Next Article in Journal
A Supply Chain Model with Carbon Emissions and Preservation Technology for Deteriorating Items under Trade Credit Policy and Learning in Fuzzy
Previous Article in Journal
Similarity-Based Hybrid Malware Detection Model Using API Calls
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Parameter Estimation of Fractional Wiener Systems with the Application of Photovoltaic Cell Models

1
Yantai Vocational College, Yantai 264670, China
2
College of Automation and Electronic Engineering, Qingdao University of Science and Technology, Qingdao 266061, China
*
Author to whom correspondence should be addressed.
Mathematics 2023, 11(13), 2945; https://doi.org/10.3390/math11132945
Submission received: 20 April 2023 / Revised: 2 June 2023 / Accepted: 3 June 2023 / Published: 30 June 2023

Abstract

:
Fractional differential equations are used to construct mathematical models and can describe the characteristics of real systems. In this paper, the parameter estimation problem of a fractional Wiener system is studied by designing linear filters which can obtain smaller tunable parameters and maintain the stability of the parameters in any case. To improve the identification performance of the stochastic gradient algorithm, this paper derives two modified stochastic gradient algorithms for the fractional nonlinear Wiener systems with colored noise. By introducing the forgetting factor, a forgetting factor stochastic gradient algorithm is deduced to improve the convergence rate. To achieve more efficient and accurate algorithms, we propose a multi-innovation forgetting factor stochastic gradient algorithm by means of the multi-innovation theory, which expands the scalar innovation into the innovation vector. To test the developed algorithms, a fractional-order dynamic photovoltaic model is employed in the simulation, and the dynamic elements of this photovoltaic model are estimated using the modified algorithms. Concurrently, a numerical example is given, and the simulation results verify the feasibility and effectiveness of the proposed procedures.

1. Introduction

The parameter estimation of mathematical models is highly important for system analysis and controller design [1,2,3,4], and the quality of models determines the performance of control systems [5,6,7,8]. The majority of interactions in engineering practice are nonlinear, and a linear interaction is only the approximation of a nonlinear interaction under certain conditions. Therefore, the identification of nonlinear systems is still an open research topic for the purpose of improving the control performance of the controlled object. The block-oriented nonlinear model, which consists of nonlinear static blocks and linear dynamic blocks, is used to describe the complex characteristics of industrial processes and is widely recognized [9,10]. Different block combinations form different nonlinear systems, and among them, the most representative nonlinear systems are the Hammerstein system [11,12,13,14,15], the Wiener system, and the Hammerstein–Wiener system.
Wiener systems are typical block-oriented nonlinear systems composed of linear blocks and static nonlinear blocks. In the fields of engineering and science, they have been widely used to model reaction processes or control processes, such as the simulation of chemical processes [16], electrical control [17], and biological processes [18]. Consequently, an accurate model that characterizes the input–output behavior of Wiener systems would be highly useful for the control process. Li et al. developed a recursive maximum likelihood identification algorithm to interactively estimate the unknown parameters and the system states for Wiener nonlinear systems whose linear subsystems were observable state-space models [19]. The modified extended-Kalman-filter-based recursive estimation algorithms were proposed for Wiener nonlinear systems with process noise and measurement noise [20]. The scope of parameter identification research has been expanded using the nonlinear part of the Wiener systems with inverse functions. Ding et al. presented the hierarchical-gradient- and least-squares-based iterative algorithms for input nonlinear output-error systems using the key term separation [21].
The fractional-order systems like the classical integer-order system are also suitable for block-oriented systems [22,23,24,25]. They offer a better representation of the long memory behavior and infinite dimensional structure, and the nonlinear systems can be improved by introducing the fractional order into the block structure, which also increases the difficulty of identification for block-oriented nonlinear systems. Recently, relevant studies on the parameter estimation of fractional-order nonlinear systems have raised concerns. Hammar et al. studied the identification of the fractional Hammerstein systems using the Levenberg–Marquardt algorithm, which was combined with the over-parametrization principle and the key term separation principle. An output error approach was developed using the robust Levenberg–Marquardt algorithm to identify the parameters of fractional-order nonlinear systems based on the Hammerstein–Wiener models [26]. In some identification research, the order is assumed to be known and is not identified, which leads to the incompleteness of the parameter identification. Numerous experiments have shown that it is essential to use fractional differential equations instead of integer differential equations. Using fractional nonrecursive filters to construct a mathematical model, smaller tunable parameters can be obtained and remain stable at any coefficient values [27].
As the available data become increasingly larger, the effectiveness of the second-order Levenberg–Marquardt identification algorithm decreases. In contrast, simple gradient algorithms are usually more practical. The gradient identification method is to search for the parameter estimation along the negative gradient direction of the criterion function and implement it in the form of recursive or iterative algorithms. Stochastic gradient algorithms can be applied to obtain the optimal solutions of nonlinear problems, which requires less computation than least squares methods [28]. In order to obtain better parameter estimation accuracy, researchers adopt different methods to optimize the stochastic gradient algorithm. Using the hierarchical identification principle, Ji et al. decomposed a class of nonlinear systems into three subsystems with fewer variables and interactively identified each subsystem [29]. The computational load of the algorithm was reduced, which sped up its operating efficiency. Innovation is a useful tool that can improve the estimation performance. The multi-innovation identification theory extends the scalar innovation to the innovation vector or the innovation vector to the innovation matrix, which effectively improves parameter estimation accuracy [30].
The recursive methods can estimate the parameters of the systems in real time and are suitable for online identification through capturing the real-time information regarding actual production processes [31,32,33,34]. In contrast, the iterative methods update the parameters of the systems using a batch of measurement data and are suitable for off-line identification [35,36,37,38,39]. This paper studies the parameter identification of the fractional-order Wiener systems and improves the performance of the stochastic gradient algorithm. The main contributions are as follows:
  • For the fractional nonlinear Wiener systems with colored noise, by applying the gradient search method and introducing the forgetting factor, a forgetting factor stochastic gradient algorithm is derived, which has a higher convergence rate than the stochastic gradient algorithm.
  • Based on the multi-innovation identification theory, a multi-innovation forgetting factor stochastic gradient algorithm is proposed to estimate the parameters, and the accuracy of parameter estimation is improved.
  • The ability of the proposed algorithms to estimate the parameters is verified with a numerical example, and they are applied to a fractional model of photovoltaic cells. The results are obtained through the process of parameter variation and the fitting of the model outputs.
The rest of this paper is organized as follows. Section 2 introduces the mathematical background of the fractional-order calculus and describes the identification model of the fractional-order nonlinear systems with colored noise. Section 3 presents a forgetting factor stochastic gradient identification algorithm, and a multi-innovation forgetting factor stochastic gradient algorithm is proposed in Section 4. Section 5 offers a numerical example to illustrate the effectiveness of the proposed algorithms and their applications to the dynamic photovoltaic model. Finally, Section 6 offers some concluding remarks.

2. System Description and Identification Model

Let us introduce some symbols. A = : X or X : = A indicates that X is defined by A. The symbol I n stands for an identity matrix of size n × n . Here, 1 n represents an n-dimensional column vector whose elements are all 1, that is, 1 n : = [ 1 , 1 , , 1 ] T R n .
With the development of fractional-order calculus theory, it is worth researching its application in system modeling and control. As a generalization of classical calculus, there are three commonly used definitions for fractional calculus: the Riemann–Liouville definition, Caputo definition, and Grünwald–Letnikov definition. According to the literature, different definitions of the different integral operators have been proposed, and the most used definition for the discrete case is the Grünwald–Letnikov definition. The Grünwald–Letnikov definition is given as follows.
The Grünwald–Letnikov fractional derivative formula for α is defined as:
Δ α f ( t ) = 1 h α j = 0 [ t / h ] ( 1 ) j α j f ( t j h ) ,
where Δ α denotes the fractional-order difference operator of order α , f ( t ) is a function of time t, h is the sampling interval, and the Newton’s binomial α j is generalized to non-integer orders using Euler’s function as:
α j = Γ ( α + 1 ) Γ ( j + 1 ) Γ ( α j + 1 ) .
The Euler’s Gamma function Γ ( · ) is denoted as:
Γ ( n ) = 0 e t t n 1 d t .
The Wiener system consists of a linear block followed by a static nonlinear part. Considering the Wiener system shown in Figure 1, the linear block is a fractional linear part. Thus, the system considered in this paper will be described using the following mathematical equations:
m ( t ) = u * ( t ) + 1 H ( z ) v ( t ) , y ( t ) = f ( m ( t ) ) ,
where u ( t ) R is the input of the system, y ( t ) R is the output of the system, v ( t ) R is a stochastic white noise with zero mean and variance σ 2 , and G ( z ) and H ( z ) are the fractional-order polynomials in the backward shift operator z α i , as follows:
G ( z ) : = g 1 z α ¯ 1 + g 2 z α ¯ 2 + + g n g z α ¯ n g ,
H ( z ) : = 1 + h 1 z β 1 + h 2 z β 2 + + h n h z β n h ,
The variable u * ( t ) is the output of the linear block, i.e., the input of the nonlinear block, and w ( t ) and m ( t ) are unmeasurable intermediate variables. In order to deal with these variables, we define:
u * ( t ) : = G ( z ) u ( t ) ,
w ( t ) : = 1 H ( z ) v ( t ) ,
m ( t ) : = u * ( t ) + w ( t ) .
Rewriting Equations (3)–(5) using the linear filter with fractional difference, we obtain:
u * ( t ) = i = 1 n g g i Δ α ¯ i u ( t ) , w ( t ) = [ 1 H ( z ) ] w ( t ) + v ( t ) = j = 1 n h h j Δ β j w ( t ) + v ( t ) , m ( t ) = G ( z ) u ( t ) + w ( t ) = i = 1 n g g i Δ α ¯ i u ( t ) j = 1 n h h j Δ β j w ( t ) + v ( t ) .
Equation (6) is called a non-commensurate-order linear part in which the fractional orders are completely different; otherwise, when the latter are multiples of the same basis, α ( 0 < α < 1 ) with ( α ¯ i = i α and β j = j α ) , the models are of commensurate order. In this paper, we take the fractional commensurate order system. The recurrence equations in (3)–(5) can be expressed as:
u * ( t ) = i = 1 n g g i Δ α i u ( t ) , w ( t ) = [ 1 H ( z ) ] w ( t ) + v ( t ) = j = 1 n h h j Δ α j w ( t ) + v ( t ) , m ( t ) = G ( z ) u ( t ) + w ( t ) = i = 1 n g g i Δ α i u ( t ) j = 1 n h h j Δ α j w ( t ) + v ( t ) .
Using the discrete fractional-order operator Δ in the time domain and according to the properties of the unit backward shift operator z 1 (i.e., z 1 x ( t ) = x ( t 1 ) ), we obtain:
u * ( t ) = i = 1 n g g i Δ α u ( t i ) , w ( t ) = i = 1 n h h i Δ α w ( t i ) + v ( t ) , m ( t ) = i = 1 n g g i Δ α u ( t i ) j = 1 n h h j Δ α w ( t j ) + v ( t ) .
Assume that the static nonlinear function f ( · ) is considered to be invertible and the inverse f 1 ( · ) can be described as a linear combination of basis functions in the following form:
m ( t ) : = f 1 ( y ( t ) ) = k = 1 n c c k f k ( y ( t ) ) ,
where the basis functions f k ( · ) are known nonlinear functions, and the unknown parameters c k ( k = 1 , 2 , , n c ) are the coefficients of the nonlinear functions. Substituting (8) into (7) yields:
k = 1 n c c k f k ( y ( t ) ) = i = 1 n g g i Δ α u ( t i ) j = 1 n h h j Δ α w ( t j ) + v ( t ) ,
or
f 1 ( y ( t ) ) = 1 c 1 i = 1 n g g i Δ α u ( t i ) j = 1 n h h j Δ α w ( t j ) k = 2 n c c k f k ( y ( t ) ) + v ( t ) .
In order to ensure the uniqueness of the system in (9), one parameter in one block has to be fixed in the mathematical model. Without a loss of generality, the coefficient c 1 of the nonlinear block polynomial can be normalized and set equal to 1. We define the parameter vectors as follows:
g : = [ g 1 , g 2 , , g n g ] T R n g , h : = [ h 1 , h 2 , , h n h ] T R n h , c : = [ c 2 , c 3 , , c n c ] T R n c 1 , ϑ : = g h c R n g + n h + n c 1 , θ : = ϑ α R n , n = n g + n h + n c ,
and the information vectors as follows:
φ 1 ( t , α ) : = [ α u ( t 1 ) , α u ( t 2 ) , , α u ( t n g ) ] T R n g , φ 2 ( t , α ) : = [ α w ( t 1 ) , α w ( t 2 ) , , α w ( t n h ) ] T R n h , φ 3 ( t , α ) : = [ f 2 ( y ( t ) ) , f 2 ( y ( t ) ) , , f n c ( y ( t ) ) ] T R n c 1 , φ ( t , α ) : = [ φ 1 T ( t , α ) , φ 2 T ( t , α ) , φ 3 T ( t , α ) ] T R n g + n h + n c 1 .
Equation (16) can be written as:
f 1 ( y ( t ) ) = φ 1 T ( t , α ) g + φ 2 T ( t , α ) h + φ 3 T ( t , α ) c + v ( t ) = φ T ( t , α ) ϑ + v ( t ) .
The parameter estimation algorithms proposed in this paper are based on the identification model in (10). Many identification methods are derived based on the identification models of such systems [40,41,42,43,44,45], and these methods can be used to estimate the parameters of other linear systems and nonlinear systems [46,47,48,49,50,51] and can be applied to other fields [52,53,54,55,56,57], such as communication and transportation systems. The linear identification model in (10) is established for the fractional Wiener system in Figure 1, and the follow-up work is carried out in regard to this identification model. The purpose of this paper is to develop new recursive algorithms for identifying the parameters and order of fractional models using the measured input–output data. Thus, we provide a detailed derivation of the algorithms in the following sections.

3. The Forgetting Factor Stochastic Gradient Algorithm

For parameter identification, online identification can realize the parameter updated using the latest input–output data point. As a classical algorithm, the stochastic gradient (SG) algorithm has a simple process of recursive operation and low computational complexity. However, the SG algorithm has a slow convergence rate. In this section, we introduce the forgetting factor to improve the performance of the SG algorithm and derive the forgetting factor stochastic gradient (FFSG) algorithm to estimate the parameter vector  θ .
We define a criterion function as:
J 1 ( θ ) = J 1 ( ϑ , α ) : = 1 2 [ f 1 ( y ( t ) ) φ T ( t , α ) ϑ ] 2 .
The gradient vector of J 1 ( θ ) , with respect to θ , is:
grad [ J 1 ( θ ) ] : = J ( ϑ , α ) ϑ J ( ϑ , α ) α = φ ( t , α ) [ φ T ( t , α ) ϑ ] α [ f 1 ( y ( t ) ) φ T ( t , α ) ϑ ] .
We define the information vector ψ ( t , α ) and the innovation e ( t ) as:
ψ ( t , α ) : = φ ( t , α ) [ φ T ( t , α ) ϑ ] α R n , e ( t ) : = f 1 ( y ( t ) ) φ T ( t , α ) ϑ ^ t 1 .
Using the negative gradient search to minimize J 1 ( θ ) , we can obtain:
θ ^ ( t ) = θ ^ ( t 1 ) + 1 r 1 ( t ) φ T ( t , α ) [ φ T ( t , α ) ϑ ] α [ f 1 ( y ( t ) ) φ T ( t , α ) ϑ ^ t 1 ]
= θ ^ ( t 1 ) + 1 r 1 ( t ) ψ ( t , α ) e ( t ) ,
r 1 ( t ) = r ( t 1 ) + ψ ( t , α ) 2 , r 1 ( 0 ) = 1 .
Let ϑ ^ ( t ) = g ^ ( t ) h ^ ( t ) c ^ ( t ) , θ ^ ( t ) = ϑ ^ ( t ) α ^ ( t ) , and α ^ ( t ) represent the estimates of ϑ , θ , and α at time t and ϑ ^ ( t ) = ϑ ^ t . Note that the information vector ψ ( t , α ) and the innovation e ( t ) in the above equations contain the unknown variables α and w ( t ) , so that the recursive computing process cannot proceed as such. The auxiliary model identification idea is an effective method to solve those problems. The unknown parameter α is replaced with its estimate α ^ ( t ) and the unknown terms w ( t i ) ( i = 1 , 2 , , n h ) are replaced with the estimates w ^ ( t i ) . We can obtain:
ψ ^ ( t , α ^ ( t ) ) = φ ^ ( t , α ^ ( t ) ) [ φ ^ T ( t , α ^ ( t ) ) ϑ ^ ( t ) ] α , φ ^ ( t , α ^ ( t ) ) = [ φ ^ 1 T ( t , α ^ ( t ) ) , φ ^ 2 T ( t , α ^ ( t ) ) , φ ^ 3 T ( t , α ^ ( t ) ) ] T , φ ^ 2 ( t , α ^ ( t ) ) = [ α ^ ( t ) w ^ ( t 1 ) , α ^ ( t ) w ^ ( t 2 ) , , α ^ ( t ) w ^ ( t n h ) ] T , w ^ ( t ) = φ ^ 2 T ( t , α ^ ( t ) ) h ^ ( t ) + v ^ ( t ) , v ^ ( t ) = f 1 ( y ( t ) ) φ ^ T ( t , α ^ ( t ) ) ϑ ^ t 1 , e ^ ( t ) = f 1 ( y ( t ) ) φ ^ T ( t , α ^ ( t ) ) ϑ ^ t 1 .
Replacing ψ ( t , α ) and e ( t ) in (11) and (12) with the estimates ψ ^ ( t , α ^ ( t ) ) and e ^ ( t ) , the SG algorithm is given as:
θ ^ ( t ) = θ ^ ( t 1 ) + 1 r 1 ( t ) ψ ^ ( t , α ^ ( t ) ) e ^ ( t ) , r 1 ( t ) = r 1 ( t 1 ) + ψ ^ ( t , α ^ ( t ) ) 2 , r 1 ( 0 ) = 1 .
By introducing a forgetting factor λ to achieve the performance improvement of the SG algorithm, we obtain the FFSG algorithm for the fractional Wiener models:
θ ^ ( t ) = θ ^ ( t 1 ) + 1 r 1 ( t ) ψ ^ ( t , α ^ ( t ) ) e ^ ( t ) ,
r 1 ( t ) = λ r 1 ( t 1 ) + ψ ^ ( t , α ^ ( t ) ) 2 ,
ψ ^ ( t , α ^ ( t ) ) = φ ^ ( t , α ^ ( t ) ) [ φ ^ T ( t , α ^ ( t ) ) ϑ ^ ( t ) ] α ,
e ^ ( t ) = f 1 ( y ( t ) ) φ ^ T ( t , α ^ ( t ) ) ϑ ^ t 1 ,
φ ^ ( t , α ^ ( t ) ) = [ φ ^ 1 T ( t , α ^ ( t ) ) , φ ^ 2 T ( t , α ^ ( t ) ) , φ ^ 3 T ( t , α ^ ( t ) ) ] T ,
φ ^ 1 ( t , α ^ ( t ) ) = [ α ^ ( t ) u ^ ( t 1 ) , α ^ ( t ) u ^ ( t 2 ) , , α ^ ( t ) u ^ ( t n g ) ] T ,
φ ^ 2 ( t , α ^ ( t ) ) = [ α ^ ( t ) w ^ ( t 1 ) , α ^ ( t ) w ^ ( t 2 ) , , α ^ ( t ) w ^ ( t n h ) ] T ,
φ 3 ( t , α ^ ( t ) ) = [ f 2 ( y ( t ) ) , f 2 ( y ( t ) ) , , f n c ( y ( t ) ) ] T ,
w ^ ( t ) = φ ^ 2 T ( t , α ^ ( t ) ) h ^ ( t ) + v ^ ( t ) ,
v ^ ( t ) = f 1 ( y ( t ) ) φ ^ T ( t , α ^ ( t ) ) ϑ ^ t 1 ,
θ ^ ( t ) = [ ϑ ^ T ( t ) , α ^ ( t ) ] T ,
ϑ ^ ( t ) = [ g ^ T ( t ) , h ^ T ( t ) , c ^ T ( t ) ] T .
The model parameter estimation methods proposed in this paper can combine certain filtering and estimation techniques [58,59,60,61,62,63,64,65] to study the parameter identification problems of linear and nonlinear systems with different disturbances [66,67,68,69,70,71,72,73] and can be applied to other fields [74,75,76,77,78,79,80,81], such as signal processing and engineering application systems. The pseudo-code for implementing the FFSG algorithm in (13)–(24) for the fractional Wiener models is shown in Algorithm 1.
Algorithm 1 The pseudo-code for implementing the FFSG algorithm.
Require: 
{ u ( t ) , y ( t ) : t = 1 , 2 , , L } , { f j ( · ) : j = 2 , 3 , , n c } , ε , n, n 0 > max { n g , n h , n c }
Ensure: 
θ ^ ( t )
 1:
Initialization: θ ^ ( 0 ) = 1 n / p 0 , r 1 ( 0 ) = 1 , w ^ ( i ) = 1 / p 0 for i 0, where 1 n denotes an n-dimensional column vector whose elements are all 1 and p 0 is a large number, e.g.,  p 0 = 10 6 .
 2:
for  t = n 0 : L   do
 3:
    Form φ ^ 1 ( t , α ^ ( t ) ) , φ ^ 2 ( t , α ^ ( t ) ) and φ 3 ( t , α ^ ( t ) ) by (18)–(20), and  φ ^ ( t , α ^ ( t ) ) by (17);
 4:
    Compute [ φ ^ T ( t , α ^ ( t ) ) ϑ ^ ( t ) ] α , form ψ ^ ( t , α ^ ( t ) ) by (15) and r 1 ( t ) by (14);
 5:
    Compute e ^ ( t ) by (16);
 6:
    Update the parameter estimation vector θ ^ ( t ) by (13);
 7:
    Compute v ^ ( t ) by (22) and w ^ ( t ) by (21);
 8:
    if then θ ^ ( t ) θ ^ ( t 1 ) > ε
 9:
         t = t + 1 , go to Step 3;
10:
   else
11:
       Obtain the parameter estimation vector θ ^ ( t ) , break;
12:
   end if
13:
end for

4. The Multi-Innovation Forgetting Factor Stochastic Gradient Algorithm

In order to improve the convergence rate and parameter estimation accuracy of the FFSG algorithm in (13)–(24), according to the multi-innovation identification theory, we expand the innovation e ( t ) to the innovation vector as:
E ( p , t ) : = e ( t ) e ( t 1 ) e ( t p + 1 ) = f 1 ( y ( t ) ) φ T ( t 1 , α ) ϑ ^ t 1 f 1 ( y ( t 1 ) ) φ T ( t 2 , α ) ϑ ^ t 1 f 1 ( y ( t p + 1 ) ) φ T ( t p + 1 , α ) ϑ ^ t 1 R p ,
where p denotes the innovation length.
Define the stacked information matrices Φ ( p , t , α ) and Ψ ( p , t , α ) and the stacked vector F ( p , t ) as:
Φ ( p , t , α ) : = [ ψ ( t , α ) , ψ ( t 1 , α ) , , ψ ( t p + 1 , α ) ] R n × p , Ψ ( p , t , α ) : = [ φ ( t , α ) , φ ( t 1 , α ) , , φ ( t p + 1 , α ) ] R ( n g + n h + n c 1 ) × p , F ( p , t ) : = [ f 1 ( y ( t ) ) , f 1 ( y ( t 1 ) ) , , f 1 ( y ( t p + 1 ) ) ] T R p .
Equation (25) can be expressed as:
E ( p , t ) = F ( p , t ) Ψ T ( p , t , α ) ϑ .
By minimizing the criterion function:
J 2 ( θ ) : = 1 2 F ( p , t ) Ψ T ( p , t , α ) ϑ 2 ,
Equations (11) and (12) can be rewritten as:
θ ^ ( t ) = θ ^ ( t 1 ) + 1 r 2 ( t ) Φ ( p , t , α ) E ( p , t ) ,
r 2 ( t ) = r 2 ( t 1 ) + Φ ( p , t , α ) 2 , r 2 ( 0 ) = 1 .
Similarly, this recursion formula in (26) and (27) cannot be realized for the reason that there are unknown internal variables, α and w ( t ) . In order to complete the parameter estimation algorithm, the unknown variables are also replaced with their estimates α ^ ( t ) and w ^ ( t ) using the auxiliary model identification idea, and we can obtain the multi-innovation forgetting factor stochastic gradient (MI-FFSG) algorithm for the parameter estimation:
θ ^ ( t ) = θ ^ ( t 1 ) + 1 r 2 ( t ) Φ ^ ( p , t , α ^ ( t ) ) E ^ ( p , t ) ,
r 2 ( t ) = λ r 2 ( t 1 ) + Φ ^ ( p , t , α ^ ( t ) ) 2 ,
Φ ^ ( p , t , α ^ ( t ) ) = [ ψ ^ ( t , α ^ ( t ) ) , ψ ^ ( t 1 , α ^ ( t ) ) , , ψ ^ ( t p + 1 , α ^ ( t ) ) ] ,
E ^ ( p , t ) = F ( p , t ) Ψ ^ T ( p , t , α ^ ( t ) ) ϑ ^ t 1 ,
ψ ^ ( t , α ^ ( t ) ) = φ ^ ( t , α ^ ( t ) ) [ φ ^ T ( t , α ^ ( t ) ) ϑ ^ ( t ) ] α ,
Ψ ^ ( p , t , α ( t ) ) = [ φ ^ ( t , α ( t ) ) , φ ^ ( t 1 , α ( t ) ) , , φ ^ ( t p + 1 , α ( t ) ) ] ,
F ( p , t ) = [ f 1 ( y ( t ) ) , f 1 ( y ( t 1 ) ) , , f 1 ( y ( t p + 1 ) ) ] T ,
φ ^ ( t , α ^ ( t ) ) = [ φ ^ 1 T ( t , α ^ ( t ) ) , φ ^ 2 T ( t , α ^ ( t ) ) , φ ^ 3 T ( t , α ^ ( t ) ) ] T ,
φ ^ 1 ( t , α ^ ( t ) ) = [ α ^ ( t ) u ^ ( t 1 ) , α ^ ( t ) u ^ ( t 2 ) , , α ^ ( t ) u ^ ( t n g ) ] T ,
φ ^ 2 ( t , α ^ ( t ) ) = [ α ^ ( t ) w ^ ( t 1 ) , α ^ ( t ) w ^ ( t 2 ) , , α ^ ( t ) w ^ ( t n h ) ] T ,
φ 3 ( t , α ^ ( t ) ) = [ f 2 ( y ( t ) ) , f 2 ( y ( t ) ) , , f n c ( y ( t ) ) ] T ,
w ^ ( t ) = φ ^ 2 T ( t , α ^ ( t ) ) h ^ ( t ) + v ^ ( t ) ,
v ^ ( t ) = f 1 ( y ( t ) ) φ ^ T ( t , α ^ ( t ) ) ϑ ^ t 1 ,
θ ^ ( t ) = [ ϑ ^ T ( t ) , α ^ ( t ) ] T ,
ϑ ^ ( t ) = [ g ^ T ( t ) , h ^ T ( t ) , c ^ T ( t ) ] T .
The pseudo-code for implementing the MI-FFSG algorithm in (28)–(42) for fractional Wiener models is shown in Algorithm 2.
Algorithm 2 The pseudo-code for implementing the MI-FFSG algorithm.
Require: 
{ u ( t ) , y ( t ) : t = 1 , 2 , , L } , { f j ( · ) : j = 2 , 3 , , n c } , ε , n, p, n 0 max { n g + p , n h + p , n c + p }
Ensure: 
θ ^ ( t )
 1:
Initialization: θ ^ ( 0 ) = 1 n / p 0 , r 2 ( 0 ) = 1 , w ^ ( i ) = 1 / p 0 for i 0, where 1 n denotes an n-dimensional column vector whose elements are all 1, and  p 0 is a large number, e.g.,  p 0 = 10 6 .
 2:
for  t = n 0 : L   do
 3:
    Form F ( p , t ) by (34);
 4:
    Form φ ^ 1 ( t , α ^ ( t ) ) , φ ^ 2 ( t , α ^ ( t ) ) and φ 3 ( t , α ^ ( t ) ) by (36)–(38), φ ^ ( t , α ^ ( t ) ) by (35) and Ψ ^ ( p , t , α ( t ) ) by (33);
 5:
    Compute E ^ ( p , t ) by (31) and r 2 ( t ) by (29);
 6:
    Update the parameter estimation vector θ ^ ( t ) by (28);
 7:
    Compute v ^ ( t ) by (40) and w ^ ( t ) by (39);
 8:
     if then θ ^ ( t ) θ ^ ( t 1 ) > ε
 9:
         t = t + 1 , go to Step 3;
10:
   else
11:
       Obtain the parameter estimation vector θ ^ ( t ) , break;
12:
   end if
13:
end for

5. Simulation Examples

This section investigates the estimation performance of the developed algorithms. In the first part, a numerical example is presented to illustrate the feasibility of the FFSG algorithm and the MI-FFSG algorithm. In the second part, the algorithms’ performance is assessed on the basis of a dynamic photovoltaic model.
Example 1.
Consider the following fractional Wiener model:
u * ( t ) = 0.43 0.5 u ( t 1 ) 0.23 0.5 u ( t 2 ) , w ( t ) = 0.26 0.5 w ( t 1 ) + 0.23 0.5 w ( t 2 ) + v ( t ) , m ( t ) = y ( t ) 0.8 y 2 ( t ) .
The parameter vector given by:
θ = [ g 1 , g 2 , h 1 , h 2 , c 2 , α ] T = [ 0.43 , 0.23 , 0.26 , 0.23 , 0.8 , 0.5 ] T .
In the simulation, the input { u ( t ) } is taken as persistent signal sequences with zero mean and unit variance, { v ( t ) } is taken as a white noise sequence with zero mean and variance σ 2 = 0 . 10 2 , and the simulation model parameters and the input signal are used to generate the output signal { y ( t ) } .
Applying the SG, FFSG, and MI-FFSG algorithms to estimate the parameters of this model, the parameter estimates and their errors are presented in Table 1, and the parameter estimation errors δ : = θ ^ ( t ) θ / θ versus t are shown in Figure 2. The estimates for each parameter are shown in Figure 3. Figure 4 displays the estimated outputs, the true process outputs, and their errors.
From Table 1 and Figure 2, Figure 3 and Figure 4, we can draw the following conclusions:
  • Figure 2 and Table 1 show that the parameter estimation errors of these three methods decay when t is increased. The parameter estimation accuracy of the FFSG algorithm increases as λ decreases, and the MI-FFSG algorithm has a faster convergence rate and can perform more accurate parameter estimation.
  • From Figure 3, it can be seen that the parameter estimates of the MI-FFSG algorithm gradually approach their true values as t increases.
  • As shown in Figure 4, the predicted outputs of the MI-FFSG algorithm are close to the actual outputs, which shows that the estimates model can reflect the output characteristics of the system.
Example 2.
An accurate equivalent model can achieve a proper photovoltaic (PV) system design by precisely identifying the electrical characteristics of the PV equipment. Several static PV models have been proposed, such as the single-diode model, the double-diode model, and the three-diode model. However, dynamic models are necessary for most theoretical research or simulation purposes. In this subsection, a fractional-order dynamic PV model (FOM) is selected for testing the method’s performance.
The single-diode model is the most commonly utilized static PV model due to its moderate complexity. Based on its equivalent circuit shown in Figure 5a, the output current is calculated as follows [82]:
I = I p h I 0 exp q ( V + R s I ) a k T 1 V + R s I R s h .
In order to omit verbose descriptions, the abbreviations of some terms are given in Table 2. For this static model, five parameters ( I p h , I 0 , R s , R s h , a) need to be identified to model an accurate simulation model of the PV system.
Figure 5. A static PV model and a dynamic PV model. (a) Static single-diode PV model. (b) Fractional-order dynamic PV model.
Figure 5. A static PV model and a dynamic PV model. (a) Static single-diode PV model. (b) Fractional-order dynamic PV model.
Mathematics 11 02945 g005
Considering the load variation and switching operation of the inverter and DC/DC converter stages, the integral-order dynamic PV model (IOM) was introduced, and then the FOM was employed to reinforce the efficiency as well as the flexibility of the IOM. The considered FOM is a second-order model that takes into account the junction capacitance, conductance, and inductive effects, and the static part of the PV is reduced to a voltage V o and a series resistance R s , as indicated in Figure 5b. The load current–voltage relationship in FOM can be shown in the s-domain as follows [83]:
I L ( s ) = V o s a 21 ( s α b 1 ) + b 2 ( s α a 11 ) ( s β a 22 ) ( s α a 11 ) a 12 a 21 , a 11 a 12 a 21 a 22 = 1 C α ( R c + R s ) R s C α ( R c + R s ) R s L β ( R c + R s ) [ R L R c + R s R c + R L R s ] L β ( R c + R s ) , b 1 b 2 = 1 C α ( R s + R c ) R c L β ( R c + R s ) .
In this FOM, the unknown parameters that should be estimated are R c , C α , L β , α , and β . Let τ = a 21 b 2 ; this function can be rewritten in the time domain as
U o ( t ) = 1 τ α + β + 1 I L ( t ) + a 11 a 22 a 12 a 21 τ I L ( t ) a 11 τ β + 1 I L ( t ) a 22 τ α + 1 I L ( t ) a 21 + b 2 τ α U o ( t ) a 21 b 1 τ U o ( t ) , = φ T ( t ) θ .
For the FOM, the upper and lower boundaries of the parameters for the FOM are set as shown in Table 3. The information vector and parameter vectors are defined as:
θ : = [ k 1 , k 2 , k 3 , k 4 , k 5 , k 6 ] T , k 1 : = 1 τ , k 2 : = a 11 a 22 a 12 a 21 τ , k 3 : = a 11 τ , k 4 : = a 22 τ , k 5 : = a 21 + b 2 τ , k 6 : = a 21 b 1 τ , φ : = [ α + β + 1 I L ( t ) , I L ( t ) , β + 1 I L ( t ) , α + 1 I L ( t ) , α U o ( t ) , U o ( t ) ] T .
According to the correlativity between α and β , two cases are then considered.
At β = α , the information vector is given by:
φ = [ 2 α + 1 I L ( t ) , I L ( t ) , α + 1 I L ( t ) , α + 1 I L ( t ) , α U o c ( t ) , U o c ( t ) ] T .
In this case of β = α , let R s = 100 Ω and R L = 23 Ω , where the parameters are given as R c = 15 Ω , C α = 7 × 10 6 F, L β = 5 × 10 5 H, and α = 0.8 . Applying the algorithms derived in this paper to estimate the parameter vector θ of the FOM, the parameter estimates and their errors are shown in Table 4, and the parameter estimation errors δ : = θ ^ ( t ) θ / θ versus t are depicted in Figure 6. By using the parameter estimates in θ ^ ( t ) , the estimates of R c , C α , and L β and their errors are obtained, as shown in Figure 7 and Table 5. The prediction outputs of the MI-FFSG algorithm, the true output, and their errors are illustrated in Figure 8.
At β α , let R s = 100 Ω , R L = 23 Ω , α = 0.83 , and β = 0.95 , where the parameters are given as R c = 15 Ω , C α = 7 × 10 6 F, L β = 5 × 10 5 H. By using the FFSG algorithm and the MI-FFSG algorithm, the parameter estimates and their errors are obtained as shown in Table 6 and Table 7. The parameter estimation errors versus t are shown in Figure 9 and Figure 10, and the parameter estimates versus t are plotted in Figure 11. The prediction outputs of the MI-FFSG algorithm and the true output are illustrated in Figure 12 to verify the output imitative effect.
From Table 4, Table 5, Table 6 and Table 7 and Figure 6, Figure 7, Figure 8, Figure 9, Figure 10, Figure 11 and Figure 12, the following conclusions can be obtained:
  • As Figure 6, Figure 7, Figure 9, and Figure 10 and Table 4, Table 5, Table 6 and Table 7 show, the estimated values will converge to the true parameters with the increase in t, which illustrates the effectiveness of the FFSG algorithm and the MI-FFSG algorithm for the parameter estimation of the FOM.
  • The MI-FFSG algorithm has a higher parameter estimation accuracy than the FFSG algorithm for the FOM.
  • Figure 6, Figure 7, Figure 9, and Figure 10 demonstrate that the estimation errors of the MI-FFSG algorithm decrease as p increases.
  • The model estimated by the MI-FFSG algorithm has a better match to the true one, as plotted in Figure 8 and Figure 12.
  • The parameter estimates of the MI-FFSG algorithm converge to the true values with different convergence rates; this can be seen in Figure 11.

6. Conclusions

In this paper, two identification algorithms are proposed for the parameter estimation of fractional nonlinear Wiener systems. One algorithm is the FFSG algorithm, which introduces the forgetting factor into the SG algorithm. The FFSG algorithm can generate more accurate parameter estimates and a higher convergence rate than the SG algorithm. The other proposed algorithm is the MI-FFSG algorithm, which expands the single innovation to multi-innovation. The simulation results indicate that the proposed algorithms are effective for estimating parameters of fractional nonlinear Wiener systems and have a higher parameter estimation accuracy. The second example uses the FOM to verify the parameter estimation performance of the algorithms and shows that the MI-FFSG algorithm has higher precision in parameter estimation. Furthermore, the parameter estimation methods for fractional Wiener systems in this paper can combine certain estimation algorithms to study new methods for linear and nonlinear stochastic systems with colored noises [84,85,86,87,88,89] and can be applied to other applications [55,90,91,92,93,94], such as control and schedule systems [95,96,97,98,99,100], information processing and communication systems, and so on.

Author Contributions

Conceptualization and methodology, X.M. and Y.J.; software, C.Z. All authors have read and agreed to the published version of the manuscript.

Funding

This work was supported by the National Natural Science Foundation of China (No. 61472195) and the Natural Science Foundation of Shandong Province (ZR2020MF160).

Data Availability Statement

All data generated or analyzed during this study are included in this paper.

Conflicts of Interest

The authors declare no potential conflicts of interest.

References

  1. Ji, Y.; Jiang, A.N. Filtering-based accelerated estimation approach for generalized time-varying systems with disturbances and colored noises. IEEE Trans. Circuits Syst. II Express Briefs. 2023, 70, 206–210. [Google Scholar] [CrossRef]
  2. Ding, F.; Liu, X.M.; Chen, H.B.; Yao, G.Y. Hierarchical gradient based and hierarchical least squares based iterative parameter identification for CARARMA systems. Signal Process. 2014, 97, 31–39. [Google Scholar] [CrossRef]
  3. Xu, L. Parameter estimation for nonlinear functions related to system responses. Int. J. Control Autom. Syst. 2023, 21, 1780–1792. [Google Scholar] [CrossRef]
  4. Xu, L. Separable Newton recursive estimation method through system responses based on dynamically discrete measurements with increasing data length. Int. J. Control Autom. Syst. 2022, 20, 432–443. [Google Scholar] [CrossRef]
  5. Ding, F.; Chen, T. Combined parameter and output estimation of dual-rate systems using an auxiliary model. Automatica 2004, 40, 1739–1748. [Google Scholar] [CrossRef]
  6. Ding, F.; Chen, T. Parameter estimation of dual-rate stochastic systems by using an output error method. IEEE Trans. Autom. Control 2005, 50, 1436–1441. [Google Scholar] [CrossRef]
  7. Xu, L. Separable multi-innovation Newton iterative modeling algorithm for multi-frequency signals based on the sliding measurement window. Circuits Syst. Signal Process. 2022, 41, 805–830. [Google Scholar] [CrossRef]
  8. Ding, F. Least squares parameter estimation and multi-innovation least squares methods for linear fitting problems from noisy data. J. Comput. Appl. Math. 2023, 426, 115107. [Google Scholar] [CrossRef]
  9. Fan, Y.M.; Liu, X.M. Auxiliary model-based multi-innovation recursive identification algorithms for an input nonlinear controlled autoregressive moving average system with variable-gain nonlinearity. Int. J. Adapt. Control Signal Process. 2022, 36, 521–540. [Google Scholar] [CrossRef]
  10. Ji, Y.; Zhang, C.; Kang, Z.; Yu, T. Parameter estimation for block-oriented nonlinear systems using the key term separation. Int. J. Robust Nonlinear Control 2020, 30, 3727–3752. [Google Scholar] [CrossRef]
  11. Fan, Y.; Liu, X. Two-stage auxiliary model gradient-based iterative algorithm for the input nonlinear controlled autoregressive system with variable-gain nonlinearity. Int. J. Robust Nonlinear Control 2020, 30, 5492–5509. [Google Scholar] [CrossRef]
  12. Liu, X.; Fan, Y. Maximum likelihood extended gradient-based estimation algorithms for the input nonlinear controlled autoregressive moving average system with variable-gain nonlinearity. Int. J. Robust Nonlinear Control 2021, 31, 4017–4036. [Google Scholar] [CrossRef]
  13. Ding, F.; Chen, T.; Iwai, Z. Adaptive digital control of Hammerstein nonlinear systems with limited output sampling. SIAM J. Control Optim. 2007, 45, 2257–2276. [Google Scholar] [CrossRef]
  14. Wang, J.; Ji, Y.; Zhang, C. Iterative parameter and order identification for fractional-order nonlinear finite impulse response systems using the key term separation. Int. J. Adapt. Control Signal Process. 2021, 35, 1562–1577. [Google Scholar] [CrossRef]
  15. Wang, J.; Ji, Y.; Zhang, X. Two-stage gradient-based iterative algorithms for the fractional-order nonlinear systems by using the hierarchical identification principle. Int. J. Adapt. Control Signal Process. 2022, 36, 1778–1796. [Google Scholar] [CrossRef]
  16. Oblak, S.; Sˇkrjanc, I. Continuous-time Wiener-model predictive control of a pH process based on a PWL approximation. Chem. Eng. Sci. 2009, 65, 1720–1728. [Google Scholar] [CrossRef]
  17. Veen, G.; Wingerden, J.W.; Verhaegen, M. Global identification of wind turbines using a Hammerstein identification method. IEEE Trans. Control Syst. Technol. 2013, 21, 1471–1478. [Google Scholar] [CrossRef]
  18. Silva, M.M.; Wigren, T.; Mendon, T. Nonlinear identification of a minimal neuromuscular blockade model in anesthesia. IEEE Trans. Control Syst. Technol. 2012, 20, 181–188. [Google Scholar] [CrossRef]
  19. Li, J.H.; Zheng, W.; Gu, J.P.; Hua, L. A recursive identification algorithm for Wiener nonlinear systems with linear state-space subsystem. Circuits Syst. Signal Process. 2018, 37, 2374–2393. [Google Scholar] [CrossRef]
  20. Wang, X.H.; Zhu, F. The modified extended Kalman filter based recursive estimation for Wiener nonlinear systems with process noise and measurement noise. Int. J. Adapt. Control Signal Process. 2020, 34, 1321–1340. [Google Scholar] [CrossRef]
  21. Ding, F.; Ma, H.; Pan, J.; Yang, E.F. Hierarchical gradient-and least squares-based iterative algorithms for input nonlinear output-error systems using the key term separation. J. Frankl. Inst. 2021, 358, 5113–5135. [Google Scholar] [CrossRef]
  22. Sersour, L.; Djamah, T.; Bettayeb, M. Fractional Wiener system identification using heuristic optimization technique based on key term principle. IFAC PapersOnLine 2019, 52, 189–193. [Google Scholar] [CrossRef]
  23. Wang, J.C.; Wei, Y.H.; Liu, T.Y.; Li, A.; Wang, Y. Fully parametric identification for continuous time fractional order Hammerstein systems. J. Frankl. Inst. 2020, 357, 651–666. [Google Scholar] [CrossRef]
  24. Hu, C.; Ji, Y.; Ma, C.Q. Joint two-stage multi-innovation recursive least squares parameter and fractional-order estimation algorithm for the fractional-order input nonlinear output-error autoregressive model. Int. J. Adapt. Control Signal Process. 2023, 37. [Google Scholar] [CrossRef]
  25. Zhang, X.; Ding, F. Optimal adaptive filtering algorithm by using the fractional-order derivative. IEEE Signal Process. Lett. 2022, 29, 399–403. [Google Scholar] [CrossRef]
  26. Hammar, K.; Djamah, T.; Bettayeb, M. Nonlinear system identification using fractional Hammerstein-Wiener models. Nonlinear Dyn. 2019, 98, 2327–2338. [Google Scholar] [CrossRef]
  27. Ivanov, D.V.; Katsyuba, O.A.; Dubinin, A.E. Identification of models of long lines on the basis of adaptive filters with fractional-order differences. Russ. Electr. Eng. 2017, 88, 120–122. [Google Scholar] [CrossRef]
  28. Xu, L.; Ding, F.; Yang, E.F. Auxiliary model multiinnovation stochastic gradient parameter estimation methods for nonlinear sandwich systems. Int. J. Robust Nonlinear Control 2021, 31, 148–165. [Google Scholar] [CrossRef]
  29. Ji, Y.; Kang, Z. Three-stage forgetting factor stochastic gradient parameter methods for a class of nonlinear systems. Int. J. Robust Nonlinear Control 2021, 31, 971–987. [Google Scholar] [CrossRef]
  30. Ji, Y.; Kang, Z.; Zhang, C. Two-stage gradient-based recursive estimation for nonlinear models by using the data filtering. Int. J. Control Autom. Syst. 2021, 19, 2706–2715. [Google Scholar] [CrossRef]
  31. Xu, H.; Champagne, B. Joint parameter and time-delay estimation for a class of nonlinear time-series models. IEEE Signal Process. Lett. 2022, 29, 947–951. [Google Scholar] [CrossRef]
  32. Gu, Y.; Zhu, Q.; Nouri, H. Identification and U-control of a state-space system with time-delay. Int. J. Adapt. Control Signal Process. 2022, 36, 138–154. [Google Scholar] [CrossRef]
  33. Xu, L.; Zhu, Q.M. Decomposition strategy-based hierarchical least mean square algorithm for control systems from the impulse responses. Int. J. Syst. Sci. 2021, 52, 1806–1821. [Google Scholar] [CrossRef]
  34. Ma, P.; Wang, L. Filtering-based recursive least squares estimation approaches for multivariate equation-error systems by using the multiinnovation theory. Int. J. Adapt. Control Signal Process. 2021, 35, 1898–1915. [Google Scholar] [CrossRef]
  35. Ding, F.; Liu, Y.J.; Bao, B. Gradient based and least squares based iterative estimation algorithms for multi-input multi-output systems. Proc. Inst. Mech. Eng. Part I J. Syst. Control. Eng. 2012, 226, 43–55. [Google Scholar] [CrossRef]
  36. Li, M.; Liu, X. Particle filtering-based iterative identification methods for a class of nonlinear systems with interval-varying measurements. Int. J. Control Autom. Syst. 2022, 20, 2239–2248. [Google Scholar] [CrossRef]
  37. Wan, L.J. Decomposition- and gradient-based iterative identification algorithms for multivariable systems using the multi-innovation theory. Circuits Syst. Signal Process. 2019, 38, 2971–2991. [Google Scholar] [CrossRef]
  38. Li, M.H.; Liu, X.M. Iterative identification methods for a class of bilinear systems by using the particle filtering technique. Int. J. Adapt. Control Signal Process. 2021, 35, 2056–2074. [Google Scholar] [CrossRef]
  39. Li, M.H.; Liu, X.M. The filtering-based maximum likelihood iterative estimation algorithms for a special class of nonlinear systems with autoregressive moving average noise using the hierarchical identification principle. Int. J. Adapt. Control Signal Process. 2019, 33, 1189–1211. [Google Scholar] [CrossRef]
  40. Geng, F.Z.; Wu, X.Y. Reproducing kernel-based piecewise methods for efficiently solving oscillatory systems of second-order initial value problems. Calcolo. 2023, 60, 20. [Google Scholar] [CrossRef]
  41. Zhou, Y.H.; Zhang, X. Partially-coupled nonlinear parameter optimization algorithm for a class of multivariate hybrid models. Appl. Math. Comput. 2022, 414, 126663. [Google Scholar] [CrossRef]
  42. Pan, J.; Liu, S.D.; Shu, J.; Wan, X.K. Hierarchical recursive least squares estimation algorithm for secondorder Volterra nonlinear systems. Int. J. Control Autom. Syst. 2022, 20, 3940–3950. [Google Scholar] [CrossRef]
  43. Pan, J.; Liu, Y.Q.; Shu, J. Gradient-based parameter estimation for an exponential nonlinear autoregressive time-series model by using the multi-innovation. Int. J. Control Autom. Syst. 2023, 21, 140–150. [Google Scholar] [CrossRef]
  44. Pan, J.; Zhang, H.; Guo, H.; Liu, S.; Liu, Y. Multivariable CAR-like system identification with multi-innovation gradient and least squares algorithms. Int. J. Control Autom. Syst. 2023, 21, 1455–1464. [Google Scholar] [CrossRef]
  45. Zhou, Y.; Zhang, X. Hierarchical estimation approach for RBF-AR models with regression weights based on the increasing data length. IEEE Trans. Circuits Syst. II Express Briefs 2021, 68, 3597–3601. [Google Scholar] [CrossRef]
  46. Pan, J.; Shao, B.; Xiang, J.X.; Zhang, Q. Attitude control of quadrotor UAVs based on adaptive sliding mode. Int. J. Control Autom. Syst. 2023, 21. [Google Scholar] [CrossRef]
  47. Xiong, J.; Pan, J.; Chen, G. Sliding mode dual-channel disturbance rejection attitude control for a quadrotor. IEEE Trans. Ind. Electron. 2022, 69, 10489–10499. [Google Scholar] [CrossRef]
  48. Zhou, Y. Modeling nonlinear processes using the radial basis function-based state-dependent autoregressive models. IEEE Signal Process. Lett. 2020, 27, 1600–1604. [Google Scholar] [CrossRef]
  49. Ding, J.; Zhang, W. Finite-time adaptive control for nonlinear systems with uncertain parameters based on the command filters. Int. J. Adapt. Control Signal Process. 2021, 35, 1754–1767. [Google Scholar] [CrossRef]
  50. Li, J.M.; Ding, F. Synchronous optimization schemes for dynamic systems through the kernel-based nonlinear observer canonical form. IEEE Trans. Instrum. Meas. 2022, 71, 3210952. [Google Scholar] [CrossRef]
  51. Pan, J.; Chen, Q.; Xiong, J. A novel quadruple boost nine level switched capacitor inverter. J. Electr. Eng. Technol. 2023, 18, 467–480. [Google Scholar] [CrossRef]
  52. Su, S.; Wang, X.; Cao, Y.; Yin, J. An energy-efficient train operation approach by integrating the metro timetabling and eco-driving. IEEE Trans. Intell. Transp. Syst. 2020, 21, 4252–4268. [Google Scholar] [CrossRef]
  53. Cao, Y.; Wang, Z.; Liu, F. Bio-inspired speed curve optimization and sliding mode tracking control for subway trains. IEEE Trans. Veh. Technol. 2019, 68, 331–6342. [Google Scholar] [CrossRef]
  54. Cao, Y.; Sun, Y.; Xie, G. Fault diagnosis of train plug door based on a hybrid criterion for IMFs selection and fractional wavelet package energy entropy. IEEE Trans. Veh. Technol. 2019, 68, 7544–7551. [Google Scholar] [CrossRef]
  55. Cao, Y.; Ma, L.C.; Xiao, S.; Zhang, X.; Xu, W. Standard analysis for transfer delay in CTCS-3. Chin. J. Electron. 2017, 26, 1057–1063. [Google Scholar] [CrossRef]
  56. Su, S.; She, J.; Li, K. A nonlinear safety equilibrium spacing based model predictive control for virtually coupled train set over gradient terrains. IEEE Trans. Transp. Electr. 2022, 8, 2810–2824. [Google Scholar] [CrossRef]
  57. Su, S.; Tang, T.; Xun, J. Design of running grades for energy-efficient train regulation: A case study for beijing yizhuang line. IEEE Intell. Transp. Syst. Mag. 2021, 13, 189–200. [Google Scholar] [CrossRef]
  58. Ding, J.; Liu, G. Hierarchical least squares identification for linear SISO systems with dual-rate sampled-data. IEEE Trans. Autom. Control 2011, 56, 2677–2683. [Google Scholar] [CrossRef]
  59. Zhao, S.Y.; Shmaliy, Y.S.; Liu, F. Batch optimal FIR smoothing: Increasing state informativity in nonwhite measurement noise environments. IEEE Trans. Ind. Inf. 2023, 19, 6993–7001. [Google Scholar] [CrossRef]
  60. Zhao, S.Y.; Li, K.; Ahn, C.K.; Huang, B.; Liu, F. Tuning-free Bayesian estimation algorithms for faulty sensor signals in state-space. IEEE Trans. Ind. Electron. 2023, 70, 921–929. [Google Scholar] [CrossRef]
  61. Xu, L. Separable synchronous multi-innovation gradient-based iterative signal modeling from on-line measurements. IEEE Trans. Instrum. Meas. 2022, 71, 6501313. [Google Scholar] [CrossRef]
  62. Zhao, S.Y.; Wang, J.F.; Shmaliy, Y.S.; Liu, F. Discrete time q-lag maximum likelihood FIR smoothing and iterative recursive algorithm. IEEE Trans. Signal Process. 2021, 69, 6342–6354. [Google Scholar] [CrossRef]
  63. Zhang, T.Y.; Zhao, S.Y.; Luan, X.L.; Liu, F. Bayesian inference for state-space models with Student-t mixture distributions. IEEE Trans. Cybern. 2023, 53, 4435–4445. [Google Scholar] [CrossRef] [PubMed]
  64. Zhao, S.Y.; Huang, B.; Zhao, C.H. Online probabilistic estimation of sensor faulty signal in industrial processes and its applications. IEEE Trans. Ind. Electron. 2021, 68, 8858–8862. [Google Scholar] [CrossRef]
  65. Ding, F.; Liu, X.; Ma, X. Kalman state filtering based least squares iterative parameter estimation for observer canonical state space systems using decomposition. J. Comput. Appl. Math. 2016, 301, 135–143. [Google Scholar] [CrossRef]
  66. Zheng, Y.Q.; Ding, J.; Liu, F.; Wang, D.Q. Adaptive neural decision tree for EEG based emotion recognition. Inf Sci. 2023, 643, 119160. [Google Scholar] [CrossRef]
  67. Li, Y.X.; Wang, D.Q.; Liu, F. The auto-correlation function aided sparse support matrix machine for EEG-based fatigue detection. IEEE Trans. Circuits Syst. II Express Briefs. 2023, 70, 836–840. [Google Scholar] [CrossRef]
  68. Xu, L.; Chen, F.Y.; Hayat, T. Hierarchical recursive signal modeling for multi-frequency signals based on discrete measured data. Int. J. Adapt. Control Signal Process. 2021, 35, 676–693. [Google Scholar] [CrossRef]
  69. Wang, D.Q.; Yang, Y.; Gu, T.Y. A hierarchical adaptive extended Kalman filter algorithm for lithium-ion battery state of charge estimation. J. Energy Storage 2023, 62, 106831. [Google Scholar] [CrossRef]
  70. Jiao, M.; Wang, D.Q. The Savitzky-Golay filter based bidirectional long short-term memory network for SOC estimation. Int. J. Energy Resear. 2021, 45, 19467–19480. [Google Scholar] [CrossRef]
  71. Zhao, S.Y.; Shmaliy, Y.S.; Andrade-Lucio, J.A.; Liu, F. Multipass optimal FIR filtering for processes with unknown initial states and temporary mismatches. IEEE Trans. Ind. Inf. 2021, 17, 5360–5368. [Google Scholar] [CrossRef]
  72. Zhao, S.Y.; Shmaliy, Y.S.; Ahn, C.K.; Liu, F. Self-tuning unbiased finite impulse response filtering algorithm for processes with unknown measurement noise covariance. IEEE Trans. Control Syst. Technol. 2021, 29, 1372–1379. [Google Scholar] [CrossRef]
  73. Liu, W.T.; Xiong, W.L. Robust gradient estimation algorithm for a stochastic system with colored noise. Int. J. Control Autom. Syst. 2023, 21, 553–562. [Google Scholar] [CrossRef]
  74. Liu, W.T.; Xiong, W.L. Auxiliary model-based continuous mixed p-norm algorithm for output error moving average systems using the multi-innovation optimization. Int. J. Control Autom. Syst. 2024, 22. [Google Scholar]
  75. Ding, F.; Xu, L.; Zhang, X.; Zhou, Y.H. Filtered auxiliary model recursive generalized extended parameter estimation methods for Box-Jenkins systems by means of the filtering identification idea. Int. J. Robust Nonlinear Control. 2023, 33, 5510–5535. [Google Scholar] [CrossRef]
  76. Zhao, S.Y.; Huang, B. Trial-and-error or avoiding a guess? Initialization of the Kalman filter. Automatica 2020, 121, 109184. [Google Scholar] [CrossRef]
  77. Zhao, S.Y.; Shmaliy, Y.S.; Ahn, C.K.; Luo, L.J. An improved iterative FIR state estimator and its applications. IEEE Trans. Ind. Inf. 2020, 16, 1003–1012. [Google Scholar] [CrossRef]
  78. Xu, L. Separable synthesis estimation methods and convergence analysis for multivariable systems. J. Comput. Appl. Math. 2023, 427, 115104. [Google Scholar] [CrossRef]
  79. Zhao, S.Y. Probabilistic monitoring of correlated sensors for nonlinear processes in state space. IEEE Trans. Ind. Electron. 2020, 67, 2294–2303. [Google Scholar] [CrossRef]
  80. Li, J. Fitting nonlinear signal models using the increasing-data criterion. IEEE Signal Process. Lett. 2022, 29, 1302–1306. [Google Scholar] [CrossRef]
  81. Li, M.H. Maximum likelihood hierarchical least squares-based iterative identification for dual-rate stochastic systems. Int. J. Adapt. Control Signal Process. 2021, 35, 240–261. [Google Scholar] [CrossRef]
  82. Abbassi, R.; Abbassi, A.; Jemli, M.; Chebbi, S. Identification of unknown parameters of solar cell models: A comprehensive overview of available approaches. Renew. Sustain. Energy Rev. 2018, 90, 453–474. [Google Scholar] [CrossRef]
  83. Yousri, D.; Allam, D.; Eteiba, M.B.; Suganthanb, P.N. Static and dynamic photovoltaic models’ parameters identification using Chaotic Heterogeneous Comprehensive Learning Particle Swarm Optimizer variants. Energy Convers. Manag. 2019, 182, 546–563. [Google Scholar] [CrossRef]
  84. Wang, Y.J.; Tang, S.H.; Deng, M.Q. Modeling nonlinear systems using the tensor network B-spline and the multi-innovation identification theory. Int. J. Robust Nonlinear Control 2022, 32, 7304–7318. [Google Scholar] [CrossRef]
  85. Ding, F.; Shi, Y.; Chen, T. Performance analysis of estimation algorithms of non-stationary ARMA processes. IEEE Trans. Signal Process. 2006, 54, 1041–1053. [Google Scholar] [CrossRef]
  86. Wang, Y.J.; Tang, S.H.; Gu, X.B. Parameter estimation for nonlinear Volterra systems by using the multi-innovation identification theory and tensor decomposition. J. Franklin Inst. 2022, 359, 1782–1802. [Google Scholar] [CrossRef]
  87. Wang, Y.J.; Yang, L. An efficient recursive identification algorithm for multilinear systems based on tensor decomposition. Int. J. Robust Nonlinear Control 2021, 31, 7920–7936. [Google Scholar] [CrossRef]
  88. Li, J.M.; Ding, F.; Hayat, T. A novel nonlinear optimization method for fitting a noisy Gaussian activation function. Int. J. Adapt. Control Signal Process. 2022, 36, 690–707. [Google Scholar] [CrossRef]
  89. Kang, Z.; Ji, Y.; Liu, X.M. Hierarchical recursive least squares algorithms for Hammerstein nonlinear autoregressive output-error systems. Int. J. Adapt. Control Signal Process. 2021, 35, 2276–2295. [Google Scholar] [CrossRef]
  90. Cao, Y.; An, Y.; Su, S.; Xie, G.; Sun, Y. A statistical study of railway safety in China and Japan 1990–2020. Accidt. Anal. Prevent. 2002, 175, 106764. [Google Scholar] [CrossRef]
  91. Cao, Y.; Yang, R.; Ma, L.; Wen, J. Research on virtual coupled train control method based on GPC & VAPF. Chinese J. Electron. 2022, 31, 897–905. [Google Scholar]
  92. Sun, Y.; Cao, Y.; Li, P. Contactless fault diagnosis for railway point machines based on multi-scale fractional wavelet packet energy entropy and synchronous optimization strategy. IEEE Trans. Veh. Technol. 2022, 71, 5906–5914. [Google Scholar] [CrossRef]
  93. Cao, Y.; Ji, Y.; Sun, Y.; Su, S. The fault diagnosis of a switch machine based on deep random forest fusion. IEEE Intell. Transp. Syst. Mag. 2023, 15, 437–452. [Google Scholar] [CrossRef]
  94. Wang, X.; Su, S.; Cao, Y.; Wang, X.L. Robust control for dynamic train regulation in fully automatic operation system under uncertain wireless transmissions. IEEE Trans. Intell. Transp. Syst. 2022, 23, 20721–20734. [Google Scholar] [CrossRef]
  95. Cao, Y.; Zhang, Z.; Cheng, F.; Su, S. Trajectory optimization for high-speed trains via a mixed integer linear programming approach. IEEE Trans. Intell. Transp. Syst. 2022, 23, 17666–17676. [Google Scholar] [CrossRef]
  96. Cao, Y.; Sun, Y.; Xie, G. A sound-based fault diagnosis method for railway point machines based on two-stage feature selection strategy and ensemble classifier. IEEE Trans. Intell. Transp. Syst. 2022, 23, 12074–12083. [Google Scholar] [CrossRef]
  97. Cao, Y.; Wen, J.; Hobiny, A. Parameter-varying artificial potential field control of virtual coupling system with nonlinear dynamics. Fractals 2022, 30, 2240099. [Google Scholar] [CrossRef]
  98. Cao, Y.; Wen, J.; Ma, L. Tracking and collision avoidance of virtual coupling train control system. Alex. Eng. J. 2021, 60, 2115–2125. [Google Scholar] [CrossRef]
  99. Sun, Y.; Cao, Y.; Ma, L. A fault diagnosis method for train plug doors via sound signals. IEEE Intell. Transp. Syst. Mag. 2021, 13, 107–117. [Google Scholar] [CrossRef]
  100. Sun, Y.; Cao, Y.; Xie, G.; Wen, T. Sound based fault diagnosis for RPMs based on multi-scale fractional permutation entropy and two-scale algorithm. IEEE Trans. Veh. Technol. 2021, 70, 11184–11192. [Google Scholar] [CrossRef]
Figure 1. The fractional Wiener nonlinear system with colored noise.
Figure 1. The fractional Wiener nonlinear system with colored noise.
Mathematics 11 02945 g001
Figure 2. The parameter estimation errors δ versus t.
Figure 2. The parameter estimation errors δ versus t.
Mathematics 11 02945 g002
Figure 3. The MI-FFSG estimates versus t.
Figure 3. The MI-FFSG estimates versus t.
Mathematics 11 02945 g003
Figure 4. The comparison between the prediction outputs using the MI-FFSG algorithm and their true values.
Figure 4. The comparison between the prediction outputs using the MI-FFSG algorithm and their true values.
Mathematics 11 02945 g004
Figure 6. Parameter estimation errors of the FFSG and the MI-FFSG algorithms for θ ( β = α ).
Figure 6. Parameter estimation errors of the FFSG and the MI-FFSG algorithms for θ ( β = α ).
Mathematics 11 02945 g006
Figure 7. Parameter estimation errors of the FFSG and the MI-FFSG algorithms for R c , C α , and L β ( β = α ).
Figure 7. Parameter estimation errors of the FFSG and the MI-FFSG algorithms for R c , C α , and L β ( β = α ).
Mathematics 11 02945 g007
Figure 8. The prediction outputs of the MI-FFSG algorithm, true output, and their errors ( β = α , λ = 0.98 and p = 5 ).
Figure 8. The prediction outputs of the MI-FFSG algorithm, true output, and their errors ( β = α , λ = 0.98 and p = 5 ).
Mathematics 11 02945 g008
Figure 9. Parameter estimation errors of the FFSG and the MI-FFSG algorithms for θ ( β α ).
Figure 9. Parameter estimation errors of the FFSG and the MI-FFSG algorithms for θ ( β α ).
Mathematics 11 02945 g009
Figure 10. Parameter estimation errors of the FFSG and the MI-FFSG algorithms for R c , C α , and L β ( β α ).
Figure 10. Parameter estimation errors of the FFSG and the MI-FFSG algorithms for R c , C α , and L β ( β α ).
Mathematics 11 02945 g010
Figure 11. The MI-FFSG parameter estimates versus t ( β α , λ = 0.9 and p = 5 ). (a) Parameter search processes of k 1 , k 2 , k 3 , k 4 , k 5 , and k 6 . (b) Parameter search processes of R c , C α , and L β .
Figure 11. The MI-FFSG parameter estimates versus t ( β α , λ = 0.9 and p = 5 ). (a) Parameter search processes of k 1 , k 2 , k 3 , k 4 , k 5 , and k 6 . (b) Parameter search processes of R c , C α , and L β .
Mathematics 11 02945 g011
Figure 12. The prediction outputs of the MI-FFSG algorithm, true outputs, and their errors ( β α , λ = 0.9 and p = 5 ).
Figure 12. The prediction outputs of the MI-FFSG algorithm, true outputs, and their errors ( β α , λ = 0.9 and p = 5 ).
Mathematics 11 02945 g012
Table 1. The parameter estimates and their estimation errors.
Table 1. The parameter estimates and their estimation errors.
t g 1 g 2 h 1 h 2 h 2 α δ ( % )
SG5−0.79197−0.203720.248200.22446−0.453370.5854245.57930
10−0.66692−0.270680.254220.23299−0.595550.5551428.67874
50−0.57926−0.250430.258130.23730−0.672210.4986817.69470
100−0.54557−0.251950.258390.23756−0.692440.5003914.28345
400−0.52051−0.248880.258460.23763−0.707040.5041311.76147
FFSG
λ = 0.9
5−0.78798−0.208200.248820.22513−0.459990.5856544.90559
10−0.66462−0.274380.254920.23384−0.601890.5554228.21456
50−0.57089−0.253600.259100.23843−0.684780.4893616.47133
100−0.53013−0.254720.259440.23878−0.709660.4885212.33969
400−0.48467−0.247000.259550.23889−0.736300.498257.70894
FFSG
λ = 0.8
5−0.78462−0.211960.249350.22570−0.465550.5858644.34192
10−0.66272−0.277460.255510.23456−0.607230.5556727.83422
50−0.56379−0.256270.259930.23940−0.695680.4799915.49219
100−0.51643−0.256890.260350.23983−0.725150.4750810.78248
400−0.44504−0.241890.260520.24000−0.767820.487923.63496
MI-FFSG
λ = 0.8
p = 3
5−0.78327−0.213470.249560.22593−0.467790.5859544.11592
10−0.66196−0.278700.255750.23484−0.609370.5557727.68385
50−0.44163−0.240690.261040.24059−0.776870.506982.75356
100−0.45951−0.239090.261030.24059−0.767090.473314.78808
400−0.43065−0.237500.261040.24059−0.782650.503271.96427
True values0−0.43000−0.230000.260000.23000−0.800000.50000
Table 2. Abbreviations of some important nomenclatures that appear in Example 2.
Table 2. Abbreviations of some important nomenclatures that appear in Example 2.
Nomenclature
ICurrent(A)TCell absolute temperature in Kelvin(K)
VVoltage(V) I L Load current
I p h Photo-generated current(A) V o Voltage(V)
I 0 Diode saturation current(A) C α Capacitance in fractional-order dynamic PV model
R s Series resistance( Ω ) L β Inductance in fractional-order dynamic PV model
R s h Shunt resistance( Ω ) R c Conductance
aIdeality factor R L Load
qElectronic charge ( 1.6 × 10 19 C) α Derivative order
kBoltzmann’s constant
( 1.38 × 10 23 J/K)
β Derivative order
Table 3. Lower and upper boundaries of each model parameter [83].
Table 3. Lower and upper boundaries of each model parameter [83].
Parameters R c ( Ω ) C α ( F ) L β ( H ) α β
Lower bound020 × 10 9 5 × 10 6 0.80.8
Upper bound20600 × 10 7 100 × 10 6 1.11.1
Table 4. Parameter estimates of θ and their estimation errors ( β = α ).
Table 4. Parameter estimates of θ and their estimation errors ( β = α ).
t k 1 k 2 k 3 k 4 k 5 k 6 δ ( % )
FFSG
λ = 0.98
100027.73007103.44403−38.33561−21.4797359.8499573.513378.48226
500028.12977103.08827−38.49831−21.6424260.0841173.467668.17223
10,00028.59150102.70654−38.69387−21.8379960.3243673.394867.83989
40,00030.61691100.95427−39.53888−22.6830061.4568573.123756.61330
MI-FFSG
λ = 0.98
p = 2
100027.95533103.19742−38.38189−21.5260060.0344773.544588.30109
500028.61277102.64491−38.65274−21.7968560.3862373.451447.82317
10,00029.30285102.08130−38.93634−22.0804660.7391173.346457.36869
40,00031.56301100.17532−39.83806−22.9821861.9560973.054676.26271
MI-FFSG
λ = 0.98
p = 5
100028.31188102.85354−38.52594−21.6700560.2691973.518188.02035
500029.77645101.63543−39.12073−22.2648461.0405773.311817.06763
10,00030.90760100.72173−39.56546−22.7095761.6103473.151486.51056
40,00032.4592699.54640−40.05098−23.1951062.3207372.999226.08998
True values030.8583394.30000−38.33333−22.2448361.7166766.66667
Table 5. Parameter estimates of R c , C α , and L β , and their estimation errors ( β = α ).
Table 5. Parameter estimates of R c , C α , and L β , and their estimation errors ( β = α ).
t R c C α L β δ ( % )
FFSG λ = 0.98 100013.807266.30246 × 10 6 4.65655 × 10 5 7.95159
500013.971326.32917 × 10 6 4.73829 × 10 5 6.85789
10,00014.142786.35613 × 10 6 4.82438 × 10 5 5.71482
40,00014.662876.45046 × 10 6 5.09442 × 10 5 2.24752
MI-FFSG 100013.747616.29235 × 10 6 4.63327 × 10 5 8.34929
λ = 0.98 500013.844496.31015 × 10 6 4.68173 × 10 5 7.70342
p = 2 10,00013.958876.32894 × 10 6 4.73963 × 10 5 6.94089
40,00014.416336.42001 × 10 6 4.98186 × 10 5 3.89113
MI-FFSG 100013.886486.32057 × 10 6 4.69757 × 10 5 7.42345
λ = 0.98 500014.245836.37917 × 10 6 4.87814 × 10 5 5.02778
p = 5 10,00014.520396.42192 × 10 6 5.01662 × 10 5 3.19740
40,00014.948446.46112 × 10 6 5.20842 × 10 5 0.34370
True values015.000007.00000 × 10 6 5.00000 × 10 5
Table 6. Parameter estimates of θ and their estimation errors ( β α ).
Table 6. Parameter estimates of θ and their estimation errors ( β α ).
t k 1 k 2 k 3 k 4 k 5 k 6 δ ( % )
1006.2436421.83487−18.09445−3.5990013.1920229.429218.35927
FFSG5006.3222121.56446−18.21295−3.6899913.2892829.414867.91340
λ = 0.910006.4417721.28386−18.37800−3.8237013.3671229.363967.43774
20006.6828220.78817−18.70398−4.0911413.4843629.243136.78030
MI-FFSG
λ = 0.9
p = 2
1006.3147121.58154−18.19775−3.6745413.2832929.385247.88031
5006.4219021.17513−18.36667−3.8008613.4313429.368827.32723
10006.5689320.78416−18.57960−3.9682813.5442429.308016.86218
20006.8594020.16695−18.98327−4.2937113.6824029.151336.48975
MI-FFSG
λ = 0.9
p = 5
1006.2177521.64010−17.67841−3.5499513.3107328.800937.04659
5006.3595221.07856−17.90567−3.7181813.5176128.782926.07952
10006.5593220.55344−18.19623−3.9460213.6645728.695595.30013
20006.8991719.80877−18.67848−4.3297113.8263628.504134.93783
True values07.0583320.16667−18.33333−3.6575014.1166726.66667
Table 7. Parameter estimates of R c , C α , and L β , and their estimation errors ( β α ).
Table 7. Parameter estimates of R c , C α , and L β , and their estimation errors ( β α ).
t R c C α L β δ ( % )
FFSG λ = 0.9 10014.144366.16779 × 10 6 4.75388 × 10 5 5.70428
50014.077706.25542 × 10 6 4.78128 × 10 5 6.14863
100014.129976.30889 × 10 6 4.84998 × 10 5 5.80021
200014.354516.35466 × 10 6 5.01330 × 10 5 4.30329
MI-FFSG 10014.168676.11078 × 10 6 4.73289 × 10 5 5.54219
λ = 0.9 50014.142476.16479 × 10 6 4.75738 × 10 5 5.71684
p = 2 100014.216846.19462 × 10 6 4.81911 × 10 5 5.22105
200014.419476.22814 × 10 6 4.95597 × 10 5 3.87022
MI-FFSG 10014.365096.25482 × 10 6 4.67123 × 10 5 4.23276
λ = 0.9 50014.255276.38177 × 10 6 4.70461 × 10 5 4.96488
p = 5 100014.333366.45219 × 10 6 4.80024 × 10 5 4.44425
200014.581066.51293 × 10 6 4.98986 × 10 5 2.79293
True values015.000007.00000 × 10 6 5.00000 × 10 5
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Zhang, C.; Meng, X.; Ji, Y. Parameter Estimation of Fractional Wiener Systems with the Application of Photovoltaic Cell Models. Mathematics 2023, 11, 2945. https://doi.org/10.3390/math11132945

AMA Style

Zhang C, Meng X, Ji Y. Parameter Estimation of Fractional Wiener Systems with the Application of Photovoltaic Cell Models. Mathematics. 2023; 11(13):2945. https://doi.org/10.3390/math11132945

Chicago/Turabian Style

Zhang, Ce, Xiangxiang Meng, and Yan Ji. 2023. "Parameter Estimation of Fractional Wiener Systems with the Application of Photovoltaic Cell Models" Mathematics 11, no. 13: 2945. https://doi.org/10.3390/math11132945

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop