Next Article in Journal
Magnetic Field Dynamical Regimes in a Large-Scale Low-Mode αΩ-Dynamo Model with Hereditary α-Quenching by Field Energy
Previous Article in Journal
Distributed Finite-Time and Fixed-Time Nash Equilibrium Seeking for Non-Cooperative Game with Input Saturation
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

(´,´q´kˇ)-Uni-Intuitionistic Fuzzy Soft h-Ideals in Subtraction BG-Algebras

by
Manivannan Balamurugan
1,
Nazek Alessa
2,*,
Karuppusamy Loganathan
3,* and
Neela Amar Nath
4
1
Department of Mathematics, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai 600 062, Tamil Nadu, India
2
Department of Mathematical Sciences, College of Sciences, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
3
Department of Mathematics and Statistics, Manipal University Jaipur, Jaipur 303007, India
4
Department of Science and Humanities, MLR Institute of Technology, Hyderabad 500043, Telangana, India
*
Authors to whom correspondence should be addressed.
Mathematics 2023, 11(10), 2296; https://doi.org/10.3390/math11102296
Submission received: 4 April 2023 / Revised: 10 May 2023 / Accepted: 11 May 2023 / Published: 15 May 2023

Abstract

:
The main purpose of the present paper is to introduced the notions of ( ´ , ´ q ´ ) - U I F S S A s in subtraction BG-algebras. We provide different characterizations and some equivalent conditions of ( ´ , ´ q ´ ) - U I F S S A s in terms of the level subsets of subtraction BG-algebras. It has been revealed that the ( q ´ , q ´ ) - U I F S S A are ( ´ , ´ ) - U I F S S A but the converse does not hold and an example is provided. We introduced ( ´ , ´ q ´ ) - U I F S I D s and its some usual properties. In addition, h 1 ( N ˜ [ ς ] ) is ( ´ , ´ q ´ ) - U I F S I D . Moreover, if h 1 ( N ˜ [ ς ] ) are an ( ´ , ´ q ´ ) - U I F S I D , then N ˜ [ ς ] are an ( ´ , ´ q ´ ) - U I F S I D . Finally, we characterize ( ´ , ´ q ´ k ˇ ) - U I F S H I D which is a generalization of ( ´ , ´ q ´ ) - U I F S H I D .

1. Introduction

Fuzzy sets can be considered as an expansion and ridiculous misrepresentation of the classical sets presented by Zadeh [1]. They tend to be best grasped with regard to set participation. Intuitionistic fuzzy sets have been presented by Atanassov [2]. In arithmetic, BCI and BCK algebras are mathematical designs in general variable-based math, which were presented by Imai et al. [3] in 1966; they portray fragments of propositional math including suggestions known as BCI and BCK algebras. Neggers et al. [4] presented and explored a class of algebras which is connected with a few classes of algebras of interest, such as BCI/BCI/BCK-algebras, and which appear to have rather pleasant properties without being unnecessarily convoluted in any case.
Kim et al. [5] presented another idea, called a BG-algebra, which is a speculation of B-algebra. Zarandi et al. [6] considered the intuitionistic fuzzification of the idea of subalgebras and ideals in BG-algebras and explored a portion of their properties. Senapati et al. [7] researched a few properties of the intuitionistic fuzzy ideals of BG-algebras. Ahn et al. [8] arranged the subalgebras by the group of the level subalgebras in BG-algebras. Another kind of fuzzy subgroup was presented by Bhakat et al. [9] utilizing the consolidated thoughts of “belongings” and the “quasi-coincidence” of fuzzy points. Summing up, the possibility of the quasi-coincident of a fuzzy point with a fuzzy subset was presented by Jun in [10]. Basnet et al. [11,12] defined the ( , q ) -fuzzy ideal of a BG/d-algebra and investigated quite a few of its useful properties.
Molodstov [13] developed the thought of soft sets in 1999 as an innovative mathematical mechanism for allocating with an ambiguity specifically devoid of the problems that are sure to plague the traditional theoretical approach. Maji et al. [14,15] worked on the theoretical study of intuitionistic fuzzy soft sets in detail. Balamurugan et al. (see, e.g., [16,17,18]) introduced anti-intuitionistic fuzzy soft ideals, ( , q ^ ) -bipolar fuzzy b-ideals of BG/BCK/BCI-algebras. Muhiuddin et al. (see, for e.g., [19,20]) introduced an m-polar fuzzy set theoretic approach to generalized ideals in BCK/BCI-algebras.
In this paper, we introduce the ideas of ( ´ , ´ q ´ ) - U I F S S A s of subtraction BG-algebra and investigate some of their usual properties. We introduce ( ´ , ´ q ´ ) - U I F S I D s and its some usual properties. In addition, h 1 ( N ˜ [ ς ] ) is an ( ´ , ´ q ´ ) - U I F S I D . Moreover, h 1 ( M ˜ [ ς ] ) is an ( ´ , ´ q ´ ) - U I F S I D , then N ˜ [ ς ] is an ( ´ , ´ q ´ ) - U I F S I D . Finally, we characterize ( ´ , ´ q ´ k ˇ ) - U I F S H I D , which is a generalization of ( ´ , ´ q ´ ) - U I F S H I D .
This manuscript frequently uses the following symbols and their meanings, which we present in the following, Table 1.

2. Preliminaries

This study focuses on the subtraction BG-algebras, which is a generalization of BG-algebras.
Definition 1.
A subtraction BG-algebra is defined to be a set Y with a special element 0 and a binary operation “-” which fulfils the succeeding axioms:
( a ) θ θ = 0 ;
( b ) θ 0 = θ ;
( c ) ( θ ϑ ) ( 0 ϑ ) = θ for, all θ , ϑ Y .For brevity, we, likewise, call Y a subtraction BG-algebra.
Example 1.
Let Y = { 0 , θ , ϑ , φ , η } with the following Cayley Table 2:
Then Y is a subtraction BG-algebra.
Definition 2 
(see [8]). A non-empty subset B is a subalgebra of Y if it satisfies
( i ) 0 B ;
( i i ) θ B , ϑ B θ ϑ B , for any θ , ϑ Y .
Definition 3 
(see [13]). A pair ( N , B ) is a soft set over Y if and only if N : B P ( Y ) .
Definition 4 
(see [1]). A fuzzy set B is an object of the system B = ( θ , ϰ B ( θ ) ) : θ Y , where ϰ B : Y [ 0 , 1 ] with 0 ϰ B 1 , for all θ Y . The number ϰ B denotes the degree of members of the element θ B .
Definition 5. 
(see [14]). Let Y be a set, and let E be a set of factors. If F ( Y ) is the set of all fuzzy sets, then ( N ˜ , B ) is F S S over Y , and B E , where N ˜ : B F ( Y ) .
Definition 6 
(see [16]). Let ( N ˜ , B ) be F S S . We say that ( N ˜ , B ) is an U F S S A if N ˜ [ ς ] is an F S S U which satisfies
(a) ϰ N ˜ [ ς ] ( 0 ) ϰ N ˜ [ ς ] ( θ ) ;
(b) ϰ N ˜ [ ς ] ( θ ϑ ) ϰ N ˜ [ ς ] ( θ ) ϰ N ˜ [ ς ] ( ϑ ) , for all θ N , ς B .
Definition 7 
(see [2]). An I F S B of Y is of the form B = { ( θ , ϰ B ( θ ) , ϖ B ( θ ) ) : θ Y } , where ϰ B , ϖ B : Y [ 0 , 1 ] with 0 ϰ B ( θ ) + ϖ B ( θ ) 1 , for all θ Y .
Definition 8 
(see [15]). Let Y be a set and let E be a set of factors. If IF ( Y ) is the set of all I F S s then ( N ˜ , B ) is an I F S S , where N ˜ : B IF ( Y ) .
Definition 9 
(see [16]). Let ( N ˜ , B ) be an I F S S . Then we say that ( N ˜ , B ) is an U I F S S A if N ˜ [ ς ] is an I F S S U which satisfies
(a) ϰ N ˜ [ ς ] ( 0 ) ϰ N ˜ [ ς ] ( θ ) and ϖ N ˜ [ ς ] ( 0 ) ϖ N ˜ [ ς ] ( θ ) ;
(b) ϰ N ˜ [ ς ] ( θ ϑ ) ϰ N ˜ [ ς ] ( θ ) ϰ N ˜ [ ς ] ( ϑ ) ;
(c) ϖ N ˜ [ ς ] ( θ ϑ ) ϖ N ˜ [ ς ] ( θ ) ϖ N ˜ [ ς ] ( ϑ ) , for all θ N , ς B .
Example 2.
Consider the subtraction BG-algebra Y = { 0 , θ , ϑ } which has the Cayley Table 3 given below:
Define an I F S S U N ˜ [ ς ] given by
ϰ N ˜ [ ς ] ( 0 ) = ϰ N ˜ [ ς ] ( θ ) = 0.22 , ϰ N ˜ [ ς ] ( ϑ ) = 0.42 ,
and
ϖ N ˜ [ ς ] ( 0 ) = ϖ N ˜ [ ς ] ( θ ) = 0.72 , ϖ N ˜ [ ς ] ( ϑ ) = 0.32 .
Then N ˜ [ ς ] is an U I F S A . Hence, ( N ˜ , B ) is an U I F S S A .

3. ( ´ , ´ q ´ ) -Uni-Intuitionistic Fuzzy Soft Subalgebras

Definition 10.
An I F S P θ t ˜ is said to belong to (respectively, be quasi-coincident with) an I F S S U N ˜ [ ς ] written as θ t ˜ ´ N ˜ [ ς ] if ϰ N ˜ [ ς ] ( θ ) + t ˜ > 1 or ϰ N ˜ [ ς ] ( θ ) t ˜ and ϖ N ˜ [ ς ] ( θ ) + t ˜ < 1 or ϖ N ˜ [ ς ] ( θ ) t ˜ .
Definition 11.
An I F S S U N ˜ [ ς ] is an ( ´ , ´ ) - U I F S S A of Y if θ t ˜ , ϑ s ˜ ´ ϰ N ˜ [ ς ] implies ( θ ϑ ) t ˜ s ˜ ´ ϰ N ˜ [ ς ] and θ t ˜ , ϑ s ˜ ´ ω N ˜ [ ς ] implies ( θ ϑ ) t ˜ s ˜ ´ ω N ˜ [ ς ] , for all θ , ϑ Y and ς B .
Definition 12.
An I F S P θ t ˜ is said to belong to (respectively, be quasi-coincident with) an I F S S U N ˜ [ ς ] written as θ t ˜ q ´ N ˜ [ ς ] (respectively, θ t ˜ ´ N ˜ [ ς ] ) if ϰ N ˜ [ ς ] ( θ ) + t ˜ > 1 or ϰ N ˜ [ ς ] ( θ ) t ˜ and ϖ N ˜ [ ς ] ( θ ) + t ˜ < 1 or ϖ N ˜ [ ς ] ( θ ) t ˜ . If θ t ˜ q ´ N ˜ [ ς ] or θ t ˜ ´ N ˜ [ ς ] , then θ t ˜ ´ q ´ N ˜ [ ς ] .
Definition 13.
An I F S S U N ˜ [ ς ] is an ( ´ , ´ q ´ ) - U I F S S A of Y if θ t ˜ , ϑ s ˜ ´ ϰ N ˜ [ ς ] implies ( θ ϑ ) t ˜ s ˜ ´ q ´ ϰ N ˜ [ ς ] and θ t ˜ , ϑ s ˜ ´ ω N ˜ [ ς ] implies ( θ ϑ ) t ˜ s ˜ ´ q ´ ω N ˜ [ ς ] , for all θ , ϑ Y and ς B .
Definition 14.
An I F S S U N ˜ [ ς ] is an ( ´ , ´ q ´ ) - U I F S S A if it satisfies the following conditions:
( i ) θ t ˜ , ϑ s ˜ ´ ϰ N ˜ [ ς ] ( θ ) θ t ˜ s ˜ ´ q ´ ϰ N ˜ [ ς ] ( θ ) ;
( i i ) θ t ˜ , ϑ s ˜ ´ ϖ N ˜ [ ς ] ( θ ) θ t ˜ s ˜ ´ q ´ ϖ N ˜ [ ς ] ( θ ) .
Theorem 1.
N ˜ [ ς ] is an U I F S S A iff N ˜ [ ς ] is an ( ´ , ´ ) - U I F S S A .
Proof. 
Let N ˜ [ ς ] be an U I F S S A . Then
ϰ N ˜ [ ς ] ( θ ϑ ) ϰ N ˜ [ ς ] ( θ ) ϰ N ˜ [ ς ] ( ϑ ) and ϖ N ˜ [ ς ] ( θ ϑ ) ϖ N ˜ [ ς ] ( θ ) ϖ N ˜ [ ς ] ( ϑ ) .
Let θ , ϑ Y and ς B s.t θ t ˜ , ϑ s ˜ ´ ϰ N ˜ [ ς ] ( θ ) , wherever t ˜ , s ˜ ( 0 , 1 ) . Then ϰ N ˜ [ ς ] ( θ ) t ˜ , ϰ N ˜ [ ς ] ( ϑ ) s ˜ , and ϖ N ˜ [ ς ] ( θ ) t ˜ , ϖ N ˜ [ ς ] ( ϑ ) s ˜ . Now ϰ N ˜ [ ς ] ( θ ϑ ) ϰ N ˜ [ ς ] ( θ ) ϰ N ˜ [ ς ] ( ϑ ) t ˜ s ˜ ( θ ϑ ) t ˜ s ˜ ´ ϰ N ˜ [ ς ] and ϖ N ˜ [ ς ] ( θ ϑ ) ϖ N ˜ [ ς ] ( θ ) ϖ N ˜ [ ς ] ( ϑ ) t ˜ s ˜ ( θ ϑ ) t ˜ s ˜ ´ ϖ N ˜ [ ς ] . Therefore, N ˜ [ ς ] is an ( ´ , ´ ) - U I F S S A .
Conversely, let N ˜ [ ς ] be an ( ´ , ´ ) - U I F S S A . To verify that N ˜ [ ς ] is an U I F S S A , let θ , ϑ Y , t ˜ = ϰ N ˜ [ ς ] ( θ ) and s ˜ = ϰ N ˜ [ ς ] ( ϑ ) . Then ϰ N ˜ [ ς ] ( θ ) t ˜ , ϰ N ˜ [ ς ] ( ϑ ) s ˜ implies θ t ˜ ´ ϰ N ˜ [ ς ] , ϑ s ˜ ´ ϰ N ˜ [ ς ] . Therefore, ( θ ϑ ) t ˜ s ˜ ´ ϰ N ˜ [ ς ] , i.e., ϰ N ˜ [ ς ] ( θ ϑ ) t ˜ s ˜ . Therefore,
ϰ N ˜ [ ς ] ( θ ϑ ) ϰ N ˜ [ ς ] ( θ ) ϰ N ˜ [ ς ] ( ϑ ) .
Again, let θ , ϑ Y and t ˜ = ϖ N ˜ [ ς ] ( θ ) , s ˜ = ϖ N ˜ [ ς ] ( ϑ ) . Then ϖ N ˜ [ ς ] ( θ ) t ˜ , ϖ N ˜ [ ς ] ( ϑ ) s ˜ implies θ t ˜ ´ ϖ N ˜ [ ς ] , ϑ s ˜ ´ ϖ N ˜ [ ς ] . Thus, ( θ ϑ ) t ˜ s ˜ ´ ϖ N ˜ [ ς ] , i.e., ϖ N ˜ [ ς ] ( θ ϑ ) t ˜ s ˜ . Therefore,
ϖ N ˜ [ ς ] ( θ ϑ ) ϖ N ˜ [ ς ] ( θ ) ϖ N ˜ [ ς ] ( ϑ ) .
Hence, (1) and (2) N ˜ [ ς ] is an U I F S S A . □
Definition 15.
An I F S S U N ˜ [ ς ] is an ( q ´ , q ´ ) - U I F S S A of Y if θ 1 t ˜ ε ˘ , ϑ 1 s ˜ ε ˘ q ´ ϰ N ˜ [ ς ] implies ( θ ϑ ) ( 1 t ˜ ε ˘ ) ( 1 s ˜ ε ˘ ) q ´ ϰ N ˜ [ ς ] and θ 1 t ˜ + ε ˘ , ϑ 1 s ˜ + ε ˘ q ´ ϖ N ˜ [ ς ] implies ( θ ϑ ) ( 1 t ˜ + ε ˘ ) ( 1 s ˜ + ε ˘ ) q ´ ϖ N ˜ [ ς ] , for all θ , ϑ Y and ς B .
Theorem 2.
Every ( q ´ , q ´ ) - U I F S S A is an ( ´ , ´ ) - U I F S S A .
Proof. 
Let N ˜ [ ς ] be a ( q ´ , q ´ ) - U I F S S A . Let θ , ϑ Y and ς B such that θ t ˜ , ϑ s ˜ ´ ϰ N ˜ [ ς ] . Then ϰ N ˜ [ ς ] ( θ ) t , ϰ N ˜ [ ς ] ( ϑ ) s implies ϰ N ˜ [ ς ] ( θ ) ε ˘ < t ˜ and ϰ N ˜ [ ς ] ( ϑ ) ε ˘ < s ˜ . Thus, ϰ N ˜ [ ς ] ( θ ) + 1 t ˜ ε ˘ < 1 and ϰ N ˜ [ ς ] ( ϑ ) + 1 s ˜ ε ˘ < 1 , i.e., θ 1 t ˜ ε ˘ q ´ ϰ N ˜ [ ς ] and ϑ 1 s ˜ ε ˘ q ´ ϰ N ˜ [ ς ] .
Since N ˜ [ ς ] is an ( q ´ , q ´ ) - U I F S S A , we have ( θ ϑ ) ( 1 ε ˘ t ˜ ) ( 1 ε ˘ s ˜ ) q ´ ϰ N ˜ [ ς ]
ϰ N ˜ [ ς ] ( θ ϑ ) + ( 1 t ˜ ε ˘ ) ( 1 s ˜ ε ˘ ) < 1
ϰ N ˜ [ ς ] ( θ ϑ ) + 1 ( t ˜ s ˜ ) ε ˘ < 1
ϰ N ˜ [ ς ] ( θ ϑ ) < ( t ˜ s ˜ ) + ε ˘
ϰ N ˜ [ ς ] ( θ ϑ ) < t ˜ s ˜
ϰ N ˜ [ ς ] ( θ ϑ ) < t ˜ s ˜ < t ˜ s ˜
( θ ϑ ) t ˜ s ˜ ´ ϰ N ˜ [ ς ] .
Therefore,
θ t ˜ , ϑ s ˜ ´ ϰ N ˜ [ ς ] ( θ ϑ ) t ˜ s ˜ ´ ϰ N ˜ [ ς ] .
Again, let θ , ϑ Y and ς B such that θ t ˜ , ϑ s ˜ ´ ϖ N ˜ [ ς ] . Then ϖ N ˜ [ ς ] ( θ ) t ˜ , ϖ N ˜ [ ς ] ( ϑ ) s ˜ implies ϖ N ˜ [ ς ] ( θ ) + ε ˘ > t ˜ , and ϖ N ˜ [ ς ] ( ϑ ) + ε ˘ > s ˜ . Thus, ϖ N ˜ [ ς ] ( θ ) + ε ˘ t ˜ + 1 > 1 and ϖ N ˜ [ ς ] ( ϑ ) + ε ˘ s ˜ + 1 > 1 , i.e., θ ε ˘ t ˜ + 1 q ´ ϖ N ˜ [ ς ] and ϑ ε ˘ s ˜ + 1 q ´ ϖ N ˜ [ ς ] .
Since N ˜ [ ς ] is an ( ´ , ´ ) - U I F S S A , we have
( θ ϑ ) ( ε ˘ t ˜ + 1 ) ( ε ˘ s ˜ + 1 ) q ´ ϖ N ˜ [ ς ]
ϖ N ˜ [ ς ] ( θ ϑ ) + ( ε ˘ t ˜ + 1 ) ( ε ˘ s ˜ + 1 ) < 1
ϖ N ˜ [ ς ] ( θ ϑ ) + ε ˘ + 1 ( t ˜ s ˜ ) > 1
ϖ N ˜ [ ς ] ( θ ϑ ) > ( t ˜ s ˜ ) ε ˘
ϖ N ˜ [ ς ] ( θ ϑ ) > t ˜ s ˜
ϖ N ˜ [ ς ] ( θ ϑ ) > t ˜ s ˜ > t ˜ s ˜
( θ ϑ ) t ˜ s ˜ ´ ϖ N ˜ [ ς ] .
Therefore,
θ t ˜ , ϑ s ˜ ´ ϖ N ˜ [ ς ] ( θ ϑ ) t ˜ s ˜ ´ ϖ N ˜ [ ς ] .
Hence, (3) and (4) N ˜ [ ς ] is an ( ´ , ´ ) - U I F S S A . □
The following example shows the converse of Theorem 2 may not be true.
Example 3.
Consider a subtraction BG-algebra Y = { 0 , θ , ϑ , φ } with the following Cayley Table 4:
Define N ˜ [ ς ] by
0 θ ϑ φ
ϰ N ˜ [ ς ] 0.520.520.560.56
ω N ˜ [ ς ] 0.410.410.340.34
Then ( ´ , ´ ) - U I F S S A , but it is not a ( q ´ , q ´ ) - U I F S S A . As, if t ˜ = 0.71 , s ˜ = 0.61 , then ω N ˜ [ ς ] ( θ ) + t ˜ = ω N ˜ [ ς ] ( φ ) + 0.71 = 0.31 + 0.71 = 1.02 > 1 , and ω N ˜ [ ς ] ( ϑ ) + s ˜ = ω N ˜ [ ς ] ( θ ) + 0.61 = 0.41 + 0.61 = 1.02 > 1 , but ω N ˜ [ ς ] ( θ ϑ ) + t ˜ s ˜ = 0.34 + 0.71 0.61 = 0.34 + 0.61 = 0.95 < 1 .
Theorem 3.
An I F S U N ˜ [ ς ] is an ( ´ , ´ q ´ ) - U I F S S A if and only if
(i) ϰ N ˜ [ ς ] ( θ ϑ ) ϰ N ˜ [ ς ] ( θ ) ϰ N ˜ [ ς ] ( ϑ ) 1 / 2 ;
(ii) ϖ N ˜ [ ς ] ( θ ϑ ) ϖ N ˜ [ ς ] ( θ ) ϖ N ˜ [ ς ] ( ϑ ) 1 / 2 ;
for all θ , ϑ Y and ς B .
Proof. 
(i) First, let N ˜ [ ς ] be an ( ´ , ´ q ´ ) - U I F S S A .
Case 1: Let ϰ N ˜ [ ς ] ( θ ) ϰ N ˜ [ ς ] ( ϑ ) > 1 / 2 . Then ϰ N ˜ [ ς ] ( θ ) ϰ N ˜ [ ς ] ( ϑ ) 1 / 2 = ϰ N ˜ [ ς ] ( θ ) ϰ N ˜ [ ς ] ( ϑ ) . If possible, let ϰ N ˜ [ ς ] ( θ ϑ ) > ϰ N ˜ [ ς ] ( θ ) ϰ N ˜ [ ς ] ( ϑ ) . Choose t ˜ as a real number such that ϰ N ˜ [ ς ] ( θ ϑ ) > t ˜ > ϰ N ˜ [ ς ] ( θ ) ϰ N ˜ [ ς ] ( ϑ ) . Therefore, ϰ N ˜ [ ς ] ( θ ) < t ˜ , ϰ N ˜ [ ς ] ( ϑ ) < t ˜ . Therefore, θ t ˜ ´ ϰ N ˜ [ ς ] , ϑ t ˜ ´ ϰ N ˜ [ ς ] . However, ϰ N ˜ [ ς ] ( θ ϑ ) > t ˜ implies ( θ ϑ ) t ˜ ´ ϰ N ˜ [ ς ] and ϰ N ˜ [ ς ] ( θ ϑ ) + t ˜ > 2 t ˜ . Then ϰ N ˜ [ ς ] ( θ ϑ ) + t ˜ > 2 ( ϰ N ˜ [ ς ] ( θ ) ϰ N ˜ [ ς ] ( ϑ ) ) > 2 × 1 / 2 = 1 . Thus, ϰ N ˜ [ ς ] ( θ ϑ ) + t ˜ > 1 , which fails due to the fact that N ˜ [ ς ] is an ( ´ , ´ q ´ ) - U I F S S A . Therefore, ϰ N ˜ [ ς ] ( θ ϑ ) ϰ N ˜ [ ς ] ( θ ) ϰ N ˜ [ ς ] ( ϑ ) 1 / 2 .
Case 2: Let ϰ N ˜ [ ς ] ( θ ) ϰ N ˜ [ ς ] ( ϑ ) 1 / 2 . Then ϰ N ˜ [ ς ] ( θ ) ϰ N ˜ [ ς ] ( ϑ ) = 1 / 2 . If possible, ϰ N ˜ [ ς ] ( θ ϑ ) ϰ N ˜ [ ς ] ( θ ) ϰ N ˜ [ ς ] ( ϑ ) 1 / 2 = 1 / 2 . Then ϰ N ˜ [ ς ] ( θ ) 1 / 2 and ϰ N ˜ [ ς ] ( ϑ ) 1 / 2 . Therefore, θ 1 / 2 , ϑ 1 / 2 ´ ϰ N ˜ [ ς ] . However, ϰ N ˜ [ ς ] ( θ ) > 1 / 2 ; therefore, θ 1 / 2 ϰ N ˜ [ ς ] and ϰ N ˜ [ ς ] ( θ ) + 1 / 2 > 1 / 2 + 1 / 2 = 1 , which again fails due to the fact that N ˜ [ ς ] is an ( ´ , ´ q ´ ) - U I F S S A . Hence, ϰ N ˜ [ ς ] ( θ ϑ ) 1 / 2 = ϰ N ˜ [ ς ] ( θ ) ϰ N ˜ [ ς ] ( ϑ ) 1 / 2 .
Converse Part:
Let
ϰ N ˜ [ ς ] ( θ ϑ ) ϰ N ˜ [ ς ] ( θ ) ϰ N ˜ [ ς ] ( ϑ ) 1 / 2 .
Let θ , ϑ Y and ς B such that θ t ˜ , ϑ s ˜ ´ ϰ N ˜ [ ς ] . Then ϰ N ˜ [ ς ] ( θ ) t ˜ and ϰ N ˜ [ ς ] ( ϑ ) s ˜ . Therefore, ϰ N ˜ [ ς ] ( θ ) ϰ N ˜ [ ς ] ( ϑ ) t ˜ s ˜ . By (5), ϰ N ˜ [ ς ] ( θ ϑ ) 1 / 2 t ˜ s ˜ , let 1 / 2 t ˜ s ˜ . Then 1 / 2 t ˜ s ˜ = t ˜ s ˜ implies ϰ N ˜ [ ς ] ( θ ϑ ) t ˜ s ˜ . Therefore,
( θ ϑ ) t ˜ s ˜ ´ ϰ N ˜ [ ς ] .
Again, let 1 / 2 < t ˜ s ˜ . Then 1 / 2 t ˜ s ˜ = 1 / 2 implies ϰ N ˜ [ ς ] ( θ ϑ ) t ˜ s ˜ 1 / 2 = 1 / 2 . Thus, ϰ N ˜ [ ς ] ( θ ϑ ) + t ˜ s ˜ < 1 / 2 + 1 / 2 = 1 . Therefore,
( θ ϑ ) t ˜ s ˜ q ´ ϰ N ˜ [ ς ] .
From Equations (6) and (7), we have
θ t ˜ , ϑ s ˜ ´ ϰ N ˜ [ ς ] ( θ ϑ ) t ˜ s ˜ ´ q ´ ϰ N ˜ [ ς ] .
Therefore, ϰ N ˜ [ ς ] is an ( ´ , ´ q ´ ) - U I F S S A .
( i i ) First, let N ˜ [ ς ] be an ( ´ , ´ q ´ ) - U I F S S A .
Case 1: Let ϖ N ˜ [ ς ] ( θ ) ϖ N ˜ [ ς ] ( ϑ ) < 1 / 2 . Then ϖ N ˜ [ ς ] ( θ ) ϖ N ˜ [ ς ] ( ϑ ) 1 / 2 = ϖ N ˜ [ ς ] ( θ ) ϖ N ˜ [ ς ] ( ϑ ) . If possible, let ϖ N ˜ [ ς ] ( θ ϑ ) < ϖ N ˜ [ ς ] ( θ ) ϖ N ˜ [ ς ] ( ϑ ) . Then let t ˜ be a real number such that ϖ N ˜ [ ς ] ( θ ϑ ) < t ˜ < ϖ N ˜ [ ς ] ( θ ) ϖ N ˜ [ ς ] ( ϑ ) . Thus, ϖ N ˜ [ ς ] ( θ ) > t ˜ , ϖ N ˜ [ ς ] ( ϑ ) > t ˜ . Therefore, θ t ˜ ´ ϖ N ˜ [ ς ] , ϑ t ´ ϖ N ˜ [ ς ] . However, ϖ N ˜ [ ς ] ( θ ϑ ) < t ˜ . Then ( θ ϑ ) t ˜ ´ ϖ N ˜ [ ς ] and ϖ N ˜ [ ς ] ( θ ) + t ˜ = 2 t ˜ . Thus, ϖ N ˜ [ ς ] ( θ ϑ ) + t ˜ < 2 ( ϖ N ˜ [ ς ] ( θ ) ϖ N ˜ [ ς ] ( ϑ ) ) < 2 × 1 / 2 = 1 . Thus, ϖ N ˜ [ ς ] ( θ ϑ ) + t ˜ < 1 , which fails due to the fact that N ˜ [ ς ] is an ( ´ , ´ q ´ ) - U I F S S A . Therefore, ϖ N ˜ [ ς ] ( θ ϑ ) ϖ N ˜ [ ς ] ( θ ) ϖ N ˜ [ ς ] ( ϑ ) = ϖ N ˜ [ ς ] ( θ ) ϖ N ˜ [ ς ] ( ϑ ) 1 / 2 .
Case 2: Let ϖ N ˜ [ ς ] ( θ ) ϖ N ˜ [ ς ] ( ϑ ) 1 / 2 . Then ϖ N ˜ [ ς ] ( θ ) ϖ N ˜ [ ς ] ( ϑ ) = 1 / 2 . If possible, ϖ N ˜ [ ς ] ( θ ϑ ) < ϖ N ˜ [ ς ] ( θ ) ϖ N ˜ [ ς ] ( ϑ ) 1 / 2 = 1 / 2 , then ϖ N ˜ [ ς ] ( θ ) 1 / 2 and ϖ N ˜ [ ς ] ( ϑ ) 1 / 2 . Therefore, θ 1 / 2 , ϑ 1 / 2 ´ ϖ N ˜ [ ς ] . However, ϖ N ˜ [ ς ] ( θ ϑ ) < 1 / 2 . Then ( θ ϑ ) 1 / 2 ´ ϖ N ˜ [ ς ] and ϖ N ˜ [ ς ] ( θ ϑ ) + 1 / 2 < 1 / 2 + 1 / 2 = 1 , which again fails due to the fact that N ˜ [ ς ] is an ( ´ , ´ q ´ ) - U I F S S A . Hence, ϖ N ˜ [ ς ] ( θ ϑ ) 1 / 2 = ϖ N ˜ [ ς ] ( θ ) ϖ N ˜ [ ς ] ( ϑ ) 1 / 2 .
Converse Part:
Let
ϖ N ˜ [ ς ] ( θ ϑ ) ϖ N ˜ [ ς ] ( θ ) ϖ N ˜ [ ς ] ( ϑ ) 1 / 2 .
Then ϖ N ˜ [ ς ] ( θ ) t and ϖ N ˜ [ ς ] ( ϑ ) s ˜ . Therefore, ϖ N ˜ [ ς ] ( θ ) ϖ N ˜ [ ς ] ( ϑ ) t ˜ s ˜ . By (9), ϖ N ˜ [ ς ] ( θ ϑ ) 1 / 2 t ˜ s ˜ . Let 1 / 2 t ˜ s ˜ . Then 1 / 2 t ˜ s ˜ = t ˜ s ˜ . Thus, ϖ N ˜ [ ς ] ( θ ϑ ) t ˜ s ˜ . Therefore,
( θ ϑ ) t ˜ s ˜ ´ ϖ N ˜ [ ς ] .
Again, let 1 / 2 < t ˜ s ˜ . Then 1 / 2 t ˜ s ˜ = 1 / 2 . Therefore, ϖ N ˜ [ ς ] ( θ ϑ ) t ˜ s ˜ 1 / 2 = 0 , i.e., ϖ N ˜ [ ς ] ( θ ϑ ) + t ˜ s ˜ > 1 / 2 + 1 / 2 = 1 . Therefore,
( θ ϑ ) t ˜ s ˜ q ´ ϖ N ˜ [ ς ] .
From (10) and (11), we have
θ t ˜ , ϑ s ˜ ´ ϖ N ˜ [ ς ] ( θ ϑ ) t ˜ s ˜ ´ q ´ ϖ N ˜ [ ς ] .
Therefore, ϖ N ˜ [ ς ] is an ( ´ , ´ q ´ ) - U I F S S A . Hence, (8) and (12) N ˜ [ ς ] is an ( ´ , ´ q ´ ) - U I F S S A . □
Theorem 4.
An I F S S U N ˜ [ ς ] is an ( ´ , ´ q ´ ) - U I F S S A , and if ϰ N ˜ [ ς ] ( θ ) > 1 / 2 , ϖ N ˜ [ ς ] ( θ ) < 1 / 2 , then N ˜ [ ς ] is also an ( ´ , ´ ) - U I F S S A .
Proof. 
Let N ˜ [ ς ] be an ( ´ , ´ q ´ ) - U I F S S A of N and ϰ N ˜ [ ς ] ( θ ) > 1 / 2 and ϖ N ˜ [ ς ] ( θ ) < 1 / 2 . Let θ t ˜ ´ ϰ N ˜ [ ς ] , ϑ s ´ ϰ N ˜ [ ς ] . Then 1 / 2 < ϰ N ˜ [ ς ] ( θ ) t ˜ and 1 / 2 < ϰ N ˜ [ ς ] ( ϑ ) s ˜ . Therefore, t ˜ s ˜ > 1 / 2 . In addition, ϰ N ˜ [ ς ] ( θ ϑ ) > 1 / 2 . Thus, ϰ N ˜ [ ς ] ( θ ϑ ) + t ˜ s ˜ > 1 / 2 + 1 / 2 = 1 . Since ϰ N ˜ [ ς ] is an ( ´ , ´ q ´ ) - U I F S S A , we have either ϰ N ˜ [ ς ] ( θ ϑ ) + t ˜ s ˜ < 1 o r ϰ N ˜ [ ς ] ( θ ϑ ) t ˜ s ˜ . Thus, ϰ N ˜ [ ς ] ( θ ϑ ) t ˜ s ˜ ( θ ϑ ) t ˜ s ˜ ´ ϰ N ˜ [ ς ] . Therefore,
θ t ˜ ´ ϰ N ˜ [ ς ] , ϑ s ˜ ´ ϰ N ˜ [ ς ] ( θ ϑ ) t ˜ s ˜ ´ ϰ N ˜ [ ς ] .
Thus, ϰ N ˜ [ ς ] is ( ´ , ´ ) - U I F S S A .
Again, let θ t ˜ ´ ϖ N ˜ [ ς ] , ϑ s ˜ ´ ϖ N ˜ [ ς ] . Then t ˜ ϖ N ˜ [ ς ] ( θ ) < 1 / 2 and s ˜ ϖ N ˜ [ ς ] ( ϑ ) < 1 / 2 . Therefore, t ˜ s ˜ < 1 / 2 and also ϖ N ˜ [ ς ] ( θ ϑ ) < 1 / 2 . Thus, ϖ N ˜ [ ς ] ( θ ϑ ) + t ˜ s ˜ < 1 / 2 + 1 / 2 = 1 . Since ϖ N ˜ [ ς ] is an ( ´ , ´ q ´ ) - U I F S S A , we have either ϖ N ˜ [ ς ] ( θ ϑ ) + t ˜ s ˜ > 1 or ϖ N ˜ [ ς ] ( θ ϑ ) t ˜ s ˜ . Thus, ϖ N ˜ [ ς ] ( θ ϑ ) t ˜ s ˜ ( θ ϑ ) t ˜ s ˜ ´ ϖ N ˜ [ ς ] . Therefore,
θ t ˜ ´ ϖ N ˜ [ ς ] , ϑ s ˜ ´ ϖ N ˜ [ ς ] ( θ ϑ ) t s ´ ϖ N ˜ [ ς ] .
Thus, ϖ N ˜ [ ς ] is ( ´ , ´ ) - U I F S S A . Hence, (13) and (14) N ˜ [ ς ] is an ( ´ , ´ ) - U I F S S A . □
Definition 16.
Let N ˜ [ ς ] be an I F S S U of Y and t ˜ ( 0 , 1 ] . Then let ( ϰ N ˜ [ ς ] ) t ˜ = { θ : θ t ˜ ´ ϰ N ˜ [ ς ] } = { θ : ϰ N ˜ [ ς ] ( θ ) t ˜ } , ϰ N ˜ [ ς ] t ˜ = { θ : θ t ˜ q ´ ϰ N ˜ [ ς ] } = { θ : ϰ N ˜ [ ς ] ( θ ) + t ˜ > 1 } , [ ϰ N ˜ [ ς ] ] t ˜ = { θ : θ t ˜ ´ q ´ ϰ N ˜ [ ς ] } = { θ : ϰ N ˜ [ ς ] t ˜ } , where ( ϰ N ˜ [ ς ] ) t ˜ , ϰ N ˜ [ ς ] t , and [ ϰ N ˜ [ ς ] ] t ˜ is t ˜ -level set, q ´ -level set, and ( ´ q ´ ) -level set of ϰ N ˜ [ ς ] . Clearly, [ ϰ N ˜ [ ς ] ] t ˜ = ϰ N ˜ [ ς ] t ˜ ( ϰ N ˜ [ ς ] ) t ˜ , and ( ϖ N ˜ [ ς ] ) t ˜ = { θ : θ t ˜ ´ ϖ N ˜ [ ς ] } = { θ : ϖ N ˜ [ ς ] ( θ ) t ˜ } , ϖ N ˜ [ ς ] t ˜ = { θ : θ t ˜ q ϖ N ˜ [ ς ] } = { θ : ϖ N ˜ [ ς ] + t ˜ < 1 } , [ ϖ N ˜ [ ς ] ] t ˜ = { θ : θ t ˜ ´ q ´ ϖ N ˜ [ ς ] } = { θ : ϖ N ˜ [ ς ] t ˜ o r ϖ N ˜ [ ς ] ( θ ) + t ˜ < 1 } , where ( ϖ N ˜ [ ς ] ) t ˜ , ϖ N ˜ [ ς ] t ˜ , and [ ϖ N ˜ [ ς ] ] t ˜ is ( ´ q ´ ) are the t ˜ -level set, q ´ -level set, and ( ´ q ´ ) -level set of ϖ N ˜ [ ς ] . Clearly, [ ϖ N ˜ [ ς ] ] t ˜ = ϖ N ˜ [ ς ] t ˜ ( ϖ N ˜ [ ς ] ) t ˜ .
Theorem 5.
An I F S S U N ˜ [ ς ] is an ( ´ , ´ q ´ ) - U I F S S A if and only if the sets ( ϰ N ˜ [ ς ] ) t ˜ = { θ : ϰ N ˜ [ ς ] ( θ ) < t ˜ , t ˜ ( 1 / 2 , 1 ] , ϰ N ˜ [ ς ] ( 0 ) < t ˜ } and ( ϖ N ˜ [ ς ] ) s ˜ = { θ : ϖ N ˜ [ ς ] ( θ ) s ˜ , s ˜ ( 0 , 1 / 2 ) , ϖ N ˜ [ ς ] ( 0 ) s ˜ } are subalgebras of Y .
Proof. 
Suppose N ˜ [ ς ] is an ( ´ , ´ q ´ ) - U I F S S A . Then 0 ´ ( ϰ N ˜ [ ς ] ) t ˜ , 0 ´ ( ϖ N ˜ [ ς ] ) s ˜ . Let θ , ϑ Y and ς B s.t θ , ϑ ´ ( ϰ N ˜ [ ς ] ) t ˜ where t ˜ ( 1 / 2 , 1 ] . Then ϰ N ˜ [ ς ] ( θ ) < t ˜ , ϰ N ˜ [ ς ] ( ϑ ) < t ˜ . Using Theorem, 3.4 , ϰ N ˜ [ ς ] ( θ ϑ ) ϰ N ˜ [ ς ] ( θ ) ϰ N ˜ [ ς ] ( ϑ ) 1 / 2 < t ˜ s ˜ 1 / 2 = t ˜ . Thus, ϰ N ˜ [ ς ] ( θ ϑ ) < t ˜ , i.e., θ ϑ ´ ( ϰ N ˜ [ ς ] ) t ˜ . Therefore, θ , ϑ ´ ( ϰ N ˜ [ ς ] ) t ˜ θ ϑ ´ ( ϰ N ˜ [ ς ] ) t ˜ . Hence, ( ϰ N ˜ [ ς ] ) t ˜ is a subalgebra of Y .
Next, let θ , ϑ Y and ς B such that θ , ϑ ´ ( ϖ N ˜ [ ς ] ) s ˜ where s ˜ ( 0 , 1 / 2 ) . Then ϖ N ˜ [ ς ] ( θ ) s ˜ , ϖ N ˜ [ ς ] ( ϑ ) s ˜ . Using Theorem 3.4 , ϖ N ˜ [ ς ] ( θ ϑ ) ϖ N ˜ [ ς ] ( θ ) ϖ N ˜ [ ς ] ( ϑ ) 1 / 2 > s ˜ s ˜ 1 / 2 = s ˜ . Thus, ϖ N ˜ [ ς ] ( θ ϑ ) s ˜ , i.e., θ ϑ ´ ( ϖ N ˜ [ ς ] ) s ˜ . Therefore, θ , ϑ ´ ( ϖ N ˜ [ ς ] ) s ˜ θ ϑ ´ ( ϖ N ˜ [ ς ] ) s ˜ . Hence, ( ϖ N ˜ [ ς ] ) s ˜ is a subalgebra of Y .
Conversely, N ˜ [ ς ] is an I F S S U and ( ϰ N ˜ [ ς ] ) t ˜ = { θ : ϰ N ˜ [ ς ] ( θ ) < t ˜ , where t ˜ ( 1 / 2 , 1 ] } and ( ϖ N ˜ [ ς ] ) s ˜ = { θ : ϖ N ˜ [ ς ] ( θ ) s ˜ , where s ˜ ( 0 , 1 / 2 ) } are subalgebras of Y . To prove N ˜ [ ς ] is an ( ´ , ´ q ´ ) - U I F S S A , suppose N ˜ [ ς ] is not an ( ´ , ´ q ´ ) - U I F S S A , there exists θ , ϑ Y s.t at least one of ϰ N ˜ [ ς ] ( θ ϑ ) > ϰ N ˜ [ ς ] ( θ ) ϰ N ˜ [ ς ] ( ϑ ) 1 / 2 and ϖ N ˜ [ ς ] ( θ ϑ ) < ϖ N ˜ [ ς ] ( θ ) ϖ N ˜ [ ς ] ( ϑ ) 1 / 2 hold. Suppose ϰ N ˜ [ ς ] ( θ ϑ ) > ϰ N ˜ [ ς ] ( θ ) ϰ N ˜ [ ς ] ( ϑ ) 1 / 2 holds. Let t ˜ = { ϰ N ˜ [ ς ] ( θ ϑ ) + ( ϰ N ˜ [ ς ] ( θ ) ϰ N ˜ [ ς ] ( ϑ ) 1 / 2 ) } / 2 . Then t ˜ ( 1 / 2 , 1 ] and
ϰ N ˜ [ ς ] ( θ ϑ ) > t ˜ > ϰ N ˜ [ ς ] ( θ ) ϰ N ˜ [ ς ] ( ϑ ) 1 / 2 .
Therefore, ϰ N ˜ [ ς ] ( θ ) < t ˜ , ϰ N ˜ [ ς ] ( ϑ ) < t ˜ . So, θ ´ ( ϰ N ˜ [ ς ] ) t ˜ , ϑ ´ ( ϰ N ˜ [ ς ] ) t ˜ , i.e., θ ϑ ´ ( ϰ N ˜ [ ς ] ) t ˜ .
Thus, ϰ N ˜ [ ς ] ( θ ϑ ) < t ˜ , which contradicts (15). Hence,
ϰ N ˜ [ ς ] ( θ ϑ ) ϰ N ˜ [ ς ] ( θ ) ϰ N ˜ [ ς ] ( ϑ ) 1 / 2 .
Next, let ϖ N ˜ [ ς ] ( θ ϑ ) < ϖ N ˜ [ ς ] ( θ ) ϖ N ˜ [ ς ] ( ϑ ) 1 / 2 hold. Let s ˜ = { ϖ N ˜ [ ς ] ( θ ϑ ) + ( ϖ N ˜ [ ς ] ( θ ) ϖ N ˜ [ ς ] ( ϑ ) 1 / 2 ) } / 2 . Then s ˜ ( 0 , 1 / 2 ) and
ϖ N ˜ [ ς ] ( θ ϑ ) < s ˜ < ϖ N ˜ [ ς ] ( θ ) ϖ N ˜ [ ς ] ( ϑ ) 1 / 2 .
Therefore, ϖ N ˜ [ ς ] ( θ ) > s ˜ , ϖ N ˜ [ ς ] ( ϑ ) > s ˜ . Thus, θ ´ ( ϖ N ˜ [ ς ] ) s ˜ , ϑ ´ ( ϖ N ˜ [ ς ] ) s ˜ , i.e., θ ϑ ´ ( ϖ N ˜ [ ς ] ) s ˜ . Therefore, ϖ N ˜ [ ς ] ( θ ϑ ) > s ˜ , which contradicts (17). Hence,
ϖ N ˜ [ ς ] ( θ ϑ ) ϖ N ˜ [ ς ] ( θ ) ϖ N ˜ [ ς ] ( ϑ ) 1 / 2 .
Hence, (16) and (18) N ˜ [ ς ] is an ( ´ , ´ q ´ ) - U I F S S A . □

4. Homomorphism of ( ´ , ´ q ´ ) -Uni-Intuitionistic Fuzzy Soft Ideals

Definition 17.
Let Y and Y be two subtraction BG-algebras. Then h : Y Y is said to be a homomorphism if h ( θ ϑ ) = h ( θ ) h ( ϑ ) , for all θ , ϑ Y .
Definition 18.
A I F S S U ϰ N ˜ [ ς ] of Y is an ( ´ , ´ q ´ ) - U I F S I D of Y if ( θ ϑ ) t ˜ , ϑ s ˜ ´ ϰ N ˜ [ ς ] θ t ˜ s ´ ϰ N ˜ [ ς ] and ( θ ϑ ) t ˜ , ϑ s ˜ ´ ω N ˜ [ ς ] θ t ˜ s ˜ ´ ω N ˜ [ ς ] , for all θ , ϑ Y and ς B .
Definition 19.
An I F S S U N ˜ [ ς ] is an ( ´ , ´ q ´ ) - U I F S I D if it fulfils the succeeding conditions:
(i) ( θ ϑ ) t ˜ , ϑ s ˜ ´ ϰ N ˜ [ ς ] ( θ ) , ϰ N ˜ [ ς ] ( θ ϑ ) t ˜ , ϰ N ˜ [ ς ] ( ϑ ) s ϰ N ˜ [ ς ] ( θ ) t ˜ s ˜ .
(ii) ( θ ϑ ) t ˜ , ϑ s ˜ ´ ϖ N ˜ [ ς ] ( θ ) , ϖ N ˜ [ ς ] ( θ ϑ ) t ˜ , ϖ N ˜ [ ς ] ( ϑ ) s ˜ ϖ N ˜ [ ς ] ( θ ) t ˜ s ˜ .
Theorem 6.
Let h : Y Y be a homomorphism and Y , Y be two subtraction BG-algebras. If N ˜ [ ς ] is an ( ´ , ´ q ´ ) - U I F S I D , then h 1 ( N ˜ [ ς ] ) is an ( ´ , ´ q ´ ) - U I F S I D .
Proof. 
Let h 1 ( N ˜ [ ς ] ) ( θ ) = h 1 ( ϰ N ˜ [ ς ] , ϖ N ˜ [ ς ] ) ( θ ) be defined as h 1 ( ϰ N ˜ [ ς ] , ϖ N ˜ [ ς ] ) ( θ ) = ( ϰ N ˜ [ ς ] , ϖ N ˜ [ ς ] ) ( h 1 ( θ ) ) . Let N ˜ [ ς ] be an ( ´ , ´ q ´ ) - U I F S I D of Y and let θ , ϑ Y s.t ( θ ϑ ) t ˜ , ϑ s ˜ ´ h 1 ( N ˜ [ ς ] ) = h 1 ( ϰ N ˜ [ ς ] , ϖ N ˜ [ ς ] ) = ( h 1 ϰ N ˜ [ ς ] , h 1 ϖ N ˜ [ ς ] ) . Then ( θ ϑ ) t ˜ , ϑ s ˜ ´ h 1 ( ϰ N ˜ [ ς ] ) and ( θ ϑ ) t ˜ , ϑ s ˜ ´ h 1 ( ϖ N ˜ [ ς ] ) .
Case 1: Let ( θ ϑ ) t ˜ , ϑ s ˜ ´ h 1 ( σ N ˜ [ ς ] )
h 1 ( ϰ N ˜ [ ς ] ) ( θ ϑ ) t ˜ and h 1 ( ϰ N ˜ [ ς ] ) ( ϑ ) s ˜
ϰ N ˜ [ ς ] h ( θ ϑ ) t ˜ and ϰ N ˜ [ ς ] h ( ϑ ) s ˜
( h ( θ ϑ ) ) t ˜ ´ ϰ N ˜ [ ς s ˜ ] and ( h ( ϑ ) ) s ˜ ´ ϰ N ˜ [ ς ]
( h ( θ ) h ( ϑ ) ) t ˜ ´ ϰ N ˜ [ ς ] and ( h ( ϑ ) ) s ˜ ´ ϰ N ˜ [ ς ]
( h ( θ ) ) t ˜ s ˜ ´ ϰ N ˜ [ ς ]
ϰ N ˜ [ ς ] ( h ( θ ) ) t ˜ s ˜ or ϰ N ˜ [ ς ] ( h ( θ ) ) + t ˜ s ˜ < 1
h 1 ( ϰ N ˜ [ ς ] ( θ ) ) t ˜ s ˜ or h 1 ( ϰ N ˜ [ ς ] ( θ ) ) + t ˜ s ˜ < 1
θ t ˜ s ˜ ´ h 1 ( ϰ N ˜ [ ς ] ) or θ t ˜ s ˜ ´ q ´ h 1 ( ϰ N ˜ [ ς ] )
θ t ˜ s ˜ ´ q ´ h 1 ( ϰ N ˜ [ ς ] ) .
Therefore,
( θ ϑ ) t ˜ , ϑ s ˜ ´ h 1 ( ϰ N ˜ [ ς ] ) θ t ˜ s ˜ ´ q ´ h 1 ( ϰ N ˜ [ ς ] ) .
Case 2: Let ( θ ϑ ) t ˜ , ϑ s ˜ ´ h 1 ( ϖ N ˜ [ ς ] )
h 1 ( ϖ N ˜ [ ς ] ) ( θ ϑ ) t ˜ and h 1 ( ϖ N ˜ [ ς ] ) ( ϑ ) s ˜
ϖ N ˜ [ ς ] h ( θ ϑ ) t ˜ and ϖ N ˜ [ ς ] h ( ϑ ) s ˜
( h ( θ ϑ ) ) t ˜ ´ ϖ N ˜ [ ς ] and ( h ( ϑ ) ) s ˜ ´ ϖ N ˜ [ ς ]
( h ( θ ) h ( ϑ ) ) t ˜ ´ ϖ N ˜ [ ς ] and ( h ( ϑ ) ) s ˜ ´ ϖ N ˜ [ ς ]
( h ( θ ) ) t ˜ s ˜ ´ ϖ N ˜ [ ς ]
ϖ N ˜ [ ς ] ( h ( θ ) ) t ˜ s ˜ or ϖ N ˜ [ ς ] ( h ( θ ) ) + t ˜ s ˜ > 1
h 1 ( ϖ N ˜ [ ς ] ( θ ) ) t ˜ s ˜ or h 1 ( ϖ N ˜ [ ς ] ( θ ) ) + t ˜ s ˜ > 1
θ t ˜ s ˜ ´ h 1 ( ϖ N ˜ [ ς ] ) or θ t ˜ s ˜ ´ q ´ h 1 ( ϖ N ˜ [ ς ] )
θ t ˜ s ˜ ´ q ´ h 1 ( ϖ N ˜ [ ς ] ) .
Therefore,
( θ ϑ ) t ˜ , ϑ s ˜ ´ h 1 ( ϖ N ˜ [ ς ] ) θ t ˜ s ˜ ´ q ´ h 1 ( ϖ N ˜ [ ς ] ) .
Hence (19) and (20) h 1 ( N ˜ [ ς ] ) is an ( ´ , ´ q ´ ) - U I F S I D . □
Theorem 7.
Let h : Y Y be an onto homomorphism and Y , Y be two subtraction BG-algebras. If N ˜ [ ς ] is an I F S S U s.t h 1 ( N ˜ [ ς ] ) is an ( ´ , ´ q ´ ) - U I F S I D , then N ˜ [ ς ] is an ( ´ , ´ q ´ ) - U I F S I D .
Proof. 
Let θ , ϑ Y and ς B s.t ( θ ϑ ) t ˜ , ϑ s ˜ ´ N ˜ [ ς ] . ( θ ϑ ) t ˜ , ϑ s ˜ ´ ϰ N ˜ [ ς ] and ( θ ϑ ) t ˜ , ϑ s ˜ ´ ϖ N ˜ [ ς ] . Therefore, ϰ N ˜ [ ς ] ( θ ϑ ) t ˜ , ϰ N ˜ [ ς ] ( ϑ ) s ˜ and ϖ N ˜ [ ς ] ( θ ϑ ) t ˜ , ϖ N ˜ [ ς ] ( ϑ ) s ˜ . Since h is onto, there exists θ , ϑ Y s.t h ( θ ) = θ , h ( ϑ ) = ϑ , h ( θ ϑ ) = h ( θ ) h ( ϑ ) = θ ϑ .
Let ( θ ϑ ) t ˜ , ϑ s ˜ ´ ϰ N ˜ [ ς ] . Then ϰ N ˜ [ ς ] ( h ( θ ϑ ) ) t ˜ and ϰ N ˜ [ ς ] ( h ( ϑ ) ) s ˜ imply h 1 ( ϰ N ˜ [ ς ] ) ( θ ϑ ) t ˜ and h 1 ( ϰ N ˜ [ ς ] ) ( ϑ ) s ˜ . Thus, ( θ ϑ ) t ˜ ´ h 1 ( ϰ N ˜ [ ς ] ) and ϑ s ˜ ´ h 1 ( ϰ N ˜ [ ς ] ) , i.e., θ t ˜ s ˜ ´ q ´ h 1 ( ϰ N ˜ [ ς ] ) . It follows that h 1 ( ϰ N ˜ [ ς ] ) ( θ ) t ˜ s ˜ or h 1 ( ϰ N ˜ [ ς ] ) ( θ ) + t ˜ s ˜ < 1 imply ϰ N ˜ [ ς ] ( h ( θ ) ) t ˜ s ˜ or ϰ N ˜ [ ς ] ( h ( θ ) ) + t ˜ s ˜ < 1 . Thus, ϰ N ˜ [ ς ] ( θ ) t ˜ s ˜ or ϰ N ˜ [ ς ] ( θ ) + t ˜ s ˜ < 1 , i.e., θ t ˜ s ˜ ´ q ´ ϰ N ˜ [ ς ] . Therefore,
( θ ϑ ) t ˜ , ϑ s ˜ ´ ϰ N ˜ [ ς ] θ t ˜ s ˜ ´ q ´ ϰ N ˜ [ ς ] .
Let ( θ ϑ ) t ˜ , ϑ s ˜ ´ ϖ N ˜ [ ς ] . Then ϖ N ˜ [ ς ] ( h ( θ ϑ ) ) t ˜ and ϖ N ˜ [ ς ] ( h ( ϑ ) ) s ˜ imply h 1 ( ϖ N ˜ [ ς ] ) ( θ ϑ ) t ˜ and h 1 ( ϖ N ˜ [ ς ] ) ( ϑ ) s ˜ . Thus, ( θ ϑ ) t ˜ ´ h 1 ( ϖ N ˜ [ ς ] ) and ϑ t ˜ ´ h 1 ( ϖ N ˜ [ ς ] ) , i.e., θ t ˜ s ˜ ´ q ´ h 1 ( ϖ N ˜ [ ς ] ) . It follows that h 1 ( ϖ N ˜ [ ς ] ) ( θ ) t ˜ s ˜ or h 1 ( ϖ N ˜ [ ς ] ) ( θ ) + t ˜ s ˜ > 1 imply ϖ N ˜ [ ς ] ( h ( θ ) ) t ˜ s ˜ or ϖ N ˜ [ ς ] ( h ( θ ) ) + t ˜ s ˜ > 1 . Thus, ϖ N ˜ [ ς ] ( θ ) t ˜ s ˜ or ϖ N ˜ [ ς ] ( θ ) + t ˜ s ˜ > 1 , i.e., θ t ˜ s ˜ ´ q ´ ϖ N ˜ [ ς ] . Therefore,
( θ ϑ ) t ˜ , ϑ s ˜ ´ ϖ N ˜ [ ς ] θ t ˜ s ˜ ´ q ´ ϖ N ˜ [ ς ] .
Hence, (21) and (22) N ˜ [ ς ] is also an ( ´ , ´ q ´ ) - U I F S I D . □

5. ( ´ , ´ q ´ k ˇ ) -Uni-Intuitionistic Fuzzy Soft h-Ideals

Definition 20.
An I F S P θ t ˜ is said to belong to (respectively, be quasi-coincident with) an I F S S U N ˜ [ ς ] written as θ t ˜ q ´ k ˇ N ˜ [ ς ] (respectively, θ t ˜ ´ N ˜ [ ς ] ) if ϰ N ˜ [ ς ] ( θ ) + t ˜ + k ˇ > 1 or ϰ N ˜ [ ς ] ( θ ) t ˜ and ϖ N ˜ [ ς ] ( θ ) + t ˜ + k ˇ < 1 or ϖ N ˜ [ ς ] ( θ ) t ˜ . If θ t ˜ q ´ k ˇ N ˜ [ ς ] or θ t ˜ ´ N ˜ [ ς ] , then θ t ˜ ´ q ´ k ˇ N ˜ [ ς ] .
Definition 21.
An I F S S U N ˜ [ ς ] is an ( ´ , ´ ) - U I F S H I D if it satisfies the following conditions:
(i) ( ( θ ( ϑ φ ) ) , t ˜ ) , ( ϑ , s ˜ ) ´ ϰ N ˜ [ ς ] ( θ φ , t ˜ s ˜ ) ´ ϰ N ˜ [ ς ] ;
(ii) ( ( θ ( ϑ φ ) ) , t ˜ ) , ( ϑ , s ˜ ) ´ ϖ N ˜ [ ς ] ( θ φ , t ˜ s ˜ ) ´ ϖ N ˜ [ ς ] ,
for every θ , ϑ , φ Y , ς B and t ˜ , s ˜ ( 0 , 1 ] .
Definition 22.
An I F S S U N ˜ [ ς ] is an ( ´ , ´ q ´ k ˇ ) - U I F S H I D if it satisfies the following conditions:
(i) ( ( θ ( ϑ φ ) ) , t ˜ ) , ( ϑ , s ˜ ) ´ ϰ N ˜ [ ς ] ( θ φ , t ˜ s ˜ ) ´ q ´ k ˇ ϰ N ˜ [ ς ] ;
(ii) ( ( θ ( ϑ φ ) ) , t ˜ ) , ( ϑ , s ˜ ) ´ ϖ N ˜ [ ς ] ( θ φ , t ˜ s ˜ ) ´ q ´ k ˇ ϖ N ˜ [ ς ] ,
for every θ , ϑ , φ Y , ς B and t ˜ , s ˜ ( 0 , 1 ] .
Theorem 8.
An I F S S U N ˜ [ ς ] is an ( ´ , ´ q ´ k ˇ ) - U I F S H I D if and only if it satisfies:
(i) ϰ N ˜ [ ς ] ( θ φ ) ϰ N ˜ [ ς ] ( ( θ ( ϑ φ ) ) ) ϰ N ˜ [ ς ] ( ϑ ) [ 1 k ˇ ] / 2 ;
(ii) ϖ N ˜ [ ς ] ( θ φ ) ϖ N ˜ [ ς ] ( ( θ ( ϑ φ ) ) ) ϖ N ˜ [ ς ] ( ϑ ) [ 1 k ˇ ] / 2 ;
for any θ , ϑ , φ Y , and ς B .
Proof. 
(i) First, let N ˜ [ ς ] be an ( ´ , ´ q ´ k ˇ ) - U I F S H I D .
Case 1: Let ϰ N ˜ [ ς ] ( ( θ ( ϑ φ ) ) ) ϰ N ˜ [ ς ] ( ϑ ) > [ 1 k ˇ ] / 2 . Then ϰ N ˜ [ ς ] ( ( θ ( ϑ φ ) ) ) ϰ N ˜ [ ς ] ( ϑ ) [ 1 k ˇ ] / 2 = ϰ N ˜ [ ς ] ( ( θ ( ϑ φ ) ) ) ϰ N ˜ [ ς ] ( ϑ ) . If possible, let ϰ N ˜ [ ς ] ( θ φ ) > ϰ N ˜ [ ς ] ( ( θ ( ϑ φ ) ) ) ϰ N ˜ [ ς ] ( ϑ ) . Then let t ˜ be a real number such that ϰ N ˜ [ ς ] ( θ φ ) > t ˜ > ϰ N ˜ [ ς ] ( ( θ ( ϑ φ ) ) ) ϰ N ˜ [ ς ] ( ϑ ) . Thus, ϰ N ˜ [ ς ] ( ( θ ( ϑ φ ) ) ) < t ˜ , ϰ N ˜ [ ς ] ( ϑ ) < t ˜ , for some t ˜ ( 0 , 1 ) , i.e., ( θ ( ϑ φ ) , t ˜ ) ´ ϰ N ˜ [ ς ] , ( ϑ , t ˜ ) ´ ϰ N ˜ [ ς ] . However, ϰ N ˜ [ ς ] ( θ φ ) > t ˜ . Then ( θ ϑ , t ˜ ) ¯ ϰ N ˜ [ ς ] and ϰ N ˜ [ ς ] ( θ φ ) + t ˜ > 2 t ˜ . Thus, ϰ N ˜ [ ς ] ( θ φ ) + t ˜ > 2 ( ϰ N ˜ [ ς ] ( ( θ ( ϑ φ ) ) ) ϰ N ˜ [ ς ] ( ϑ ) ) > 2 × [ 1 k ˇ ] / 2 = 1 k ˇ , i.e., ϰ N ˜ [ ς ] ( θ φ ) + t ˜ < 1 k ˇ . Therefore, ( θ ϑ , t ˜ ) q ´ k ˇ ¯ ϰ N ˜ [ ς ] . Hence, ( θ ϑ , t ˜ ) ´ q ´ k ˇ ¯ ϰ N ˜ [ ς ] , which contradicts the fact that N ˜ [ ς ] is an ( ´ , ´ q ´ k ˇ ) - U I F S H I D of Y . Therefore, ϰ N ˜ [ ς ] ( θ φ ) ϰ N ˜ [ ς ] ( ( θ ( ϑ φ ) ) ) ϰ N ˜ [ ς ] ( ϑ ) = ϰ N ˜ [ ς ] ( ( θ ( ϑ φ ) ) ) ϰ N ˜ [ ς ] ( ϑ ) [ 1 k ˇ ] / 2 .
Case 2: Let ϰ N ˜ [ ς ] ( ( θ ( ϑ φ ) ) ) ϰ N ˜ [ ς ] ( ϑ ) [ 1 k ˇ ] / 2 . Then ϰ N ˜ [ ς ] ( ( θ ( ϑ φ ) ) ϰ N ˜ [ ς ] ( ϑ ) = [ 1 k ˇ ] / 2 . If possible, let ϰ N ˜ [ ς ] ( θ φ ) > ϰ N ˜ [ ς ] ( ( θ ( ϑ φ ) ) ) ϰ N ˜ [ ς ] ( ϑ ) [ 1 k ˇ ] / 2 = [ 1 k ˇ ] / 2 . Then ϰ N ˜ [ ς ] ( ( θ ( ϑ φ ) ) ) [ 1 k ˇ ] / 2 , and ϰ N ˜ [ ς ] ( ϑ ) [ 1 k ˇ ] / 2 . So, ( θ , [ 1 k ˇ ] / 2 ) ´ ϰ N ˜ [ ς ] , ( ϑ , [ 1 k ˇ ] / 2 ) ´ ϰ N ˜ [ ς ] . However, ( θ ϑ , [ 1 k ˇ ] / 2 ) ¯ ϰ N ˜ [ ς ] . Then ϰ N ˜ [ ς ] ( θ φ ) + [ 1 k ˇ ] / 2 > [ 1 k ˇ ] / 2 + [ 1 k ˇ ] / 2 = 1 k ˇ implies ( θ ϑ , [ 1 k ˇ ] / 2 ) q ´ k ˇ ¯ ϰ N ˜ [ ς ] . Hence, ( θ ϑ , [ 1 k ˇ ] / 2 ) ´ q ´ k ˇ ¯ ϰ N ˜ [ ς ] , which again fails due to the fact that ϰ N ˜ [ ς ] is an ( ´ , ´ q ´ k ˇ ) - U I F S H I D . Therefore, ϰ N ˜ [ ς ] ( θ φ ) [ 1 k ˇ ] / 2 = ϰ N ˜ [ ς ] ( ( θ ( ϑ φ ) ) ) ϰ N ˜ [ ς ] ( ϑ ) [ 1 k ˇ ] / 2 .
Converse part:
Let
ϰ N ˜ [ ς ] ( θ φ ) ϰ N ˜ [ ς ] ( ( θ ( ϑ φ ) ) ) ϰ N ˜ [ ς ] ( ϑ ) [ 1 k ˇ ] / 2 .
Let θ , ϑ Y , ς B and t ˜ , s ˜ ( 0 , 1 ] s.t ( θ ( ϑ φ ) , t ˜ ) , ( ϑ , t ˜ ) ´ ϰ N ˜ [ ς ] . Then ϰ N ˜ [ ς ] ( ( θ ( ϑ φ ) ) ) t ˜ and ϰ N ˜ [ ς ] ( ϑ ) s ˜ . Therefore, ϰ N ˜ [ ς ] ( ( θ ( ϑ φ ) ) ) ϰ N ˜ [ ς ] ( ϑ ) t ˜ s ˜ . By (23), we have ϰ N ˜ [ ς ] ( θ φ ) t ˜ s ˜ [ 1 k ˇ ] / 2 .
Let [ 1 k ˇ ] / 2 t ˜ s ˜ . Then [ 1 k ˇ ] / 2 t ˜ s ˜ = t ˜ s ˜ . Therefore, ϰ N ˜ [ ς ] ( θ φ ) t ˜ s ˜ .
( θ ϑ , t ˜ s ˜ ) ´ ϰ N ˜ [ ς ] .
Next, let [ 1 k ˇ ] / 2 < t ˜ s ˜ . Then [ 1 k ˇ ] / 2 t ˜ s ˜ = [ 1 k ˇ ] / 2 . Therefore, ϰ N ˜ [ ς ] ( θ φ ) t ˜ s ˜ [ 1 k ˇ ] / 2 = [ 1 k ˇ ] / 2 . Thus, ϰ N ˜ [ ς ] ( θ φ ) + t ˜ s ˜ < [ 1 k ˇ ] / 2 + [ 1 k ˇ ] / 2 = 1 k ˇ .
( θ ϑ , t ˜ s ˜ ) q ´ k ˇ ϰ N ˜ [ ς ] .
From (24) and (25), we have
( θ ( ϑ φ ) , t ˜ ) , ( ϑ , t ˜ ) ´ ϰ N ˜ [ ς ] ( θ ϑ , t ˜ s ˜ ) ´ q ´ k ˇ ϰ N ˜ [ ς ] .
Therefore, ϰ N ˜ [ ς ] is an ( ´ ´ q ´ k ˇ ) - U I F S H I D .
(ii) First, let N ˜ [ ς ] be an ( ´ ´ q ´ k ˇ ) - U I F S H I D .
Case 1: Let ϖ N ˜ [ ς ] ( ( θ ( ϑ φ ) ) ) ϖ N ˜ [ ς ] ( ϑ ) < [ 1 k ˇ ] / 2 . Then ϖ N ˜ [ ς ] ( ( θ ( ϑ φ ) ) ) ϖ N ˜ [ ς ] ( ϑ ) [ 1 k ˇ ] / 2 = ϖ N ˜ [ ς ] ( ( θ ( ϑ φ ) ) ) ϖ N ˜ [ ς ] ( ϑ ) . If possible, let ϖ N ˜ [ ς ] ( θ φ ) < ϖ N ˜ [ ς ] ( ( θ ( ϑ φ ) ) ) ϖ N ˜ [ ς ] ( ϑ ) . Then let t ˜ be a real number such that ϖ N ˜ [ ς ] ( θ φ ) < t ˜ < ϖ N ˜ [ ς ] ( ( θ ( ϑ φ ) ) ) ϖ N ˜ [ ς ] ( ϑ ) . Thus, ϖ N ˜ [ ς ] ( ( θ ( ϑ φ ) ) ) > t ˜ , ϖ N ˜ [ ς ] ( ϑ ) > t ˜ , for some t ˜ ´ ( 0 , 1 ) , i.e., ( θ , t ˜ ) ´ ϖ N ˜ [ ς ] , ( ϑ , t ˜ ) ´ ϖ N ˜ [ ς ] . However, ϖ N ˜ [ ς ] ( θ φ ) < t ˜ . Then ( θ ϑ , t ˜ ) ¯ ϖ N ˜ [ ς ] and ϖ N ˜ [ ς ] ( θ φ ) + t ˜ < 2 t ˜ . Thus, ϖ N ˜ [ ς ] ( θ φ ) + t ˜ < 2 ( ϖ N ˜ [ ς ] ( ( θ ( ϑ φ ) ) ) ϖ N ˜ [ ς ] ( ϑ ) ) < 2 × [ 1 k ˇ ] / 2 = 1 k ˇ , i.e., ϖ N ˜ [ ς ] ( θ φ ) + t ˜ < 1 k ˇ . Therefore, ( θ ϑ , t ˜ ) q ´ k ˇ ¯ ϖ N ˜ [ ς ] . Hence, ( θ ϑ , t ˜ ) ´ q ´ k ˇ ¯ ϖ N ˜ [ ς ] , which contradicts the fact that N ˜ [ ς ] is an ( ´ , ´ q ´ k ˇ ) - U I F S H I D . Therefore, ϖ N ˜ [ ς ] ( θ φ ) ϖ N ˜ [ ς ] ( ( θ ( ϑ φ ) ) ) ϖ N ˜ [ ς ] ( ϑ ) = ϖ N ˜ [ ς ] ( ( θ ( ϑ φ ) ) ) ϖ N ˜ [ ς ] ( ϑ ) [ 1 k ˇ ] / 2 .
Case 2: Let ϖ N ˜ [ ς ] ( ( θ ( ϑ φ ) ) ) ϖ N ˜ [ ς ] ( ϑ ) [ 1 k ˇ ] / 2 . Then ϖ N ˜ [ ς ] ( ( θ ( ϑ φ ) ) ) ϖ N ˜ [ ς ] ( ϑ ) = [ 1 k ˇ ] / 2 . If possible, let ϖ N ˜ [ ς ] ( θ φ ) < ϖ N ˜ [ ς ] ( ( θ ( ϑ φ ) ) ) ϖ N ˜ [ ς ] ( ϑ ) [ 1 k ˇ ] / 2 = [ 1 k ˇ ] / 2 . Then ϖ N ˜ [ ς ] ( ( θ ( ϑ φ ) ) ) [ 1 k ˇ ] / 2 and ϖ N ˜ [ ς ] ( ϑ ) [ 1 k ˇ ] / 2 . Thus, ( θ , [ 1 k ˇ ] / 2 ) ´ ϖ N ˜ [ ς ] , ( ϑ , [ 1 k ˇ ] / 2 ) ´ ϖ N ˜ [ ς ] . However, ( θ ϑ , [ 1 k ˇ ] / 2 ) ¯ ϖ N ˜ [ ς ] . Then ϖ N ˜ [ ς ] ( θ φ ) + [ 1 k ˇ ] / 2 < [ 1 k ˇ ] / 2 + [ 1 k ˇ ] / 2 = 1 k ˇ , i.e., ( θ ϑ , [ 1 k ˇ ] / 2 ) q ´ k ˇ ¯ ϖ N ˜ [ ς ] . Hence, ( θ ϑ , [ 1 k ˇ ] / 2 ) ´ q ´ k ˇ ¯ ϖ N ˜ [ ς ] , which contradicts the fact that ϖ N ˜ [ ς ] is an ( ´ , ´ q ´ k ˇ ) - U I F S H I D . Therefore, ϖ N ˜ [ ς ] ( θ φ ) [ 1 k ˇ ] / 2 = ϖ N ˜ [ ς ] ( ( θ ( ϑ φ ) ) ) ϖ N ˜ [ ς ] ( ϑ ) [ 1 k ˇ ] / 2 .
Converse part:
Let
ϖ N ˜ [ ς ] ( θ φ ) ϖ N ˜ [ ς ] ( ( θ ( ϑ φ ) ) ) ϖ N ˜ [ ς ] ( ϑ ) [ 1 k ˇ ] / 2 .
Let θ , ϑ Y , ς B and t ˜ , s ˜ ( 0 , 1 ] s.t ( θ ( ϑ φ ) , t ˜ ) , ( ϑ , t ˜ ) ´ ϖ N ˜ [ ς ] . Then ϖ N ˜ [ ς ] ( ( θ ( ϑ φ ) ) ) t ˜ and ϖ N ˜ [ ς ] ( ϑ ) s ˜ . Therefore, ϖ N ˜ [ ς ] ( ( θ ( ϑ φ ) ) ) ϖ N ˜ [ ς ] ( ϑ ) t ˜ s ˜ . By (27), we have ϖ N ˜ [ ς ] ( θ φ ) t ˜ s ˜ [ 1 k ˇ ] / 2 . Now, let [ 1 k ˇ ] / 2 t ˜ s ˜ . Then [ 1 k ˇ ] / 2 t ˜ s ˜ = t ˜ s ˜ . Thus, ϖ N ˜ [ ς ] ( θ φ ) t ˜ s ˜ ,
( θ ϑ , t ˜ s ˜ ) ´ ϖ N ˜ [ ς ] .
Next, let [ 1 k ˇ ] / 2 < t ˜ s ˜ , [ 1 k ˇ ] / 2 t ˜ s ˜ = [ 1 k ˇ ] / 2 . Then ϖ N ˜ [ ς ] ( θ φ ) t ˜ s ˜ [ 1 k ˇ ] / 2 = [ 1 k ˇ ] / 2 . Thus, ϖ N ˜ [ ς ] ( θ φ ) + t ˜ s ˜ > [ 1 k ˇ ] / 2 + [ 1 k ˇ ] / 2 = 1 k ˇ ,
( θ ϑ , t ˜ s ˜ ) q ´ k ˇ ϖ N ˜ [ ς ] .
From (28) and (29), we have
( θ ( ϑ φ ) , t ˜ ) , ( ϑ , t ˜ ) ´ ϖ N ˜ [ ς ] ( θ ϑ , t ˜ s ˜ ) ´ q ´ k ˇ ϖ N ˜ [ ς ] .
Therefore, ϖ N ˜ [ ς ] is an ( ´ , ´ q ´ k ˇ ) - U I F S H I D . Hence, (26) and (30) N ˜ [ ς ] is an ( ´ , ´ q ´ k ˇ ) - U I F S H I D .
An ( ´ , ´ ) - U I F S H I D is always an ( ´ , ´ q ´ k ˇ ) - U I F S H I D of Y , but not conversely, which can be seen from the following example.
Example 4.
Consider a subtraction BG-algebra Y = { 0 , θ , ϑ , φ } with the following Cayley Table 5:
Define N ˜ [ ς ] by
0 θ ϑ φ
ϰ N ˜ [ ς ] 0.410.290.410.41
ω N ˜ [ ς ] 0.690.540.690.69
Then ( ´ , ´ q ´ ) - U I F S H I D , but it is not an ( ´ , ´ ) - U I F S H I D , since θ 0.6 ´ ω N ˜ [ ς ] , ϑ 0.6 ´ ω N ˜ [ ς ] , but ( θ ϑ ) 0.59 = φ 0.59 ´ ω N ˜ [ ς ] .
Theorem 9.
An I F S S U N ˜ [ ς ] is an ( ´ , ´ q ´ k ˇ ) - U I F S H I D and if ϰ N ˜ [ ς ] ( ( θ ( ϑ φ ) ) ) > [ 1 k ˇ ] / 2 , ϖ N ˜ [ ς ] ( ( θ ( ϑ φ ) ) ) < [ 1 k ˇ ] / 2 , then N ˜ [ ς ] is also an ( ´ , ´ ) - U I F S H I D .
Proof. 
Let N ˜ [ ς ] be an ( ´ , ´ q ´ k ˇ ) - U I F S H I D . Then ϰ N ˜ [ ς ] ( ( θ ( ϑ φ ) ) ) > [ 1 k ˇ ] / 2 and ϖ N ˜ [ ς ] ( ( θ ( ϑ φ ) ) ) < [ 1 k ˇ ] / 2 . Let ( θ ( ϑ φ ) , t ˜ ) ´ ϰ N ˜ [ ς ] , ( ϑ , s ˜ ) ´ ϰ N ˜ [ ς ] . Then we have [ 1 k ˇ ] / 2 < ϰ N ˜ [ ς ] ( ( θ ( ϑ φ ) ) ) t ˜ a n d [ 1 k ˇ ] / 2 < ϰ N ˜ [ ς ] ( ϑ ) s ˜ . Thus, t ˜ s ˜ > [ 1 k ˇ ] / 2 , i.e., ϰ N ˜ [ ς ] ( θ φ ) > [ 1 k ˇ ] / 2 . Thus, ϰ N ˜ [ ς ] ( θ φ ) + t ˜ s ˜ > [ 1 k ˇ ] / 2 + [ 1 k ˇ ] / 2 = 1 k ˇ . Since ϰ N ˜ [ ς ] is an ( ´ , ´ q ´ ) - U I F S H I D , either ϰ N ˜ [ ς ] ( θ φ ) + t ˜ s ˜ < 1 k ˇ o r ϰ N ˜ [ ς ] ( θ φ ) t ˜ s ˜ . Thus, ϰ N ˜ [ ς ] ( θ φ ) t ˜ s ˜ ( θ ϑ , t ˜ s ˜ ) ´ ϰ N ˜ [ ς ] . Therefore,
( θ ( ϑ φ ) , t ˜ ) ´ ϰ N ˜ [ ς ] , ( ϑ , s ˜ ) ´ ϰ N ˜ [ ς ] ( θ ϑ , t ˜ s ˜ ) ´ ϰ N ˜ [ ς ] .
Thus, ϰ N ˜ [ ς ] is ( ´ , ´ ) - U I F S H I D .
Again, let ( θ ( ϑ φ ) , t ˜ ) ´ ϖ N ˜ [ ς ] , ( ϑ , s ˜ ) ´ ϖ N ˜ [ ς ] . Then we have t ϖ N ˜ [ ς ] ( ( θ ( ϑ φ ) ) ) < [ 1 k ˇ ] / 2 and s ˜ ϖ N ˜ [ ς ] ( ϑ ) < [ 1 k ˇ ] / 2 .
Thus, t ˜ s ˜ < [ 1 k ˇ ] / 2 , i.e., ϖ N ˜ [ ς ] ( θ φ ) < [ 1 k ˇ ] / 2 . Thus, ϖ N ˜ [ ς ] ( θ φ ) + t ˜ s ˜ < [ 1 k ˇ ] / 2 + [ 1 k ˇ ] / 2 = 1 k ˇ . Since ϖ N ˜ [ ς ] is an ( ´ , ´ q ´ ) - U I F S H I D , either ϖ N ˜ [ ς ] ( θ φ ) t ˜ s ˜ o r ϖ N ˜ [ ς ] ( θ φ ) + t s ˜ > 1 k ˇ . Thus, ϖ N ˜ [ ς ] ( θ φ ) t ˜ s ˜ ( θ ϑ , t ˜ s ˜ ) ´ ϖ N ˜ [ ς ] . Therefore,
( θ ( ϑ φ ) , t ˜ ) ´ ϖ N ˜ [ ς ] , ( ϑ , s ˜ ) ´ ϖ N ˜ [ ς ] ( θ ϑ , t ˜ s ˜ ) ´ ϖ N ˜ [ ς ] .
Thus, ϖ N ˜ [ ς ] is ( ´ , ´ ) - U I F S H I D . Hence, (31) and (32) N ˜ [ ς ] is also an ( ´ , ´ ) - U I F S H I D . □
Theorem 10.
Let N ˜ [ ς ] be an I F S if and only if U ( N ˜ [ ς ] ; t ˜ ) : = { θ ´ Y : ϰ N ˜ [ ς ] t ˜ a n d ϖ N ˜ [ ς ] t ˜ } is a h-ideal of Y for all t ˜ ( 0 , [ 1 k ˇ ] / 2 ) .
Proof. 
Suppose that N ˜ [ ς ] is an ( ´ , ´ q ´ k ˇ ) - U I F S H I D .
(i) Let t ˜ ( 0 , [ 1 k ˇ ] / 2 ) and θ ( ϑ φ ) , ϑ ´ U ( N ˜ [ ς ] ; t ˜ ) . Then ϰ N ˜ [ ς ] ( ( θ ( ϑ φ ) ) ) t ˜ and ϖ N ˜ [ ς ] ( ( θ ( ϑ φ ) ) ) t ˜ . It follows from (23) that ϰ N ˜ [ ς ] ( θ φ ) t ˜ t ˜ [ 1 k ˇ ] / 2 = t ˜ . Thus, θ ϑ ´ U ( N ˜ [ ς ] ; t ˜ ) . Thus, U ( N ˜ [ ς ] ; t ˜ ) is an h-ideal of Y .
Conversely, suppose that U ( N ˜ [ ς ] ; t ˜ ) is an h-ideal of Y , for all t ˜ ( 0 , [ 1 k ˇ ] / 2 ) . If (23) is not true, then there exist θ ( ϑ φ ) , ϑ Y and ς B such that ϰ N ˜ [ ς ] ( θ φ ) > ϰ N ˜ [ ς ] ( ( θ ( ϑ φ ) ) ) ϰ N ˜ [ ς ] ( ϑ ) [ 1 k ˇ ] / 2 . Hence, we can see that t ˜ ( 0 , 1 ) such that ϰ N ˜ [ ς ] ( θ φ ) > t ˜ ϰ N ˜ [ ς ] ( ( θ ( ϑ φ ) ) ) ϰ N ˜ [ ς ] ( ϑ ) [ 1 k ˇ ] / 2 . Then t ˜ ´ ( 0 , [ 1 k ˇ ] / 2 ) and θ ( ϑ φ ) , ϑ ´ U ( N ˜ [ ς ] ; t ˜ ) . In addition, U ( N ˜ [ ς ] ; t ˜ ) is an h-ideal of Y which implies θ ϑ ´ U ( N ˜ [ ς ] ; t ˜ ) . Thus, ϰ N ˜ [ ς ] ( θ φ ) t ˜ , which is a contradiction. Therefore, (23) is valid, and ϰ N ˜ [ ς ] is an ( ´ , ´ q ´ k ˇ ) - U I F S H I D of Y .
(ii) Let t ˜ ( 0 , [ 1 k ˇ ] / 2 ) a n d θ ( ϑ φ ) , ϑ ´ U ( N ˜ [ ς ] ; t ˜ ) . Then ϖ N ˜ [ ς ] ( ( θ ( ϑ φ ) ) ) t ˜ a n d ϖ N ˜ [ ς ] ( ( θ ( ϑ φ ) ) ) t ˜ } . It follows from (27) that ϖ N ˜ [ ς ] ( θ φ ) t ˜ t ˜ [ 1 k ˇ ] / 2 = t ˜ . Thus, θ ϑ ´ U ( N ˜ [ ς ] ; t ˜ ) . Thus U ( N ˜ [ ς ] ; t ˜ ) is an h-ideal of Y .
Conversely, suppose that U ( N ˜ [ ς ] ; t ˜ ) is an h-ideal of Y for all t ˜ ( 0 , [ 1 k ˇ ] / 2 ) . If (23) is not true, then there exists θ ( ϑ φ ) , ϑ ´ Y and ς B such that ϖ N ˜ [ ς ] ( θ φ ) < ϖ N ˜ [ ς ] ( ( θ ( ϑ φ ) ) ) ϖ N ˜ [ ς ] ( ϑ ) [ 1 k ˇ ] / 2 . Hence, we can see that t ˜ ( 0 , 1 ) such that ϖ N ˜ [ ς ] ( θ φ ) < t ˜ ϖ N ˜ [ ς ] ( ( θ ( ϑ φ ) ) ) ϖ N ˜ [ ς ] ( ϑ ) [ 1 k ˇ ] / 2 . Thus, t ˜ ( 0 , [ 1 k ˇ ] / 2 ) and θ , ϑ ´ U ( N ˜ [ ς ] ; t ˜ ) . In addition, U ( N ˜ [ ς ] ; t ˜ ) is an h-ideal of Y which implies that θ ϑ ´ U ( N ˜ [ ς ] ; t ˜ ) . Thus, ϖ N ˜ [ ς ] ( θ φ ) t ˜ , which is a contradiction. Therefore, (27) is valid, and ϖ N ˜ [ ς ] is an ( ´ , ´ q ´ k ˇ ) - U I F S H I D of Y .
Theorem 11.
Let N ˜ [ ς ] be an I F S S U . Then N ˜ [ ς ] is an ( ´ , ´ q ´ k ˇ ) - U I F S H I D if and only if [ ϰ N ˜ [ ς ] ] t ˜ , and [ ϖ N ˜ [ ς ] ] t ˜ is an h-ideal of Y , for all t ˜ ´ ( 0 , 1 ] . We call [ ϰ N ˜ [ ς ] ] t ˜ , and [ ϖ N ˜ [ ς ] ] t ˜ ( ´ q ´ k ˇ ) -level h-ideals of Y .
Proof. 
Suppose that N ˜ [ ς ] is an ( ´ , ´ q ´ k ˇ ) - U I F S H I D . To prove [ ϰ N ˜ [ ς ] ] t ˜ and [ ϖ N ˜ [ ς ] ] t ˜ is a h-ideal of Y , let θ ( ϑ φ ) , ϑ ´ [ ϰ N ˜ [ ς ] ] t ˜ , for t ˜ ( 0 , 1 ] . Then ( θ ( ϑ φ ) , t ˜ ) , ( ϑ , t ˜ ) ´ q ´ k ˇ ϰ N ˜ [ ς ] implies ϰ N ˜ [ ς ] ( ( θ ( ϑ φ ) ) ) t ˜ and ϰ N ˜ [ ς ] ( ϑ ) t ˜ . Thus, N ˜ [ ς ] is an ( ´ , ´ q ´ k ) - U I F S H I D , i.e., ϰ N ˜ [ ς ] ( θ φ ) ϰ N ˜ [ ς ] ( ( θ ( ϑ φ ) ) ) ϰ N ˜ [ ς ] ( ϑ ) [ 1 k ˇ ] / 2 , for any θ , ϑ , φ Y and ς B .
Now we have the following cases.
Case 1: Let ϰ N ˜ [ ς ] ( ( θ ( ϑ φ ) ) ) t ˜ , ϰ N ˜ [ ς ] ( ϑ ) t ˜ , and let t ˜ < [ 1 k ˇ ] / 2 . Then ϰ N ˜ [ ς ] ( θ φ ) ϰ N ˜ [ ς ] ( ( θ ( ϑ φ ) ) ) ϰ N ˜ [ ς ] ( ϑ ) [ 1 k ˇ ] / 2 = t ˜ t ˜ [ 1 k ˇ ] / 2 = [ 1 k ˇ ] / 2 . It follows that ϰ N ˜ [ ς ] ( θ φ ) [ 1 k ˇ ] / 2 . Thus, ϰ N ˜ [ ς ] ( θ φ ) + t ˜ < [ 1 k ˇ ] / 2 + [ 1 k ˇ ] / 2 = 1 k ˇ , i.e., ( θ ϑ , t ˜ ) q ´ k ˇ ϰ N ˜ [ ς ] .
Next, let t ˜ [ 1 k ˇ ] / 2 . Then ϰ N ˜ [ ς ] ( θ φ ) ϰ N ˜ [ ς ] ( ( θ ( ϑ φ ) ) ) ϰ N ˜ [ ς ] ( ϑ ) [ 1 k ˇ ] / 2 t ˜ t ˜ [ 1 k ˇ ] / 2 = t ˜ . It follows that ( θ ϑ , t ˜ ) ´ ϰ N ˜ [ ς ] . Thus, ( θ ϑ , t ˜ ) ´ q ´ k ˇ ϰ N ˜ [ ς ] , i.e., ( θ ϑ , t ˜ ) ´ [ ϰ N ˜ [ ς ] ] t ˜ .
Case 2: Let ϰ N ˜ [ ς ] ( ( θ ( ϑ φ ) ) ) t ˜ , ϰ N ˜ [ ς ] ( ϑ ) + t ˜ < 1 k ˇ , and let t ˜ < [ 1 k ˇ ] / 2 . Then ϰ N ˜ [ ς ] ( θ φ ) ϰ N ˜ [ ς ] ( ( θ ( ϑ φ ) ) ) ϰ N ˜ [ ς ] ( ϑ ) [ 1 k ˇ ] / 2 < t ˜ ( 1 k ˇ t ˜ ) [ 1 k ˇ ] / 2 = 1 k ˇ t ˜ . It follows that ϰ N ˜ [ ς ] ( θ φ ) < 1 k ˇ t ˜ . So, ϰ N ˜ [ ς ] ( θ φ ) + t ˜ < 1 k ˇ , i.e., ( θ ϑ , t ˜ ) q ´ k ˇ ϰ N ˜ [ ς ] .
Next, let t ˜ [ 1 k ˇ ] / 2 . Then ϰ N ˜ [ ς ] ( θ φ ) ϰ N ˜ [ ς ] ( ( θ ( ϑ φ ) ) ) ϰ N ˜ [ ς ] ( ϑ ) [ 1 k ˇ ] / 2 t ˜ ( 1 k ˇ t ˜ ) [ 1 k ˇ ] / 2 = t . Thus, ϰ N ˜ [ ς ] ( θ φ ) t ˜ , i.e., ( θ ϑ , t ˜ ) ´ ϰ N ˜ [ ς ] . Hence, ( θ ϑ , t ˜ ) ´ q ´ ϰ N ˜ [ ς ] ( θ ϑ , t ˜ ) ´ [ ϰ N ˜ [ ς ] ] t ˜ .
Case 3: Let ϰ N ˜ [ ς ] ( ( θ ( ϑ φ ) ) ) + t ˜ < 1 k ˇ , ϰ N ˜ [ ς ] ( ϑ ) t ˜ , and let t ˜ < [ 1 k ˇ ] / 2 . Then ϰ N ˜ [ ς ] ( θ φ ) ϰ N ˜ [ ς ] ( ( θ ( ϑ φ ) ) ) ϰ N ˜ [ ς ] ( ϑ ) [ 1 k ˇ ] / 2 < ( 1 k ˇ t ˜ ) t ˜ [ 1 k ˇ ] / 2 = 1 k ˇ t ˜ . Thus, ϰ N ˜ [ ς ] ( θ φ ) < 1 k ˇ t ˜ ϰ N ˜ [ ς ] ( θ φ ) + t ˜ < 1 k ˇ , i.e., ( θ ϑ , t ˜ ) q ´ k ˇ ϰ N ˜ [ ς ] .
Next, let t ˜ [ 1 k ˇ ] / 2 . Then ϰ N ˜ [ ς ] ( θ φ ) ϰ N ˜ [ ς ] ( ( θ ( ϑ φ ) ) ) ϰ N ˜ [ ς ] ( ϑ ) [ 1 k ˇ ] / 2 = ( 1 k ˇ t ˜ ) t ˜ [ 1 k ˇ ] / 2 = t ˜ . Thus, ϰ N ˜ [ ς ] ( θ φ ) t ˜ , i.e., ( θ ϑ , t ˜ ) ´ ϰ N ˜ [ ς ] . Hence, ( θ ϑ , t ˜ ) ´ q ´ ϰ N ˜ [ ς ] ( θ ϑ , t ˜ ) ´ [ ϰ N ˜ [ ς ] ] t ˜ .
Case 4:  ϰ N ˜ [ ς ] ( ( θ ( ϑ φ ) ) ) + t ˜ < 1 k ˇ , ϰ N ˜ [ ς ] ( ϑ ) + t ˜ < 1 k ˇ , and let t ˜ < [ 1 k ˇ ] / 2 . Then ϰ N ˜ [ ς ] ( θ φ ) ϰ N ˜ [ ς ] ( ( θ ( ϑ φ ) ) ) ϰ N ˜ [ ς ] ( ϑ ) [ 1 k ˇ ] / 2 < ( 1 k ˇ t ˜ ) ( 1 k ˇ t ˜ ) [ 1 k ˇ ] / 2 = 1 k ˇ t ˜ . Thus, ϰ N ˜ [ ς ] ( θ φ ) < 1 k ˇ t ˜ , i.e., ϰ N ˜ [ ς ] ( θ φ ) + t ˜ < 1 k ˇ . Hence, ( θ ϑ , t ˜ ) q ´ k ˇ ϰ N ˜ [ ς ] .
Next, let t ˜ [ 1 k ˇ ] / 2 . Then ϰ N ˜ [ ς ] ( θ φ ) ϰ N ˜ [ ς ] ( ( θ ( ϑ φ ) ) ) ϰ N ˜ [ ς ] ( ϑ ) [ 1 k ˇ ] / 2 = ( 1 k ˇ t ˜ ) ( 1 k ˇ t ˜ ) [ 1 k ˇ ] / 2 = [ 1 k ˇ ] / 2 t ˜ . Thus, ϰ N ˜ [ ς ] ( θ φ ) t ˜ , i.e., ( θ ϑ , t ˜ ) ´ ϰ N ˜ [ ς ] . Hence, ( θ ϑ , t ˜ ) ´ q ´ k ˇ ϰ N ˜ [ ς ] ( θ ϑ , t ˜ ) ´ [ ϰ N ˜ [ ς ] ] t ˜ . Therefore, θ ( ϑ φ ) , ϑ ´ [ ϰ N ˜ [ ς ] ] t ˜ ( θ ϑ , t ˜ ) ´ [ ϰ N ˜ [ ς ] ] t ˜ is an h-ideal of Y . Similarly, we can prove [ ϖ N ˜ [ ς ] ] t ˜ is a h-ideal of Y .
Conversely, let N ˜ [ ς ] be an U I F S H I D s.t [ ϰ N ˜ [ ς ] ] t ˜ and [ ϖ N ˜ [ ς ] ] t ˜ is an h-ideal of Y for all t ˜ ( 0 , 1 ] . To show N ˜ [ ς ] is an ( ´ , ´ q ´ k ˇ ) - U I F S H I D . Suppose N ˜ [ ς ] is not an ( ´ , ´ q ´ k ˇ ) - U I F S H I D . Then there exists θ , ϑ , φ Y s.t at least one of ϰ N ˜ [ ς ] ( θ φ ) > ϰ N ˜ [ ς ] ( θ ( ϑ φ ) ) ϰ N ˜ [ ς ] ( θ ( ϑ φ ) ) [ 1 k ˇ ] / 2 and ϖ N ˜ [ ς ] ( θ φ ) < ϖ N ˜ [ ς ] ( θ ( ϑ φ ) ) ϖ N ˜ [ ς ] ( θ ( ϑ φ ) ) [ 1 k ˇ ] / 2 holds.
Suppose ϰ N ˜ [ ς ] ( θ φ ) > ϰ N ˜ [ ς ] ( θ ( ϑ φ ) ) ϰ N ˜ [ ς ] ( θ ( ϑ φ ) ) [ 1 k ˇ ] / 2 holds, then select t ˜ ( 0 , 1 ] s.t
ϰ N ˜ [ ς ] ( θ φ ) > t ˜ > ϰ N ˜ [ ς ] ( θ ( ϑ φ ) ) ϰ N ˜ [ ς ] ( θ ( ϑ φ ) ) [ 1 k ˇ ] / 2 .
Then ϰ N ˜ [ ς ] ( θ ( ϑ φ ) ) < t ˜ , ϰ N ˜ [ ς ] ( θ ( ϑ φ ) ) < t ˜ θ ( ϑ φ ) , ϑ ´ ( ϰ N ˜ [ ς ] ) t ˜ [ ϰ N ˜ [ ς ] ] t ˜ is an h-ideal. Therefore, ( θ φ ) ´ [ ϰ N ˜ [ ς ] ] t ˜ ϰ N ˜ [ ς ] ( θ φ ) t ˜ o r ϰ N ˜ [ ς ] ( θ φ ) + t ˜ < 1 k ˇ , which contradicts (33).
Next, let ϖ N ˜ [ ς ] ( θ φ ) < ϖ N ˜ [ ς ] ( θ ( ϑ φ ) ) ϖ N ˜ [ ς ] ( θ ( ϑ φ ) ) [ 1 k ˇ ] / 2 hold, then select t ˜ ( 0 , 1 ] s.t
ϖ N ˜ [ ς ] ( θ φ ) < t ˜ < ϖ N ˜ [ ς ] ( θ ( ϑ φ ) ) ϖ N ˜ [ ς ] ( θ ( ϑ φ ) ) [ 1 k ˇ ] / 2 .
Then ϖ N ˜ [ ς ] ( θ ( ϑ φ ) ) > t ˜ , ϖ N ˜ [ ς ] ( θ ( ϑ φ ) ) > t ˜ θ ( ϑ φ ) , ϑ ´ ( ϖ N ˜ [ ς ] ) t ˜ [ ϖ N ˜ [ ς ] ] t ˜ is an h-ideal. Therefore, ( θ φ ) ´ [ ϖ N ˜ [ ς ] ] t ˜ ϖ N ˜ [ ς ] ( θ φ ) t ˜ o r ϖ N ˜ [ ς ] ( θ φ ) + t ˜ > 1 k ˇ , which contradicts (34). Hence, ϰ N ˜ [ ς ] ( θ φ ) ϰ N ˜ [ ς ] ( ( θ ( ϑ φ ) ) ) ϰ N ˜ [ ς ] ( ( θ ( ϑ φ ) ) ) [ 1 k ˇ ] / 2 and ϖ N ˜ [ ς ] ( θ φ ) ϖ N ˜ [ ς ] ( ( θ ( ϑ φ ) ) ) ϖ N ˜ [ ς ] ( ( θ ( ϑ φ ) ) ) [ 1 k ˇ ] / 2 . Thus, N ˜ [ ς ] is an ( ´ , ´ q ´ k ˇ ) - U I F S H I D . □

6. Conclusions

In this paper, we introduced the notions of ( ´ , ´ q ´ ) - U I F S S A s in subtraction BG-algebras. We provided different characterizations and some equivalent conditions of ( ´ , ´ q ´ ) - U I F S S A s in terms of the level subsets of subtraction BG-algebras. It was shown that ( q ´ , q ´ ) - U I F S S A are ( ´ , ´ ) - U I F S S A but the converse does not hold and an example is provided. We introduced ( ´ , ´ q ´ ) - U I F S I D s and some of its usual properties. Also, h 1 ( N ˜ [ ς ] ) is an ( ´ , ´ q ´ ) - U I F S I D . Moreover, if h 1 ( N ˜ [ ς ] ) are an ( ´ , ´ q ´ ) - U I F S I D , then N ˜ [ ς ] are an ( ´ , ´ q ´ ) - U I F S I D . Finally, we characterized ( ´ , ´ q ´ k ˇ ) - U I F S H I D which is a generalization of ( ´ , ´ q ´ ) - U I F S H I D . In the future, we may carry out ( ´ , ´ q ´ k ˇ ) - B U I F S S A s and its applications in decision-making problems.

Author Contributions

Conceptualization, M.B., N.A., K.L. and N.A.N.; methodology, M.B.; validation, N.A. and K.L.; formal analysis, N.A. and N.A.N.; investigation, K.L.; writing—original draft preparation, M.B.; writing—review and editing, N.A. and K.L. All authors have read and agreed to the published version of the manuscript.

Funding

This research was funded by Princess Nourah Bint Abdulrahman University Researchers Supporting Project Number (PNURSP2023R59), Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia.

Institutional Review Board Statement

Not Applicable.

Informed Consent Statement

Not Applicable.

Data Availability Statement

Not Applicable.

Acknowledgments

Princess Nourah Bint Abdulrahman University Researchers Supporting Project Number (PNURSP2023R59), Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia.

Conflicts of Interest

The authors declare no conflicts of interest.

References

  1. Zadeh, L.A. Fuzzy sets. Inf. Control. 1965, 8, 338–353. [Google Scholar] [CrossRef]
  2. Atanassov, K.T. Intuitionistic fuzzy sets. Fuzzy Sets Syst. 1986, 20, 87–96. [Google Scholar] [CrossRef]
  3. Imai, Y.; Iseki, K. On axiom systems of propositional calculi XIV. Proc. Japan Acad. 1966, 42, 19–22. [Google Scholar] [CrossRef]
  4. Neggers, J.; Kim, H.S. On B-algebras. Math. Vensik 2002, 54, 21–29. [Google Scholar]
  5. Kim, C.B.; Kim, H.S. On BG-algebras. Demonstartio Math. 2008, 41, 497–505. [Google Scholar]
  6. Zarandi, A.; Saeid, A.B. On intuitionistic fuzzy ideals of BG-algebras. World Acad. Sci. Eng. Technol. 2005, 5, 187–189. [Google Scholar]
  7. Senapati, T.; Bhowmik, M.; Pal, A. Intuitionistic fuzzifications of ideals in BG-algebras. Math. Aeterna 2012, 2, 761–778. [Google Scholar]
  8. Ahn, S.S.; Lee, H.D. Fuzzy subalgebras of BG-algebras. Common Korean Math. Soc. 2004, 19, 243–251. [Google Scholar] [CrossRef]
  9. Bhakat, S.K.; Das, P. (∈,∈∨q)-fuzzy subgroup. Fuzzy Sets Syst. 1996, 80, 359–368. [Google Scholar] [CrossRef]
  10. Jun, Y.B. Generalizations of (∈,∈∨q)-fuzzy subalgebras in BCK/BCI-algebras. Comput. Math. Appl. 2009, 58, 1383–1390. [Google Scholar] [CrossRef]
  11. Basnet, D.K.; Singh, L.B. (∈,∈∨q)-Fuzzy ideals of BG-algebra. Int. J. Algebra 2011, 5, 703–708. [Google Scholar]
  12. Barbhuiya, S.R.; Choudhury, K.D. (∈,∈∨q)-Fuzzy ideal of d-algebra. Int. J. Math. Trends Technol. 2014, 9, 16–26. [Google Scholar] [CrossRef]
  13. Molodstov, D. Soft set theory-First results. Comput. Math. Appl. 1999, 37, 19–31. [Google Scholar]
  14. Maji, P.K.; Biswas, R.; Roy, A.R. Fuzzy soft sets. J. Fuzzy Math. 2001, 9, 589–602. [Google Scholar]
  15. Maji, P.K.; Biswas, R.; Roy, A.R. Intuitionistic fuzzy soft sets. J. Fuzzy Math. 2001, 9, 677–692. [Google Scholar]
  16. Balamurugan, M.; Ragavan, C.; Balasubramanian, G. Anti-intuitionistic Fuzzy Soft Ideals in BCK/BCI-algebras. Mater. Today Proc. 2019, 16, 2214–7853. [Google Scholar] [CrossRef]
  17. Balasubramanian, G.; Balamurugan, M.; Ragavan, C. Generalizations of (∈,∈∨q)-Anti Intuitionistic Fuzzy Soft Subalgebras of BG-algebras. Int. J. Appl. Eng. Res. 2008, 13, 16376–16393. [Google Scholar]
  18. Mursaleen, M.; Balamurugan, M.; Loganathan, K. Kottakkaran Sooppy Nisar, (∈,∈∨ q ^ )-Bipolar Fuzzy-Ideals of BCK/BCI-Algebras. J. Funct. Spaces 2021, 6615288, 1–8. [Google Scholar]
  19. Muhiuddin, G.; Alam, N.; Obeidat, S.; Khan, N.M.; Zaidi, H.N.; Kirmani, S.A.K.; Altaleb, A.; Aqib, J.M. Fuzzy set theoretic approach to generalized ideals in BCK/BCI-algebras. J. Funct. Spaces 2022, 2022, 5462248. [Google Scholar] [CrossRef]
  20. Al-Masarwah, A.; Ahmad, A.G.; Muhiuddin, G.; Al-Kadi, D. Generalized m-polar fuzzy positive implicative ideals of BCK-algebras. J. Math. 2021, 2021, 6610009. [Google Scholar] [CrossRef]
Table 1. List of symbols used in this article.
Table 1. List of symbols used in this article.
SymbolRepresentation
F S S Fuzzy soft set
U F S S A Uni-fuzzy soft subalgebra
I F S Intuitionistic fuzzy set
I F S S Intuitionistic fuzzy soft set
U I F S S A Uni-intuitionistic fuzzy soft subalgebra
I F S S U Intuitionistic fuzzy soft subset
I F S P Intuitionistic fuzzy soft point
U I F S I D Uni-intuitionistic fuzzy soft ideal
U I F S H I D Uni-intuitionistic fuzzy soft h-ideal
Table 2. Example of U I F S S A subtraction BG-algebra.
Table 2. Example of U I F S S A subtraction BG-algebra.
0 θ ϑ φ ϖ
00 ϖ φ ϑ θ
θ θ 0 ϖ φ 0
ϑ ϑ θ 0 ϖ φ
φ φ ϑ θ 0 ϖ
ϖ ϖ φ ϑ θ 0
Table 3. Cayley table for U I F S S A .
Table 3. Cayley table for U I F S S A .
-0 θ ϑ
00 θ ϑ
θ θ 0 θ
ϑ ϑ ϑ 0
Table 4. Illustration of converse of Theorem 2.
Table 4. Illustration of converse of Theorem 2.
0 θ ϑ φ
00 θ ϑ φ
θ θ 0 φ ϑ
ϑ ϑ φ 0 θ
φ φ ϑ θ 0
Table 5. Example of ( ´ , ´ q ´ k ˇ ) - U I F S H I D .
Table 5. Example of ( ´ , ´ q ´ k ˇ ) - U I F S H I D .
0 θ ϑ φ
00 θ ϑ φ
θ θ 0 φ ϑ
ϑ ϑ φ 0 θ
φ φ ϑ θ 0
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Balamurugan, M.; Alessa, N.; Loganathan, K.; Amar Nath, N. (´,´q´kˇ)-Uni-Intuitionistic Fuzzy Soft h-Ideals in Subtraction BG-Algebras. Mathematics 2023, 11, 2296. https://doi.org/10.3390/math11102296

AMA Style

Balamurugan M, Alessa N, Loganathan K, Amar Nath N. (´,´q´kˇ)-Uni-Intuitionistic Fuzzy Soft h-Ideals in Subtraction BG-Algebras. Mathematics. 2023; 11(10):2296. https://doi.org/10.3390/math11102296

Chicago/Turabian Style

Balamurugan, Manivannan, Nazek Alessa, Karuppusamy Loganathan, and Neela Amar Nath. 2023. "(´,´q´kˇ)-Uni-Intuitionistic Fuzzy Soft h-Ideals in Subtraction BG-Algebras" Mathematics 11, no. 10: 2296. https://doi.org/10.3390/math11102296

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop