Next Article in Journal
Continual Pre-Training of Language Models for Concept Prerequisite Learning with Graph Neural Networks
Next Article in Special Issue
On Erdélyi–Kober Fractional Operator and Quadratic Integral Equations in Orlicz Spaces
Previous Article in Journal
Aspects of Quantum Statistical Mechanics: Fractional and Tsallis Approaches
Previous Article in Special Issue
Feynman Integrals for the Harmonic Oscillator in an Exponentially Growing Potential
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Applications of the Tarig Transform and Hyers–Ulam Stability to Linear Differential Equations

1
Department of Mathematics, Kandaswami Kandra’s College, Paramathi Velur 638182, Tamil Nadu, India
2
Department of Mathematics, Hindustan Institute of Technology and Science, Rajiv Gandhi Salai (OMR), Padur, Kelambakkam, Chennai 603103, Tamil Nadu, India
3
Department of Mathematics, College of Science, King Khalid University, Abha 61413, Saudi Arabia
4
Department of Mathematics, Periyar Maniammai Institute of Science & Technology, Vallam, Thanjavur 613403, Tamil Nadu, India
*
Author to whom correspondence should be addressed.
These authors contributed equally to this work.
Mathematics 2023, 11(12), 2778; https://doi.org/10.3390/math11122778
Submission received: 22 May 2023 / Revised: 8 June 2023 / Accepted: 17 June 2023 / Published: 20 June 2023

Abstract

:
In this manuscript, we discuss the Tarig transform for homogeneous and non-homogeneous linear differential equations. Using this Tarig integral transform, we resolve higher-order linear differential equations, and we produce the conditions required for Hyers–Ulam stability. This is the first attempt to use the Tarig transform to show that linear and nonlinear differential equations are stable. This study also demonstrates that the Tarig transform method is more effective for analyzing the stability issue for differential equations with constant coefficients. A discussion of applications follows, to illustrate our approach. This research also presents a novel approach to studying the stability of differential equations. Furthermore, this study demonstrates that Tarig transform analysis is more practical for examining stability issues in linear differential equations with constant coefficients. In addition, we examine some applications of linear, nonlinear, and fractional differential equations, by using the Tarig integral transform.
MSC:
26D10; 34A40; 39B82; 44A45; 45A05; 45-02

1. Introduction

The investigation of differential equations is a modern science that provides a very effective method of managing critical thoughts and associations in the assessment, using variable-based mathematical concepts, such as balance, linearity, and fairness. While the systematic examination of such conditions is fairly late in the mathematical survey, they have been seen before in various designs by mathematicians. The hypothesis of differential equations is an evolving science that has contributed greatly to progress towards strong mechanical assemblies in current math. Many new applied issues and speculations have studied differential equations, to encourage new philosophies and methods. Differential equations are a notably neglected area of math. This is not because they lack importance. Extending the direct factor-based numerical method, which oversees straight limits, to commonsense variable-based mathematical covers is an altogether more expansive area. Generally, dynamical systems are depicted by differential conditions in an unending time region. For discrete-time systems, the components are portrayed by an unmistakable condition or an iterated map. Fostering a bearing or choosing various properties of the system requires overseeing helpful conditions. Notwithstanding differential logical or straight factor-based math, differential equations are only occasionally used to deal with suitable issues. This may be a direct result of the particular difficulties with the valuable math. The layout of the reaction of differential and integral conditions, and a system of differential and integral conditions, benefit greatly from the use of the Tarig transform technique.
Evidently, the Laplace transform, whose integral kernel has a different formulation, is a generalization of the Tarig integral transform, which we have utilized in this study. It should be noted that the Sumudu transform and the Elzaki transform are analogous generalizations of the Laplace transform ([1,2,3,4,5,6]). It is thought that other differential equations can be defined in distribution spaces, by using the distributional Tarig transform to obtain solutions, despite the fact that the current paper investigates the solution and stability of the differential equations using the Tarig transform, and further expresses the differential equations in specific distribution spaces through the distributional Tarig transform. The applications (or examples demonstrating how to apply the Tarig transform to solve differential equations) are shown in Section 6, to support the Tarig transform’s applications through the use of linear, nonlinear, and fractional differential equations (see [7,8,9]).
This study offers several novel concepts in the area of integral transforms, as well as applications to calculus. We have also discovered connections between additional transforms, with the aid of the generalized Tarig transform. We conclude that the generalized Tarig transform can be used to solve differential equations properly, which is still a relatively unknown concept in the calculus field: thus, by applying alternative conditions to the generalized Tarig transform, other transforms can be created. These transforms can then be used to solve differential equations, and the concept of a transform may be expanded, to include higher dimensions.
The following seven parts make up the bulk of the paper. We define the generalized Tarig transform and some of its characteristics in the Section 1 and Section 2. To solve differential equations with constant coefficients, we provide some basic definitions of HUS in the Section 3. In the Section 4 and Section 5, we use the Tarig transform to demonstrate various types of HUS for both homogeneous and non-homogeneous differential equations. In Section 6, the Tarig transform application is studied, and our manuscript concludes with a discussion of the outcomes. We provide the fundamental definitions required to support our key findings, in the sections that follow.
In this manuscript, the Tarig transform is used in scenarios where it is crucial and integral that solutions to these problems play a major role in science and design. When an actual framework is shown in the differential sense, it yields a differential equation, a critical condition, or an integro-differential equation system. A recent transform introduced by Tarig M. Elzaki is termed the Tarig transform [10], and it is described by
Υ [ ψ ( z ) , ϕ ] = Ψ ( ϕ ) = 1 ϕ 0 e z ϕ 2 ψ ( z ) d z , ϕ 0
or a function ψ ( z ) is of exponential order,
| ψ ( z ) | < M e z k 1 , z 0 M e z k 2 , z 0 ,
where k 1 , k 2 are finite or infinite, and M is a finite real number.
The operator Υ [ · ] is defined by
Υ [ ψ ( z ) ] = Ψ ( ϕ ) = 1 ϕ 0 ψ ( ϕ z ) e z ϕ d z , ϕ 0 .
Obloza’s publications [11,12] were among the main commitments managing the HUS of the differential equations. According to Alsina [13], the HUS of differential equation y ( z ) = y ( z ) was demonstrated. Huang [14] studied the mathematical HUS of a few certain classes of differential equations, using the fixed point approach, iteration method, direct method, and open mapping theorem. HUS concepts were generalized in [15] for a class of non-independent differential systems. Recently, Choi [16] considered the generalized HUS of the differential equation
y ( z ) + ψ ( z ) y ( z ) + ξ ( z ) y ( z ) = r ( z ) .
For more details about the stability of differential equations, we refer the reader to [17,18,19,20,21,22,23,24,25].
In this paper, we were strongly motivated by [14,16], and we prove the various types of HUS results of homogeneous and non-homogeneous linear differential equations,
ψ φ ( z ) + υ 1 ψ ( φ 1 ) ( z ) + + υ φ 1 ψ ( z ) + υ φ ψ ( z ) = 0 ,
ψ φ ( z ) + υ 1 ψ ( φ 1 ) ( z ) + + υ φ 1 ψ ( z ) + υ φ ψ ( z ) = r ( z ) ,
by using the Tarig transform method; here:
  • υ 1 , υ 2 , υ φ 1 , υ φ are scalars;
  • ψ ( z ) —continuously differentiable function.

2. Tarig Transform of Derivatives

We introduce the fundamental ideas and characteristics of the Tarig transform of derivations in this section (Table 1).
Proposition 1
([9]). If Υ [ ψ ( z ) ] = Ψ ( ϕ ) , then:
(i) 
Υ [ ψ ( z ) ] = Ψ ( ϕ ) ϕ 2 1 ϕ ψ ( 0 ) ;
(ii) 
Υ [ ψ ( z ) ] = Ψ ( ϕ ) ϕ 4 1 ϕ 3 ψ ( 0 ) 1 ϕ ψ ( 0 ) ;
(iii) 
Υ [ ψ ( φ ) ( z ) ] = Ψ ( ϕ ) ϕ 2 φ = 1 φ ϕ 2 ( φ ) 1 ψ ( 1 ) ( 0 ) .
(i)
Let ψ ( z ) = 1 ; then, according to (1), we have
Υ [ ψ ( z ) , ϕ ] = 1 ϕ 0 e z ϕ 2 ψ ( z ) d z = 1 ϕ 0 e z ϕ 2 d z Υ [ 1 ] = ϕ .
(ii)
Let ψ ( z ) = z ; then, according to (1), we have
Υ [ ψ ( z ) , ϕ ] = 1 ϕ 0 z e z ϕ 2 d z .
Using the Tarig transform of first-order derivatives, we obtain
T ( z ) = 1 ϕ ϕ 2 0 e z ϕ 2 d z = ϕ 3 .
(iii)
Let ψ ( z ) = e a z ; then, according to (1), we have
Υ [ ψ ( z ) , ϕ ] = 1 ϕ 0 e a z e z ϕ 2 d z .
Tarig transforms of the first and second derivations, as well as the integration by parts rules, are used to obtain
Υ [ e a z ] = 1 ϕ ϕ 2 + ϕ 2 a 0 e a ϕ 2 1 ϕ 2 z d z = 1 ϕ ϕ 2 1 a ϕ 2 Υ [ e a z ] = ϕ 1 a ϕ 2 .

3. Preliminaries

We introduce a few definitions in this section, which will help to support our primary findings.
Definition 1.
The conversion to change in the form of a value or expression without a change in the value and conversion of ψ ( z ) and ξ ( z ) is defined by
ψ ( z ) ξ ( z ) = ( ψ ξ ) z = 0 z ψ ( s ) ξ ( z s ) d s = 0 z ψ ( z s ) ξ ( s ) d s .
Theorem 1.
If Υ [ ψ ( z ) ] = Ξ ( ϕ ) and L [ ψ ( z ) ] = Ψ ( s ) , then Ξ ( ϕ ) = Ψ 1 ϕ 2 ϕ , where Ψ ( s ) is the Tarig transform of ψ ( z ) .
Proof. 
Given
Υ [ ψ ( z ) ] = Ψ ( ϕ ) = 1 ϕ 0 ψ ( ϕ z ) e z ϕ d z Ξ ( ϕ ) ,
let w = ϕ z ; then
Ξ ( ϕ ) = 0 ψ ( w ) e w ϕ 2 d w ϕ = Ψ 1 ϕ 2 ϕ .
Definition 2.
The function ψ ( z ) is called the inverse Tarig transform of Ψ ( ϕ ) if it has the property Υ { ψ ( z ) } = Ψ ( ϕ ) , i.e., Υ 1 { Ψ ( ϕ ) } = ψ ( z ) .
Definition 3
(Linearity property). If Υ 1 { Ψ ( ϕ ) } = ψ ( z ) and Υ 1 { Ξ ( ϕ ) } = ξ ( z ) , then Υ 1 { a Ψ ( ϕ ) + b Ξ ( ϕ ) } = a ψ ( z ) + b ξ ( z ) , for some arbitrary constants a and b.
Theorem 2.
Let ψ ( z ) and ξ ( z ) have Tarig transform Ψ ( s ) and Ξ ( s ) and Tarig transform M ( ϕ ) and N ( ϕ ) , respectively; then, T ( ψ ξ ) ( z ) = ϕ M ( ϕ ) N ( ϕ ) .
Proof. 
The Tarig transform of ( ψ ξ ) is given by
L ( ψ ξ ) ( z ) = Ψ ( s ) Ξ ( s ) .
According to Theorem 1, we obtain
Υ ( ψ ξ ) ( z ) = 1 ϕ L ( ψ ξ ) ( z ) .
Given M ( ϕ ) = Ψ 1 ϕ 2 ϕ , N ( ϕ ) = Ξ 1 ϕ 2 ϕ , the Tarig transform of ( ψ ξ ) is obtained as follows:
T ( ψ ξ ) ( z ) = Ψ 1 ϕ 2 × Ξ 1 ϕ 2 ϕ = ϕ M ( ϕ ) N ( ϕ ) .
Definition 4.
The Mittag-Leffler function of one parameter is defined by
E β ( z ) = k = 0 z k Γ ( β k + 1 ) ,
where z , β C and R ( β ) > 0 . If we put β = 1 , then
E 1 ( z ) = k = 0 z k Γ ( k + 1 ) = k = 0 z k k ! = e z .
Throughout this paper, we consider k > 0 to be a constant, σ : [ 0 , ) ( 0 , ) to be an increasing function, and Ψ = { ψ : [ 0 , ) k } to be a class of all continuously differentiable functions with exponential order. In addition, we let r : [ 0 , ) k be a continuous function, with exponential order σ : [ 0 , ) ( 0 , ) being an increasing function.
Definition 5.
The differential Equation (4) has HUS (for class Ψ) if k > 0 exists, such that
| ψ φ ( z ) + υ 1 ψ ( φ 1 ) ( z ) + + υ φ 1 ψ ( z ) + υ φ ψ ( z ) | ϵ , ϵ > 0 , z 0 ;
then, there exists a solution ξ : [ 0 , ) k of (4), such that ξ Ψ and | ψ ( z ) ξ ( z ) | k ϵ .
Definition 6.
Let σ : [ 0 , ) ( 0 , ) ; then, (4) has σHUS (for the class Ψ) if k > 0 exists, such that
| ψ φ ( z ) + υ 1 ψ ( φ 1 ) ( z ) + + υ φ 1 ψ ( z ) + υ φ ψ ( z ) | σ ( z ) ϵ , ϵ > 0 , z 0 ;
then, there exists a solution ξ : [ 0 , ) k of (4), such that ξ Ψ and | ψ ( z ) ξ ( z ) | k σ ( z ) ϵ , z 0 .
Definition 7.
Let E β ( z ) be the Mittag-Leffler function; then, (4) has Mittag-Leffler–HUS if k > 0 exists, such that
| ψ φ ( z ) + υ 1 ψ ( φ 1 ) ( z ) + + υ φ 1 ψ ( z ) + υ φ ψ ( z ) | E β ( z ) ϵ , ϵ > 0 , z 0 ;
then, there exists a solution ξ : [ 0 , ) k of (4), such that ξ Ψ and | ψ ( z ) ξ ( z ) | k E β ( z ) ϵ , z 0 .
Definition 8.
Let σ : [ 0 , ) ( 0 , ) and E β ( z ) be the Mittag-Leffler function; then, (4) has Mittag-Leffler–σHUS, if k > 0 exists, such that
| ψ φ ( z ) + υ 1 ψ ( φ 1 ) ( z ) + + υ φ 1 ψ ( z ) + υ φ ψ ( z ) | σ ( z ) E β ( z ) ϵ , ϵ > 0 , z 0 ;
then, there exists a solution ξ : [ 0 , ) k of (4), such that ξ Ψ and | ψ ( z ) ξ ( z ) | k σ E β ( z ) ϵ , z 0 .
Similarly, we can define the various stability results of (5).

4. Stability of (4)

In this section, we prove several types of the HUS of (4), by using the Tarig transform. For any constant υ , we denote the real part of υ by R ( υ ) .
Theorem 3.
Let ( υ 1 + + υ φ 1 + υ φ ) be a constant, with R ( υ 1 + + υ φ 1 + υ φ ) > 0 ; then, (4) is Hyers–Ulam stable in the class Ψ.
Proof. 
Let ψ Ψ satisfy (6), z 0 , and the function m : [ 0 , ) k be defined by
m ( z ) = ψ φ ( z ) + υ 1 ψ ( φ 1 ) ( z ) + + υ φ 1 ψ ( z ) + υ φ ψ ( z ) , z 0 .
Taking Tarig transform on above equation, we have
Υ { m ( z ) } = M ( ϕ ) = Υ { ψ φ ( z ) + υ 1 ψ ( φ 1 ) ( z ) + + υ φ 1 ψ ( z ) + υ φ ψ ( z ) } M ( ϕ ) = Υ { ψ φ ( z ) } + υ 1 Υ { ψ ( φ 1 ) ( z ) } + + υ φ 1 Υ { ψ ( z ) } + υ φ Υ { ψ ( z ) } ,
where Υ { ψ ( z ) } = Ψ ( ϕ ) , given
Υ { ψ ( z ) } = Ψ ( ϕ ) ϕ 2 1 ϕ ψ ( 0 ) Υ { ψ ( z ) } = Ψ ( ϕ ) ϕ 4 1 ϕ 3 ψ ( 0 ) 1 ϕ ψ ( 0 ) .
For any positive integer φ , we obtain
Υ { ψ ( φ 1 ) ( z ) } = Ψ ( ϕ ) ϕ 2 ( φ 1 ) = 1 φ 1 ϕ 2 ( ( φ 1 ) ) 1 ψ ( 1 ) ( 0 ) Υ { ψ φ ( z ) } = Ψ ( ϕ ) ϕ 2 φ = 1 φ ϕ 2 ( φ ) 1 ψ ( 1 ) ( 0 )
M ( ϕ ) = Ψ ( ϕ ) ϕ 2 φ = 1 φ ϕ 2 ( φ ) 1 ψ ( 1 ) ( 0 ) + υ 1 ( z ) Ψ ( ϕ ) ϕ 2 ( φ 1 ) = 1 φ 1 ϕ 2 ( ( φ 1 ) ) 1 ψ ( 1 ) ( 0 ) + + υ φ 1 Ψ ( ϕ ) ϕ 2 1 ϕ ψ ( 0 ) + υ φ Ψ ( ϕ ) ,
allowing
Υ { ψ ( z ) } = Ψ ( ϕ ) = M ( ϕ ) + = 1 φ ϕ 2 ( φ ) 1 ψ ( 1 ) ( 0 ) + υ 1 ( z ) = 1 φ 1 ϕ 2 ( ( φ 1 ) ) 1 ψ ( 1 ) ( 0 ) + + υ φ 1 1 ϕ ψ ( 0 ) 1 ϕ 2 φ + υ 1 ( z ) 1 ϕ 2 ( φ 1 ) + + υ φ 1 1 ϕ 2 + υ φ .
If we put z = 0 in ξ ( z ) = e ( υ 1 + + υ φ 2 + υ φ ) z ψ ( z ) , then ξ ( 0 ) = ψ ( 0 ) and ξ Ψ . The Tarig transform of ξ ( z ) produces the following:
Υ { ξ ( z ) } = Ξ ( ϕ ) = = 1 φ ϕ 2 ( φ ) 1 ψ ( 1 ) ( 0 ) + υ 1 ( z ) = 1 φ 1 ϕ 2 ( ( φ 1 ) ) 1 ψ ( 1 ) ( 0 ) + + υ φ 1 1 ϕ ψ ( 0 ) 1 ϕ 2 φ + υ 1 ( z ) 1 ϕ 2 ( φ 1 ) + + υ φ 1 1 ϕ 2 + υ φ ;
thus,
Υ { ξ φ ( z ) + υ 1 ( z ) ξ ( φ 1 ) ( z ) + + υ φ 1 ξ ( z ) + υ φ ξ ( z ) } = Ξ ( ϕ ) ϕ 2 φ = 1 φ ϕ 2 ( φ ) 1 ξ ( 1 ) ( 0 ) + υ 1 ( z ) Ξ ( ϕ ) ϕ 2 ( φ 1 ) = 1 φ 1 ϕ 2 ( ( φ 1 ) ) 1 ξ ( 1 ) ( 0 ) + + υ φ 1 Ξ ( ϕ ) ϕ 2 1 ϕ ξ ( 0 ) + υ φ Ξ ( ϕ ) .
In general, for any n 0 Z ,
Ξ ( ϕ ) ϕ 2 φ = 1 φ ϕ 2 ( φ ) 1 ξ ( 1 ) ( 0 ) + υ 1 ( z ) Ξ ( ϕ ) ϕ 2 ( φ 1 ) υ 1 ( z ) = 1 φ 1 ϕ 2 ( ( φ 1 ) ) 1 ξ ( 1 ) ( 0 ) + + υ φ 1 Ξ ( ϕ ) ϕ 2 υ φ 1 1 ϕ ξ ( 0 ) + υ φ Ξ ( ϕ ) = 0
Ξ ( ϕ ) ϕ 2 φ + υ 1 ( z ) Ξ ( ϕ ) ϕ 2 ( φ 1 ) + + υ φ 1 Ξ ( ϕ ) ϕ 2 + υ φ Ξ ( ϕ ) = = 1 φ ϕ 2 ( φ ) 1 ξ ( 1 ) ( 0 ) + υ 1 ( z ) = 1 φ 1 ϕ 2 ( ( φ 1 ) ) 1 ξ ( 1 ) ( 0 ) + + υ φ 1 1 ϕ ξ ( 0 ) υ φ 1 1 ϕ ξ ( 0 )
Ξ ( ϕ ) 1 ϕ 2 φ + υ 1 ( z ) 1 ϕ 2 ( φ 1 ) + + υ φ 1 1 ϕ 2 + υ φ = = 1 φ ϕ 2 ( φ ) 1 ξ ( 1 ) ( 0 ) + υ 1 ( z ) = 1 φ 1 ϕ 2 ( ( φ 1 ) ) 1 ξ ( 1 ) ( 0 ) + + υ φ 1 1 ϕ ξ ( 0 ) υ φ 1 1 ϕ ξ ( 0 ) ,
substituting
Υ { ξ ( z ) } = Ξ ( ϕ ) = = 1 φ ϕ 2 ( φ ) 1 ξ ( 1 ) ( 0 ) + υ 1 ( z ) = 1 φ 1 ϕ 2 ( ( φ 1 ) ) 1 ξ ( 1 ) ( 0 ) + + υ φ 1 1 ϕ ξ ( 0 ) 1 ϕ 2 φ + υ 1 ( z ) 1 ϕ 2 ( φ 1 ) + + υ φ 1 1 ϕ 2 + υ φ .
According to (12), we obtain
Υ { ξ φ ( z ) + υ 1 ( z ) ξ ( φ 1 ) ( z ) + + υ φ 1 ξ ( z ) + υ φ ξ ( z ) } = 0 .
Given that T is an injective operator, then
ξ φ ( z ) + υ 1 ( z ) ξ ( φ 1 ) ( z ) + + υ φ 1 ξ ( z ) + υ φ ξ ( z ) = 0 .
Here, ξ ( z ) is a solution of (4). According to (11) and (12), we obtain
Υ { ψ ( z ) } Υ { ξ ( z ) } = Ψ ( ϕ ) Ξ ( ϕ ) = M ( ϕ ) 1 ϕ 2 φ + υ 1 ( z ) 1 ϕ 2 ( φ 1 ) + + υ φ 1 1 ϕ 2 + υ φ = ϕ M ( ϕ ) 1 ϕ 1 ϕ 2 φ + υ 1 ( z ) 1 ϕ 2 ( φ 1 ) + + υ φ 1 1 ϕ 2 + υ φ = u M ( ϕ ) N ( ϕ ) = Υ { m ( z ) n ( z ) } ,
where
N ( ϕ ) = 1 ϕ 1 ϕ 2 φ + υ 1 ( z ) 1 ϕ 2 ( φ 1 ) + + υ φ 1 1 ϕ 2 + υ φ Υ { n ( z ) } = N ( ϕ ) = 1 ϕ 1 ϕ 2 φ + υ 1 ( z ) 1 ϕ 2 ( φ 1 ) + + υ φ 1 1 ϕ 2 + υ φ = ϕ 2 φ ϕ ( 1 + υ 1 ( z ) ϕ 2 + + υ φ 1 ϕ 2 ( φ 1 ) + υ φ ϕ 2 φ ) Υ { n ( z ) } = ( ϕ 2 ) φ ϕ ( 1 + υ 1 ( z ) ϕ 2 + + υ φ 1 ϕ 2 ( φ 1 ) + υ φ ϕ 2 φ ) n ( z ) = Υ 1 ϕ φ ( 1 + υ 1 ( z ) ϕ 2 + + υ φ 1 ϕ 2 ( φ 1 ) + υ φ ϕ 2 φ ) ( n ( z ) ) = e ( υ 1 + + υ φ 1 + υ φ ) z .
Consequently,
Υ { ψ ( z ) ξ ( z ) } = Υ { m ( z ) n ( z ) } .
This implies that
ψ ( z ) ξ ( z ) = m ( z ) n ( z ) .
Taking the modulus on each side, we obtain
| ψ ( z ) ξ ( z ) | = | m ( z ) n ( z ) | = | 0 m ( s ) n ( z s ) d s | 0 | m ( s ) | | n ( z s ) | d s | ψ ( z ) ξ ( z ) | ϵ 0 n ( z s ) d s .
Given n ( z ) = e ( υ 1 + + υ φ 2 + υ φ ) z (or) n ( z ) = e R ( υ 1 + + υ φ 2 + υ φ ) z , then
| ψ ( z ) ξ ( z ) | ϵ 0 e R ( υ 1 + + υ φ 2 + υ φ ) ( z s ) d s ϵ e R ( υ 1 + + υ φ 2 + υ φ ) z . 0 e R ( υ 1 + + υ φ 2 + υ φ ) s d s , ϵ e R ( υ 1 + + υ φ 2 + υ φ ) z R ( υ 1 + + υ φ 2 + υ φ ) . e R ( υ 1 + + υ φ 2 + υ φ ) z 1 ϵ R ( υ 1 + + υ φ 2 + υ φ ) . e R ( υ 1 + + υ φ 2 + υ φ ) z e R ( υ 1 + + υ φ 2 + υ φ ) z 1 ϵ R ( υ 1 + + υ φ 2 + υ φ ) . 1 e R ( υ 1 + + υ φ 2 + υ φ ) z k ϵ , z 0 ,
where k = 1 R ( υ 1 + + υ φ 2 + υ φ ) . This implies that (4) has HUS in Ψ . □
Note: If R ( υ 1 + + υ φ 1 + υ φ ) < 0 , then ϵ R ( υ 1 + + υ φ 1 + υ φ ) 1 e R ( υ 1 + + υ φ 1 + υ φ ) z diverges to , as z , i.e., we cannot prove the HUS by applying the Tarig transform method when R ( υ 1 + + υ φ 1 + υ φ ) < 0 .
Theorem 4.
Let υ 1 + + υ φ 1 + υ φ be a constant, with R ( υ 1 + + υ φ 1 + υ φ ) > 0 and σ : [ 0 , ) ( 0 , ) being an increasing function; then, (4) has σHUS in Ψ.
Proof. 
Given (7) holds, z 0 and σ : [ 0 , ) ( 0 , ) is an increasing function. Define m : [ 0 , ) k by
m ( z ) = ψ φ ( z ) + υ 1 ψ ( φ 1 ) ( z ) + + υ φ 1 ψ ( z ) + υ φ ψ ( z ) , z 0 .
We prove | m ( z ) | σ ( z ) ϵ , z 0 .
By Theorem 3, we can prove that ξ ( z ) = e ( υ 1 + + υ φ 1 + υ φ ) z ψ ( z ) is a solution of (4) and ξ Ψ ; then,
N ( ϕ ) = 1 ϕ 1 ϕ 2 φ + υ 1 ( z ) 1 ϕ 2 ( φ 1 ) + + υ φ 1 1 ϕ 2 + υ φ ,
which yields
n ( z ) = Υ 1 ϕ φ ( 1 + υ 1 ( z ) ϕ 2 + + υ φ 1 ϕ 2 ( φ 1 ) + υ φ ϕ 2 φ ) ( n ( z ) ) = e ( υ 1 + + υ φ 1 + υ φ ) z .
Moreover, according to (11) and (12),
Υ { ψ ( z ) } Υ { ξ ( z ) } = Ψ ( ϕ ) Ξ ( ϕ ) = M ( ϕ ) 1 ϕ 2 φ + υ 1 ( z ) 1 ϕ 2 ( φ 1 ) + + υ φ 1 1 ϕ 2 + υ φ = ϕ M ( ϕ ) 1 ϕ 1 ϕ 2 φ + υ 1 ( z ) 1 ϕ 2 ( φ 1 ) + + υ φ 1 1 ϕ 2 + υ φ = ϕ M ( ϕ ) N ( ϕ ) Υ { ψ ( z ) ξ ( z ) } = Υ { m ( z ) n ( z ) } ,
which yields
Υ { ψ ( z ) ξ ( z ) } = Υ { m ( z ) n ( z ) } ;
therefore,
ψ ( z ) ξ ( z ) = m ( z ) n ( z ) ψ ( z ) ξ ( z ) = m ( z ) e ( υ 1 + + υ φ 1 + υ φ ) z .
According to Theorem 10, we can show that
| ψ ( z ) ξ ( z ) | = | m ( z ) e ( υ 1 + + υ φ 1 + υ φ ) z | = | 0 z m ( s ) e ( υ 1 + + υ φ 1 + υ φ ) ( z s ) d s | 0 z | i ( s ) | | e ( υ 1 + + υ φ 1 + υ φ ) ( z s ) | d s σ ( z ) ϵ e R ( υ 1 + + υ φ 1 + υ φ ) z 0 z e R ( υ 1 + + υ φ 1 + υ φ ) s d s σ ( z ) ϵ R ( υ 1 + + υ φ 1 + υ φ ) ( 1 e R ( υ 1 + + υ φ 1 + υ φ ) z ) k σ ( z ) ϵ , z 0 ,
where k = 1 R ( υ 1 + + υ φ 1 + υ φ ) . □
Theorem 5.
Given ( υ 1 + + υ φ 1 + υ φ ) and β > 0 are constants satisfying R ( υ 1 + + υ φ 1 + υ φ ) > 0 , then (4) has Mittag-Leffler–HUS in Ψ.
Proof. 
Given ψ Ψ satisfies (8), z 0 and m : [ 0 , ) k are defined by
m ( z ) = ψ φ ( z ) + υ 1 ψ ( φ 1 ) ( z ) + + υ φ 1 ψ ( z ) + υ φ ψ ( z ) , z 0 .
According to (8), we obtain | m ( z ) | ϵ , z 0 . The Tarig transform of m ( z ) yields
M ( ϕ ) = Υ { m ( z ) } = Υ { ψ φ ( z ) + υ 1 ψ ( φ 1 ) ( z ) + + υ φ 1 ψ ( z ) + υ φ ψ ( z ) } .
Setting
Υ { ψ ( z ) } = Ψ ( ϕ ) = M ( ϕ ) + = 1 φ ϕ 2 ( φ ) 1 ψ ( 1 ) ( 0 ) + υ 1 ( z ) = 1 φ 1 ϕ 2 ( ( φ 1 ) ) 1 ψ ( 1 ) ( 0 ) + + υ φ 1 1 ϕ ψ ( 0 ) 1 ϕ 2 φ + υ 1 ( z ) 1 ϕ 2 ( φ 1 ) + + υ φ 1 1 ϕ 2 + υ φ .
Given ξ ( z ) = e ( υ 1 + + υ φ 1 + υ φ ) z ψ ( z ) , then ξ ( 0 ) = ψ ( 0 ) and ξ Ψ . The Tarig transform of ξ ( z ) yields
Υ { ξ ( z ) } = Ξ ( ϕ ) = = 1 φ ϕ 2 ( φ ) 1 ψ ( 1 ) ( 0 ) + υ 1 ( z ) = 1 φ 1 ϕ 2 ( ( φ 1 ) ) 1 ψ ( 1 ) ( 0 ) + + υ φ 1 1 ϕ ψ ( 0 ) 1 ϕ 2 φ + υ 1 ( z ) 1 ϕ 2 ( φ 1 ) + + υ φ 1 1 ϕ 2 + υ φ .
It follows from (15) that
Υ { ξ φ ( z ) + υ 1 ( z ) ξ ( φ 1 ) ( z ) + + υ φ 1 ξ ( z ) + υ φ ξ ( z ) } = Ξ ( ϕ ) ϕ 2 φ = 1 φ ϕ 2 ( φ ) 1 ξ ( 1 ) ( 0 ) + υ 1 ( z ) Ξ ( ϕ ) ϕ 2 ( φ 1 ) = 1 φ 1 ϕ 2 ( ( φ 1 ) ) 1 ξ ( 1 ) ( 0 ) + + υ φ 1 Ξ ( ϕ ) ϕ 2 1 ϕ ξ ( 0 ) + υ φ Ξ ( ϕ ) .
Given Υ is injective operator,
ξ φ ( z ) + υ 1 ( z ) ξ ( φ 1 ) ( z ) + + υ φ 1 ξ ( z ) + υ φ ξ ( z ) = 0 ,
if we set
N ( ϕ ) = 1 ϕ 1 ϕ 2 φ + υ 1 ( z ) 1 ϕ 2 ( φ 1 ) + + υ φ 1 1 ϕ 2 + υ φ ,
then we obtain
n ( z ) = Υ 1 ϕ φ ( 1 + υ 1 ( z ) ϕ 2 + + υ φ 1 ϕ 2 ( φ 1 ) + υ φ ϕ 2 φ ) ( n ( z ) ) = e ( υ 1 + + υ φ 1 + υ φ ) z .
According to (14) and (15), we obtain
Υ { ψ ( z ) } Υ { ξ ( z ) } = Ψ ( z ) Ξ ( z ) = M ( ϕ ) 1 ϕ 2 φ + υ 1 ( z ) 1 ϕ 2 ( φ 1 ) + + υ φ 1 1 ϕ 2 + υ φ = ϕ M ( ϕ ) 1 1 ϕ 2 φ + υ 1 ( z ) 1 ϕ 2 ( φ 1 ) + + υ φ 1 1 ϕ 2 + υ φ = ϕ M ( ϕ ) N ( ϕ ) Υ { ψ ( z ) ξ ( z ) } = Υ { m ( z ) n ( z ) } ,
which gives us
ψ ( z ) ξ ( z ) = m ( z ) n ( z ) ψ ( z ) ξ ( z ) = m ( z ) e ( υ 1 + + υ φ 1 + υ φ ) z .
Given | m ( z ) | ϵ E β ( z ) for z 0 and E β ( z ) is increasing for z 0 , then we obtain
| ψ ( z ) ξ ( z ) | = | m ( z ) e ( υ 1 + + υ φ 1 + υ φ ) z | = | 0 z m ( s ) e ( υ 1 + + υ φ 1 + υ φ ) ( z s ) d s | 0 z | i ( s ) | | e ( υ 1 + + υ φ 1 + υ φ ) ( z s ) | d s E β ( z ) ϵ e R ( υ 1 + + υ φ 1 + υ φ ) z 0 z e R ( υ 1 + + υ φ 1 + υ φ ) s d s E β ( z ) ϵ R ( υ 1 + + υ φ 1 + υ φ ) ( 1 e R ( υ 1 + + υ φ 1 + υ φ ) z ) k E β ( z ) ϵ , z 0 ,
where k = 1 R ( υ 1 + + υ φ 1 + υ φ ) . □
Theorem 6.
Let the constants β > 0 , R ( υ 1 + + υ φ 1 + υ φ ) > 0 and σ : [ 0 , ) ( 0 , ) be an increasing function; then, (4) has Mittag-Leffler–σHUS in Ψ.
Proof. 
Let ψ Ψ satisfy (9) z 0 , and σ : [ 0 , ) ( 0 , ) be an increasing function. We will prove that k > 0 exists (independent of ϵ ), and a solution ξ : [ 0 , ) k of (4), such that ξ Ψ and
| ψ ( z ) ξ ( z ) | k σ ( z ) E β ( z ) , z 0 .
Define ξ : [ 0 , ) k by
m ( z ) = ψ φ ( z ) + υ 1 ψ ( φ 1 ) ( z ) + + υ φ 1 ψ ( z ) + υ φ ψ ( z ) , z 0 ;
then, | m ( z ) | σ ( z ) ϵ E β ( z ) z 0 . According to Theorem 5, we obtain
| ψ ( z ) ξ ( z ) | = | m ( z ) e ( υ 1 + + υ φ 1 + υ φ ) z | = | 0 z m ( s ) e ( υ 1 + + υ φ 1 + υ φ ) ( z s ) d s | 0 z | i ( s ) | | e ( υ 1 + + υ φ 1 + υ φ ) ( z s ) | d s σ ( z ) E β ( z ) ϵ e R ( υ 1 + + υ φ 1 + υ φ ) z 0 z e R ( υ 1 + + υ φ 1 + υ φ ) s d s σ ( z ) E β ( z ) ϵ R ( υ 1 + + υ φ 1 + υ φ ) ( 1 e R ( υ 1 + + υ φ 1 + υ φ ) z ) k σ ( z ) E β ( z ) ϵ , z 0 ,
where k = 1 R ( υ 1 + + υ φ 1 + υ φ ) . □

5. Stability of (5)

In this section, we prove several types of the HUS of (5), by using the Tarig transform.
Theorem 7.
Given ( υ 1 + + υ φ 1 + υ φ ) is a constant with R ( υ 1 + + υ φ 1 + υ φ ) > 0 , and r : [ 0 , ) is a continuous function, then (4) has HUS in Ψ.
Proof. 
Let ψ Ψ satisfy HUS. Define m : [ 0 , ) k by
m ( z ) = ψ φ ( z ) + υ 1 ψ ( φ 1 ) ( z ) + + υ φ 1 ψ ( z ) + υ φ ψ ( z ) r ( z ) , z 0 ;
then, | m ( z ) | ϵ holds, z 0 . The Tarig transform of m ( z ) yields
Υ { m ( z ) } = M ( ϕ ) = Υ { ψ φ ( z ) + υ 1 ψ ( φ 1 ) ( z ) + + υ φ 1 ψ ( z ) + υ φ ψ ( z ) r ( z ) } ,
which implies
Υ { ψ ( z ) } = Ψ ( ϕ ) = M ( ϕ ) + = 1 φ ϕ 2 ( φ ) 1 ψ ( 1 ) ( 0 ) + υ 1 ( z ) = 1 φ 1 ϕ 2 ( ( φ 1 ) ) 1 ψ ( 1 ) ( 0 ) + + υ φ 1 1 ϕ ψ ( 0 ) 1 ϕ 2 φ + υ 1 ( z ) 1 ϕ 2 ( φ 1 ) + + υ φ 1 1 ϕ 2 + υ φ .
If we set
ξ ( z ) = e ( υ 1 + + υ φ 2 + υ φ ) z ψ ( z ) + m ( z ) e ( υ 1 + + υ φ 2 + υ φ ) z ,
then ξ ( 0 ) = ψ ( 0 ) and ξ Ψ . The Tarig transform of ξ ( z ) yields
Υ { ξ ( z ) } = Ξ ( ϕ ) = = 1 φ ϕ 2 ( φ ) 1 ψ ( 1 ) ( 0 ) + υ 1 ( z ) = 1 φ 1 ϕ 2 ( ( φ 1 ) ) 1 ψ ( 1 ) ( 0 ) + + υ φ 1 1 ϕ ψ ( 0 ) 1 ϕ 2 φ + υ 1 ( z ) 1 ϕ 2 ( φ 1 ) + + υ φ 1 1 ϕ 2 + υ φ .
On the other hand,
Υ { ξ φ ( z ) + υ 1 ( z ) ξ ( φ 1 ) ( z ) + + υ φ 1 ξ ( z ) + υ φ ξ ( z ) } = Ξ ( ϕ ) ϕ 2 φ = 1 φ ϕ 2 ( φ ) 1 ξ ( 1 ) ( 0 ) + υ 1 ( z ) Ξ ( ϕ ) ϕ 2 ( φ 1 ) = 1 φ 1 ϕ 2 ( ( φ 1 ) ) 1 ξ ( 1 ) ( 0 ) + + υ φ 1 Ξ ( ϕ ) ϕ 2 1 ϕ ξ ( 0 ) + υ φ Ξ ( ϕ ) .
According to (22), we obtain
Υ { ξ φ ( z ) + υ 1 ( z ) ξ ( φ 1 ) ( z ) + + υ φ 1 ξ ( z ) + υ φ ξ ( z ) } = T ( r ( z ) ) = R ( ϕ ) ,
and thus,
ξ φ ( z ) + υ 1 ( z ) ξ ( φ 1 ) ( z ) + + υ φ 1 ξ ( z ) + υ φ ξ ( z ) = r ( z ) ;
here, ξ ( z ) is a solution to (4). According to (21) and (22), we can obtain
Υ { ψ ( z ) } Υ { ξ ( z ) } = Ψ ( ϕ ) Ξ ( ϕ ) = M ( ϕ ) 1 ϕ 2 φ + υ 1 ( z ) 1 ϕ 2 ( φ 1 ) + + υ φ 1 1 ϕ 2 + υ φ = ϕ M ( ϕ ) 1 ϕ 1 ϕ 2 φ + υ 1 ( z ) 1 ϕ 2 ( φ 1 ) + + υ φ 1 1 ϕ 2 + υ φ = u M ( ϕ ) N ( ϕ ) = Υ { m ( z ) n ( z ) } ,
where
N ( ϕ ) = 1 ϕ 1 ϕ 2 φ + υ 1 ( z ) 1 ϕ 2 ( φ 1 ) + + υ φ 1 1 ϕ 2 + υ φ ,
which yields
Υ { n ( z ) } = N ( ϕ ) = ϕ φ ( 1 + υ 1 ( z ) ϕ 2 + + υ φ 1 ϕ 2 ( φ 1 ) + υ φ ϕ 2 φ ) n ( z ) = Υ 1 ϕ φ ( 1 + υ 1 ( z ) ϕ 2 + + υ φ 1 ϕ 2 ( φ 1 ) + υ φ ϕ 2 φ ) ( n ( z ) ) = e ( υ 1 + + υ φ 1 + υ φ ) z ;
therefore,
Υ { ψ ( z ) ξ ( z ) } = Υ { m ( z ) n ( z ) }
and
ψ ( z ) ξ ( z ) = m ( z ) e ( υ 1 + + υ φ 1 + υ φ ) z .
Furthermore,
| ψ ( z ) ξ ( z ) | = | m ( z ) e ( υ 1 + + υ φ 1 + υ φ ) z | = | 0 z m ( s ) e ( υ 1 + + υ φ 1 + υ φ ) ( z s ) d s | 0 z | m ( s ) | | e ( υ 1 + + υ φ 1 + υ φ ) ( z s ) | d s ϵ e R ( υ 1 + + υ φ 1 + υ φ ) z 0 z e R ( υ 1 + + υ φ 1 + υ φ ) s d s ϵ R ( υ 1 + + υ φ 1 + υ φ ) ( 1 e R ( υ 1 + + υ φ 1 + υ φ ) z ) k ϵ , z 0 ,
where k = 1 R ( υ 1 + + υ φ 2 + υ φ ) . □
Theorem 8.
Given r : [ 0 , ) k is a continuous function, σ : [ 0 , ) ( 0 , ) is an increasing function, and υ 1 + + υ φ 1 + υ φ is a constant with R ( υ 1 + + υ φ 1 + υ φ ) > 0 , then (5) has the σHUS in Ψ.
Proof. 
Let ψ Ψ satisfy σ HUS, and define m : [ 0 , ) k by
m ( z ) = ψ φ ( z ) + υ 1 ψ ( φ 1 ) ( z ) + + υ φ 1 ψ ( z ) + υ φ ψ ( z ) , z 0 ;
then, | m ( z ) | σ ( z ) ϵ z 0 . It is straightforward to verify
Υ { ψ ( z ) } = Ψ ( ϕ ) = M ( ϕ ) + = 1 φ ϕ 2 ( φ ) 1 ψ ( 1 ) ( 0 ) + υ 1 ( z ) = 1 φ 1 ϕ 2 ( ( φ 1 ) ) 1 ψ ( 1 ) ( 0 ) + + υ φ 1 1 ϕ ψ ( 0 ) 1 ϕ 2 φ + υ 1 ( z ) 1 ϕ 2 ( φ 1 ) + + υ φ 1 1 ϕ 2 + υ φ .
If we set
ξ ( z ) = e ( υ 1 + + υ φ 2 + υ φ ) z ψ ( z ) + m ( z ) e ( υ 1 + + υ φ 2 + υ φ ) z ,
then ξ ( 0 ) = ψ ( 0 ) and ξ Ψ . Furthermore, if we apply the Tarig transform, we obtain
Υ { ξ ( z ) } = Ξ ( ϕ ) = = 1 φ ϕ 2 ( φ ) 1 ψ ( 1 ) ( 0 ) + υ 1 ( z ) = 1 φ 1 ϕ 2 ( ( φ 1 ) ) 1 ψ ( 1 ) ( 0 ) + + υ φ 1 1 ϕ ψ ( 0 ) 1 ϕ 2 φ + υ 1 ( z ) 1 ϕ 2 ( φ 1 ) + + υ φ 1 1 ϕ 2 + υ φ ;
then,
Υ { ξ φ ( z ) + υ 1 ( z ) ξ ( φ 1 ) ( z ) + + υ φ 1 ξ ( z ) + υ φ ξ ( z ) } = Ξ ( ϕ ) ϕ 2 φ = 1 φ ϕ 2 ( φ ) 1 ξ ( 1 ) ( 0 ) + υ 1 ( z ) Ξ ( ϕ ) ϕ 2 ( φ 1 ) = 1 φ 1 ϕ 2 ( ( φ 1 ) ) 1 ξ ( 1 ) ( 0 ) + + υ φ 1 Ξ ( ϕ ) ϕ 2 1 ϕ ξ ( 0 ) + υ φ Ξ ( ϕ ) .
According to (24), it is implied that
Υ { ξ φ ( z ) + υ 1 ( z ) ξ ( φ 1 ) ( z ) + + υ φ 1 ξ ( z ) + υ φ ξ ( z ) } = T ( r ( z ) ) = R ( ϕ )
and
ξ φ ( z ) + υ 1 ( z ) ξ ( φ 1 ) ( z ) + + υ φ 1 ξ ( z ) + υ φ ξ ( z ) = r ( z ) ,
and ξ ( z ) is a solution to (5); using (23) and (24), we obtain
Υ { ψ ( z ) } Υ { ξ ( z ) } = Ψ ( ϕ ) Ξ ( ϕ ) = M ( ϕ ) 1 ϕ 2 φ + υ 1 ( z ) 1 ϕ 2 ( φ 1 ) + + υ φ 1 1 ϕ 2 + υ φ = ϕ M ( ϕ ) 1 ϕ 1 ϕ 2 φ + υ 1 ( z ) 1 ϕ 2 ( φ 1 ) + + υ φ 1 1 ϕ 2 + υ φ = u M ( ϕ ) N ( ϕ ) Υ { ψ ( z ) ξ ( z ) } = Υ { m ( z ) n ( z ) } ,
where
N ( ϕ ) = 1 ϕ 1 ϕ 2 φ + υ 1 ( z ) 1 ϕ 2 ( φ 1 ) + + υ φ 1 1 ϕ 2 + υ φ ,
which yields
n ( z ) = Υ 1 ϕ φ ( 1 + υ 1 ( z ) ϕ 2 + + υ φ 1 ϕ 2 ( φ 1 ) + υ φ ϕ 2 φ ) ( n ( z ) ) = e ( υ 1 + + υ φ 1 + υ φ ) z ;
therefore, we obtain Υ { ψ ( z ) ξ ( z ) } = Υ { m ( z ) n ( z ) } , which yields ψ ( z ) ξ ( z ) = m ( z ) n ( z ) .
According to Theorem (4), we obtain
| ψ ( z ) ξ ( z ) | = | m ( z ) n ( z ) | = | 0 z m ( s ) n ( z s ) d s | 0 z | m ( s ) | | e ( υ 1 + + υ φ 1 + υ φ ) ( z s ) | d s σ ( z ) ϵ e R ( υ 1 + + υ φ 1 + υ φ ) z 0 z e R ( υ 1 + + υ φ 1 + υ φ ) s d s σ ( z ) ϵ R ( υ 1 + + υ φ 1 + υ φ ) ( 1 e R ( υ 1 + + υ φ 1 + υ φ ) z ) k σ ( z ) ϵ , z 0 ,
where k = 1 R ( υ 1 + + υ φ 2 + υ φ ) . □
Theorem 9.
Given ( υ 1 + + υ φ 1 + υ φ ) , β > 0 are constants with R ( υ 1 + + υ φ 1 + υ φ ) > 0 , and r : [ 0 , ) is a continuous function, then (5) has Mittag-Leffler–HUS in Ψ.
Proof. 
Let ψ Ψ satisfy Mittag-Leffler–HUS, and m : [ 0 , ) k be defined by
m ( z ) = ψ φ ( z ) + υ 1 ψ ( φ 1 ) ( z ) + + υ φ 1 ψ ( z ) + υ φ ψ ( z ) r ( z ) , z 0 .
From the definition of Mittag-Leffler–HUS, we obtain | m ( z ) | E β ( z ) ϵ , z 0 . The Tarig transform of m ( z ) yields
Υ { m ( z ) } = M ( ϕ ) = Υ { ψ φ ( z ) + υ 1 ψ ( φ 1 ) ( z ) + + υ φ 1 ψ ( z ) + υ φ ψ ( z ) r ( z ) } ,
which is
Υ { ψ ( z ) } = Ψ ( ϕ ) = M ( ϕ ) + = 1 φ ϕ 2 ( φ ) 1 ψ ( 1 ) ( 0 ) + υ 1 ( z ) = 1 φ 1 ϕ 2 ( ( φ 1 ) ) 1 ψ ( 1 ) ( 0 ) + + υ φ 1 1 ϕ ψ ( 0 ) 1 ϕ 2 φ + υ 1 ( z ) 1 ϕ 2 ( φ 1 ) + + υ φ 1 1 ϕ 2 + υ φ .
If we set
ξ ( z ) = e ( υ 1 + + υ φ 2 + υ φ ) z ψ ( z ) + m ( z ) e ( υ 1 + + υ φ 2 + υ φ ) z ,
then ξ ( 0 ) = ψ ( 0 ) and ψ Ψ . By applying the Tarig transform on each side, we obtain
Υ { ξ ( z ) } = Ξ ( ϕ ) = = 1 φ ϕ 2 ( φ ) 1 ψ ( 1 ) ( 0 ) + υ 1 ( z ) = 1 φ 1 ϕ 2 ( ( φ 1 ) ) 1 ψ ( 1 ) ( 0 ) + + υ φ 1 1 ϕ ψ ( 0 ) 1 ϕ 2 φ + υ 1 ( z ) 1 ϕ 2 ( φ 1 ) + + υ φ 1 1 ϕ 2 + υ φ ;
then,
Υ { ξ φ ( z ) + υ 1 ( z ) ξ ( φ 1 ) ( z ) + + υ φ 1 ξ ( z ) + υ φ ξ ( z ) } = Ξ ( ϕ ) ϕ 2 φ = 1 φ ϕ 2 ( φ ) 1 ξ ( 1 ) ( 0 ) + υ 1 ( z ) Ξ ( ϕ ) ϕ 2 ( φ 1 ) = 1 φ 1 ϕ 2 ( ( φ 1 ) ) 1 ξ ( 1 ) ( 0 ) + + υ φ 1 Ξ ( ϕ ) ϕ 2 1 ϕ ξ ( 0 ) + υ φ Ξ ( ϕ ) .
According to (26), we then obtain
Υ { ξ φ ( z ) + υ 1 ( z ) ξ ( φ 1 ) ( z ) + + υ φ 1 ξ ( z ) + υ φ ξ ( z ) } = T ( r ( z ) ) = R ( ϕ )
and
ξ φ ( z ) + υ 1 ( z ) ξ ( φ 1 ) ( z ) + + υ φ 1 ξ ( z ) + υ φ ξ ( z ) = r ( z ) ;
here, ξ ( z ) is a solution to (5). Applying (25) and (26), we obtain
Υ { ψ ( z ) } Υ { ξ ( z ) } = Ψ ( ϕ ) Ξ ( ϕ ) = M ( ϕ ) 1 ϕ 2 φ + υ 1 ( z ) 1 ϕ 2 ( φ 1 ) + + υ φ 1 1 ϕ 2 + υ φ = ϕ M ( ϕ ) 1 ϕ 1 ϕ 2 φ + υ 1 ( z ) 1 ϕ 2 ( φ 1 ) + + υ φ 1 1 ϕ 2 + υ φ = u M ( ϕ ) N ( ϕ ) Υ { ψ ( z ) ξ ( z ) } = Υ { m ( z ) n ( z ) } ,
where
N ( ϕ ) = 1 ϕ 1 ϕ 2 φ + υ 1 ( z ) 1 ϕ 2 ( φ 1 ) + + υ φ 1 1 ϕ 2 + υ φ ;
therefore,
n ( z ) = Υ 1 ϕ φ ( 1 + υ 1 ( z ) ϕ 2 + + υ φ 1 ϕ 2 ( φ 1 ) + υ φ ϕ 2 φ ) ( n ( z ) ) = e ( υ 1 + + υ φ 1 + υ φ ) z
and Υ { ψ ( z ) ξ ( z ) } = Υ { m ( z ) n ( z ) } , which yields ψ ( z ) ξ ( z ) = m ( z ) n ( z ) . Furthermore,
| ψ ( z ) ξ ( z ) | = | m ( z ) e ( υ 1 + + υ φ 1 + υ φ ) z | = | 0 z m ( s ) e ( υ 1 + + υ φ 1 + υ φ ) ( z s ) d s | 0 z | m ( s ) | | e ( υ 1 + + υ φ 1 + υ φ ) ( z s ) | d s E β ( z ) ϵ e R ( υ 1 + + υ φ 1 + υ φ ) z 0 z e R ( υ 1 + + υ φ 1 + υ φ ) s d s E β ( z ) ϵ R ( υ 1 + + υ φ 1 + υ φ ) ( 1 e R ( υ 1 + + υ φ 1 + υ φ ) z ) k E β ( z ) ϵ , z 0 ,
where k = 1 R ( υ 1 + + υ φ 2 + υ φ ) . This completes the proof. □
Theorem 10.
Given r : [ 0 , ) is a continuous function, σ : [ 0 , ) ( 0 , ) is an increasing function, and ( υ 1 + + υ φ 1 + υ φ ) and β > 0 are constants with R ( υ 1 + + υ φ 1 + υ φ ) > 0 , then (5) obtains Mittag-Leffler– σ H U S in Ψ.
Proof. 
Given ψ Ψ satisfies Mittag-Leffler– σ HUS, then there exists a solution ξ : [ 0 , ) k to (5), such that ξ Ψ and
| ψ ( z ) ξ ( z ) | k σ ( z ) E β ( z ) ϵ , z 0 , k > 0 .
We define m : [ 0 , ) k by
m ( z ) = ψ φ ( z ) + υ 1 ψ ( φ 1 ) ( z ) + + υ φ 1 ψ ( z ) + υ φ ψ ( z ) r ( z ) , z 0 ;
then, we have | m ( z ) | σ ( z ) ϵ E β ( z ) , z 0 .
According to Theorem 9, ξ : [ 0 , ) k is a solution to (5) satisfying ξ Ψ and
| ψ ( z ) ξ ( z ) | = | m ( z ) e ( υ 1 + + υ φ 1 + υ φ ) z | = | m ( s ) e ( υ 1 + + υ φ 1 + υ φ ) ( z s ) d s | 0 z | m ( s ) | | e ( υ 1 + + υ φ 1 + υ φ ) ( z s ) | d s σ ( z ) E β ( z ) ϵ e R ( υ 1 + + υ φ 1 + υ φ ) z 0 z e R ( υ 1 + + υ φ 1 + υ φ ) s d s σ ( z ) E β ( z ) ϵ R ( υ 1 + + υ φ 1 + υ φ ) ( 1 e R ( υ 1 + + υ φ 1 + υ φ ) z ) , z 0 ,
where k = 1 R ( υ 1 + + υ φ 2 + υ φ ) . □

6. Application of Tarig Transform

In this section, we examine the stability of linear, nonlinear, and fractional differential equations, by using the Tarig transform technique.

6.1. Stability of Linear Differential Equation

Example 1.
Consider the linear differential equation,
2 Z ( s ) 3 Z ( s ) + Z ( s ) = 1 10 + e s ,
with initial conditions Z ( 0 ) = Z 0 = 1 3 , Z ( 0 ) = Z 1 = 11 9 . We can assert that γ 0 = 2 , γ 1 = 3 , and
ϱ ( s , Z ( s ) , Z ( s ) ) = 1 10 + e s .
For ε = 1 3 , it is straightforward to verify that the function Z a ( s ) = 1 2 e s satisfies
2 Z ( s ) 3 Z ( s ) + Z ( s ) 1 10 + e s 1 3 ,
for each s > 0 , and by employing initial values, we obtain an exact solution to (29):
Z ( s ) = e 2 s e s 10 ln e s + 10 10 + 10 s e s ln 10 10 + 1 + 10 10 ( 1 + 10 ) 10 + 10 + 5 9 e 2 s 10 ln 10 10 + 1 10 + 10 ( 1 + 10 ) 10 + 10 17 9 e s s ln e s + 10 10 .
One can see these results in Table 2, and in the graphical representation of 2 Z a ( s ) 3 Z a ( s ) + Z a ( s ) whenever Z a ( s ) = 1 2 e s , ϱ ( s , Z ( s ) , Z ( s ) ) , and Inequality (30) for s > 0 , in Figure 1a,b and Figure 2, respectively; therefore, all the conditions of Theorem 3 are satisfied, and (29) has HUS in class Ψ.

6.2. Stability of Nonlinear Differential Equation

Example 2.
Consider the nonlinear differential equation,
Z ( s ) + 3 Z ( s ) 3 Z ( s ) + Z ( s ) = s 2 e s ,
with initial conditions Z ( 0 ) = Z 0 = 2 5 , Z ( 0 ) = Z 1 = 1 7 , and Z ( 0 ) = Z 2 = 3 2 . We can assert that γ 0 = 1 , γ 1 = 3 , γ 2 = 3 , and
ϱ ( s , Z ( s ) , Z ( s ) , Z ( s ) ) = s 2 e s .
For ε = 1 5 , it is straightforward to verify that the function Z a ( s ) = s 2 e 2 s satisfies
Z ( s ) + 3 Z ( s ) 3 Z ( s ) + Z ( s ) s 2 e s 1 5 ϕ ( s ) ,
for each s > 0 where ϕ ( s ) = 99 , 999 s 4 , and by employing initial values, we obtain an exact solution to (29):
Z ( s ) = 31 e s 40 159 s 2 e s 280 e s 16 s 4 + 32 s 3 + 48 s 2 + 48 s + 24 64 177 s e s 280 + s e s 8 s 3 + 12 s 2 + 12 s + 6 16 s 2 e s 4 s 2 + 4 s + 2 16 .
One can see these results in Table 3, and in the graphical representation of
Z ( s ) + 3 Z ( s ) 3 Z ( s ) + Z ( s ) ,
whenever Z a ( s ) = s 2 e 2 s , ϱ ( s , Z ( s ) , Z ( s ) , Z ( s ) ) , Inequality (33), and Z ( s ) Z a ( s ) , for s > 0 in Figure 3a,b and Figure 4a,b, respectively. Therefore, all the conditions of Theorem 7 are satisfied. Hence, (32) has HUS in the class Ψ.

6.3. Stability of Fractional Differential Equation

In this section, we look at a few fractional differential equation applications of the Tarig transform technique.
We take into account the following general fractional-order linear differential equation:
c D 0 + μ ( z ) = = 0 φ e y ( ) ( z ) + ξ ( z ) , φ 1 < μ φ ,
subject to the initial condition,
y ( ) ( 0 ) = c , i = 0 , , φ 1 , c , e j R .
Through the Tarig transform of (35), we obtain
Υ ( c D 0 + μ ( z ) ) = Υ = 0 φ e y ( ) ( z ) + ξ ( z ) , φ 1 < μ φ .
Using the linearity of the Tarig transform, we obtain
Υ ( c D 0 + μ ( z ) ) = Υ = 0 φ e y ( ) ( z ) + Υ ξ ( z ) , φ 1 < μ φ = e 0 y ( z ) + = 1 φ e Υ y ( ) ( z ) + Υ ξ ( z ) .
Applying the Tarig transform to the derivatives, we obtain
ϕ v μ ( v , ϕ ) k = 0 φ 1 ϕ v k + 1 μ y ( k ) ( 0 ) = e 0 ( v , ϕ ) + = 1 φ e ϕ v ( v , ϕ ) k = 0 1 ϕ v k + 1 y ( k ) ( 0 ) + Υ ξ ( z ) ϕ v μ ( v , ϕ ) = 0 φ 1 e ϕ v ( v , ϕ ) = k = 0 φ 1 c k ϕ v k + 1 μ = 1 φ e k = 0 1 c k ϕ v k + 1 + Υ ξ ( z )
( v , ϕ ) = ϕ v μ = 0 φ 1 e ϕ v 1 k = 0 φ 1 c k ϕ v k + 1 μ = 1 φ e k = 0 1 c k ϕ v k + 1 + Υ ξ ( z ) .
Applying the inverse Tarig transform to both sides of Equation (37) yields the solution to Equation (35):
y ( z ) = Υ 1 ϕ v μ = 0 φ 1 e ϕ v 1 k = 0 φ 1 c k ϕ v k + 1 μ = 1 φ e k = 0 1 c k ϕ v k + 1 + Υ ξ ( z ) .
Remark 1.
If n = 1 , e 0 = 1 and e 1 = ξ ( z ) = 0 , then
c D μ y ( z ) + y ( z ) = 0 , 0 < μ 1 , z > 0
with initial condition
y ( 0 ) = 1 .
Substituting φ , e 0 , e 1 and ξ in (38), we obtain
y ( z ) = Υ 1 ϕ v μ = 0 φ 1 e ϕ v 1 ϕ v 1 μ = Υ 1 ϕ v 1 ( 1 ) ϕ v 1
and
( v , ϕ ) = Υ ( E μ ( z μ ) ) .
Through the inverse Tarig transform of (41), we obtain the exact solution to Equation (39), as follows:
y ( z ) = E μ ( z μ ) .
Figure 5 and Figure 6 show the two-dimensional surfaces of the exact solution (42) of the differential Equation (35), as well as its graphical results, with regard to μ.

7. Conclusions

This manuscript has discussed the Tarig transform for non-homogeneous and homogeneous linear differential equations. Using this unique integral transform, we resolved higher-order linear differential equations, and we produced the conditions required for HUS, by using the Tarig transform to show that a linear differential equation was stable. This study also demonstrated that the Tarig transform method is more effective for analyzing the stability issue for differential equations with constant coefficients. A discussion of applications followed, to illustrate our approach. Moreover, this paper proposes a new method of investigating the HUS of differential equations. In the future, we will investigate the stability of fractional differential equations.

Author Contributions

All authors equally conceived the study, participated in its design and coordination, drafted the manuscript, participated in the sequence alignment, and read and approved the final manuscript. All authors have read and agreed to the published version of the manuscript.

Funding

This research was funded by Deanship of Scientific Research at King Khalid University for funding this work through its research groups program, under Grant No. R.G.P2/194/44.

Data Availability Statement

Not applicable.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Debnath, L.; Bhatta, D.D. Integral Transforms and Their Applications, 2nd ed.; Chapman & Hall/CRC: Boca Raton, FL, USA, 2007. [Google Scholar]
  2. Kılıçman, A.; Gadain, H.E. An application of double Laplace transform and double Sumudu transform. Lobachevskii J. Math. 2009, 30, 214–223. [Google Scholar] [CrossRef]
  3. Zhang, J. A Sumudu based algorithm for solving differential equations. Comput. Sci. J. Moldova 2007, 15, 303–313. [Google Scholar]
  4. Eltayeb, H.; Kılıçman, A. A note on the Sumudu transforms and differential equations. Appl. Math. Sci. (Ruse) 2010, 4, 1089–1098. [Google Scholar]
  5. Kılıçman, A.; Eltayeb, H. A note on integral transforms and partial differential equations. Appl. Math. Sci. (Ruse) 2010, 4, 109–118. [Google Scholar]
  6. Eltayeb, H.; Kılıçman, A. On some applications of a new integral transform. Int. J. Math. Anal. (Ruse) 2010, 4, 123–132. [Google Scholar]
  7. Manjarekar, S.; Bhadane, A.P. Applications of Tarig transformation to new fractional derivatives with non singular kernel. J. Fract. Calc. Appl. 2018, 9, 160–166. [Google Scholar]
  8. Loonker, D.; Banerji, P.K. Fractional Tarig transform and Mittag-Leffler function. Bol. Soc. Parana. Mat. 2017, 35, 83–92. [Google Scholar] [CrossRef] [Green Version]
  9. Elzaki, T.M.; Elzaki, S.M. On the relationship between Laplace transform and new integral transform “Tarig Transform”. Elixir Appl. Math. 2011, 36, 3230–3233. [Google Scholar]
  10. Elzaki, T.M.; Elzaki, S.M. On the Connections Between Laplace and Elzaki transforms. Adv. Theor. Appl. Math. 2011, 6, 1–11. [Google Scholar]
  11. Obłoza, M. Hyers stability of the linear differential equation. Rocznik Nauk.-Dydakt. Prace Mat. 1993, 13, 259–270. [Google Scholar]
  12. Obłoza, M. Connections between Hyers and Lyapunov stability of the ordinary differential equations. Rocznik Nauk.-Dydakt. Prace Mat. 1997, 14, 141–146. [Google Scholar]
  13. Alsina, C.; Ger, R. On some inequalities and stability results related to the exponential function. J. Inequal. Appl. 1998, 2, 373–380. [Google Scholar] [CrossRef]
  14. Huang, J.; Li, Y.J. Hyers-Ulam stability of linear functional differential equations. J. Math. Anal. Appl. 2015, 426, 1192–1200. [Google Scholar]
  15. Zada, A.; Shah, S.O.; Shah, R. Hyers-Ulam stability of non-autonomous systems in terms of boundedness of Cauchy problems. Appl. Math. Comput. 2015, 271, 512–518. [Google Scholar] [CrossRef]
  16. Choi, G.; Jung, S.-M. Invariance of Hyers-Ulam stability of linear differential equations and its applications. Adv. Differ. Equ. 2015, 2015, 277. [Google Scholar] [CrossRef] [Green Version]
  17. Hyers, D.H. On the stability of the linear functional equation. Proc. Natl. Acad. Sci. USA 1941, 27, 222–224. [Google Scholar] [CrossRef] [Green Version]
  18. Jung, S.-M. Hyers-Ulam stability of linear differential equations of first order. Appl. Math. Lett. 2004, 17, 1135–1140. [Google Scholar] [CrossRef] [Green Version]
  19. Jung, S.-M. Hyers-Ulam stability of linear differential equations of first order. III. J. Math. Anal. Appl. 2005, 311, 139–146. [Google Scholar] [CrossRef] [Green Version]
  20. Jung, S.-M. Hyers-Ulam stability of linear differential equations of first order. II. Appl. Math. Lett. 2006, 19, 854–858. [Google Scholar] [CrossRef] [Green Version]
  21. Li, Y.J.; Shen, Y. Hyers-Ulam stability of nonhomogeneous linear differential equations of second order. Int. J. Math. Math. Sci. 2009, 2009, 576852. [Google Scholar] [CrossRef] [Green Version]
  22. Li, Y.J.; Shen, Y. Hyers-Ulam stability of linear differential equations of second order. Appl. Math. Lett. 2010, 23, 306–309. [Google Scholar] [CrossRef] [Green Version]
  23. Miura, T.; Miyajima, S.; Takahasi, S.-E. A characterization of Hyers-Ulam stability of first order linear differential operators. J. Math. Anal. Appl. 2003, 286, 136–146. [Google Scholar] [CrossRef] [Green Version]
  24. Ulam, S.M. A Collection of Mathematical Problems; Interscience Tracts in Pure and Applied Mathematics, no. 8; Interscience Publishers: New York, NY, USA, 1960. [Google Scholar]
  25. Wang, G.W.; Zhou, M.R.; Sun, L. Hyers-Ulam stability of linear differential equations of first order. Appl. Math. Lett. 2008, 21, 1024–1028. [Google Scholar] [CrossRef] [Green Version]
Figure 1. 2D plot of 2 Z a ( s ) 3 Z a ( s ) + Z a ( s ) , whenever Z a ( s ) = 1 2 e s , ϱ ( s , Z ( s ) , Z ( s ) ) , and Inequality (30) for s > 0 in Example 1; (a) 2 Z a ( s ) 3 Z a ( s ) + Z a ( s ) ; (b) ϱ ( s , Z ( s ) , Z ( s ) ) .
Figure 1. 2D plot of 2 Z a ( s ) 3 Z a ( s ) + Z a ( s ) , whenever Z a ( s ) = 1 2 e s , ϱ ( s , Z ( s ) , Z ( s ) ) , and Inequality (30) for s > 0 in Example 1; (a) 2 Z a ( s ) 3 Z a ( s ) + Z a ( s ) ; (b) ϱ ( s , Z ( s ) , Z ( s ) ) .
Mathematics 11 02778 g001
Figure 2. 2D plot of Inequality (30) for s > 0 in Example 1.
Figure 2. 2D plot of Inequality (30) for s > 0 in Example 1.
Mathematics 11 02778 g002
Figure 3. 2D plot of 2 Z a ( s ) 3 Z a ( s ) + Z a ( s ) whenever Z a ( s ) = s 2 e 2 s and ϱ ( s , Z ( s ) , Z ( s ) ) for s > 0 in Example 2; (a) Z ( s ) + 3 Z ( s ) 3 Z ( s ) + Z ( s ) ; (b) ϱ ( s , Z ( s ) , Z ( s ) , Z ( s ) ) .
Figure 3. 2D plot of 2 Z a ( s ) 3 Z a ( s ) + Z a ( s ) whenever Z a ( s ) = s 2 e 2 s and ϱ ( s , Z ( s ) , Z ( s ) ) for s > 0 in Example 2; (a) Z ( s ) + 3 Z ( s ) 3 Z ( s ) + Z ( s ) ; (b) ϱ ( s , Z ( s ) , Z ( s ) , Z ( s ) ) .
Mathematics 11 02778 g003
Figure 4. 2D plot of Inequality (33) and Z ( s ) Z a ( s ) ϕ ( s ) ε for s > 0 in Example 2; (a) Inequality (33); (b) Z ( s ) Z a ( s ) M ϕ ( s ) ε .
Figure 4. 2D plot of Inequality (33) and Z ( s ) Z a ( s ) ϕ ( s ) ε for s > 0 in Example 2; (a) Inequality (33); (b) Z ( s ) Z a ( s ) M ϕ ( s ) ε .
Mathematics 11 02778 g004
Figure 5. Solution curve y ( z ) for μ = 0.1 , 0.2 , 0.3 , 0.4 .
Figure 5. Solution curve y ( z ) for μ = 0.1 , 0.2 , 0.3 , 0.4 .
Mathematics 11 02778 g005
Figure 6. Solution curve y ( z ) for μ = 0.6 , 0.7 , 0.8 , 0.9 .
Figure 6. Solution curve y ( z ) for μ = 0.6 , 0.7 , 0.8 , 0.9 .
Mathematics 11 02778 g006
Table 1. Tarig Transform of Simple Functions.
Table 1. Tarig Transform of Simple Functions.
S.No ω ( z ) S { ω ( z ) } = T ( σ )
11 ϕ
2 z ϕ 3
3 e a z ϕ 1 a ϕ 2
4 z φ φ ! ϕ 2 φ 1
5 z a Γ ( a + 1 ) ϕ 2 a + 1
6 sin a z a ϕ 3 1 + a 2 ϕ 4
7 cos a z ϕ 1 + a 2 ϕ 4
8 sinh a z a ϕ 3 1 a 2 ϕ 4
9 cosh a z ϕ 1 a 2 ϕ 4
Table 2. Numerical results of Z a ( s ) , ϱ ( s , Z ( s ) , Z ( s ) ) , and Inequality (30) for s > 0 in Example 1.
Table 2. Numerical results of Z a ( s ) , ϱ ( s , Z ( s ) , Z ( s ) ) , and Inequality (30) for s > 0 in Example 1.
s Z a ( s ) ϱ ( s , Z ( s ) , Z ( s ) ) Ineq. (30)Exact Solution
0.50 0.82436 0.26534 0.26534 1.5525
1.00 1.35914 0.28327 0.28327 5.4320
1.50 2.24085 0.29539 0.29539 16.9203
2.00 3.69453 0.30325 0.30325 49.7102
2.50 6.09125 0.30823 0.30823 141.4213
3.00 10.04277 0.31133 0.31133 394.9732
3.50 16.55773 0.31324 0.31324 1091.2161
4.00 27.29908 0.31441 0.31441 2995.3715
4.50 45.00857 0.31512 0.31512 8190.4806
5.00 74.20658 0.31556 0.31556 22,343.7060
5.50 122.34597 0.31582 0.31582 60,868.0217
6.00 201.71440 0.31598 0.31598 165,673.4726
6.50 332.57082 0.31608 0.31608 450,705.1967
7.00 548.31658 0.31614 0.31614 1,225,734.1757
7.50 904.02121 0.31617 0.31617 3,332,864.5664
8.00 1490.47899 0.31619 0.31619 9,061,270.6082
8.50 2457.38442 0.31621 0.31621 24,633,734.3046
9.00 4051.54196 0.31622 0.31622 66,965,796.7799
9.50 6679.86342 0.31622 0.31622 182,039,104.4573
10.00 11,013.23290 0.31622 0.31622 494,845,453.9945
Table 3. Numerical results of Z a ( s ) , ϱ ( s , Z ( s ) , Z ( s ) , Z ( s ) ) , Inequality (33), and Z ( s ) Z a ( s ) , M ϕ ( s ) ε for s > 0 in Example 2.
Table 3. Numerical results of Z a ( s ) , ϱ ( s , Z ( s ) , Z ( s ) , Z ( s ) ) , Inequality (33), and Z ( s ) Z a ( s ) , M ϕ ( s ) ε for s > 0 in Example 2.
s Z a ( s ) ϱ ( s , Z ( s ) , Z ( s ) ) Ineq. (30)Exact Solution Z ( s ) Z a ( s ) M ϕ ( s ) ε
0.50 0.09197 0.15163 0.97936 0.1625 0.2544 5624.9438
1.00 0.13534 0.36788 1.58590 1.4772 1.3418 89,999.1000
1.50 0.11202 0.50204 0.61406 6.7744 6.6624 455,620.4438
2.00 0.07326 0.54134 0.21166 20.6190 20.5457 1,439,985.6000
2.50 0.04211 0.51303 0.16434 53.2201 53.1780 3,515,589.8438
3.00 0.02231 0.44808 0.20269 125.3066 125.2843 7,289,927.1000
3.50 0.01117 0.36992 0.22425 278.0600 278.0489 13,505,489.9438
4.00 0.00537 0.29305 0.21455 591.8759 591.8706 23,039,769.6000
4.50 0.00250 0.22496 0.18525 1221.4710 1221.4685 36,905,255.9438
5.00 0.00114 0.16845 0.14925 2461.0444 2461.0433 56,249,437.5000
5.50 0.00051 0.12363 0.11464 4864.3699 4864.3694 82,354,801.4438
6.00 0.00022 0.08924 0.08514 9464.7453 9464.7451 116,638,833.6000
6.50 0.00010 0.06352 0.06170 18,175.6012 18,175.6011 160,654,018.4438
7.00 0.00004 0.04468 0.04388 34,516.5370 34,516.5369 216,087,839.1000
7.50 0.00002 0.03111 0.03077 64,923.2572 64,923.2572 284,762,777.3438
8.00 0.00001 0.02147 0.02132 121,101.4220 121,101.4220 368,636,313.6000
8.50 0.00000 0.01470 0.01464 224,240.7191 224,240.7191 469,800,926.9438
9.00 0.00000 0.01000 0.00997 412,533.7924 412,533.7924 590,484,095.1000
9.50 0.00000 0.00676 0.00674 754,550.2155 754,550.2155 733,048,294.4438
10.00 0.00000 0.00454 0.00454 1,372,956.8133 1,372,956.8133 899,991,000.0000
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Chitra, L.; Alagesan, K.; Govindan, V.; Saleem, S.; Al-Zubaidi, A.; Vimala, C. Applications of the Tarig Transform and Hyers–Ulam Stability to Linear Differential Equations. Mathematics 2023, 11, 2778. https://doi.org/10.3390/math11122778

AMA Style

Chitra L, Alagesan K, Govindan V, Saleem S, Al-Zubaidi A, Vimala C. Applications of the Tarig Transform and Hyers–Ulam Stability to Linear Differential Equations. Mathematics. 2023; 11(12):2778. https://doi.org/10.3390/math11122778

Chicago/Turabian Style

Chitra, L., K. Alagesan, Vediyappan Govindan, Salman Saleem, A. Al-Zubaidi, and C. Vimala. 2023. "Applications of the Tarig Transform and Hyers–Ulam Stability to Linear Differential Equations" Mathematics 11, no. 12: 2778. https://doi.org/10.3390/math11122778

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop