Next Article in Journal
Phenotype Analysis of Arabidopsis thaliana Based on Optimized Multi-Task Learning
Next Article in Special Issue
Characterization of Lie-Type Higher Derivations of von Neumann Algebras with Local Actions
Previous Article in Journal
Local Solvability and Stability of an Inverse Spectral Problem for Higher-Order Differential Operators
Previous Article in Special Issue
Acyclic Complexes and Graded Algebras
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Nonlinear Skew Lie-Type Derivations on ∗-Algebra

by
Md Arshad Madni
1,*,
Amal S. Alali
2 and
Muzibur Rahman Mozumder
1
1
Department of Mathematics, Faculty of Science, Aligarh Muslim University, Aligarh 202002, India
2
Department of Mathematical Sciences, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
*
Author to whom correspondence should be addressed.
Mathematics 2023, 11(18), 3819; https://doi.org/10.3390/math11183819
Submission received: 16 August 2023 / Revised: 2 September 2023 / Accepted: 4 September 2023 / Published: 6 September 2023

Abstract

:
Let A be a unital ∗-algebra over the complex fields C . For any H 1 , H 2 A , a product [ H 1 , H 2 ] = H 1 H 2 H 2 H 1 * is called the skew Lie product. In this article, it is shown that if a map ξ : A A (not necessarily linear) satisfies ξ ( P n ( H 1 , H 2 , , H n ) ) = i = 1 n P n ( H 1 , , H i 1 , ξ ( H i ) , H i + 1 , , H n ) ( n 3 ) for all H 1 , H 2 , , H n A , then ξ is additive. Moreover, if ξ ( i e 2 ) is self-adjoint, then ξ is ∗-derivation. As applications, we apply our main result to some special classes of unital ∗-algebras such as prime ∗-algebra, standard operator algebra, factor von Neumann algebra, and von Neumann algebra with no central summands of type I 1 .

1. Introduction

Let A be a ∗-algebra over the complex field C . A mapping ξ : A A is called an additive derivation if ξ ( A + B ) = ξ ( A ) + ξ ( B ) and ξ ( A B ) = ξ ( A ) B + A ξ ( B ) hold for all A , B A . Moreover, ξ is said to be an additive ∗-derivation if it is an additive derivation, and ξ ( A * ) = ξ ( A ) * hold for all A A . For A , B A , define the Lie product and skew Lie product of A and B by [ A , B ] = A B B A and [ A , B ] = A B B A * , respectively. A map ξ : A A (not necessarily linear) is said to be a nonlinear Lie derivation (resectively, a nonlinear Lie triple derivation) if
ξ ( [ A , B ] ) = [ ξ ( A ) , B ] + [ A , ξ ( B ) ] ( r e s p e c t i v e l y , ξ ( [ [ A , B ] , C ] ) = [ [ ξ ( A ) , B ] , C ] + [ [ A , ξ ( B ) ] , C ] + [ [ A , B ] , ξ ( C ) ]
hold for all A , B , C A . Analogously, a map A A (not necessarily linear) is called a nonlinear skew Lie derivation (respectively, a nonlinear skew Lie triple derivation) if
ξ ( [ A , B ] ) = [ ξ ( A ) , B ] + [ A , ξ ( B ) ] ( r e s p . ξ ( [ [ A , B ] , C ] ) = [ [ ξ ( A ) , B ] , C ] + [ [ A , ξ ( B ) ] , C ] + [ [ A , B ] , ξ ( C ) ]
hold for all A , B , C A ; many authors have studied the structure of nonlinear Lie derivation (respectively, nonlinear Lie triple derivation) and nonlinear skew Lie derivation (respectively, nonlinear skew Lie triple derivation) on various ∗-algebra (see [1,2,3,4]). In the last decade, many mathematicians have devoted themselves to the study of mappings involving new products on various kind of rings and algebras. These kind of new products are playing a more important role in some research topics, and their study has attracted many authors’ attention (see [2,5,6,7,8,9,10,11,12,13,14,15]). Define the sequence of polynomials as P 1 ( X 1 ) = X 1 , P 2 ( X 1 , X 2 ) = [ X 1 , X 2 ] = X 1 X 2 X 2 X 1 * , P 3 ( X 1 , X 2 , X 3 ) = [ P 2 ( X 1 , X 2 ) , X 3 ] , , P n ( X 1 , X 2 , , X n 1 , X n ) = [ P n 1 ( X 1 , X 2 , , X n 1 ) , X n ] , where P n ( X 1 , X 2 , , X n 1 , X n ) = [ P n 1 ( X 1 , X 2 , , X n 1 ) , X n ] is called skew Lie n- product. A map ξ : A A (not necessarily linear) is said to be nonlinear skew Lie n-derivation if
ξ ( P n ( H 1 , H 2 , , H n ) ) = P n ( ξ ( H 1 ) , H 2 , , H n ) + P n ( H 1 , ξ ( H 2 ) , , H n ) + + P n ( H 1 , H 2 , , ξ ( H n ) )
holds for all H 1 , H 2 , , H n A .
A nonlinear skew Lie 2-derivation is called a nonlinear skew Lie derivation, and a nonlinear skew Lie 3-derivation is called a nonlinear skew Lie triple derivation. A nonlinear skew Lie 2-derivation, nonlinear skew Lie 3-derivation and nonlinear skew Lie n-derivation are collectively called nonlinear skew Lie-type derivations.
Remember the definition of ∗-algebra: first of all, define the involution ★ on ring R; then, define the involution ∗ on algebra A . An additive map ★ on ring is called an involution if ( r 1 r 2 ) = r 2 r 1 and ( r ) = r , for all r 1 , r 2 , r R . Defining the involution ∗ on algebra is an additive mapping satisfying ( a b ) * = b * a * , ( a * ) * = a , and ( r a ) * = r a * , for all a , b A and r R . An R-algebra with involution ∗ is called ∗-algebra. A set of complex numbers with conjugation as involution is an ∗-algebra. Let H be the complex Hilbert space and B ( H ) be the algebra of bounded operator on H over the complex field C , and define involution ∗ on B ( H ) as the adjoint of x for all x B ( H ) . Therefore, B ( H ) is an ∗-algebra. The class of ∗-algebras is very important and has many applications in many fields; the behavior of operators on Hilbert spaces is studied using ∗-algebras. The class of ∗- algebra is a more general class than prime ∗-algebra, standard operator algebra, factor von Neumann algebra, and von Neumann algebra with no central summands of type of I 1 . Consequently, it would be crucial to describe a map on ∗-algebras. Lin [16] proved that every multiplicative skew Lie-type derivation on standard operator algebra is an additive ∗-derivations. In 2016, Zhang [12] studied nonlinear skew Jordan derivations on factor von Neumann algebras and proved that every nonlinear skew Jordan derivation on a factor von Neumann algebra is an addtive ∗-derivation. Later, this result has been extended to skew Jordan triple derivation and skew Jordan-type derivation on ∗-algebras in [13,15], respectively. Lin [17] proved that every multiplicative skew Lie-type derivation on von Neumann algebra is an additive ∗-derivation. In [15], Li et al. proved that every nonlinear *-Jordan type derivation on ∗-algebra is an additive ∗-derivation. Motivated by the above cited work, in this article, we define skew Lie-type mapping on a more general setting of arbitrary unital ∗-algebra. Correspondingly, a map ξ : A A (not necessarily linear) is called a nonlinear skew Lie-type derivation if
ξ ( P n ( H 1 , H 2 , , H n ) ) = P n ( ξ ( H 1 ) , H 2 , , H n ) + P n ( H 1 , ξ ( H 2 ) , , H n ) + + P n ( H 1 , H 2 , , ξ ( H n ) )
holds for all H 1 , H 2 , , H n A .
The aim of this article is to study the nonlinear skew Lie derivations on arbitrary ∗-algebras. More precisely, we show that under mild assumptions, every nonlinear skew Lie-type derivation on an unital ∗-algebra is an additive ∗-derivation. Finally, we apply our main result to some special classes of unital ∗-algebras such as prime ∗-algebra, standard operator algebra, factor von Neumann algebra, and von Neumann algebra with no central summands of type I 1 .

2. The Main Results

The main results of this article are presented in this section.
Theorem 1.
Let A be a unital ∗-algebra with unit e containing a nontrivial projection P 1 , and P 2 = I P 1 satisfies
X A P k = 0 X = 0 ( k = 1 , 2 ) .
Then, if a map ξ : A A (not necessarily linear) satisfies
ξ ( P n ( H 1 , H 2 , , H n ) ) = i = 1 n P n ( ( H 1 ) , , H i 1 , ξ ( H i ) , H i + 1 , , H n ) ( n 3 )
for all H 1 , H 2 , , H n A , then ξ is additive. Moreover, if ξ ( i e 2 ) is self-adjoint, then ξ is ∗-derivation.
Proof. 
Assume A i j = P i A P j for i , j = 1 , 2 . Then, by the Pierce decomposition of A , we have A = A 11 A 12 A 21 A 22 . Clearly, any H A can be written as H = H 11 + H 12 + H 21 + H 22 , where H i j A i j for i , j = 1 , 2 . □
We prove the above theorem using several lemmas. Putting H 1 = H 2 = = H n = 0 into ( 2 ) , we easily establish the following Lemma.
Lemma 1.
ξ ( 0 ) = 0 .
Lemma 2.
For any H 12 A 12 and H 21 A 21 , we have
ξ ( H 12 + H 21 ) = ξ ( H 12 ) + ξ ( H 21 ) .
Proof. 
Assume that T = ξ ( H 11 + H 12 ) ξ ( H 11 ) ξ ( H 12 ) . Our target is to show that T = 0 . Invoking the fact that P n ( i e 2 , e 2 , e 2 , , ( P 1 P 2 ) , H 12 ) = P n ( i e 2 , e 2 , e 2 , , ( P 1 P 2 ) , H 21 ) = 0 and Lemma 1, we have
ξ ( P n ( i e 2 , e 2 , e 2 , , ( P 1 P 2 ) , ( H 12 + H 21 ) ) ) = ξ ( P n ( i e 2 , e 2 , e 2 , , ( P 1 P 2 ) , H 12 ) ) + ξ ( P n ( i e 2 , e 2 , e 2 , , ( P 1 P 2 ) , H 21 ) ) . = P n ( ξ ( i e 2 ) , e 2 , e 2 , , ( P 1 P 2 ) , H 12 ) + P n ( i e 2 , ξ ( e 2 ) , e 2 , , ( P 1 P 2 ) , H 12 ) + + P n ( i e 2 , e 2 , e 2 , , ξ ( P 1 P 2 ) , H 12 ) + P n ( i e 2 , e 2 , e 2 , , ( P 1 P 2 ) , ξ ( H 12 ) ) + P n ( ξ ( i e 2 ) , e 2 , e 2 , , ( P 1 P 2 ) , H 21 ) + P n ( i e 2 , ξ ( e 2 ) , e 2 , , ( P 1 P 2 ) , H 21 ) + + P n ( i e 2 , e 2 , e 2 , , ξ ( P 1 P 2 ) , H 21 ) + P n ( i e 2 , e 2 , e 2 , , ( P 1 P 2 ) , ξ ( H 21 ) ) . = P n ( ξ ( i e 2 ) , e 2 , e 2 , , ( P 1 P 2 ) , ( H 12 + H 21 ) ) + P n ( i e 2 , ξ ( e 2 ) , e 2 , , ( P 1 P 2 ) , ( H 12 + H 21 ) ) + + P n ( i e 2 , e 2 , e 2 , , ξ ( P 1 P 2 ) , ( H 12 + H 21 ) ) + P n ( i e 2 , e 2 , e 2 , , ( P 1 P 2 ) , ξ ( H 12 ) + ξ ( H 21 ) ) .
On the other hand, we have
ξ ( P n ( i e 2 , e 2 , e 2 , , ( P 1 P 2 ) , ( H 12 + H 21 ) ) ) = P n ( ξ ( i e 2 ) , e 2 , e 2 , , ( P 1 P 2 ) , ( H 12 + H 21 ) ) + P n ( i e 2 , ξ ( e 2 ) , e 2 , , ( P 1 P 2 ) , ( H 12 + H 21 ) ) + + P n ( i e 2 , e 2 , e 2 , , ξ ( P 1 P 2 ) , ( H 12 + H 21 ) ) + P n ( i e 2 , e 2 , e 2 , , ( P 1 P 2 ) , ξ ( H 12 + H 21 ) ) .
Comparing the above two expressions for ξ ( P n ( i e 2 , e 2 , e 2 , , ( P 1 P 2 ) , ( H 12 + H 21 ) ) ) , we obtain P n ( i e 2 , e 2 , e 2 , , ( P 1 P 2 ) , T ) = 0 . This leads to T 11 = 0 and T 22 = 0 .
Invoking the fact that P n ( i e 2 , e 2 , e 2 , , H 12 , P 1 ) = 0 and Lemma 1, we find that
ξ ( P n ( i e 2 , e 2 , e 2 , , ( H 12 + H 21 ) , P 1 ) ) = ξ ( P n ( i e 2 , e 2 , e 2 , , H 12 , P 1 ) ) + ξ ( P n ( i e 2 , e 2 , e 2 , , H 21 , P 1 ) ) . = P n ( ξ ( i e 2 ) , e 2 , e 2 , , H 12 , P 1 ) + P n ( i e 2 , ξ ( e 2 ) , e 2 , , H 12 , P 1 ) + + P n ( i e 2 , e 2 , e 2 , , ξ ( H 12 ) , P 1 ) + P n ( i e 2 , e 2 , e 2 , , H 12 , ξ ( P 1 ) ) + P n ( ξ ( i e 2 ) , e 2 , e 2 , , H 21 , P 1 ) + P n ( i e 2 , ξ ( e 2 ) , e 2 , , H 21 , P 1 ) + + P n ( i e 2 , e 2 , e 2 , , ξ ( H 21 ) , P 1 ) , + P n ( i e 2 , e 2 , e 2 , , H 21 , ξ ( P 1 ) ) . = P n ( ξ ( i e 2 ) , e 2 , e 2 , , ( H 12 + H 21 ) , P 1 ) + P n ( i e 2 , ξ ( e 2 ) , e 2 , , ( H 12 + H 21 ) , P 1 ) + + P n ( i e 2 , e 2 , e 2 , , ξ ( H 12 ) + ξ ( H 21 ) , P 1 ) + P n ( i e 2 , e 2 , e 2 , , ( H 12 + H 12 ) , ξ ( P 1 ) ) .
On the other hand, we have
ξ ( P n ( i e 2 , e 2 , e 2 , , ( H 12 + H 21 ) , P 1 ) ) = P n ( ξ ( i e 2 ) , e 2 , e 2 , , ( H 12 + H 21 ) , P 1 ) + P n ( i e 2 , ξ ( e 2 ) , e 2 , , ( H 12 + H 21 ) , P 1 ) + + P n ( i e 2 , e 2 , e 2 , , ξ ( H 12 + H 21 ) , P 1 ) + P n ( i e 2 , e 2 , e 2 , , ( H 12 + H 12 ) , ξ ( P 1 ) ) .
From the last two expressions for ξ ( P n ( i e 2 , e 2 , e 2 , , ( H 12 + H 21 ) , P 1 ) ) , we obtain P n ( i e 2 , e 2 , e 2 , , T , P 1 = 0 ) . On simplifying, we obtain T 21 = 0 , and similarly, we can obtain T 12 = 0 .
Hence, T = 0 ; that is, ξ ( H 12 + H 21 ) = ξ ( H 12 ) + ξ ( H 21 ) . □
Lemma 3.
For any H 11 A 11 , H 12 A 12 , H 21 A 21 , and H 22 A 22 , we have
ξ ( H 11 + H 12 + H 21 ) = ξ ( H 11 ) + ξ ( H 12 ) + ξ ( H 21 )
and
ξ ( H 12 + H 21 + H 22 ) = ξ ( H 12 ) + ξ ( H 21 ) + ξ ( H 22 ) .
Proof. 
Let T = ξ ( H 11 + H 12 + H 22 ) ξ ( H 11 ) ξ ( H 12 ) ξ ( H 22 ) . We show that T = 0 . Using the fact that P n ( i e 2 , e 2 , , ( P 1 P 2 ) , H 12 ) = P n ( i e 2 , e 2 , , ( P 1 P 2 ) , H 21 ) = 0 and Lemma 1, we have
ξ ( P n ( i e 2 , e 2 , , ( P 1 P 2 ) , ( H 11 + H 12 + H 21 ) ) ) = ξ ( P n ( i e 2 , e 2 , , ( P 1 P 2 ) , H 11 ) ) + ξ ( P n ( i e 2 , e 2 , , ( P 1 P 2 ) , H 12 ) ) + ξ ( P n ( i e 2 , e 2 , , ( P 1 P 2 ) , H 21 ) ) . = P n ( ξ ( i e 2 ) , e 2 , , ( P 1 P 2 ) , H 11 ) + P n ( i e 2 , ξ ( e 2 ) , , ( P 1 P 2 ) , H 11 ) + + P n ( i e 2 , e 2 , , ξ ( P 1 P 2 ) , H 11 ) + P n ( i e 2 , e 2 , , ( P 1 P 2 ) , ξ ( H 11 ) ) + P n ( ξ ( i e 2 ) , e 2 , , ( P 1 P 2 ) , H 12 ) + P n ( i e 2 , ξ ( e 2 ) , , ( P 1 P 2 ) , H 12 ) + + P n ( i e 2 , e 2 , , ξ ( P 1 P 2 ) , H 12 ) + P n ( i e 2 , e 2 , , ( P 1 P 2 ) , ξ ( H 12 ) ) + P n ( ξ ( i e 2 ) , e 2 , , ( P 1 P 2 ) , H 21 ) + P n ( i e 2 , ξ ( e 2 ) , , ( P 1 P 2 ) , H 21 ) + + P n ( i e 2 , e 2 , , ξ ( P 1 P 2 ) , H 21 ) + P n ( i e 2 , e 2 , , ( P 1 P 2 ) , ξ ( H 21 ) ) . = P n ( ξ ( i e 2 ) , e 2 , , ( P 1 P 2 ) , ( H 11 + H 12 + H 21 ) ) + P n ( i e 2 , ξ ( e 2 ) , , ( P 1 P 2 ) , ( H 11 + H 12 + H 21 ) ) + + P n ( i e 2 , e 2 , , ξ ( P 1 P 2 ) , ( H 11 + H 12 + H 21 ) ) + P n ( i e 2 , e 2 , , ( P 1 P 2 ) , ξ ( H 11 ) + ξ ( H 12 ) + ξ ( H 21 ) ) .
On the other hand, we obtain
ξ ( P n ( i e 2 , e 2 , , ( P 1 P 2 ) , ( H 11 + H 12 + H 21 ) ) ) = P n ( ξ ( i e 2 ) , e 2 , , ( P 1 P 2 ) , ( H 11 + H 12 + H 21 ) ) + P n ( i e 2 , ξ ( e 2 ) , , ( P 1 P 2 ) , ( H 11 + H 12 + H 21 ) ) + + P n ( i e 2 , e 2 , , ξ ( P 1 P 2 ) , ( H 11 + H 12 + H 21 ) ) + P n ( i e 2 , e 2 , , ( P 1 P 2 ) , ξ ( H 11 + H 12 + H 21 ) ) .
Comparing the above two expressions for ξ ( P n ( i e 2 , e 2 , , ( P 1 P 2 ) , ( H 11 + H 12 + H 21 ) ) ) , we find that P n ( i e 2 , e 2 , , ( P 1 P 2 ) , T ) = 0 , which leads us to T 11 = 0 and T 22 = 0 .
Invoking the fact that P n ( i e 2 , e 2 , , P 2 , H 11 ) = 0 and using Lemmas 1 and 2, we find that
ξ ( P n ( i e 2 , e 2 , , P 2 , ( H 11 + H 12 + H 21 ) ) ) = ξ ( P n ( i e 2 , e 2 , , P 2 , H 11 ) ) + ξ ( P n ( i e 2 , e 2 , , P 2 , H 12 ) ) + ξ ( P n ( i e 2 , e 2 , , P 2 , H 21 ) ) = P n ( ξ ( i e 2 ) , e 2 , , P 2 , H 11 ) + P n ( i e 2 , ξ ( e 2 ) , , P 2 , H 11 ) + + P n ( i e 2 , e 2 , , ξ ( P 2 ) , H 11 ) + P n ( i e 2 , e 2 , , P 2 , ξ ( H 11 ) ) + P n ( ξ ( i e 2 ) , e 2 , , P 2 , H 12 ) + P n ( i e 2 , ξ ( e 2 ) , , P 2 , H 12 ) + + P n ( i e 2 , e 2 , , ξ ( P 2 ) , H 12 ) + P n ( i e 2 , e 2 , , P 2 , ξ ( H 12 ) ) + P n ( ξ ( i e 2 ) , e 2 , , P 2 , H 21 ) + P n ( i e 2 , ξ ( e 2 ) , , P 2 , H 21 ) + + P n ( i e 2 , e 2 , , ξ ( P 2 ) , H 21 ) + P n ( i e 2 , e 2 , , P 2 , ξ ( H 21 ) ) . = P n ( ξ ( i e 2 ) , e 2 , , P 2 , ( H 11 + H 12 + H 21 ) ) + P n ( i e 2 , ξ ( e 2 ) , , P 2 , ( H 11 + H 12 + H 21 ) ) + + P n ( i e 2 , e 2 , , ξ ( P 2 ) , ( H 11 + H 12 + H 21 ) ) + P n ( i e 2 , e 2 , , P 2 , ξ ( H 11 ) + ξ ( H 12 ) + ξ ( H 21 ) ) .
On the other hand, we have
ξ ( P n ( i e 2 , e 2 , , P 2 , ( H 11 + H 12 + H 21 ) ) ) = P n ( ξ ( i e 2 ) , e 2 , , P 2 , ( H 11 + H 12 + H 21 ) ) + P n ( i e 2 , ξ ( e 2 ) , , P 2 , ( H 11 + H 12 + H 21 ) ) + + P n ( i e 2 , e 2 , , ξ ( P 2 ) , ( H 11 + H 12 + H 21 ) ) + P n ( i e 2 , e 2 , , P 2 , ξ ( H 11 + H 12 + H 21 ) ) .
Comparing the above two expressions for ξ ( P n ( i e 2 , e 2 , , P 2 , ( H 11 + H 12 + H 21 ) ) ) , we obtain that P n ( i e 2 , e 2 , , P 2 , T ) = 0 , which further implies that T 12 = 0 and T 21 = 0 . Hence T = 0 ; that is,
ξ ( H 11 + H 12 + H 21 ) = ξ ( H 11 ) + ξ ( H 12 ) + ξ ( H 21 ) .
Similarly, we can show that ξ ( H 12 + H 21 + H 22 ) = ξ ( H 12 ) + ξ ( H 21 ) + ξ ( H 22 ) .
Lemma 4.
For any H 11 A 11 , H 12 A 12 , H 21 A 21 , and H 22 A 22 , we have
ξ ( H 11 + H 12 + H 21 + H 22 ) = ξ ( H 11 ) + ξ ( H 12 ) + ξ ( H 21 ) + ξ ( H 22 ) .
Proof. 
Let T = ξ ( H 11 + H 12 + H 21 + H 22 ) ξ ( H 11 ) ξ ( H 12 ) ξ ( H 21 ) ξ ( H 22 ) . We show that T = 0 . Using the fact that P n ( i e 2 , e 2 , , P 1 , H 22 ) = 0 and Lemmas 1 and 3, we find that
ξ ( P n ( i e 2 , e 2 , , P 1 , ( H 11 + H 12 + H 21 + H 22 ) ) ) = ξ ( P n ( i e 2 , e 2 , , P 1 , ( H 11 + H 12 + H 21 ) ) ) + ξ ( P n ( i e 2 , e 2 , , P 1 , H 22 ) ) . = P n ( ξ ( i e 2 ) , e 2 , , P 1 , ( H 11 + H 12 + H 21 ) ) + P n ( i e 2 , ξ ( e 2 ) , , P 1 , ( H 11 + H 12 + H 21 ) ) + + P n ( i e 2 , e 2 , , ξ ( P 1 ) , ( H 11 + H 12 + H 21 ) ) + P n ( i e 2 , e 2 , , P 1 , ξ ( H 11 ) + ξ ( H 12 ) + ξ ( H 21 ) ) + P n ( ξ ( i e 2 ) , e 2 , , P 1 , H 22 ) + P n ( i e 2 , ξ ( e 2 ) , , P 1 , H 22 ) + + P n ( i e 2 , e 2 , , ξ ( P 1 ) , H 22 ) + P n ( i e 2 , e 2 , , P 1 , ξ ( H 22 ) ) . = P n ( ξ ( i e 2 ) , e 2 , , P 1 , ( H 11 + H 12 + H 21 + H 22 ) ) + P n ( i e 2 , ξ ( e 2 ) , , P 1 , ( H 11 + H 12 + H 21 + H 22 ) ) + + P n ( i e 2 , e 2 , , ξ ( P 1 ) , ( H 11 + H 12 + H 21 + H 22 ) ) + P n ( i e 2 , e 2 , , P 1 , ( ξ ( H 11 ) + ξ ( H 12 ) + ξ ( H 21 ) + ξ ( H 22 ) ) ) .
On the other hand, we have
ξ ( P n ( i e 2 , e 2 , , P 1 , ( H 11 + H 12 + H 21 + H 22 ) ) ) = P n ( ξ ( i e 2 ) , e 2 , , P 1 , ( H 11 + H 12 + H 21 + H 22 ) ) + P n ( i e 2 , ξ ( e 2 ) , , P 1 , ( H 11 + H 12 + H 21 + H 22 ) ) + + P n ( i e 2 , e 2 , , ξ ( P 1 ) , ( H 11 + H 12 + H 21 + H 22 ) ) + P n ( i e 2 , e 2 , , P 1 , ( ξ ( H 11 + H 12 + H 21 + H 22 ) ) ) .
Comparing the above two expressions for ξ ( P n ( i e 2 , e 2 , , P 1 , ( H 11 + H 12 + H 21 + H 22 ) ) ) , we obtain that P n ( i e 2 , e 2 , , P 1 , T ) = 0 , which further implies that T 11 = T 12 = T 21 = 0 . Similarly, we can show that T 22 = 0 . Thus T = 0 , that is,
ξ ( H 11 + H 12 + H 21 + H 22 ) = ξ ( H 11 ) + ξ ( H 12 ) + ξ ( H 21 ) + ξ ( H 22 ) .
Lemma 5.
For any H 12 , H 12 A 12 and H 21 , H 21 A 21 , we have
ξ ( H 12 + H 12 ) = ξ ( H 12 ) + ξ ( H 12 ) and ξ ( H 21 + H 21 ) = ξ ( H 21 ) + ξ ( H 21 ) .
Proof. 
Using the fact that P n ( i e 2 , e 2 , , ( P 1 + H 12 ) , i ( P 2 + H 12 ) ) = H 12 + H 12 + H 12 * + H 12 H 12 * and Lemma 4, we have
ξ ( H 12 + H 12 ) + ξ ( H 12 * ) + ξ ( H 12 H 12 * ) = ξ ( P n ( i e 2 , e 2 , , ( P 1 + H 12 ) , i ( P 2 + H 12 ) ) ) . = P n ( ξ ( i e 2 ) , e 2 , , ( P 1 + H 12 ) , i ( P 2 + H 12 ) ) + P n ( i e 2 , ξ ( e 2 ) , , ( P 1 + H 12 ) , i ( P 2 + H 12 ) ) + + P n ( i e 2 , e 2 , , ( ξ ( P 1 ) + ξ ( H 12 ) ) , i ( P 2 + H 12 ) ) + P n ( i e 2 , e 2 , , ( P 1 + H 12 ) , ( ξ ( i P 2 ) + ξ ( i H 12 ) ) ) . = ξ ( P n ( i e 2 , e 2 , , P 1 , i P 2 ) ) + ξ ( P n ( i e 2 , e 2 , , H 12 , i H 12 ) ) + ξ ( P n ( i e 2 , e 2 , , P 1 , i H 12 ) ) + ξ ( P n ( i e 2 , e 2 , , H 12 , i P 2 ) ) . = ξ ( H 12 ) + ξ ( H 12 + H 12 * ) + ξ ( H 12 H 12 * ) = ξ ( H 12 ) + ξ ( H 12 ) + ξ ( H 12 ) + ξ ( H 12 H 12 )
Hence, ξ ( H 12 + H 12 ) = ξ ( H 12 ) + ξ ( H 12 ) for any H 12 A 12 and H 12 A 12 . Similarly, we can prove other part. □
Lemma 6.
For any H i i , H i i A i i for ( i = 1 , 2 ) , we have
ξ ( H 11 + H 11 ) = ξ ( H 11 ) + ξ ( H 11 ) and ξ ( H 22 + H 22 ) = ξ ( H 22 ) + ξ ( H 22 ) .
Proof. 
Let T = ξ ( H 11 + H 11 ) ξ ( H 11 ) ξ ( H 11 ) ; we show that T = 0 .
Using the fact that P n ( i e 2 , e 2 , , P 2 , H 11 ) = P n ( i e 2 , e 2 , , P 2 , H 11 ) = 0 and Lemma 1, we obtain
ξ ( P n ( i e 2 , e 2 , , P 2 , ( H 11 + H 11 ) ) ) . = ξ ( P n ( i e 2 , e 2 , , P 2 , H 11 ) + ξ ( P n ( i e 2 , e 2 , , P 2 , H 11 ) . = P n ( ξ ( i e 2 ) , e 2 , , P 2 , H 11 ) + P n ( i e 2 , ξ ( e 2 ) , , P 2 , H 11 ) + + P n ( i e 2 , e 2 , , ξ ( P 2 ) , H 11 ) + P n ( i e 2 , e 2 , , P 2 , ξ ( H 11 ) ) + P n ( ξ ( i e 2 ) , e 2 , , P 2 , H 11 ) + P n ( i e 2 , ξ ( e 2 ) , , P 2 , H 11 ) + + P n ( i e 2 , e 2 , , ξ ( P 2 ) , H 11 ) + P n ( i e 2 , e 2 , , P 2 , ξ ( H 11 ) ) . = P n ( ξ ( i e 2 ) , e 2 , , P 2 , H 11 + H 11 ) + P n ( i e 2 , ξ ( e 2 ) , , P 2 , H 11 + H 11 ) + + P n ( i e 2 , e 2 , , ξ ( P 2 ) , H 11 + H 11 ) + P n ( i e 2 , e 2 , , P 2 , ξ ( H 11 ) + ξ ( H 11 ) ) .
On the other hand, we have
ξ ( P n ( i e 2 , e 2 , , P 2 , ( H 11 + H 11 ) ) ) . = P n ( ξ ( i e 2 ) , e 2 , , P 2 , H 11 + H 11 ) + P n ( i e 2 , ξ ( e 2 ) , , P 2 , H 11 + H 11 ) + + P n ( i e 2 , e 2 , , ξ ( P 2 ) , H 11 + H 11 ) + P n ( i e 2 , e 2 , , P 2 , ξ ( H 11 + H 11 ) ) .
Comparing the above two expressions for ξ ( P n ( i e 2 , e 2 , , P 2 , ( H 11 + H 11 ) ) ) , we find that P n ( i e 2 , e 2 , , P 2 , T ) = 0 , which in turn gives T 12 = T 21 = T 22 = 0 .
Next, we show that T 11 = 0 . Let X 12 A 12 , and it is easy to observe that P n ( i e 2 , e 2 , , P 1 , H 11 , X 12 ) , P n ( i e 2 , e 2 , , P 1 , H 11 , X 12 ) A 12 . Thus, using Lemma 5, we find that
ξ ( P n ( i e 2 , e 2 , , P 1 , ( H 11 + H 11 ) , X 12 ) ) . = ξ ( P n ( i e 2 , e 2 , , P 1 , H 11 , X 12 ) ) + ξ ( P n ( i e 2 , e 2 , , P 1 , H 11 , X 12 ) ) = P n ( ξ ( i e 2 ) , e 2 , , P 1 , H 11 , X 12 ) + P n ( i e 2 , ξ ( e 2 ) , , P 1 , H 11 , X 12 ) + + P n ( i e 2 , e 2 , , ξ ( P 1 ) , H 11 , X 12 ) + P n ( i e 2 , e 2 , , P 1 , ξ ( H 11 ) , X 12 ) + P n ( i e 2 , e 2 , , P 1 , H 11 , ξ ( X 12 ) ) + P n ( ξ ( i e 2 ) , e 2 , , P 1 , H 11 , X 12 ) + P n ( i e 2 , ξ ( e 2 ) , , P 1 , H 11 , X 12 ) + + P n ( i e 2 , e 2 , , ξ ( P 1 ) , H 11 , X 12 ) + P n ( i e 2 , e 2 , , P 1 , ξ ( H 11 ) , X 12 ) + P n ( i e 2 , e 2 , , P 1 , H 11 , ξ ( X 12 ) ) . = P n ( ξ ( i e 2 ) , e 2 , , P 1 , ( H 11 + H 11 ) , X 12 ) + P n ( i e 2 , ξ ( e 2 ) , , P 1 , ( H 11 + H 11 ) , X 12 ) + + P n ( i e 2 , e 2 , , ξ ( P 1 ) , ( H 11 + H 11 ) , X 12 ) + P n ( i e 2 , e 2 , , P 1 , ( ξ ( H 11 ) + ξ ( H 11 ) ) , X 12 ) + P n ( i e 2 , e 2 , , P 1 , ( H 11 + H 11 ) , ξ ( X 12 ) ) .
On the other hand, we have
ξ ( P n ( i e 2 , e 2 , , P 1 , ( H 11 + H 11 ) , X 12 ) ) . = P n ( ξ ( i e 2 ) , e 2 , , P 1 , ( H 11 + H 11 ) , X 12 ) + P n ( i e 2 , ξ ( e 2 ) , , P 1 , ( H 11 + H 11 ) , X 12 ) + + P n ( i e 2 , e 2 , , ξ ( P 1 ) , ( H 11 + H 11 ) , X 12 ) + P n ( i e 2 , e 2 , , P 1 , ( ξ ( H 11 + H 11 ) ) , X 12 ) + P n ( i e 2 , e 2 , , P 1 , ( H 11 + H 11 ) , ξ ( X 12 ) ) .
From the last two expressions for ξ ( P n ( i e 2 , e 2 , , P 1 , ( H 11 + H 11 ) , X 12 ) ) , we obtain P n ( i e 2 , e 2 , , P 1 , T , X 12 ) = 0 , which implies T 11 X P 2 = 0 . Application of condition (1) yields T 11 = 0 . Hence, T = 0 ; that is, ξ ( H 11 + H 11 ) = ξ ( H 11 ) + ξ ( H 11 ) . Symmetrically, one can prove that ξ ( H 22 + H 22 ) = ξ ( H 22 ) + ξ ( H 22 ) . □
Lemma 7.
ξ is additive on A .
Proof. 
For any H , K A , we have H = H 11 + H 12 + H 21 + H 22 and K = K 11 + K 12 + K 21 + K 22 . With the help of Lemmas 4–6, we obtain
ξ ( H + K ) = ξ ( H 11 + H 12 + H 21 + H 22 + K 11 + K 12 + K 21 + K 22 ) = ξ ( H 11 + K 11 ) + ξ ( H 12 + K 12 ) + ξ ( H 21 + K 21 ) + ξ ( H 22 + K 22 ) = ξ ( H 11 ) + ξ ( K 11 ) + ξ ( H 12 ) + ξ ( K 12 ) + ξ ( H 21 ) + ξ ( K 21 ) + ξ ( H 22 ) + ξ ( K 22 ) = ξ ( H 11 + H 12 + H 21 + H 22 ) + ξ ( K 11 + K 12 + K 21 + K 22 ) = ξ ( H ) + ξ ( K ) .
Lemma 8.
ξ ( e 2 ) * = ξ ( e 2 ) .
Proof. 
It follows from P n ( e 2 , e 2 , , e 2 ) = 0 and Lemma 1 that we have
0 = ξ ( P n ( e 2 , e 2 , , e 2 ) ) . = P n ξ ( e 2 ) , e 2 , , e 2 + P n e 2 , ξ ( e 2 ) , , e 2 + + P n e 2 , e 2 , , ξ ( e 2 ) .
On simplifying, we obtain ξ ( e 2 ) * = ξ ( e 2 ) . □
Lemma 9.
If ξ ( i e 2 ) * = ξ ( i e 2 ) , then ξ ( i e 2 ) = ξ ( e 2 ) = 0 .
Proof. 
Using the fact that P n ( i e 2 , e 2 , , e 2 ) = i e 2 and Lemma 8, we obtain
ξ i e 2 = ξ ( P n i e 2 , e 2 , , e 2 ) . = P n ξ ( i e 2 ) , e 2 , , e 2 + P n i e 2 , ξ ( e 2 ) , , e 2 + + P n i e 2 , e 2 , , ξ ( e 2 ) . = ( n 1 ) i ξ ( e 2 ) .
Taking the adjoint on both side of the above relation, we obtain
ξ i e 2 * = ( n 1 ) i ξ ( e 2 ) ,
since ξ ( i e 2 ) is self-adjoint. On combining the last two relations, we obtain ξ ( i e 2 ) = 0 and ξ ( e 2 ) = 0 . □
Lemma 10.
For any H A , we have ξ ( H * ) = ξ ( H ) * .
Proof. 
Observe that P n ( i e 2 , e 2 , , e 2 , H , i e 2 ) = H + H * 2 for any H A . Using Lemmas 7 and 9, we find that
ξ H + H * 2 = ξ P n ( i e 2 , e 2 , , e 2 , H , i e 2 ) = P n ( i e 2 , e 2 , , e 2 , ξ ( H ) , i e 2 ) = 1 2 ( ξ ( H ) + ξ ( H ) * ) ,
which implies
ξ ( H * ) = ξ ( H ) * .
Lemma 11.
ξ ( i H ) = i ξ ( H ) for every H A .
Proof. 
Observe that P n ( i e 2 , e 2 , , e 2 , H ) = i H for every H A , and using Lemma 9, we obtain
ξ ( i H ) = ξ P n ( i e 2 , e 2 , , e 2 , H ) = P n ( i e 2 , e 2 , , e 2 , ξ ( H ) ) = i ξ ( H ) .
Lemma 12.
ξ ( H K ) = ξ ( H ) K + H ξ ( K ) for all H , K A .
Proof. 
Observe that P n ( i e 2 , e 2 , , e 2 , H , K ) = i ( H K + K H * ) for any H , K A , and using Lemmas 7 and 9–11, we obtain
i ξ ( H K + K H * ) = ξ P n ( i e 2 , e 2 , , e 2 , H , K ) = P n ( i e 2 , e 2 , , e 2 , ξ ( H ) , K ) + P n ( i e 2 , e 2 , , e 2 , H , ξ ( K ) ) = i ξ ( H ) K + i H ξ ( K ) + i ξ ( K ) H * + i K ξ ( H ) * ,
which implies that
ξ ( H K + K H * ) = ξ ( H ) K + H ξ ( K ) + ξ ( K ) H * + K ξ ( H ) * .
Equation ( 3 ) implies that
ξ ( H K K H * ) = ξ ( ( i H ) ( i K ) + ( i K ) ( i H ) * ) = ξ ( i H ) ( i K ) + ( i H ) ξ ( i K ) + ξ ( i K ) ( i H ) * + ( i K ) ξ ( ( i H ) * ) = ξ ( H ) K + H ξ ( K ) ξ ( K ) H * K ξ ( H ) * .
Hence,
ξ ( H K K H * ) = ξ ( H ) K + H ξ ( K ) ξ ( K ) H * K ξ ( H ) * .
On combining ( 3 ) and ( 4 ) , we obtain
ξ ( H K ) = ξ ( H ) K + H ξ ( K ) .
By Lemmas 7, 10, and 12, ξ is an additive ∗-derivation. This completes the proof of Theorem 1.

3. Applications of Theorem 1

In this section, we apply Theorem 1 to certain special classes of ∗-algebras, namely prime ∗-algebras, standard operator algebras, factor von Neumann algebras, and von Neumann algebras with no central summands of type I 1 .
Recall that an algebra A is prime if for any A , B A , A A B = { 0 } implies that either A = 0 or B = 0 . It is easy to verify that every prime ∗-algebra satisfies (1). Therefore, as a direct consequence of Theorem 1, we have the following result:
Corollary 1.
Let A be a unital prime ∗-algebra containing a nontrivial projection. Then, if a map ξ : A A satisfies
ξ ( P n ( H 1 , H 2 , , H n ) ) = i = 1 n P n ( ( H 1 ) , , H i 1 , ξ ( H i ) , H i + 1 , , H n ) ( n 3 )
for all H 1 , H 2 , , H n A , then ξ is additive. Moreover, if ξ ( i e 2 ) is self-adjoint, then ξ is ∗-derivation.
Let H be a complex Hilbert space and B ( H ) be the algebra of all bounded linear operators on H . Let F ( H ) B ( H ) denote the subalgebra of all bounded finite rank operators. A subalgebra A B ( H ) is called a standard operator algebra if it contains F ( H ) . Now, we have the following result:
Corollary 2.
Let H be an infinite dimensional complex Hilbert space and A be a standard operator algebra on H containing the identity operator I . Suppose that A is closed under the adjoint operation. Then, if a map ξ : A B ( A ) satisfies
ξ ( P n ( H 1 , H 2 , , H n ) ) = i = 1 n P n ( ( H 1 ) , , H i 1 , ξ ( H i ) , H i + 1 , , H n ) ( n 3 )
for all H 1 , H 2 , , H n A , then ξ is additive. Moreover, if ξ ( i e 2 ) is self-adjoint, then ξ is ∗-derivation. Moreover, there exists an operator T B ( H ) satisfying T + T * = 0 such that ξ ( A ) = A T T A for all A A ; that is, ξ is inner.
Proof. 
Since A is a unital prime ∗-algebra containing nontrivial projections, then by Corollary 1, we see that ξ is an additive ∗-derivation. It follows from [18] that ξ is a linear inner derivation; that is, there exists an operator S B ( H ) such that ξ ( A ) = A S S A for all A A . Using the fact that ξ ( A * ) = ξ ( A ) * , we have
A * S S A * = ξ ( A * ) = ξ ( A ) * = S * A * A * S *
for any A A , This leads to A * ( S + S * ) = ( S + S * ) A * . Hence, S + S * = λ I for some λ R . Letting T = S 1 2 λ I , one can check that T + T * = 0 and ξ ( A ) = A T T A for all A A .
A von Neumann algebra A is a weakly closed self-adjoint algebra of operators on a Hilbert space H containing the identity operator I. A von Neumann algebra A is a factor von Neumann algebra if its center contains only the scalar operators. It is well known that a factor von Neumann algebra is prime; thus, it always satisfies (1). Hence, as an immediate consequence of Corollary 1, we obtain
Corollary 3.
Let A be a factor von Neumann algebra with dim ( A ) 2 . Then, if a map ξ : A A satisfies
ξ ( P n ( H 1 , H 2 , , H n ) ) = i = 1 n P n ( ( H 1 ) , , H i 1 , ξ ( H i ) , H i + 1 , , H n ) ( n 3 )
for all H 1 , H 2 , , H n A , then ξ is additive. Moreover, if ξ ( i e 2 ) is self-adjoint, then ξ is ∗-derivation.
Further, it is well known that every von Neumann algebra with no central summands of type I 1 satisfies (1) (see [8,19] for details). Therefore, applying Theorem 1, we have the following result:
Corollary 4.
Let A be a von Neumann algebra having no central summands of type I 1 . Then, if a map ξ : A A satisfies
ξ ( P n ( H 1 , H 2 , , H n ) ) = i = 1 n P n ( ( H 1 ) , , H i 1 , ξ ( H i ) , H i + 1 , , H n ) ( n 3 )
for all H 1 , H 2 , , H n A , then ξ is additive. Moreover, if ξ ( i e 2 ) is self-adjoint, then ξ is ∗-derivation.

4. Conclusions

In this article, we examine the pattern of nonlinear skew Lie-type derivation ( ξ ) on ∗-algebra A . In fact, we proved that such a map is an additive derivation, preserving the ∗-structure of algebra A , i.e., ξ ( H * ) = ξ ( H ) * for all H A . One can further investigate the structure of nonlinear skew Lie-type derivations on a variety of algebras such as incidence algebras, nest algebras, etc.

Author Contributions

M.A.M., A.S.A. and M.R.M. had equal contributions. All authors have read and agreed to the published version of the manuscript.

Funding

This study was carried out with financial support from Princess Nourah bint Abdulrahman University Researchers Supporting Project Number (PNURSP2023R231), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

Data Availability Statement

Data sharing is not applicable to this article, as no datasets were generated or analyzed during the current study.

Acknowledgments

The authors extend their appreciation to Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia for funding this research under the Researchers Supporting Project Number (PNURSP2023R231). Also authors are thankful to the reviewers for their valuable suggestions and comments which improved the manuscript. Third author is also supported by DST-SERB project MATRICS whose file number is MTR/2022/000153.

Conflicts of Interest

The authors declare that they have no conflict of interest.

References

  1. Wani, B.A. Multiplicative Lie triple derivations on standard operator algebras. Commun. Math. 2021, 29, 357–369. [Google Scholar] [CrossRef]
  2. Li, C.-J.; Zhao, F.-F.; Chen, Q.-Y. Nonlinear skew Lie triple derivations between factors. Acta Math. Sin. (Engl. Ser.) 2016, 32, 821–830. [Google Scholar] [CrossRef]
  3. Qi, X.; Hau, J. Characterization of Lie derivations on von Neumann algebras. Linear Algebra Appl. 2013, 438, 533–548. [Google Scholar] [CrossRef]
  4. Yu, W.; Zhang, J. Nonlinear ∗-Lie derivations on factor von Neumann algebras. Linear Algebra Appl. 2012, 437, 1979–1991. [Google Scholar] [CrossRef]
  5. Ashraf, M.; Akhter, M.S.; Ansari, M.A. Nonlinear bi-skew Lie-type derivations on factor von Neumann algebras. Commun. Algebra 2022, 50, 4766–4780. [Google Scholar] [CrossRef]
  6. Ashraf, M.; Akhter, M.S.; Ansari, M.A. Nonlinear bi-skew Jordan-type derivations on factor von Neumann algebras. Filomat 2023, 37, 5591–5599. [Google Scholar]
  7. Khan, A.N. Multiplicative bi-skew Lie triple derivations on factor von Neumann algebras. Rocky Mt. J. Math. 2021, 51, 2103–2114. [Google Scholar] [CrossRef]
  8. Li, C.; Lu, F.; Fang, X. Nonlinear ξ-Jordan ∗-derivations on von Neumann algebras. Linear Multilinear Algebra 2014, 62, 466–473. [Google Scholar] [CrossRef]
  9. Šemrl, P. On Jordan ∗-derivations and an application. Colloq. Math. 1990, 59, 241–251. [Google Scholar] [CrossRef]
  10. Šemrl, P. Jordan ∗-derivations of standard operator algebras. Proc. Am. Math. Soc. 1994, 120, 515–519. [Google Scholar] [CrossRef]
  11. Taghavi, A.; Rohi, H.; Darvish, V. Nonlinear ∗-Jordan derivations on von neumann algebras. Linear Multilinear Algebra 2016, 64, 426–439. [Google Scholar] [CrossRef]
  12. Zhang, F. Nonlinear skew Jordan derivable maps on factor von neumann algebras. Linear Multilinear Algebra 2016, 64, 2090–2103. [Google Scholar] [CrossRef]
  13. Zhao, F.-F.; Li, C.-J. Nonlinear ∗-Jordan triple derivations on von Neumann algebras. Math. Slovaca 2018, 68, 163–170. [Google Scholar] [CrossRef]
  14. Khan, A.N.; Alhazmi, H. Multiplicative bi-skew jordan triple derivation on prime ∗-algebra. Georgian Math. J. 2023, 30, 389–396. [Google Scholar] [CrossRef]
  15. Li, C.; Zhao, Y.; Zhao, F. Nonlinear∗-Jordan-tpye derivations on ∗-algebras. Rocky Mt. J. Math. 2021, 51, 601–612. [Google Scholar] [CrossRef]
  16. Lin, W. Nonlinear ∗-Lie type derivations on standard operator algebra. Acta Math. Hung. 2018, 154, 480–500. [Google Scholar] [CrossRef]
  17. Lin, W. Nonlinear ∗-Lie type derivations on von neumann algebra. Acta Math. Hung. 2018, 156, 112–131. [Google Scholar] [CrossRef]
  18. Šemrl, P. Additive derivations of some operator algebras. Ill. J. Math. 1991, 35, 234–240. [Google Scholar] [CrossRef]
  19. Dai, L.; Lu, F. Nonlinear maps preserving Jordan ∗-products. J. Math. Anal. Appl. 2014, 409, 180–188. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Madni, M.A.; Alali, A.S.; Mozumder, M.R. Nonlinear Skew Lie-Type Derivations on ∗-Algebra. Mathematics 2023, 11, 3819. https://doi.org/10.3390/math11183819

AMA Style

Madni MA, Alali AS, Mozumder MR. Nonlinear Skew Lie-Type Derivations on ∗-Algebra. Mathematics. 2023; 11(18):3819. https://doi.org/10.3390/math11183819

Chicago/Turabian Style

Madni, Md Arshad, Amal S. Alali, and Muzibur Rahman Mozumder. 2023. "Nonlinear Skew Lie-Type Derivations on ∗-Algebra" Mathematics 11, no. 18: 3819. https://doi.org/10.3390/math11183819

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop