑ ) ,
v 1.1 , 38 = A L 1 + 2 2 L 6 L 5 L 1 + 2 2 L 1 + 3 L 6 + 1 r 2 ( nc [ x + γ t ] + sc [ x + γ t ] ) 1 n e i ( ρ x + t + ϑ ) .
(1.1,18) 
If s 0 = 1 4 , s 2 = 1 + r 2 2 , s 4 = ( 1 r 2 ) 2 4 and 0 r < 1 ; thus, the Jacobi elliptic solutions are obtained as follows:
u 1.1 , 39 = L 1 + 2 2 L 6 L 5 L 1 + 2 2 L 1 + 3 L 6 + 1 r 2 sn [ x + γ t ] dn [ x + γ t ] ± cn [ x + γ t ] 1 n e i ( ρ x + t + ϑ ) ,
v 1.1 , 39 = A L 1 + 2 2 L 6 L 5 L 1 + 2 2 L 1 + 3 L 6 + 1 r 2 sn [ x + γ t ] dn [ x + γ t ] ± cn [ x + γ t ] 1 n e i ( ρ x + t + ϑ ) .
(1.1,19) 
If s 0 = 1 4 , s 2 = r 2 2 2 , s 4 = r 4 4 and 0 < r 1 , we derive the Jacobi elliptic solutions as follows:
u 1.1 , 40 = L 1 + 2 2 L 6 L 5 L 1 + 2 2 L 1 + 3 L 6 + r 2 cn [ x + γ t ] dn [ x + γ t ] + 1 r 2 1 n e i ( ρ x + t + ϑ ) ,
v 1.1 , 40 = A L 1 + 2 2 L 6 L 5 L 1 + 2 2 L 1 + 3 L 6 + r 2 cn [ x + γ t ] dn [ x + γ t ] + 1 r 2 1 n e i ( ρ x + t + ϑ ) ,
or
u 1.1 , 41 = L 1 + 2 2 L 6 L 5 L 1 + 2 2 L 1 + 3 L 6 + r 2 sn [ x + γ t ] dn [ x + γ t ] + 1 1 n e i ( ρ x + t + ϑ ) ,
v 1.1 , 41 = A L 1 + 2 2 L 6 L 5 L 1 + 2 2 L 1 + 3 L 6 + r 2 sn [ x + γ t ] dn [ x + γ t ] + 1 1 n e i ( ρ x + t + ϑ ) .
(1.1,20) 
If s 0 = 0 , s 2 < 0 , s 4 > 0 and 0 r 1 , we extract the periodic solutions as follows:
u 1.1 , 42 = L 1 + 2 L 6 L 5 L 1 + 2 2 2 L 1 + 3 L 6 + s 2 sec ( x + γ t ) s 2 1 n e i ( ρ x + t + ϑ ) ,
v 1.1 , 42 = A L 1 + 2 L 6 L 5 L 1 + 2 2 2 L 1 + 3 L 6 + s 2 sec ( x + γ t ) s 2 1 n e i ( ρ x + t + ϑ ) ,
or
u 1.1 , 43 = L 1 + 2 L 6 L 5 L 1 + 2 2 2 L 1 + 3 L 6 + s 2 csc ( x + γ t ) s 2 1 n e i ( ρ x + t + ϑ ) ,
v 1.1 , 43 = A L 1 + 2 L 6 L 5 L 1 + 2 2 2 L 1 + 3 L 6 + s 2 csc ( x + γ t ) s 2 1 n e i ( ρ x + t + ϑ ) .
From the case(1.2), under the conditions L 6 L 1 + 2 < 0 and L 5 2 L 1 + 3 > 0 , the exact solutions of (1) and (2) are obtained in the following forms:
(1.2,1) 
If s 0 = 1 , s 2 = r 2 + 1 , s 4 = r 2 , and 0 r 1 ; thus, the Jacobi elliptic solutions are obtained as follows:
u 1.2 , 1 = L 1 + 2 L 6 L 5 L 1 + 2 2 2 L 1 + 3 L 6 + ns [ x + γ t ] 1 n e i ( ρ x + t + ϑ ) ,
v 1.2 , 1 = A L 1 + 2 L 6 L 5 L 1 + 2 2 2 L 1 + 3 L 6 + ns [ x + γ t ] 1 n e i ( ρ x + t + ϑ ) ,
or
u 1.2 , 2 = L 1 + 2 L 6 L 5 L 1 + 2 2 2 L 1 + 3 L 6 + dc [ x + γ t ] 1 n e i ( ρ x + t + ϑ ) ,
v 1.2 , 2 = A L 1 + 2 L 6 L 5 L 1 + 2 2 2 L 1 + 3 L 6 + dc [ x + γ t ] 1 n e i ( ρ x + t + ϑ ) .
Special case. In the case of r = 1 or r = 0 , we extract singular solitons or periodic solutions as
u 1.2 , 3 = L 1 + 2 L 6 L 5 L 1 + 2 2 2 L 1 + 3 L 6 + coth [ x + γ t ] 1 n e i ( ρ x + t + ϑ ) ,
v 1.2 , 3 = A L 1 + 2 L 6 L 5 L 1 + 2 2 2 L 1 + 3 L 6 + coth [ x + γ t ] 1 n e i ( ρ x + t + ϑ ) ,
or
u 1.2 , 4 = L 1 + 2 L 6 L 5 L 1 + 2 2 2 L 1 + 3 L 6 + csc [ x + γ t ] 1 n e i ( ρ x + t + ϑ ) ,
v 1.2 , 4 = A L 1 + 2 L 6 L 5 L 1 + 2 2 2 L 1 + 3 L 6 + csc [ x + γ t ] 1 n e i ( ρ x + t + ϑ ) ,
and
u 1.2 , 5 = L 1 + 2 L 6 L 5 L 1 + 2 2 2 L 1 + 3 L 6 + sec [ x + γ t ] 1 n e i ( ρ x + t + ϑ ) ,
v 1.2 , 5 = A L 1 + 2 L 6 L 5 L 1 + 2 2 2 L 1 + 3 L 6 + sec [ x + γ t ] 1 n e i ( ρ x + t + ϑ ) .
(1.2,2) 
If s 0 = 1 r 2 , s 2 = 2 r 2 1 , s 4 = r 2 , and 0 r < 1 , we establish Jacobi elliptic solutions as
u 1.2 , 6 = L 1 + 2 L 6 L 5 L 1 + 2 2 2 L 1 + 3 L 6 + 1 r 2 nc [ x + γ t ] 1 n e i ( ρ x + t + ϑ ) ,
v 1.2 , 6 = A L 1 + 2 L 6 L 5 L 1 + 2 2 2 L 1 + 3 L 6 + 1 r 2 nc [ x + γ t ] 1 n e i ( ρ x + t + ϑ ) .
(1.2,3) 
If s 0 = r 2 , s 2 = r 2 + 1 , s 4 = 1 , and 0 < r 1 , we obtain Jacobi elliptic solutions as
u 1.2 , 7 = L 1 + 2 L 6 L 5 L 1 + 2 2 2 L 1 + 3 L 6 + r sn [ x + γ t ] 1 n e i ( ρ x + t + ϑ ) ,
v 1.2 , 7 = A L 1 + 2 L 6 L 5 L 1 + 2 2 2 L 1 + 3 L 6 + r sn [ x + γ t ] 1 n e i ( ρ x + t + ϑ ) ,
or
u 1.2 , 8 = L 1 + 2 L 6 L 5 L 1 + 2 2 2 L 1 + 3 L 6 + r cd [ x + γ t ] 1 n e i ( ρ x + t + ϑ ) ,
v 1.2 , 8 = A L 1 + 2 L 6 L 5 L 1 + 2 2 2 L 1 + 3 L 6 + r cd [ x + γ t ] 1 n e i ( ρ x + t + ϑ ) .
Special case. In the case of r = 1 , we derive dark solitons as
u 1.2 , 9 = L 1 + 2 L 6 L 5 L 1 + 2 2 2 L 1 + 3 L 6 + tanh [ x + γ t ] 1 n e i ( ρ x + t + ϑ ) ,
v 1.2 , 9 = A L 1 + 2 L 6 L 5 L 1 + 2 2 2 L 1 + 3 L 6 + tanh [ x + γ t ] 1 n e i ( ρ x + t + ϑ ) .
(1.2,4) 
If s 0 = 1 , s 2 = 2 r 2 , s 4 = 1 r 2 , and 0 r 1 ; thus, the Jacobi elliptic solutions are obtained as follows:
u 1.2 , 10 = L 1 + 2 L 6 L 5 L 1 + 2 2 2 L 1 + 3 L 6 + cs [ x + γ t ] 1 n e i ( ρ x + t + ϑ ) ,
v 1.2 , 10 = A L 1 + 2 L 6 L 5 L 1 + 2 2 2 L 1 + 3 L 6 + cs [ x + γ t ] 1 n e i ( ρ x + t + ϑ ) .
Special case. In the case of r = 1 or r = 0 , we extract singular solitons or periodic solutions as follows:
u 1.2 , 11 = L 1 + 2 L 6 L 5 L 1 + 2 2 2 L 1 + 3 L 6 + c s c h [ x + γ t ] 1 n e i ( ρ x + t + ϑ ) ,
v 1.2 , 11 = A L 1 + 2 L 6 L 5 L 1 + 2 2 2 L 1 + 3 L 6 + c s c h [ x + γ t ] 1 n e i ( ρ x + t + ϑ ) ,
or
u 1.2 , 12 = L 1 + 2 L 6 L 5 L 1 + 2 2 2 L 1 + 3 L 6 + cot [ x + γ t ] 1 n e i ( ρ x + t + ϑ ) ,
v 1.2 , 12 = A L 1 + 2 L 6 L 5 L 1 + 2 2 2 L 1 + 3 L 6 + cot [ x + γ t ] 1 n e i ( ρ x + t + ϑ ) .
(1.2,5) 
If s 0 = 1 , s 2 = 2 r 2 1 , s 4 = r 2 ( 1 r 2 ) , and 0 r 1 , we obtain Jacobi elliptic solutions as follows:
u 1.2 , 13 = L 1 + 2 L 6 L 5 L 1 + 2 2 2 L 1 + 3 L 6 + ds [ x + γ t ] 1 n e i ( ρ x + t + ϑ ) ,
v 1.2 , 13 = A L 1 + 2 L 6 L 5 L 1 + 2 2 2 L 1 + 3 L 6 + ds [ x + γ t ] 1 n e i ( ρ x + t + ϑ ) .
(1.2,6) 
If s 0 = 1 r 2 , s 2 = 2 r 2 , s 4 = 1 , and 0 r < 1 , we obtain Jacobi elliptic solutions as follows:
u 1.2 , 14 = L 1 + 2 L 6 L 5 L 1 + 2 2 2 L 1 + 3 L 6 + 1 r 2 sc [ x + γ t ] 1 n e i ( ρ x + t + ϑ ) ,
v 1.2 , 14 = A L 1 + 2 L 6 L 5 L 1 + 2 2 2 L 1 + 3 L 6 + 1 r 2 sc [ x + γ t ] 1 n e i ( ρ x + t + ϑ ) .
Special case. In the case of r = 0 , we obtain periodic solutions as follows:
u 1.2 , 15 = L 1 + 2 L 6 L 5 L 1 + 2 2 2 L 1 + 3 L 6 + tan [ x + γ t ] 1 n e i ( ρ x + t + ϑ ) ,
v 1.2 , 15 = A L 1 + 2 L 6 L 5 L 1 + 2 2 2 L 1 + 3 L 6 + tan [ x + γ t ] 1 n e i ( ρ x + t + ϑ ) .
(1.2,7) 
If s 0 = s 4 = 1 r 2 4 , s 2 = 1 + r 2 2 and 0 r < 1 ; thus, the Jacobi elliptic solutions are obtained as
u 1.2 , 16 = L 1 + 2 2 L 6 L 5 L 1 + 2 2 L 1 + 3 L 6 + 1 r 2 nc [ x + γ t ] + sc [ x + γ t ] 1 n e i ( ρ x + t + ϑ ) ,
v 1.2 , 16 = A L 1 + 2 2 L 6 L 5 L 1 + 2 2 L 1 + 3 L 6 + 1 r 2 nc [ x + γ t ] + sc [ x + γ t ] 1 n e i ( ρ x + t + ϑ ) .
Special case. In the case of r = 0 , we establish periodic solutions as
u 1.2 , 17 = L 1 + 2 2 L 6 L 5 L 1 + 2 2 L 1 + 3 L 6 + 1 tan [ x + γ t ] + sec [ x + γ t ] 1 n e i ( ρ x + t + ϑ ) ,
v 1.2 , 17 = A L 1 + 2 2 L 6 L 5 L 1 + 2 2 L 1 + 3 L 6 + 1 tan [ x + γ t ] + sec [ x + γ t ] 1 n e i ( ρ x + t + ϑ ) .
(1.2,8) 
If s 0 = s 2 2 4 s 4 , s 2 > 0 and s 4 > 0 , we establish periodic solutions as
u 1.2 , 18 = L 1 + 2 L 6 L 5 L 1 + 2 2 2 L 1 + 3 L 6 + s 2 2 cot ( x + γ t ) s 2 2 1 n e i ( ρ x + t + ϑ ) ,
v 1.2 , 18 = A L 1 + 2 L 6 L 5 L 1 + 2 2 2 L 1 + 3 L 6 + s 2 2 cot ( x + γ t ) s 2 2 1 n e i ( ρ x + t + ϑ ) .
(1.2,9) 
If s 0 = s 2 2 4 s 4 , s 2 < 0 and s 4 > 0 , we establish singular solitons as
u 1.2 , 19 = L 1 + 2 L 6 L 5 L 1 + 2 2 2 L 1 + 3 L 6 + s 2 2 coth ( x + γ t ) s 2 2 1 n e i ( ρ x + t + ϑ ) ,
v 1.2 , 19 = A L 1 + 2 L 6 L 5 L 1 + 2 2 2 L 1 + 3 L 6 + s 2 2 coth ( x + γ t ) s 2 2 1 n e i ( ρ x + t + ϑ ) .
(1.2,10) 
If s 0 = s 4 = 1 , s 2 = 2 4 r 2 and 0 r 1 , we establish Jacobi elliptic solutions as
u 1.2 , 20 = L 1 + 2 L 6 L 5 L 1 + 2 2 2 L 1 + 3 L 6 + cn [ x + γ t ] dn [ x + γ t ] sn [ x + γ t ] 1 n e i ( ρ x + t + ϑ ) ,
v 1.2 , 20 = A L 1 + 2 L 6 L 5 L 1 + 2 2 2 L 1 + 3 L 6 + cn [ x + γ t ] dn [ x + γ t ] sn [ x + γ t ] 1 n e i ( ρ x + t + ϑ ) .
(1.2,11) 
If s 0 = r 4 4 D 2 2 + D 3 2 , s 2 = r 2 2 2 , s 4 = D 2 2 + D 3 2 4 and 0 < r 1 , we obtain Jacobi elliptic solutions as
u 1.2 , 21 = L 1 + 2 2 L 6 L 5 L 1 + 2 2 L 1 + 3 L 6 + r 2 D 3 cn [ x + γ t ] + D 2 sn [ x + γ t ] D 2 2 + D 3 2 dn [ x + γ t ] + D 3 2 r 2 + D 2 2 + D 3 2 1 n e i ( ρ x + t + ϑ ) ,
v 1.2 , 21 = A L 1 + 2 2 L 6 L 5 L 1 + 2 2 L 1 + 3 L 6 + r 2 D 3 cn [ x + γ t ] + D 2 sn [ x + γ t ] D 2 2 + D 3 2 dn [ x + γ t ] + D 3 2 r 2 + D 2 2 + D 3 2 1 n e i ( ρ x + t + ϑ ) ,
where D 2 and D 3 are constant.
Special case. In the case of r = 1 , we establish hyperbolic solutions as
u 1.2 , 22 = L 1 + 2 2 L 6 L 5 L 1 + 2 2 L 1 + 3 L 6 + D 2 sinh [ x + γ t ] + D 3 D 2 cosh [ x + γ t ] + D 2 2 + D 3 2 1 n e i ( ρ x + t + ϑ ) ,
v 1.2 , 22 = A L 1 + 2 2 L 6 L 5 L 1 + 2 2 L 1 + 3 L 6 + D 2 sinh [ x + γ t ] + D 3 D 2 cosh [ x + γ t ] + D 2 2 + D 3 2 1 n e i ( ρ x + t + ϑ ) .
(1.2,12) 
If s 0 = 1 4 , s 2 = 1 + r 2 2 , s 4 = ( 1 r 2 ) 2 4 and 0 r 1 ; thus, the Jacobi elliptic solutions are obtained as
u 1.2 , 23 = L 1 + 2 2 L 6 L 5 L 1 + 2 2 L 1 + 3 L 6 + dn [ x + γ t ] + cn [ x + γ t ] sn [ x + γ t ] 1 n e i ( ρ x + t + ϑ ,
v 1.2 , 23 = A L 1 + 2 2 L 6 L 5 L 1 + 2 2 L 1 + 3 L 6 + dn [ x + γ t ] + cn [ x + γ t ] sn [ x + γ t ] 1 n e i ( ρ x + t + ϑ .
(1.2,13) 
If s 0 = 1 4 , s 2 = r 2 2 2 , s 4 = r 4 4 and 0 r 1 , we extract Jacobi elliptic solutions as
u 1.2 , 24 = L 1 + 2 2 L 6 L 5 L 1 + 2 2 L 1 + 3 L 6 + dn [ x + γ t ] + 1 r 2 cn [ x + γ t ] 1 n e i ( ρ x + t + ϑ ) ,
v 1.2 , 24 = A L 1 + 2 2 L 6 L 5 L 1 + 2 2 L 1 + 3 L 6 + dn [ x + γ t ] + 1 r 2 cn [ x + γ t ] 1 n e i ( ρ x + t + ϑ ) ,
or
u 1.2 , 25 = L 1 + 2 2 L 6 L 5 L 1 + 2 2 L 1 + 3 L 6 + dn [ x + γ t ] + 1 sn [ x + γ t ] 1 n e i ( ρ x + t + ϑ ) ,
v 1.2 , 25 = A L 1 + 2 2 L 6 L 5 L 1 + 2 2 L 1 + 3 L 6 + dn [ x + γ t ] + 1 sn [ x + γ t ] 1 n e i ( ρ x + t + ϑ ) .
From the case(1.3), if L 6 L 1 + 2 < 0 and L 5 2 L 1 + 3 > 0 , the exact solutions of (1) and (2) are obtained in the following forms:
(1.3,1) 
If s 0 = 1 , s 2 = r 2 + 1 , s 4 = r 2 or s 0 = r 2 , s 2 = r 2 + 1 , s 4 = 1 and 0 r 1 ; thus, the Jacobi elliptic solutions are obtained as follows:
u 1.3 , 1 = L 1 + 2 L 6 L 5 L 1 + 2 2 2 L 1 + 3 L 6 + r sn [ x + γ t ] + ns [ x + γ t ] 1 n e i ( ρ x + t + ϑ ) ,
v 1.3 , 1 = A L 1 + 2 L 6 L 5 L 1 + 2 2 2 L 1 + 3 L 6 + r sn [ x + γ t ] + ns [ x + γ t ] 1 n e i ( ρ x + t + ϑ ) ,
u 1.3 , 2 = L 1 + 2 L 6 L 5 L 1 + 2 2 2 L 1 + 3 L 6 + r cd [ x + γ t ] + 1 cd [ x + γ t ] 1 n e i ( ρ x + t + ϑ ) ,
v 1.3 , 2 = A L 1 + 2 L 6 L 5 L 1 + 2 2 2 L 1 + 3 L 6 + r cd [ x + γ t ] + dc [ x + γ t ] 1 n e i ( ρ x + t + ϑ ) .
Special case. In the case of r = 1 or r = 0 , we derive singular solitons or periodic solutions as
u 1.3 , 3 = L 1 + 2 L 6 L 5 L 1 + 2 2 2 L 1 + 3 L 6 + 2 coth [ 2 ( x + γ t ) ] 1 n e i ( ρ x + t + ϑ ) ,
v 1.3 , 3 = A L 1 + 2 L 6 L 5 L 1 + 2 2 2 L 1 + 3 L 6 + 2 coth [ 2 ( x + γ t ) ] 1 n e i ( ρ x + t + ϑ ) ,
or
u 1.3 , 4 = L 1 + 2 L 6 L 5 L 1 + 2 2 2 L 1 + 3 L 6 + csc [ x + γ t ] 1 n e i ( ρ x + t + ϑ ) ,
v 1.3 , 4 = A L 1 + 2 L 6 L 5 L 1 + 2 2 2 L 1 + 3 L 6 + csc [ x + γ t ] 1 n e i ( ρ x + t + ϑ ) ,
u 1.3 , 5 = L 1 + 2 L 6 L 5 L 1 + 2 2 2 L 1 + 3 L 6 + sec [ x + γ t ] 1 n e i ( ρ x + t + ϑ ) ,
v 1.3 , 5 = A L 1 + 2 L 6 L 5 L 1 + 2 2 2 L 1 + 3 L 6 + sec [ x + γ t ] 1 n e i ( ρ x + t + ϑ ) .
(1.3,2) 
If s 0 = 1 , s 2 = 2 r 2 , s 4 = 1 r 2 or s 0 = 1 r 2 , s 2 = 2 r 2 , s 4 = 1 and 0 r 1 , we obtain Jacobi elliptic solutions as
u 1.3 , 6 = L 1 + 2 L 6 L 5 L 1 + 2 2 2 L 1 + 3 L 6 + 1 r 2 sc [ x + γ t ] + cs [ x + γ t ] 1 n e i ( ρ x + t + ϑ ) ,
v 1.3 , 6 = A L 1 + 2 L 6 L 5 L 1 + 2 2 2 L 1 + 3 L 6 + 1 r 2 sc [ x + γ t ] + cs [ x + γ t ] 1 n e i ( ρ x + t + ϑ ) .
Special case. In the case of r = 1 or r = 0 , we establish singular solitons or periodic solutions as
u 1.3 , 7 = L 1 + 2 L 6 L 5 L 1 + 2 2 2 L 1 + 3 L 6 + c s c h [ x + γ t ] 1 n e i ( ρ x + t + ϑ ) ,
v 1.3 , 7 = A L 1 + 2 L 6 L 5 L 1 + 2 2 2 L 1 + 3 L 6 + c s c h [ x + γ t ] 1 n e i ( ρ x + t + ϑ ) ,
or
u 1.3 , 8 = L 1 + 2 L 6 L 5 L 1 + 2 2 2 L 1 + 3 L 6 + csc [ 2 ( x + γ t ) ] 1 n e i ( ρ x + t + ϑ ) ,
v 1.3 , 8 = A L 1 + 2 L 6 L 5 L 1 + 2 2 2 L 1 + 3 L 6 + csc [ 2 ( x + γ t ) ] 1 n e i ( ρ x + t + ϑ ) .
(1.3,3) 
If s 0 = s 4 = 1 4 , s 2 = 1 2 r 2 2 and 0 r 1 , we derive Jacobi elliptic solutions as
u 1.3 , 9 = L 1 + 2 2 L 6 L 5 L 1 + 2 2 L 1 + 3 L 6 + ( ns [ x + γ t ] + cs [ x + γ t ] ) 2 + 1 ns [ x + γ t ] + cs [ x + γ t ] 1 n e i ( ρ x + t + ϑ ) ,
v 1.3 , 9 = A L 1 + 2 2 L 6 L 5 L 1 + 2 2 L 1 + 3 L 6 + ( ns [ x + γ t ] + cs [ x + γ t ] ) 2 + 1 ns [ x + γ t ] + cs [ x + γ t ] 1 n e i ( ρ x + t + ϑ ) .
Special case. In the case of either r = 1 or r = 0 , we extract singular solitons or periodic solutions as
u 1.3 , 10 = L 1 + 2 2 L 6 L 5 L 1 + 2 2 L 1 + 3 L 6 + 2 coth [ x + γ t ] 1 n e i ( ρ x + t + ϑ ) ,
v 1.3 , 10 = A L 1 + 2 2 L 6 L 5 L 1 + 2 2 L 1 + 3 L 6 + 2 coth [ x + γ t ] 1 n e i ( ρ x + t + ϑ ) ,
or
u 1.3 , 11 = L 1 + 2 2 L 6 L 5 L 1 + 2 2 L 1 + 3 L 6 + 2 cot [ x + γ t ] 1 n e i ( ρ x + t + ϑ ) ,
v 1.3 , 11 = A L 1 + 2 2 L 6 L 5 L 1 + 2 2 L 1 + 3 L 6 + 2 cot [ x + γ t ] 1 n e i ( ρ x + t + ϑ ) .
(1.3,4) 
If s 0 = s 4 = 1 r 2 4 , s 2 = 1 + r 2 2 and 0 r 1 , we obtain Jacobi elliptic solutions as
u 1.3 , 12 = L 1 + 2 2 L 6 L 5 L 1 + 2 2 L 1 + 3 L 6 + 1 r 2 ( nc [ x + γ t ] + sc [ x + γ t ] ) 2 + 1 nc [ x + γ t ] + sc [ x + γ t ] 1 n e i ( ρ x + t + ϑ ) ,
v 1.3 , 12 = A L 1 + 2 2 L 6 L 5 L 1 + 2 2 L 1 + 3 L 6 + 1 r 2 ( nc [ x + γ t ] + sc [ x + γ t ] ) 2 + 1 nc [ x + γ t ] + sc [ x + γ t ] 1 n e i ( ρ x + t + ϑ ) .
Special case. In the case of r = 0 , we derive combo periodic solutions as
u 1.3 , 13 = L 1 + 2 2 L 6 L 5 L 1 + 2 2 L 1 + 3 L 6 + ( sec [ x + γ t ] + tan [ x + γ t ] ) 2 + 1 sec [ x + γ t ] + tan [ x + γ t ] 1 n e i ( ρ x + t + ϑ ) ,
v 1.3 , 13 = A L 1 + 2 2 L 6 L 5 L 1 + 2 2 L 1 + 3 L 6 + ( sec [ x + γ t ] + tan [ x + γ t ] ) 2 + 1 sec [ x + γ t ] + tan [ x + γ t ] 1 n e i ( ρ x + t + ϑ ) .
(1.3,5) 
If s 0 = s 2 2 4 s 4 , s 2 < 0 and s 4 > 0 , we derive singular solitons as
u 1.2 , 14 = L 1 + 2 L 6 L 5 L 1 + 2 2 2 L 1 + 3 L 6 + 2 s 2 c s c h ( x + γ t ) 2 s 2 1 n e i ( ρ x + t + ϑ ) ,
v 1.3 , 14 = A L 1 + 2 L 6 L 5 L 1 + 2 2 2 L 1 + 3 L 6 + 2 s 2 c s c h ( x + γ t ) 2 s 2 1 n e i ( ρ x + t + ϑ ) .
(1.3,6) 
If s 0 = s 2 2 4 s 4 , s 2 > 0 and s 4 > 0 , we obtain periodic solutions as
u 1.2 , 15 = L 1 + 2 L 6 L 5 L 1 + 2 2 2 L 1 + 3 L 6 + 2 s 2 csc ( x + γ t ) 2 s 2 1 n e i ( ρ x + t + ϑ ) ,
v 1.3 , 15 = A L 1 + 2 L 6 L 5 L 1 + 2 2 2 L 1 + 3 L 6 + 2 s 2 csc ( x + γ t ) 2 s 2 1 n e i ( ρ x + t + ϑ ) .
(1.3,7) 
If s 0 = ( r ± 1 ) 2 4 D 1 2 , s 2 = r 2 6 r + 1 2 , s 4 = D 1 2 ( r ± 1 ) 2 4 and 0 r < 1 , we establish Jacobi elliptic solutions as
u 1.3 , 16 = L 1 + 2 2 L 6 L 5 L 1 + 2 2 L 1 + 3 L 6 + r ± 1 W ( x , t ) + r ± 1 W ( x , t ) 1 n e i ( ρ x + t + ϑ ) ,
v 1.3 , 16 = A L 1 + 2 2 L 6 L 5 L 1 + 2 2 L 1 + 3 L 6 + r ± 1 W ( x , t ) + r ± 1 W ( x , t ) 1 n e i ( ρ x + t + ϑ ) ,
where W ( x , t ) = cn [ x + γ t ] dn [ x + γ t ] ( sn [ x + γ t ] + 1 ) ( ± r sn [ x + γ t ] + 1 ) and D 1 is a constant.
Special case. In the case of r = 0 , we derive periodic solutions as
u 1.3 , 17 = L 1 + 2 2 L 6 L 5 L 1 + 2 2 L 1 + 3 L 6 + 2 sec [ x + γ t ] 1 n e i ( ρ x + t + ϑ ) ,
v 1.3 , 17 = A L 1 + 2 2 L 6 L 5 L 1 + 2 2 L 1 + 3 L 6 + 2 sec [ x + γ t ] 1 n e i ( ρ x + t + ϑ ) .
(1.3,8) 
If s 0 = r 4 + 2 r 3 + r 2 , s 2 = r 2 + 6 r + 1 , s 4 = 4 r and 0 r 1 ; thus, the Jacobi elliptic solutions are obtained as
u 1.3 , 18 = L 1 + 2 L 6 L 5 L 1 + 2 2 2 L 1 + 3 L 6 + 2 r S 1 ( x , t ) + r + 1 S 1 ( x , t ) 1 n e i ( ρ x + t + ϑ ) ,
v 1.3 , 18 = A L 1 + 2 L 6 L 5 L 1 + 2 2 2 L 1 + 3 L 6 + 2 r S 1 ( x , t ) + r + 1 S 1 ( x , t ) 1 n e i ( ρ x + t + ϑ ) ,
where S 1 ( x , t ) = cn [ x + γ t ] dn [ x + γ t ] r sn 2 [ x + γ t ] 1 .
(1.3,9) 
If s 0 = r 4 4 D 2 2 + D 3 2 , s 2 = r 2 2 2 , s 4 = D 2 2 + D 3 2 4 and 0 r 1 ; thus, the Jacobi elliptic solutions are obtained as
u 1.3 , 19 = L 1 + 2 2 L 6 L 5 L 1 + 2 2 L 1 + 3 L 6 + S 2 ( x , t ) + r 2 S 2 ( x , t ) 1 n e i ( ρ x + t + ϑ ) ,
v 1.3 , 19 = A L 1 + 2 2 L 6 L 5 L 1 + 2 2 L 1 + 3 L 6 + S 2 ( x , t ) + r 2 S 2 ( x , t ) 1 n e i ( ρ x + t + ϑ ) ,
where S 2 ( x , t ) = D 2 2 + D 3 2 dn [ x + γ t ] + D 3 2 r 2 + D 2 2 + D 3 2 D 3 cn [ x + γ t ] + D 2 sn [ x + γ t ] , while D 2 and D 3 are constant.
Special case. In the case of either r = 1 or r = 0 , the singular–bright combo solitons or combo periodic solutions are thus obtained as
u 1.3 , 20 = L 1 + 2 2 L 6 L 5 L 1 + 2 2 L 1 + 3 L 6 + S 3 ( x , t ) + 1 S 3 ( x , t ) 1 n e i ( ρ x + t + ϑ ) ,
v 1.3 , 20 = A L 1 + 2 2 L 6 L 5 L 1 + 2 2 L 1 + 3 L 6 + S 3 ( x , t ) + 1 S 3 ( x , t ) 1 n e i ( ρ x + t + ϑ ) ,
or
u 1.3 , 21 = L 1 + 2 2 L 6 L 5 L 1 + 2 2 L 1 + 3 L 6 + 2 D 2 2 + D 3 2 D 2 sin [ x + γ t ] + D 3 cos [ x + γ t ] 1 n e i ( ρ x + t + ϑ ) ,
v 1.3 , 21 = A L 1 + 2 2 L 6 L 5 L 1 + 2 2 L 1 + 3 L 6 + 2 D 2 2 + D 3 2 D 2 sin [ x + γ t ] + D 3 cos [ x + γ t ] 1 n e i ( ρ x + t + ϑ ) ,
where S 3 ( x , t ) = D 2 cosh [ x + γ t ] + D 2 2 + D 3 2 D 2 sinh [ x + γ t ] + D 3 .
(1.3,10) 
If s 0 = s 4 = 1 4 , s 2 = 1 2 r 2 2 and 0 r 1 , we obtain Jacobi elliptic solutions as follows:
u 1.3 , 22 = L 1 + 2 2 L 6 L 5 L 1 + 2 2 L 1 + 3 L 6 + S 4 ( x , t ) + 1 S 4 ( x , t ) 1 n e i ( ρ x + t + ϑ ) ,
v 1.3 , 22 = A L 1 + 2 2 L 6 L 5 L 1 + 2 2 L 1 + 3 L 6 + S 4 ( x , t ) + 1 S 4 ( x , t ) 1 n e i ( ρ x + t + ϑ ) ,
or
u 1.3 , 23 = L 1 + 2 2 L 6 L 5 L 1 + 2 2 L 1 + 3 L 6 + S 5 ( x , t ) + 1 S 5 ( x , t ) 1 n e i ( ρ x + t + ϑ ) ,
v 1.3 , 23 = A L 1 + 2 2 L 6 L 5 L 1 + 2 2 L 1 + 3 L 6 + S 5 ( x , t ) + 1 S 5 ( x , t ) 1 n e i ( ρ x + t + ϑ ) ,
where S 4 ( x , t ) = sn [ x + γ t ] 1 + cn [ x + γ t ] , and S 5 ( x , t ) = cn [ x + γ t ] 1 r 2 sn [ x + γ t ] + dn [ x + γ t ] .
(1.3,11) 
If s 0 = 1 4 , s 2 = 1 + r 2 2 , s 4 = 1 r 2 2 4 and 0 r 1 , we obtain Jacobi elliptic solutions as
u 1.3 , 24 = L 1 + 2 2 L 6 L 5 L 1 + 2 2 L 1 + 3 L 6 + ( dn [ x + γ t ] + cn [ x + γ t ] ) 2 + 1 r 2 sn 2 [ x + γ t ] sn [ x + γ t ] ( dn [ x + γ t ] + cn [ x + γ t ] ) 1 n e i ( ρ x + t + ϑ ) ,
v 1.3 , 24 = A L 1 + 2 2 L 6 L 5 L 1 + 2 2 L 1 + 3 L 6 + ( dn [ x + γ t ] + cn [ x + γ t ] ) 2 + 1 r 2 sn 2 [ x + γ t ] sn [ x + γ t ] ( dn [ x + γ t ] + cn [ x + γ t ] ) 1 n e i ( ρ x + t + ϑ ) .
Special case. In the case of r = 0 , we derive combo periodic solutions as
u 1.3 , 25 = L 1 + 2 2 L 6 L 5 L 1 + 2 2 L 1 + 3 L 6 + 2 cot x + γ t 2 cos [ x + γ t ] + 1 1 n e i ( ρ x + t + ϑ ) ,
v 1.3 , 25 = A L 1 + 2 2 L 6 L 5 L 1 + 2 2 L 1 + 3 L 6 + 2 cot x + γ t 2 cos [ x + γ t ] + 1 1 n e i ( ρ x + t + ϑ ) .
Case: 2  s 0 = s 1 = 0 .
α 0 = L 1 + 2 L 5 2 2 L 1 + 3 L 6 + s 3 2 s 4 L 1 + 2 L 6 4 s 4 L 6 , α 1 = s 3 2 s 4 L 1 + 2 L 6 s 3 L 6 , β 1 = 0 ,
s 2 = 3 s 3 2 L 1 + 1 L 6 2 L 1 + 3 2 + 4 s 4 2 L 4 L 6 2 L 1 + 3 2 + 3 L 1 2 + 3 L 1 + 2 L 5 2 8 s 4 L 1 + 1 2 L 1 + 3 2 L 6 ,
L 2 = L 1 L 1 + 2 256 s 4 2 ( L 1 + 1 ) ( 2 L 1 + 3 ) 5 L 6 4 ( 16 s 4 2 L 5 2 L 6 ( 2 L 1 2 + 7 L 1 + 6 ) ( 4 L 4 L 6 ( 2 L 1 + 3 ) 2
+ 5 ( L 1 2 + 3 L 1 + 2 ) L 5 2 ) ) + s 3 2 L 6 ( L 1 + 1 ) ( 2 L 1 + 3 ) 2 ( 3 s 3 2 L 6 2 ( 2 L 1 + 3 ) 3
+ 8 L 5 s 3 2 s 4 ( L 1 + 2 ) ( 2 L 1 + 3 ) 4 L 6 3 ) + 8 s 4 ( 2 L 4 L 6 ( 2 L 1 + 3 ) 2
+ 3 ( L 1 2 + 3 L 1 + 2 ) L 5 2 ) ( s 3 2 L 6 2 ( 2 L 1 + 3 ) 3 + 4 L 5 s 3 2 s 4 ( L 1 + 2 ) ( 2 L 1 + 3 ) 4 L 6 3 ) ,
L 3 = ( 2 L 1 + 1 ) 32 s 4 2 L 1 + 1 2 L 1 + 3 4 L 6 3 ( 16 s 4 2 2 L 1 2 + 7 L 1 + 6 L 5 L 6 L 4 L 6 2 L 1 + 3 2 + L 1 2 + 3 L 1 + 2 L 5 2
+ 4 s 4 2 L 4 L 6 2 L 1 + 3 2 + 3 L 1 2 + 3 L 1 + 2 L 5 2 s 3 2 s 4 L 1 + 2 2 L 1 + 3 4 L 6 3 + s 3 2 ( L 1 + 1 ) ( 2 L 1 + 3 ) 2 L 6 s 3 2 s 4 ( L 1 + 2 ) ( 2 L 1 + 3 ) 4 L 6 3 ) .
Through this case, if ( L 1 + 2 ) < 0 and 2 L 1 + 3 , L 5 , s 4 , s 3 and L 6 > 0 , the exact solutions of (1) and (2) are in the following forms:
(2.1) 
If s 2 < 0 ; thus, the combo periodic solutions are obtained as
u 2.1 = s 3 2 s 4 L 6 L 1 + 2 L 6 2 L 1 + 3 s 3 2 L 6 + 2 L 5 s 4 L 1 + 2 4 s 4 2 L 1 + 3 s 3 2 L 6 s 2 sec 2 ( x + γ t ) s 2 2 s 3 s 3 + 2 s 2 s 4 tan ( ( x + γ t ) s 2 2 1 n
× e i ( ρ x + t + ϑ ) ,
v 2.1 = A s 3 2 s 4 L 6 L 1 + 2 L 6 2 L 1 + 3 s 3 2 L 6 + 2 L 5 s 4 L 1 + 2 4 s 4 2 L 1 + 3 s 3 2 L 6 s 2 sec 2 ( x + γ t ) s 2 2 s 3 s 3 + 2 s 2 s 4 tan ( ( x + γ t ) s 2 2 1 n
× e i ( ρ x + t + ϑ ) ,
and
u 2.2 = s 3 2 s 4 L 6 L 1 + 2 L 6 2 L 1 + 3 s 3 2 L 6 + 2 L 5 s 4 L 1 + 2 4 s 4 2 L 1 + 3 s 3 2 L 6 s 2 csc 2 ( x + γ t ) s 2 2 s 3 s 3 + 2 s 2 s 4 cot ( ( x + γ t ) s 2 2 1 n
× e i ( ρ x + t + ϑ ) ,
v 2.2 = A s 3 2 s 4 L 6 L 1 + 2 L 6 2 L 1 + 3 s 3 2 L 6 + 2 L 5 s 4 L 1 + 2 4 s 4 2 L 1 + 3 s 3 2 L 6 s 2 csc 2 ( x + γ t ) s 2 2 s 3 s 3 + 2 s 2 s 4 cot ( ( x + γ t ) s 2 2 1 n
× e i ( ρ x + t + ϑ ) .
(2.2) 
If s 2 > 0 , we obtain singular combo solitons as
u 2.3 = s 3 2 s 4 L 6 L 1 + 2 L 6 2 L 1 + 3 s 3 2 L 6 + 2 L 5 s 4 L 1 + 2 4 s 4 2 L 1 + 3 s 3 2 L 6 + s 2 c s c h 2 ( x + γ t ) s 2 2 s 3 s 3 + 2 s 2 s 4 coth ( ( x + γ t ) s 2 2 1 n
× e i ( ρ x + t + ϑ ) ,
v 2.3 = A s 3 2 s 4 L 6 L 1 + 2 L 6 2 L 1 + 3 s 3 2 L 6 + 2 L 5 s 4 L 1 + 2 4 s 4 2 L 1 + 3 s 3 2 L 6 + s 2 c s c h 2 ( x + γ t ) s 2 2 s 3 s 3 + 2 s 2 s 4 coth ( ( x + γ t ) s 2 2 1 n
× e i ( ρ x + t + ϑ ) .
Case: 3  s 0 = s 1 = s 2 = 0 .
α 0 = L 5 L 1 + 2 2 L 6 2 L 1 + 3 + s 3 2 s 4 L 6 L 1 + 2 4 s 4 L 6 , α 1 = s 3 2 s 4 L 6 L 1 + 2 s 3 L 6 , β 1 = 0 ,
L 2 = L 1 ( L 1 + 2 ) 256 s 4 2 L 6 3 ( 2 L 1 + 3 ) 4 ( 16 s 4 2 L 5 4 ( L 1 + 2 ) 2 + 24 s 3 2 s 4 L 6 L 5 2 ( L 1 + 2 ) ( 2 L 1 + 3 ) 2
s 3 2 ( 2 L 1 + 3 ) ( 3 s 3 2 L 6 2 ( 2 L 1 + 3 ) 3 + 16 L 5 s 3 2 s 4 L 6 3 ( L 1 + 2 ) ( 2 L 1 + 3 ) 4 ) ) ,
L 3 = 2 L 1 + 1 16 s 4 2 2 L 1 + 3 3 L 6 2 ( 4 s 4 2 L 1 + 2 2 L 5 3 + 3 s 3 2 s 4 L 1 + 2 2 L 1 + 3 2 L 6 L 5
s 3 2 2 L 1 + 3 s 3 2 s 4 L 1 + 2 2 L 1 + 3 4 L 6 3 ) ,
L 4 = 3 L 1 + 1 s 3 2 L 6 2 L 1 + 3 2 + 4 s 4 L 1 + 2 L 5 2 8 s 4 2 L 1 + 3 2 L 6 .
Through this case, if s 4 0 , we obtain rational solutions to (1) and (2), under the conditions s 4 and ( L 1 + 2 ) > 0 , s 3 , L 6 , L 5 and 2 L 1 + 3 < 0 , and s 3 2 ( x + γ t ) 2 > 4 s 4 , in the following forms:
u 3 = s 4 L 6 L 1 + 2 4 s 4 L 6 s 3 2 L 1 + 3 L 6 + 2 L 5 s 4 L 1 + 2 L 6 2 L 1 + 3 L 6 + 16 s 3 s 4 s 3 2 ( x + γ t ) 2 4 s 4 1 n e i ( ρ x + t + ϑ ) ,
v 3 = A s 4 L 6 L 1 + 2 4 s 4 L 6 s 3 2 L 1 + 3 L 6 + 2 L 5 s 4 L 1 + 2 L 6 2 L 1 + 3 L 6 + 16 s 3 s 4 s 3 2 ( x + γ t ) 2 4 s 4 1 n e i ( ρ x + t + ϑ ) .
Case: 4  s 3 = s 4 = 0 .
α 0 = L 5 L 1 + 2 2 L 6 2 L 1 + 3 + s 0 s 1 2 L 6 3 L 1 + 2 2 L 1 + 3 4 4 s 0 L 6 2 2 L 1 + 3 2 , α 1 = 0 ,
β 1 = s 0 s 1 2 L 6 3 L 1 + 2 2 L 1 + 3 4 s 1 L 6 2 2 L 1 + 3 2 ,
L 2 = L 1 ( L 1 + 2 ) 256 s 0 2 L 6 3 ( 2 L 1 + 3 ) 4 ( 16 s 0 2 L 5 2 ( L 1 + 2 ) L 5 2 ( L 1 + 2 ) 4 s 2 L 6 ( 2 L 1 + 3 ) 2
s 1 2 ( 2 L 1 + 3 ) ( 3 s 1 2 L 6 2 ( 2 L 1 + 3 ) 3 + 16 L 5 s 0 s 1 2 L 6 3 ( L 1 + 2 ) ( 2 L 1 + 3 ) 4 )
+ 8 s 0 ( 2 L 1 + 3 ) ( s 1 2 L 6 ( 2 L 1 + 3 ) ( 2 s 2 L 6 ( 2 L 1 + 3 ) 2 + 3 ( L 1 + 2 ) L 5 2 )
+ 8 s 2 L 5 s 0 s 1 2 L 6 3 ( L 1 + 2 ) ( 2 L 1 + 3 ) 4 ) ) ,
L 3 = 2 L 1 + 1 16 s 0 2 L 6 2 ( 2 L 1 + 3 ) 3 ( 4 s 0 2 ( L 1 + 2 ) L 5 ( L 5 2 ( L 1 + 2 ) 2 s 2 L 6 ( 2 L 1 + 3 ) 2 )
s 1 2 ( 2 L 1 + 3 ) s 0 s 1 2 L 6 3 ( L 1 + 2 ) ( 2 L 1 + 3 ) 4 + s 0 ( 2 L 1 + 3 ) ( 3 s 1 2 L 5 L 6 ( 2 L 1 2 + 7 L 1 + 6 ) + 4 s 2 s 0 s 1 2 L 6 3 ( L 1 + 2 ) ( 2 L 1 + 3 ) 4 ) ) ,
L 4 = L 1 + 1 3 s 1 2 L 6 2 L 1 + 3 2 4 s 0 3 L 1 + 2 L 5 2 2 s 2 L 6 2 L 1 + 3 2 8 s 0 L 6 2 L 1 + 3 2 .
Through this case, if ( L 1 + 2 ) < 0 , 2 L 1 + 3 , L 5 and L 6 > 0 , then the exact solutions of (1) and (2) are in the following forms:
(4.1) 
If s 1 < 0 , s 2 > 0 and s 0 = s 1 2 4 s 2 , we obtain exponential solutions as
u 4.1 = 4 s 1 2 s 2 L 6 L 1 + 2 4 s 1 2 L 6 2 L 5 s 1 2 L 6 L 1 + 2 + L 6 2 L 1 + 3 4 s 2 s 1 2 L 6 2 L 1 + 3 4 s 2 + 2 s 1 2 s 1 + 2 s 2 exp ( x + γ t ) s 2 1 n
× e i ( ρ x + t + ϑ ) ,
v 4.1 = A 4 s 1 2 s 2 L 6 L 1 + 2 4 s 1 2 L 6 2 L 5 s 1 2 L 6 L 1 + 2 + L 6 2 L 1 + 3 4 s 2 s 1 2 L 6 2 L 1 + 3 4 s 2 + 2 s 1 2 s 1 + 2 s 2 exp ( x + γ t ) s 2 1 n
× e i ( ρ x + t + ϑ ) .
(4.2) 
If s 2 < 0 , s 1 = 0 and s 0 > 0 , we derive periodic solutions as
u 4.2 = s 0 L 6 L 1 + 2 4 s 0 L 6 2 L 5 s 0 L 6 L 1 + 2 L 6 2 L 1 + 3 + 4 s 2 s 0 csc ( x + γ t ) s 2 1 n e i ( ρ x + t + ϑ ) ,
v 4.2 = A s 0 L 6 L 1 + 2 4 s 0 L 6 2 L 5 s 0 L 6 L 1 + 2 L 6 2 L 1 + 3 + 4 s 2 s 0 csc ( x + γ t ) s 2 1 n e i ( ρ x + t + ϑ ) .
(4.3) 
If s 2 > 0 , s 1 = 0 and s 0 > 0 , we extract singular solitons as
u 4.3 = s 0 L 6 L 1 + 2 4 s 0 L 6 2 L 5 s 0 L 6 L 1 + 2 L 6 2 L 1 + 3 + 4 s 2 s 0 c s c h ( x + γ t ) s 2 1 n e i ( ρ x + t + ϑ ) ,
v 4.3 = A s 0 L 6 L 1 + 2 4 s 0 L 6 2 L 5 s 0 L 6 L 1 + 2 L 6 2 L 1 + 3 + 4 s 2 s 0 c s c h ( x + γ t ) s 2 1 n e i ( ρ x + t + ϑ ) .
Case: 5  s 2 = s 4 = 0 , s 3 > 0 , s 0 and s 1 0 .
α 0 = L 5 L 1 + 2 2 L 6 2 L 1 + 3 + s 1 s 0 s 1 2 L 6 L 1 + 2 4 s 0 s 1 L 6 , α 1 = 0 , β 1 = s 0 s 1 2 L 6 L 1 + 2 s 1 L 6 ,
L 2 = L 1 ( L 1 + 2 ) 256 s 0 2 s 1 L 6 3 ( 2 L 1 + 3 ) 4 ( s 1 3 ( 2 L 1 + 3 ) ( 3 s 1 2 L 6 2 ( 2 L 1 + 3 ) 3
+ 16 L 5 s 0 s 1 2 L 6 3 ( L 1 + 2 ) ( 2 L 1 + 3 ) 4 )
24 s 0 s 1 3 L 5 2 L 6 ( L 1 + 2 ) ( 2 L 1 + 3 ) 2 + 16 s 0 2 ( 4 s 1 2 s 3 L 6 2 ( 2 L 1 + 3 ) 4
+ 8 s 3 L 5 ( 2 L 1 + 3 ) s 0 s 1 2 L 6 3 ( L 1 + 2 ) ( 2 L 1 + 3 ) 4 s 1 L 5 4 ( L 1 + 2 ) 2 ) ) ,
L 3 = 2 L 1 + 1 16 s 0 2 s 1 L 6 2 ( 2 L 1 + 3 ) 3 ( 3 s 0 s 1 3 L 5 L 6 L 1 + 2 2 L 1 + 3 2
s 1 3 2 L 1 + 3 s 0 s 1 2 L 6 3 L 1 + 2 2 L 1 + 3 4 + 4 s 0 2 ( s 1 L 5 3 L 1 + 2 2 2 s 3 2 L 1 + 3 s 0 s 1 2 L 6 3 L 1 + 2 2 L 1 + 3 4 ) ) .
L 4 = 3 L 1 + 1 s 1 2 L 6 2 L 1 + 3 2 + 4 s 0 L 5 2 L 1 + 2 8 s 0 L 6 2 L 1 + 3 2 .
Through this case, if ( L 1 + 2 ) < 0 , L 5 and 2 L 1 + 3 > 0 , L 6 and s i > 0 , i = 0 , 1 , then we obtain Weierstrass solutions of (1) and (2) in the following forms:
u 5 = s 0 s 1 2 L 6 L 1 + 2 4 s 0 s 1 L 6 s 1 2 L 6 2 L 1 + 3 + 2 L 5 s 0 s 1 2 L 6 L 1 + 2 s 1 L 6 2 L 1 + 3 + 4 s 0 ( x + γ t ) s 3 2 , E 2 , E 3 1 n
× e i ( ρ x + t + ϑ ) ,
v 5 = A s 0 s 1 2 L 6 L 1 + 2 4 s 0 s 1 L 6 s 1 2 L 6 2 L 1 + 3 + 2 L 5 s 0 s 1 2 L 6 L 1 + 2 s 1 L 6 2 L 1 + 3 + 4 s 0 ( x + γ t ) s 3 2 , E 2 , E 3 1 n
× e i ( ρ x + t + ϑ ) ,
where E 2 = 4 s 1 s 3 and E 3 = 4 s 0 s 3 .

4. Results and Discussion

The obtained wave solutions in this paper using the extended F-expansion method differ from the gained results of various researchers by some other existing methods. Different families of solutions were obtained from Equation (7) by giving specific values to the parameters. Dark soliton solutions, singular soliton solutions, the dark–singular combo soliton, singular combo soliton solutions, Jacobi elliptic solutions, periodic solutions, combo periodic solutions, hyperbolic solutions, rational solutions, exponential solutions and Weierstrass solutions were extracted. Zayed et al. [31] obtained solitons in magneto-optics waveguides for the nonlinear Biswas–Milovic equation with Kudryashov’s law of refractive index using the unified auxiliary equation method. Kengne [32] commented on “Solitons in magneto-optics waveguides for the nonlinear Biswas–Milovic equation with Kudryashov’s law of refractive index using the unified auxiliary equation method”. So, several innovative and corrected results have been achieved in this work, which have not been specified before.
Figure 1 presents the dark soliton solutions of Equation (36), when m = 3 , n = 8 , a 2 = 0.9 , A = 0.5 , ξ 1 = 0.8 , ξ 2 = 0.6 , ϱ 2 = 0.5 , ϱ 1 = 0.6 , b 1 = 0.9 , f 1 = 0.8 , c 1 = 0.5 , g 1 = 1.1 , d 1 = 0.8 , h 1 = 1.3 , e 1 = 1.4 , α 1 = 0.9 , μ 1 = 1 , k 1 = 0.5 , ϑ = 0.8 and 15 < x < 15 . Figure 2 presents the singular soliton solutions of Equation (42), when m = 3 , n = 3.5 , a 2 = 1.9 , A = 1.5 , ξ 1 = 2.8 , ξ 2 = 1.6 , ϱ 2 = 1.5 , ϱ 1 = 1.6 , b 1 = 1.9 , f 1 = 1.8 , c 1 = 1.5 , g 1 = 2.1 , d 1 = 2.8 , h 1 = 0.6 , e 1 = 1.4 , α 1 = 1.9 , μ 1 = 1.4 , k 1 = 1.5 , ϑ = 1.8 and 15 < x < 15 . Figure 3 presents the periodic solutions of Equation (46), when m = 3 , n = 3.5 , a 2 = 1.8 , A = 1.4 , ξ 1 = 2.7 , ξ 2 = 1.6 , ϱ 2 = 1.5 , ϱ 1 = 1.6 , b 1 = 1.8 , f 1 = 1.7 , c 1 = 1.5 , g 1 = 2.2 , d 1 = 2.8 , h 1 = 0.6 , e 1 = 1.4 , α 1 = 1.8 , μ 1 = 1.5 , k 1 = 1.4 , ϑ = 1.7 and 15 < x < 15 . Figure 4 presents the singular combo soliton solutions of Equation (100), when m = 3 , n = 3.5 , a 2 = 1.7 , A = 1.4 , ξ 1 = 2.6 , ξ 2 = 1.5 , ϱ 2 = 1.4 , ϱ 1 = 1.5 , b 1 = 1.6 , f 1 = 1.4 , c 1 = 1.4 , g 1 = 2.2 , d 1 = 2.8 , h 1 = 0.6 , e 1 = 1.4 , α 1 = 1.8 , μ 1 = 1.5 , k 1 = 1.4 , ϑ = 1.7 , D 2 = 2 , D 3 = 2 and 25 < x < 25 . Figure 5 presents the hyperbolic solution of Equation (160), when m = 3 , n = 3.5 , a 2 = 1.6 , A = 1.5 , ξ 1 = 2.7 , ξ 2 = 1.5 , ϱ 2 = 1.4 , ϱ 1 = 1.5 , b 1 = 1.6 , f 1 = 1.5 , c 1 = 1.5 , g 1 = 2.1 , d 1 = 2.8 , h 1 = 0.6 , e 1 = 1.5 , α 1 = 1.8 , μ 1 = 1.5 , k 1 = 1.4 , ϑ = 1.7 , D 2 = 2 , D 3 = 2 and 15 < x < 15 .

5. Conclusions

In this work, the coupled system of the nonlinear Biswas–Milovic equation in a magneto-optical waveguide with Kudryashov’s law was studied successfully by applying the extended F-expansion method. Various types of traveling wave solutions were extracted, such as the dark soliton solutions, singular soliton solutions, dark–singular combo soliton, singular combo soliton solutions, Jacobi elliptic solutions, periodic solutions, combo periodic solutions, hyperbolic solutions, rational solutions, exponential solutions and Weierstrass solutions. This paper shows that some of the obtained solutions by this effective method are new compared with the obtained solutions in [31,32]. For certain solutions, contour, three- and two-dimensional visualizations were provided for further illustration. Finally, our solutions were checked using Mathematica software by putting them back into the original equations.

Author Contributions

W.B.R.: methodology, validation and formal analysis; H.M.A.: formal analysis, investigation and supervision; W.H.: writing—original draft preparation and writing—review and editing. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Data Availability Statement

Not applicable.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Seadawy, A.R.; Iqbal, M.; Lu, D. Applications of propagation of long-wave with dissipation and dispersion in nonlinear media via solitary wave solutions of generalized Kadomtsev–Petviashvili modified equal width dynamical equation. Comput. Math. Appl. 2019, 78, 3620–3632. [Google Scholar] [CrossRef]
  2. Iqbal, M.; Seadawy, A.R.; Khalil, O.H.; Lu, D. Propagation of long internal waves in density stratified ocean for the (2 + 1)-dimensional nonlinear Nizhnik—Novikov—Vesselov dynamical equation. Results Phys. 2020, 16, 102838. [Google Scholar] [CrossRef]
  3. Seadawy, A.R.; Zahed, H.; Iqbal, M. Solitary Wave Solutions for the Higher Dimensional Jimo-Miwa Dynamical Equation via New Mathematical Techniques. Mathematics 2022, 10, 1011. [Google Scholar] [CrossRef]
  4. Ali, A.; Seadawy, A.R.; Lu, D. New solitary wave solutions of some nonlinear models and their applications. Adv. Differ. Equ. 2018, 2018, 1–12. [Google Scholar] [CrossRef] [Green Version]
  5. Ahmed, H.M.; Rabie, W.B.; Arnous, A.H.; Wazwaz, A.-M. Optical solitons in birefringent fibers of Kaup-Newell’s equation with extended simplest equation method. Phys. Scr. 2020, 95, 115214. [Google Scholar] [CrossRef]
  6. Lu, D.; Seadawy, A.R.; Ali, A. Structure of traveling wave solutions for some nonlinear models via modified mathematical method. Open Phys. 2018, 16, 854–860. [Google Scholar] [CrossRef]
  7. Mohyud-Din, S.T.; Irshad, A. Solitary wave solutions of some nonlinear PDEs arising in electronics. Opt. Quantum Electron. 2017, 49, 130. [Google Scholar] [CrossRef]
  8. Seadawy, A.R.; Lu, D.; Nasreen, N. Construction of solitary wave solutions of some nonlinear dynamical system arising in nonlinear water wave models. Indian J. Phys. 2020, 94, 1785–1794. [Google Scholar] [CrossRef]
  9. Samir, I.; Badra, N.; Seadawy, A.R.; Ahmed, H.M. Exact wave solutions of the fourth order non-linear partial differential equation of optical fiber pulses by using different methods. Int. J. Light Electron Opt. 2021, 230, 166313. [Google Scholar] [CrossRef]
  10. El-Sheikh, M.M.A.; Seadawy, A.R.; Ahmed, H.M.; Arnous, A.H.; Rabie, W.B. Dispersive and propagation of shallow water waves as a higher order nonlinear Boussinesq-like dynamical wave equations. Phys. A 2020, 537, 122662. [Google Scholar] [CrossRef]
  11. Sheikh, M.E.; Ahmed, H.M.; Arnous, A.H.; Rabie, W.B.; Biswas, A.; Khan, S.; Alshomrani, A.S. Optical solitons with differential group delay for coupled Kundu-Eckhaus equation using extended simplest equation approach. Optik 2020, 208, 164051. [Google Scholar] [CrossRef]
  12. Ahmed, H.M.; Rabie, W.B.; Ragusa, M.A. Optical solitons and other solutions to Kaup-Newell equation with Jacobi elliptic function expansion method. Anal. Math. Phys. 2021, 11, 1–16. [Google Scholar] [CrossRef]
  13. El-Horbaty, M.M.; Ahmed, F.M. The solitary travelling wave solutions of some nonlinear partial differential equations using the modified extended tanh function method with Riccati equation. Asian Res. J. Math. 2018, 8, 1–13. [Google Scholar] [CrossRef]
  14. Kudryashov, N.A. A generalized model for description of propagation pulses in optical fiber. Optik 2019, 189, 42–52. [Google Scholar] [CrossRef]
  15. Kudryashov, N.A. Mathematical model of propagation pulse in optical fiber with power nonlinearities. Optik 2020, 212, 164750. [Google Scholar] [CrossRef]
  16. Kudryashov, N.A. Highly dispersive optical solitons of the generalized nonlinear eighth-order Schrödinger equation. Optik 2020, 206, 164335. [Google Scholar] [CrossRef]
  17. Kudryashov, N.A. Highly dispersive optical solitons of an equation with arbitrary refractive index. Regul. Chaotic Dyn. 2020, 25, 537–543. [Google Scholar] [CrossRef]
  18. Kudryashov, N.A.; Antonova, E.V. Solitary waves of equation for propagation pulse with power nonlinearities. Optik 2020, 217, 164881. [Google Scholar] [CrossRef]
  19. Biswas, A.; Milovic, D. Bright and dark solitons of the generalized nonlinear Schrödinger’s equation. Commun. Nonlinear Sci. Numer. Simul. 2010, 15, 1473–1484. [Google Scholar] [CrossRef]
  20. Rizvi, S.T.R.; Ali, K.; Ahmad, M. Optical solitons for Biswas–Milovic equation by new extended auxiliary equation method. Optik 2020, 204, 164181. [Google Scholar] [CrossRef]
  21. Manafian, J.; Lakestani, M. Optical solitons with Biswas-Milovic equation for Kerr law nonlinearity. Eur. Phys. J. Plus 2015, 130, 1–12. [Google Scholar] [CrossRef]
  22. Zhou, Q.; Ekici, M.; Sonmezoglu, A.; Mirzazadeh, M.; Eslami, M. Optical solitons with Biswas–Milovic equation by extended trial equation method. Nonlinear Dyn. 2016, 84, 1883–1900. [Google Scholar] [CrossRef]
  23. Tahir, M.; Awan, A.U. Analytical solitons with the Biswas-Milovic equation in the presence of spatio-temporal dispersion in non-Kerr law media. Eur. Phys. J. Plus 2019, 134, 1–9. [Google Scholar] [CrossRef]
  24. Khalil, T.A.; Badra, N.; Ahmed, H.M.; Rabie, W.B. Optical solitons and other solutions for coupled system of nonlinear Biswas–Milovic equation with Kudryashov’s law of refractive index by Jacobi elliptic function expansion method. Optik 2022, 253, 168540. [Google Scholar] [CrossRef]
  25. Akram, G.; Zainab, I.; Peakon, D. Kink and periodic solutions of the nonlinear Biswas–Milovic equation with Kerr law nonlinearity. Optik 2020, 208, 164420. [Google Scholar] [CrossRef]
  26. Rabie, W.B.; Ahmed, H.M. Dynamical solitons and other solutions for nonlinear Biswas–Milovic equation with Kudryashov’s law by improved modified extended tanh-function method. Optik 2021, 245, 167665. [Google Scholar] [CrossRef]
  27. Cinar, M.; Onder, I.; Secer, A.; Sulaiman, T.A.; Yusuf, A.; Bayram, M. Optical solitons of the (2+ 1)-dimensional Biswas-Milovic equation using modified extended tanh-function method. Optik 2021, 245, 167631. [Google Scholar] [CrossRef]
  28. Elmandouh, A.A. Integrability, qualitative analysis and the dynamics of wave solutions for Biswas–Milovic equation. Eur. Phys. J. Plus 2021, 136, 1–17. [Google Scholar] [CrossRef]
  29. Guo, L.-F.; Xu, W.-R. The traveling wave mode for nonlinear Biswas-Milovic equation in magneto-optical wave guide coupling system with Kudryashov’s law of refractive index. Results Phys. 2021, 27, 104500. [Google Scholar] [CrossRef]
  30. Zayed, E.M.E.; Gepreel, K.A.; Shohib, R.M.A.; Alngar, M.E.M.; Yıldırım, Y. Optical solitons for the perturbed Biswas-Milovic equation with Kudryashov’s law of refractive index by the unified auxiliary equation method. Optik 2021, 230, 166286. [Google Scholar] [CrossRef]
  31. Zayed, E.M.E.; Gepreel, K.A.; Shohib, R.M.A.; Alngar, M.E.M. Solitons in magneto-optics waveguides for the nonlinear Biswas-Milovic equation with Kudryashov’s law of refractive index using the unified auxiliary equation method. Optik 2021, 235, 166602. [Google Scholar] [CrossRef]
  32. Kengne, E. Comment on “Solitons in magneto-optics waveguides for the nonlinear Biswas–Milovic equation with Kudryashov’s law of refractive index using the unified auxiliary equation method”. Optik 2021, 242, 167352. [Google Scholar] [CrossRef]
  33. Abdou, M.A. The extended F-expansion method and its application for a class of nonlinear evolution equations. Chaos Solitons Fractals 2007, 31, 95–104. [Google Scholar] [CrossRef]
  34. Apriliani, V.; Maulidi, I.; Azhari, B. Extended F-expansion method for solving the modified Korteweg-de Vries (mKdV) equation. J. Pendidik. Mat. 2020, 11, 93–100. [Google Scholar] [CrossRef]
Figure 1. Graphical simulation of dark soliton solutions to Equation (36).
Figure 1. Graphical simulation of dark soliton solutions to Equation (36).
Mathematics 11 00300 g001
Figure 2. Graphical simulation of singular soliton solutions to Equation (42).
Figure 2. Graphical simulation of singular soliton solutions to Equation (42).
Mathematics 11 00300 g002
Figure 3. Graphical simulation of periodic solutions to Equation (46).
Figure 3. Graphical simulation of periodic solutions to Equation (46).
Mathematics 11 00300 g003
Figure 4. Graphical simulation of singular combo soliton solutions to Equation (100).
Figure 4. Graphical simulation of singular combo soliton solutions to Equation (100).
Mathematics 11 00300 g004
Figure 5. Graphical simulation of hyperbolic solutions to Equation (160).
Figure 5. Graphical simulation of hyperbolic solutions to Equation (160).
Mathematics 11 00300 g005
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Rabie, W.B.; Ahmed, H.M.; Hamdy, W. Exploration of New Optical Solitons in Magneto-Optical Waveguide with Coupled System of Nonlinear Biswas–Milovic Equation via Kudryashov’s Law Using Extended F-Expansion Method. Mathematics 2023, 11, 300. https://doi.org/10.3390/math11020300

AMA Style

Rabie WB, Ahmed HM, Hamdy W. Exploration of New Optical Solitons in Magneto-Optical Waveguide with Coupled System of Nonlinear Biswas–Milovic Equation via Kudryashov’s Law Using Extended F-Expansion Method. Mathematics. 2023; 11(2):300. https://doi.org/10.3390/math11020300

Chicago/Turabian Style

Rabie, Wafaa B., Hamdy M. Ahmed, and Walid Hamdy. 2023. "Exploration of New Optical Solitons in Magneto-Optical Waveguide with Coupled System of Nonlinear Biswas–Milovic Equation via Kudryashov’s Law Using Extended F-Expansion Method" Mathematics 11, no. 2: 300. https://doi.org/10.3390/math11020300

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop