Next Article in Journal
Water Carrying Capacity Evaluation Method Based on Cloud Model Theory and an Evidential Reasoning Approach
Next Article in Special Issue
Some New Versions of Integral Inequalities for Left and Right Preinvex Functions in the Interval-Valued Settings
Previous Article in Journal
Numerical Simulation of Solid and Porous Fins’ Impact on Heat Transfer Performance in a Differentially Heated Chamber
Previous Article in Special Issue
Riemann–Liouville Fractional Integral Inequalities for Generalized Pre-Invex Functions of Interval-Valued Settings Based upon Pseudo Order Relation
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Hermite-Hadamard-Type Fractional Inclusions for Interval-Valued Preinvex Functions

1
International Business School, Shaanxi Normal University, Xi’an 710119, China
2
Department of Mathematics, Institute of Science, Banaras Hindu University, Varanasi 221005, India
*
Author to whom correspondence should be addressed.
Mathematics 2022, 10(2), 264; https://doi.org/10.3390/math10020264
Submission received: 22 December 2021 / Revised: 12 January 2022 / Accepted: 13 January 2022 / Published: 16 January 2022
(This article belongs to the Special Issue Variational Problems and Applications)

Abstract

:
We introduce a new class of interval-valued preinvex functions termed as harmonically h-preinvex interval-valued functions. We establish new inclusion of Hermite–Hadamard for harmonically h-preinvex interval-valued function via interval-valued Riemann–Liouville fractional integrals. Further, we prove fractional Hermite–Hadamard-type inclusions for the product of two harmonically h-preinvex interval-valued functions. In this way, these findings include several well-known results and newly obtained results of the existing literature as special cases. Moreover, applications of the main results are demonstrated by presenting some examples.

1. Introduction

It is well known that extensive literature on the class of integral inequalities is being introduced under various notions of convexity; see, for instance [1,2,3,4,5,6]. Inspired by the importance of convexity in multiple fields of pure and applied sciences, researchers generalized and extended the notion of convexity in various settings. A useful generalization of convex functions is introduced by Hanson [7] which is called invex functions. In 1986, Ben-Israel and Mond [8] proposed the notion of preinvex functions and showed that every differentiable preinvex function is invex, but the converse may not be true. Yang and Li [9] provided two conditions that determine the preinvexity of a function via an intermediate-point preinvexity check under conditions of upper and lower semicontinuity, respectively.
On the other hand, interval analysis was introduced to handle interval uncertainty in many mathematical or computer models of some deterministic real-world phenomena. Moore [10] was the first to propose the concept of interval analysis and extend the arithmetic of intervals to the computer. Moore et al. [11] discussed an arithmetic for intervals, integration of interval functions, and interval Newton methods. Bhurjee and Panda [12] provided a methodology to determine the efficient solution of general multi-objective interval fractional programming problem. Lupulescu [13] gave a theory of the fractional calculus for interval-valued functions using gH-difference for closed intervals. Further, Li et al. [14] introduced the concept of invexity using gH-derivative of interval-valued functions and derived Kuhn–Tucker optimality conditions for an interval-valued objective function. Interval analysis has applications in various fields such as experimental and computational physics, error analysis, computer graphics, robotics, numerical integration, and many other fields (see [15,16,17,18,19]).

2. Literature Survey

Işcan [20] proposed the concept of harmonically convex functions and presented some Hermite–Hadamard (H–H)-type inequalities for harmonically convex functions. Noor et al. [21] defined a new class of preinvex functions named h-preinvex functions and established H–H-type inequalities for these preinvex functions under certain conditions. Further, Noor et al. [22] introduced harmonic h-preinvex function and obtained Ostrowski type inequalities for harmonic h-preinvex functions using Riemann–Liouville (R–L) fractional integrals. In recent years, several integral inequalities for different type of preinvex functions are investigated by many authors; see, for instance [23,24,25,26,27,28,29,30].
Cano et al. [31] obtained some Ostrowski type inequalities for interval-valued functions using gH-derivative. Zhao et al. [32] investigated Riemann interval delta integrals for interval-valued functions on time scales and proved Jensen’s, Hölder’s, and Minkowski’s inequalities using Riemann interval delta integrals. Budak et al. [33] defined right-sided R–L fractional integrals for interval-valued functions and obtained H–H-type inequalities for interval-valued R–L fractional integrals. Lou et al. [34] presented the notions of the Iq-integral and Iq-derivative and gave the Iq-H–H inequalities for interval-valued functions. Further, numerous concepts of quantum calculus for interval-valued functions have been investigated by [35,36,37].
Considering the importance of interval analysis, many researchers established relations between integral inequalities and different types of interval-valued functions. Zhao et al. [38] introduced the notion of harmonical h-convexity for interval-valued functions and proved some new H–H-type inequalities for the interval Riemann integral. Further, Zhao et al. [39,40] introduced the concept of interval-valued coordinated convexity and established H–H-type inequalities for newly defined interval-valued coordinated convex functions. Recently, Sharma et al. [41] introduced ( h 1 , h 2 ) -preinvex interval-valued function and derived fractional H–H-type inequalities for these class of interval-valued preinvex functions. Zhou et al. [42] derived H–H-type inequalities for interval-valued exponential type preinvex functions for R–L interval-valued fractional operator. For more inequalities for interval-valued functions, see references [43,44,45,46,47,48,49].
The work in this paper is mainly motivated by Zhao et al. [38] and Shi et al. [50]. We propose the concept of harmonically h-preinvex interval-valued function which includes harmonical h-convex interval-valued functions as a special case. We prove new fractional inclusions of H–H-type for harmonically h-preinvex interval-valued functions. We also present H–H-type inclusions for the product of two harmonically h-preinvex interval-valued functions for interval-valued R–L fractional integrals. Further, we discuss some special cases of our main results. The results obtained in this paper may be generalized for other kinds of interval-valued fractional integrals including harmonically h-preinvex interval-valued functions. As future directions, we can investigate the interval-valued preinvexity on coordinates and establish new inclusions of H–H-type for interval-valued coordinated preinvex functions.
The presentation sequence of the proposed work is the following. In Section 3, we consider some basic definitions and notions of interval analysis. Additionally, we discuss the related results required for this paper. In Section 4, we define harmonically h-preinvexity of interval-valued functions and prove fractional H–H-type inclusions for harmonically h-preinvex interval-valued functions. Some special cases of these results are also discussed in Section 4. In Section 5, we discuss the results obtained by us in this paper. Finally, in Section 6, conclusions and future directions of this study are given.

3. Preliminaries

Let X I be the collection of all closed intervals of R and Δ X I . Then, interval Δ is defined by:
Δ = [ Δ ̲ , Δ ¯ ] = { u R | Δ ̲ u Δ ¯ } , Δ ̲ , Δ ¯ R .
We say Δ is positive if Δ ̲ > 0 or negative if Δ ¯ < 0 . We denote the set of all positive closed intervals by X I + and the set of all negative closed intervals by X I . The following binary operations for intervals Δ 1 = [ Δ 1 ̲ , Δ 1 ¯ ] and Δ 2 = [ Δ 2 ̲ , Δ 2 ¯ ] are given by [17].
Δ 1 + Δ 2 = [ Δ 1 ̲ , Δ 1 ¯ ] + [ Δ 2 ̲ , Δ 2 ¯ ] = [ Δ 1 ̲ + Δ 2 ̲ , Δ 1 ¯ + Δ 2 ¯ ] ,
Δ 1 Δ 2 = [ Δ 1 ̲ , Δ 1 ¯ ] [ Δ 2 ̲ , Δ 2 ¯ ] = [ Δ 1 ̲ Δ 2 ¯ , Δ 1 ¯ Δ 2 ̲ ] ,
Δ 1 . Δ 2 = [ m i n { Δ 1 ̲ Δ 2 ̲ , Δ 1 ̲ Δ 2 ¯ , Δ 1 ¯ Δ 2 ̲ , Δ 1 ¯ Δ 2 ¯ } , m a x { Δ 1 ̲ Δ 2 ̲ , Δ 1 ̲ Δ 2 ¯ , Δ 1 ¯ Δ 2 ̲ , Δ 1 ¯ Δ 2 ¯ } ] ,
1 / Δ = { 1 / u : 0 u Δ } = [ 1 / Δ ¯ , 1 / Δ ̲ ] ,
Δ 1 / Δ 2 = Δ 1 . ( 1 / Δ 2 ) = { u . ( 1 / v ) : u Δ 1 , 0 v Δ 2 } ,
ρ Δ = ρ [ Δ ̲ , Δ ¯ ] = [ ρ Δ ̲ , ρ Δ ¯ ] , if ρ > 0 , { 0 } , if ρ = 0 , ρ Δ ¯ , ρ Δ ̲ ] , if ρ < 0 ,
where ρ R .
Definition 1
([17]).A function ψ is called an interval-valued function on [ ω 1 , ω 2 ] if it assigns a nonempty interval to each u [ ω 1 , ω 2 ] and
ψ ( u ) = [ ψ ̲ ( u ) , ψ ¯ ( u ) ] ,
where ψ ̲ and ψ ¯ are real-valued functions.
Theorem 1
([11]).Let ψ : [ ω 1 , ω 2 ] X I be an interval-valued function such that ψ ( u ) = [ ψ ̲ ( u ) , ψ ¯ ( u ) ] . Then, ψ is interval Riemann integrable ( I R integrable) on [ ω 1 , ω 2 ] if and only if ψ ̲ ( u ) and ψ ¯ ( u ) are Riemann integrable ( R integrable) on [ ω 1 , ω 2 ] and
( I R ) ω 1 ω 2 ψ ( u ) d u = ( R ) ω 1 ω 2 ψ ̲ ( u ) d u , ( R ) ω 1 ω 2 ψ ¯ ( u ) d u .
The collection of all R-integrable and I R -integrable functions on [ ω 1 , ω 2 ] denoted by R ( [ ω 1 , ω 2 ] ) and I R ( [ ω 1 , ω 2 ] ) , respectively.
Definition 2
([51]).Let ψ L 1 [ ω 1 , ω 2 ] . The R–L fractional integrals J ω 1 + α ψ and J ω 2 α ψ of order α > 0 with ω 1 0 are defined by
J ω 1 + α ψ ( u ) = 1 Γ ( α ) ω 1 u ( u ϵ ) ( α 1 ) ψ ( ϵ ) d ϵ , u > ω 1
and
J ω 2 α ψ ( u ) = 1 Γ ( α ) u ω 2 ( ϵ u ) ( α 1 ) ψ ( ϵ ) d ϵ , u < ω 2 ,
respectively. Here, Γ ( . ) is the Gamma function defined by
Γ ( α ) = 0 e ϵ ϵ α 1 d ϵ .
Definition 3
([13,33]).Let ψ : [ ω 1 , ω 2 ] X I be an interval-valued function and ψ I R ( [ ω 1 , ω 2 ] ) . The interval-valued R–L fractional integrals of function ψ are defined by
J ω 1 + α ψ ( u ) = 1 Γ ( α ) ( I R ) ω 1 u ( u ϵ ) ( α 1 ) ψ ( ϵ ) d ϵ , u > ω 1 , α > 0
and
J ω 2 α ψ ( u ) = 1 Γ ( α ) ( I R ) u ω 2 ( ϵ u ) ( α 1 ) ψ ( ϵ ) d ϵ , u < ω 2 , α > 0 ,
where Γ ( α ) is the Gamma function.
Corollary 1
([33]).If ψ : [ ω 1 , ω 2 ] X I is an interval-valued function such that ψ ( u ) = [ ψ ̲ ( u ) , ψ ¯ ( u ) ] with ψ ̲ ( u ) , ψ ¯ ( u ) R ( [ ω 1 , ω 2 ] ) , then we have
J ω 1 + α ψ ( u ) = [ J ω 1 + α ψ ̲ ( u ) , J ω 1 + α ψ ¯ ( u ) ]
and
J ω 2 α ψ ( u ) = [ J ω 2 α ψ ̲ ( u ) , J ω 2 α ψ ¯ ( u ) ] .
Definition 4
([52]).A set I = [ ω 1 , ω 2 ] R \ { 0 } is called a harmonic convex set if
u v t u + ( 1 t ) v I , u , v I , t [ 0 , 1 ] .
Definition 5
([20]).A function ψ : I = [ ω 1 , ω 2 ] R \ { 0 } R is called harmonic convex, if
ψ u v t u + ( 1 t ) v ( 1 t ) ψ ( u ) + t ψ ( v ) , u , v I , t [ 0 , 1 ] .
Now we consider some concepts for harmonic preinvex functions. Let ψ : I R \ { 0 } R and η ( . , . ) : I × I R be continuous functions.
Definition 6
([53]).A set I = [ ω 1 , ω 1 + η ( ω 2 , ω 1 ) ] R \ { 0 } is called a harmonic invex with respect to η ( . , . ) , if
u ( u + η ( v , u ) ) u + ( 1 t ) η ( v , u ) I , u , v I , t [ 0 , 1 ] .
It is well known that every harmonic convex set is harmonic invex with respect to η ( v , u ) = v u but not conversely.
Definition 7
([53]).A function ψ : I = [ ω 1 , ω 1 + η ( ω 2 , ω 1 ) ] R \ { 0 } R is said to be harmonic preinvex with respect to the bifunction η ( . , . ) , if
ψ u ( u + η ( v , u ) ) u + ( 1 t ) η ( v , u ) ( 1 t ) ψ ( u ) + t ψ ( v ) , u , v I , t [ 0 , 1 ] .
Condition C [54]. Let I R be an invex set with respect to η ( . , . ) . Then, function η holds the condition C if for any t [ 0 , 1 ] and any u , v I ,
η ( v , v + t η ( u , v ) ) = t η ( u , v ) ,
η ( u , v + t η ( u , v ) ) = ( 1 t ) η ( u , v ) .
Note that t 1 , t 2 [ 0 , 1 ] , u , v I and from condition C, we have
η ( v + t 2 η ( u , v ) , v + t 1 η ( u , v ) ) = ( t 2 t 1 ) η ( u , v ) .
Theorem 2
([55]).Let ψ : I = [ ω 1 , ω 1 + η ( ω 2 , ω 1 ) ] R ( 0 , ) be a preinvex function on I and ω 1 , ω 2 I with ω 1 < ω 1 + η ( ω 2 , ω 1 ) . Then
ψ 2 ω 1 + η ( ω 2 , ω 1 ) 2 1 η ( ω 2 , ω 1 ) ω 1 ω 1 + η ( ω 2 , ω 1 ) ψ ( u ) d u ψ ( ω 1 ) + ψ ( ω 2 ) 2 ,
which is called the H–H-Noor inequality.
Definition 8
([41]).If I R is an invex set with respect to η ( . , . ) , ψ ( u ) = [ ψ ̲ ( u ) , ψ ¯ ( u ) ] is an interval-valued function on I . Then ψ is preinvex interval-valued function on I with respect to η ( . , . ) if
ψ ( v + t η ( u , v ) ) t ψ ( u ) + ( 1 t ) ψ ( v ) , t [ 0 , 1 ] a n d u , v I .

4. Main Results

In this section, first, we define harmonically h-preinvex interval-valued function and discuss some special cases of harmonically h-preinvex interval-valued function.
Definition 9.
Let h : [ 0 , 1 ] J R be a non-negative function such that h 0, and I R \ { 0 } be a harmonic invex set with respect to η ( . , . ) . Let ψ : I R \ { 0 } X I + be an interval-valued function on set I, then ψ is called harmonically h-preinvex interval-valued function with respect to η ( . , . ) if
ψ u ( u + η ( v , u ) ) u + ( 1 t ) η ( v , u ) h ( 1 t ) ψ ( u ) + h ( t ) ψ ( v ) , t [ 0 , 1 ] a n d u , v I .
Now, we consider some special cases of harmonically h-preinvex interval- valued functions.
  • For h ( t ) = 1 , function ψ is called a harmonically P preinvex interval-valued function.
  • For h ( t ) = t , function ψ is called a harmonically preinvex interval-valued function.
  • If h ( t ) = t s , s ( 0 , 1 ) , then we find the definition of Breckner type of s harmonically preinvex interval-valued functions.
  • If h ( t ) = t s , s ( 0 , 1 ) , then we find the definition of Godunova–Levin type of s harmonically preinvex interval-valued functions.
Example 1.
Let I = [ 1 , 2 ] R \ { 0 } , ψ ( u ) = 1 1 2 u 2 , 1 + 1 2 u , η ( v , u ) = v 2 u , h ( t ) = t then ψ is harmonically h-preinvex interval-valued function on I.
Now, we establish fractional inclusion of H–H for harmonically h-preinvex interval-valued functions.
Theorem 3.
Let h : [ 0 , 1 ] R be a non-negative function such that h ( 1 2 ) 0 . Let ψ : I = [ ω 1 , ω 1 + η ( ω 2 , ω 1 ) ] R \ { 0 } X I + be a harmonically h-preinvex interval-valued function such that ψ = [ ψ ̲ , ψ ¯ ] and ω 1 , ω 2 I with ω 1 < ω 1 + η ( ω 2 , ω 1 ) . If ψ L [ ω 1 , ω 1 + η ( ω 2 , ω 1 ) ] , α > 0 and η holds condition C, then
1 α h ( 1 2 ) ψ 2 ω 1 ( ω 1 + η ( ω 2 , ω 1 ) ) 2 ω 1 + η ( ω 2 , ω 1 ) Γ ( α ) ω 1 ( ω 1 + η ( ω 2 , ω 1 ) ) η ( ω 2 , ω 1 ) α J ( 1 ω 1 + η ( ω 2 , ω 1 ) ) + α ( ψ o Ω ) 1 ω 1 + J 1 ω 1 α ( ψ o Ω ) 1 ω 1 + η ( ω 2 , ω 1 ) [ ψ ( ω 1 ) + ψ ( ω 1 + η ( ω 2 , ω 1 ) ) ] 0 1 t α 1 [ h ( t ) + h ( 1 t ) ] d t ,
where Ω ( u ) = 1 u and ψ o Ω is defined by ψ o Ω ( u ) = ψ ( Ω ( u ) ) , u 1 ω 1 + η ( ω 2 , ω 1 ) , 1 ω 1 .
Proof. 
As ψ is harmonically h-preinvex interval-valued function on [ ω 1 , ω 1 + η ( ω 2 , ω 1 ) ] , we have
1 h ( 1 2 ) ψ 2 u ( u + η ( v , u ) ) 2 u + η ( v , u ) ψ ( u ) + ψ ( v ) , u , v [ ω 1 , ω 1 + η ( ω 2 , ω 1 ) ] .
Let u = ω 1 ( ω 1 + η ( ω 2 , ω 1 ) ) ω 1 + ( 1 t ) η ( ω 2 , ω 1 ) and v = ω 1 ( ω 1 + η ( ω 2 , ω 1 ) ) ω 1 + t η ( ω 2 , ω 1 ) . Then, using Condition C in (1), we find
1 h ( 1 2 ) ψ 2 ω 1 ( ω 1 + η ( ω 2 , ω 1 ) ) 2 ω 1 + η ( ω 2 , ω 1 ) ψ ω 1 ( ω 1 + η ( ω 2 , ω 1 ) ) ω 1 + ( 1 t ) η ( ω 2 , ω 1 ) + ψ ω 1 ( ω 1 + η ( ω 2 , ω 1 ) ) ω 1 + t η ( ω 2 , ω 1 ) .
Multiplying (2) by t α 1 , α > 0 and integrating over [ 0 , 1 ] with respect to t, we have
1 h ( 1 2 ) ( I R ) 0 1 t α 1 ψ 2 ω 1 ( ω 1 + η ( ω 2 , ω 1 ) ) 2 ω 1 + η ( ω 2 , ω 1 ) d t ( I R ) 0 1 t α 1 ψ ω 1 ( ω 1 + η ( ω 2 , ω 1 ) ) ω 1 + ( 1 t ) η ( ω 2 , ω 1 ) d t + ( I R ) 0 1 t α 1 ψ ω 1 ( ω 1 + η ( ω 2 , ω 1 ) ) ω 1 + t η ( ω 2 , ω 1 ) d t .
Applying Theorem 1 in above relation, we find
( I R ) 0 1 t α 1 ψ 2 ω 1 ( ω 1 + η ( ω 2 , ω 1 ) ) 2 ω 1 + η ( ω 2 , ω 1 ) d t = ( R ) 0 1 t α 1 ψ ̲ 2 ω 1 ( ω 1 + η ( ω 2 , ω 1 ) ) 2 ω 1 + η ( ω 2 , ω 1 ) d t , ( R ) 0 1 t α 1 ψ ¯ 2 ω 1 ( ω 1 + η ( ω 2 , ω 1 ) ) 2 ω 1 + η ( ω 2 , ω 1 ) d t = 1 α ψ ̲ 2 ω 1 ( ω 1 + η ( ω 2 , ω 1 ) ) 2 ω 1 + η ( ω 2 , ω 1 ) , 1 α ψ ¯ 2 ω 1 ( ω 1 + η ( ω 2 , ω 1 ) ) 2 ω 1 + η ( ω 2 , ω 1 ) = 1 α ψ 2 ω 1 ( ω 1 + η ( ω 2 , ω 1 ) ) 2 ω 1 + η ( ω 2 , ω 1 ) ,
( I R ) 0 1 t α 1 ψ ω 1 ( ω 1 + η ( ω 2 , ω 1 ) ) ω 1 + ( 1 t ) η ( ω 2 , ω 1 ) d t = ( R ) 0 1 t α 1 ψ ̲ ω 1 ( ω 1 + η ( ω 2 , ω 1 ) ) ω 1 + ( 1 t ) η ( ω 2 , ω 1 ) d t , ( R ) 0 1 t α 1 ψ ¯ ω 1 ( ω 1 + η ( ω 2 , ω 1 ) ) ω 1 + ( 1 t ) η ( ω 2 , ω 1 ) d t = Γ ( α ) ω 1 ( ω 1 + η ( ω 2 , ω 1 ) ) η ( ω 2 , ω 1 ) α J ( 1 ω 1 + η ( ω 2 , ω 1 ) ) + α ψ ̲ o Ω 1 ω 1 , J ( 1 ω 1 + η ( ω 2 , ω 1 ) ) + α ψ ¯ o Ω 1 ω 1 = Γ ( α ) ω 1 ( ω 1 + η ( ω 2 , ω 1 ) ) η ( ω 2 , ω 1 ) α J ( 1 ω 1 + η ( ω 2 , ω 1 ) ) + α ( ψ o Ω ) 1 ω 1 .
Similarly,
( I R ) 0 1 t α 1 ψ ω 1 ( ω 1 + η ( ω 2 , ω 1 ) ) ω 1 + t η ( ω 2 , ω 1 ) d t = Γ ( α ) ω 1 ( ω 1 + η ( ω 2 , ω 1 ) ) η ( ω 2 , ω 1 ) α J 1 ω 1 α ( ψ o Ω ) 1 ω 1 + η ( ω 2 , ω 1 ) .
Using (4)–(6) in (3), we have
1 α h ( 1 2 ) ψ 2 ω 1 ( ω 1 + η ( ω 2 , ω 1 ) ) 2 ω 1 + η ( ω 2 , ω 1 ) Γ ( α ) ω 1 ( ω 1 + η ( ω 2 , ω 1 ) ) η ( ω 2 , ω 1 ) α J ( 1 ω 1 + η ( ω 2 , ω 1 ) ) + α ( ψ o Ω ) 1 ω 1 + J 1 ω 1 α ( ψ o Ω ) 1 ω 1 + η ( ω 2 , ω 1 ) .
As ψ is an harmonically h-preinvex interval-valued function on [ ω 1 , ω 1 + η ( ω 2 , ω 1 ) ] , we have
ψ ω 1 ( ω 1 + η ( ω 2 , ω 1 ) ) ω 1 + ( 1 t ) η ( ω 2 , ω 1 ) = ψ ( ω 1 + η ( ω 2 , ω 1 ) ) ( ω 1 + η ( ω 2 , ω 1 ) + η ( ω 1 , ω 1 + η ( ω 2 , ω 1 ) ) ω 1 + η ( ω 2 , ω 1 ) + t η ( ω 1 , ω 1 + η ( ω 2 , ω 1 ) ) h ( t ) ψ ( ω 1 + η ( ω 2 , ω 1 ) ) + h ( 1 t ) ψ ( ω 1 )
and
ψ ω 1 ( ω 1 + η ( ω 2 , ω 1 ) ) ω 1 + t η ( ω 2 , ω 1 ) = ψ ( ω 1 + η ( ω 2 , ω 1 ) ) ( ω 1 + η ( ω 2 , ω 1 ) + η ( ω 1 , ω 1 + η ( ω 2 , ω 1 ) ) ω 1 + η ( ω 2 , ω 1 ) + ( 1 t ) η ( ω 1 , ω 1 + η ( ω 2 , ω 1 ) ) h ( 1 t ) ψ ( ω 1 + η ( ω 2 , ω 1 ) ) + h ( t ) ψ ( ω 1 ) .
Adding (8) and (9), we have
ψ ω 1 ( ω 1 + η ( ω 2 , ω 1 ) ) ω 1 + ( 1 t ) η ( ω 2 , ω 1 ) + ψ ω 1 ( ω 1 + η ( ω 2 , ω 1 ) ) ω 1 + t η ( ω 2 , ω 1 ) [ h ( t ) + h ( 1 t ) ] [ ψ ( ω 1 ) + ψ ( ω 1 + η ( ω 2 , ω 1 ) ) ] .
Multiplying (10) by t α 1 and integrating over [ 0 , 1 ] with respect to t , we have
( I R ) 0 1 t α 1 ψ ω 1 ( ω 1 + η ( ω 2 , ω 1 ) ) ω 1 + ( 1 t ) η ( ω 2 , ω 1 ) d t + ( I R ) 0 1 t α 1 ψ ω 1 ( ω 1 + η ( ω 2 , ω 1 ) ) ω 1 + t η ( ω 2 , ω 1 ) d t ( I R ) 0 1 t α 1 [ h ( t ) + h ( 1 t ) ] [ ψ ( ω 1 ) + ψ ( ω 1 + η ( ω 2 , ω 1 ) ) ] d t .
This implies
Γ ( α ) ω 1 ( ω 1 + η ( ω 2 , ω 1 ) ) η ( ω 2 , ω 1 ) α J ( 1 ω 1 + η ( ω 2 , ω 1 ) ) + α ( ψ o Ω ) 1 ω 1 + J 1 ω 1 α ( ψ o Ω ) 1 ω 1 + η ( ω 2 , ω 1 ) [ ψ ( ω 1 ) + ψ ( ω 1 + η ( ω 2 , ω 1 ) ) ] 0 1 t α 1 [ h ( t ) + h ( 1 t ) ] d t .
From (7) and (11), we find
1 α h ( 1 2 ) ψ 2 ω 1 ( ω 1 + η ( ω 2 , ω 1 ) ) 2 ω 1 + η ( ω 2 , ω 1 ) Γ ( α ) ω 1 ( ω 1 + η ( ω 2 , ω 1 ) ) η ( ω 2 , ω 1 ) α J ( 1 ω 1 + η ( ω 2 , ω 1 ) ) + α ( ψ o Ω ) 1 ω 1 + J 1 ω 1 α ( ψ o Ω ) 1 ω 1 + η ( ω 2 , ω 1 ) [ ψ ( ω 1 ) + ψ ( ω 1 + η ( ω 2 , ω 1 ) ) ] 0 1 t α 1 [ h ( t ) + h ( 1 t ) ] d t .
Example 2.
Let I = [ ω 1 , ω 1 + η ( ω 2 , ω 1 ) ] = [ 1 , 2 ] , η ( ω 2 , ω 1 ) = ω 2 2 ω 1 . Let α = 1 and h ( t ) = t t [ 0 , 1 ] ,
ψ : I X I + be defined by
ψ ( u ) = 1 u + 2 , 1 u + 2 , u I .
We find
1 α h ( 1 2 ) ψ 2 ω 1 ( ω 1 + η ( ω 2 , ω 1 ) ) 2 ω 1 + η ( ω 2 , ω 1 ) = 2 ψ 4 3 = 5 2 , 11 2 ,
Γ ( α ) ω 1 ( ω 1 + η ( ω 2 , ω 1 ) ) η ( ω 2 , ω 1 ) α J ( 1 ω 1 + η ( ω 2 , ω 1 ) ) + α ( ψ o Ω ) 1 ω 1 + J 1 ω 1 α ( ψ o Ω ) 1 ω 1 + η ( ω 2 , ω 1 ) = 2 ω 1 ( ω 1 + η ( ω 2 , ω 1 ) ) η ( ω 2 , ω 1 ) ω 1 ω 1 + η ( ω 2 , ω 1 ) ψ ( u ) u 2 d u = 2 1 2 1 u 2 1 u + 2 , 1 u + 2 d u = 5 2 , 11 2
and
[ ψ ( ω 1 ) + ψ ( ω 1 + η ( ω 2 , ω 1 ) ) ] 0 1 t α 1 [ h ( t ) + h ( 1 t ) ] d t = [ ψ + ψ ] = 5 2 , 11 2 .
From (12)–(14), we see Theorem 3 is verified.
Remark 1.
If we put η ( ω 2 , ω 1 ) = ω 2 ω 1 in the above theorem, we obtain Theorem 5 of [50].
Remark 2.
If we put η ( ω 2 , ω 1 ) = ω 2 ω 1 and α = 1 in the above theorem, we obtain Theorem 1 of [38].
Remark 3.
If we put η ( ω 2 , ω 1 ) = ω 2 ω 1 and h ( t ) = t in the above theorem, we obtain Theorem 3.6 of [56].
Now we present some particular cases of Theorem 3.
Corollary 2.
If α = 1 , then Theorem 3 gives the following result:
1 h ( 1 2 ) ψ 2 ω 1 ( ω 1 + η ( ω 2 , ω 1 ) ) 2 ω 1 + η ( ω 2 , ω 1 ) 2 ω 1 ( ω 1 + η ( ω 2 , ω 1 ) ) η ( ω 2 , ω 1 ) ω 1 ω 1 + η ( ω 2 , ω 1 ) ψ ( u ) u 2 d u [ ψ ( ω 1 ) + ψ ( ω 1 + η ( ω 2 , ω 1 ) ) ] 0 1 [ h ( t ) + h ( 1 t ) ] d t .
Corollary 3.
If h ( t ) = t , then Theorem 3 gives the following result:
ψ 2 ω 1 ( ω 1 + η ( ω 2 , ω 1 ) ) 2 ω 1 + η ( ω 2 , ω 1 ) Γ ( α + 1 ) 2 ω 1 ( ω 1 + η ( ω 2 , ω 1 ) ) η ( ω 2 , ω 1 ) α J ( 1 ω 1 + η ( ω 2 , ω 1 ) ) + α ψ 1 ω 1 + J 1 ω 1 α ψ 1 ω 1 + η ( ω 2 , ω 1 ) ψ ( ω 1 ) + ψ ( ω 1 + η ( ω 2 , ω 1 ) ) 2 .
Next, we prove fractional inclusions of H–H-type for the product of two harmonically h-preinvex interval-valued functions.
Theorem 4.
Let h 1 , h 2 : [ 0 , 1 ] R be non-negative functions and h 1 , h 2 0 . Let ψ , φ : I = [ ω 1 , ω 1 + η ( ω 2 , ω 1 ) ] R \ { 0 } X I + be two harmonically h 1 - and h 2 -preinvex interval-valued functions, respectively, such that ψ = [ ψ ̲ , ψ ¯ ] , φ = [ φ ̲ , φ ¯ ] and ω 1 , ω 2 I with ω 1 < ω 1 + η ( ω 2 , ω 1 ) . If ψ φ L [ ω 1 , ω 1 + η ( ω 2 , ω 1 ) ] , α > 0 and η holds condition C, then
Γ ( α ) ω 1 ( ω 1 + η ( ω 2 , ω 1 ) ) η ( ω 2 , ω 1 ) α J ( 1 ω 1 + η ( ω 2 , ω 1 ) ) + α ( ψ o Ω ) 1 ω 1 ( φ o Ω ) 1 ω 1 + J ( 1 ω 1 ) α ( ψ o Ω ) 1 ω 1 + η ( ω 2 , ω 1 ) ( φ o Ω ) 1 ω 1 + η ( ω 2 , ω 1 ) F ( ω 1 , ω 1 + η ( ω 2 , ω 1 ) ) 0 1 [ t α 1 + ( 1 t ) α 1 ] h 1 ( t ) h 2 ( t ) d t + G ( ω 1 , ω 1 + η ( ω 2 , ω 1 ) ) 0 1 [ t α 1 + ( 1 t ) α 1 ] h 1 ( 1 t ) h 2 ( t ) ] d t ,
where F ( ω 1 , ω 1 + η ( ω 2 , ω 1 ) ) = ψ ( ω 1 ) φ ( ω 1 ) + ψ ( ω 1 + η ( ω 2 , ω 1 ) ) φ ( ω 1 + η ( ω 2 , ω 1 ) ) ,
N ( ω 1 , ω 1 + η ( ω 2 , ω 1 ) ) = ψ ( ω 1 ) φ ( ω 1 + η ( ω 2 , ω 1 ) ) + ψ ( ω 1 + η ( ω 2 , ω 1 ) ) φ ( ω 1 ) and Ω ( u ) = 1 u .
Proof. 
As ψ and φ are two harmonically h 1 - and h 2 -preinvex interval-valued functions on [ ω 1 , ω 1 + η ( ω 2 , ω 1 ) ] , respectively. Therefore,
ψ ω 1 ( ω 1 + η ( ω 2 , ω 1 ) ) ω 1 + ( 1 t ) η ( ω 2 , ω 1 ) = ψ ( ω 1 + η ( ω 2 , ω 1 ) ) ( ω 1 + η ( ω 2 , ω 1 ) + η ( ω 1 , ω 1 + η ( ω 2 , ω 1 ) ) ω 1 + η ( ω 2 , ω 1 ) + t η ( ω 1 , ω 1 + η ( ω 2 , ω 1 ) ) h 1 ( t ) ψ ( ω 1 + η ( ω 2 , ω 1 ) ) + h 1 ( 1 t ) ψ ( ω 1 )
and
φ ω 1 ( ω 1 + η ( ω 2 , ω 1 ) ) ω 1 + ( 1 t ) η ( ω 2 , ω 1 ) = φ ( ω 1 + η ( ω 2 , ω 1 ) ) ( ω 1 + η ( ω 2 , ω 1 ) + η ( ω 1 , ω 1 + η ( ω 2 , ω 1 ) ) ω 1 + η ( ω 2 , ω 1 ) + t η ( ω 1 , ω 1 + η ( ω 2 , ω 1 ) ) h 2 ( t ) φ ( ω 1 + η ( ω 2 , ω 1 ) ) + h 2 ( 1 t ) φ ( ω 1 ) .
As ψ ( u ) , φ ( u ) X I + , u [ ω 1 , ω 1 + η ( ω 2 , ω 1 ) ] , then from (16) and (17), we obtain
ψ ω 1 ( ω 1 + η ( ω 2 , ω 1 ) ) ω 1 + ( 1 t ) η ( ω 2 , ω 1 ) φ ω 1 ( ω 1 + η ( ω 2 , ω 1 ) ) ω 1 + ( 1 t ) η ( ω 2 , ω 1 ) h 1 ( t ) h 2 ( t ) ψ ( ω 1 + η ( ω 2 , ω 1 ) ) φ ( ω 1 + η ( ω 2 , ω 1 ) ) + h 1 ( 1 t ) h 2 ( 1 t ) ψ ( ω 1 ) φ ( ω 1 ) + h 1 ( t ) h 2 ( 1 t ) ψ ( ω 1 + η ( ω 2 , ω 1 ) ) φ ( ω 1 ) + h 1 ( 1 t ) h 2 ( t ) ψ ( ω 1 ) φ ( ω 1 + η ( ω 2 , ω 1 ) ) .
Similarly,
ψ ω 1 ( ω 1 + η ( ω 2 , ω 1 ) ) ω 1 + t η ( ω 2 , ω 1 ) φ ω 1 ( ω 1 + η ( ω 2 , ω 1 ) ) ω 1 + t η ( ω 2 , ω 1 ) h 1 ( 1 t ) h 2 ( 1 t ) ψ ( ω 1 + η ( ω 2 , ω 1 ) ) φ ( ω 1 + η ( ω 2 , ω 1 ) ) + h 1 ( t ) h 2 ( t ) ψ ( ω 1 ) φ ( ω 1 ) + h 1 ( 1 t ) h 2 ( t ) ψ ( ω 1 + η ( ω 2 , ω 1 ) ) φ ( ω 1 ) + h 1 ( t ) h 2 ( 1 t ) ψ ( ω 1 ) φ ( ω 1 + η ( ω 2 , ω 1 ) ) .
Adding (18) and (19), we have
ψ ω 1 ( ω 1 + η ( ω 2 , ω 1 ) ) ω 1 + ( 1 t ) η ( ω 2 , ω 1 ) φ ω 1 ( ω 1 + η ( ω 2 , ω 1 ) ) ω 1 + ( 1 t ) η ( ω 2 , ω 1 ) + ψ ω 1 ( ω 1 + η ( ω 2 , ω 1 ) ) ω 1 + t η ( ω 2 , ω 1 ) φ ω 1 ( ω 1 + η ( ω 2 , ω 1 ) ) ω 1 + t η ( ω 2 , ω 1 ) [ h 1 ( t ) h 2 ( t ) + h 1 ( 1 t ) h 2 ( 1 t ) ] [ ψ ( ω 1 ) φ ( ω 1 ) + ψ ( ω 1 + η ( ω 2 , ω 1 ) ) φ ( ω 1 + η ( ω 2 , ω 1 ) ) ] + [ h 1 ( t ) h 2 ( 1 t ) + h 1 ( 1 t ) h 2 ( t ) ] [ ψ ( ω 1 + η ( ω 2 , ω 1 ) ) φ ( ω 1 ) + ψ ( ω 1 ) φ ( ω 1 + ( ω 2 , r ) ) ] = F ( ω 1 , ω 1 + η ( ω 2 , ω 1 ) ) [ h 1 ( t ) h 2 ( t ) + h 1 ( 1 t ) h 2 ( 1 t ) ] + G ( ω 1 , ω 1 + η ( ω 2 , ω 1 ) ) [ h 1 ( 1 t ) h 2 ( t ) + h 1 ( t ) h 2 ( 1 t ) ] .
Multiplying (20) by t α 1 and integrating over [ 0 , 1 ] with respect to t, we have
( I R ) 0 1 t α 1 ψ ω 1 ( ω 1 + η ( ω 2 , ω 1 ) ) ω 1 + ( 1 t ) η ( ω 2 , ω 1 ) φ ω 1 ( ω 1 + η ( ω 2 , ω 1 ) ) ω 1 + ( 1 t ) η ( ω 2 , ω 1 ) d t + ( I R ) 0 1 t α 1 ψ ω 1 ( ω 1 + η ( ω 2 , ω 1 ) ) ω 1 + t η ( ω 2 , ω 1 ) φ ω 1 ( ω 1 + η ( ω 2 , ω 1 ) ) ω 1 + t η ( ω 2 , ω 1 ) d t ( I R ) 0 1 t α 1 F ( ω 1 , ω 1 + η ( ω 2 , ω 1 ) ) [ h 1 ( t ) h 2 ( t ) + h 1 ( 1 t ) h 2 ( 1 t ) ] d t + ( I R ) 0 1 t α 1 G ( ω 1 , ω 1 + η ( ω 2 , ω 1 ) ) [ h 1 ( 1 t ) h 2 ( t ) + h 1 ( t ) h 2 ( 1 t ) ] d t .
As
( I R ) 0 1 t α 1 ψ ω 1 ( ω 1 + η ( ω 2 , ω 1 ) ) ω 1 + ( 1 t ) η ( ω 2 , ω 1 ) φ ω 1 ( ω 1 + η ( ω 2 , ω 1 ) ) ω 1 + ( 1 t ) η ( ω 2 , ω 1 ) d t = Γ ( α ) ω 1 ( ω 1 + η ( ω 2 , ω 1 ) ) η ( ω 2 , ω 1 ) α J ( 1 ω 1 + η ( ω 2 , ω 1 ) ) + α ( ψ o Ω ) 1 ω 1 ( φ o Ω ) 1 ω 1 ,
( I R ) 0 1 t α 1 ψ ω 1 ( ω 1 + η ( ω 2 , ω 1 ) ) ω 1 + t η ( ω 2 , ω 1 ) φ ω 1 ( ω 1 + η ( ω 2 , ω 1 ) ) ω 1 + t η ( ω 2 , ω 1 ) d t = Γ ( α ) ω 1 ( ω 1 + η ( ω 2 , ω 1 ) ) η ( ω 2 , ω 1 ) α J ( 1 ω 1 ) α ( ψ o Ω ) 1 ω 1 + η ( ω 2 , ω 1 ) ( φ o Ω ) 1 ω 1 + η ( ω 2 , ω 1 ) .
Using (22), (23) in (21), we have
Γ ( α ) ω 1 ( ω 1 + η ( ω 2 , ω 1 ) ) η ( ω 2 , ω 1 ) α J ( 1 ω 1 + η ( ω 2 , ω 1 ) ) + α ( ψ o Ω ) 1 ω 1 ( φ o Ω ) 1 ω 1 + J ( 1 ω 1 ) α ( ψ o Ω ) 1 ω 1 + η ( ω 2 , ω 1 ) ( φ o Ω ) 1 ω 1 + η ( ω 2 , ω 1 ) F ( ω 1 , ω 1 + η ( ω 2 , ω 1 ) ) 0 1 [ t α 1 + ( 1 t ) α 1 ] h 1 ( t ) h 2 ( t ) d t + G ( ω 1 , ω 1 + η ( ω 2 , ω 1 ) ) 0 1 [ t α 1 + ( 1 t ) α 1 ] h 1 ( 1 t ) h 2 ( t ) ] d t .
Remark 4.
If we put η ( ω 2 , ω 1 ) = ω 2 ω 1 in the above theorem, we obtain Theorem 6 of [50].
Remark 5.
If we put η ( ω 2 , ω 1 ) = ω 2 ω 1 and α = 1 in the above theorem, we obtain Theorem 3 of [38].
Corollary 4.
If α = 1 , then Theorem 4 gives the following result:
ω 1 ( ω 1 + η ( ω 2 , ω 1 ) ) η ( ω 2 , ω 1 ) ω 1 ω 1 + η ( ω 2 , ω 1 ) ψ ( u ) φ ( u ) u 2 d u F ( ω 1 , ω 1 + η ( ω 2 , ω 1 ) ) 0 1 h 1 ( t ) h 2 ( t ) d t + G ( ω 1 , ω 1 + η ( ω 2 , ω 1 ) ) 0 1 h 1 ( 1 t ) h 2 ( t ) ] d t .
Corollary 5.
If h 1 ( t ) = h 2 ( t ) = t , then Theorem 4 gives the following result:
Γ ( α ) ω 1 ( ω 1 + η ( ω 2 , ω 1 ) ) η ( ω 2 , ω 1 ) α J ( 1 ω 1 + η ( ω 2 , ω 1 ) ) + α ( ψ o Ω ) 1 ω 1 ( φ o Ω ) 1 ω 1 + J ( 1 ω 1 ) α ( ψ o Ω ) 1 ω 1 + η ( ω 2 , ω 1 ) ( φ o Ω ) 1 ω 1 + η ( ω 2 , ω 1 ) F ( ω 1 , ω 1 + η ( ω 2 , ω 1 ) ) 0 1 t 2 [ t α 1 + ( 1 t ) α 1 ] d t + G ( ω 1 , ω 1 + η ( ω 2 , ω 1 ) ) 0 1 t ( 1 t ) [ t α 1 + ( 1 t ) α 1 ] d t = α 2 + α + 2 α ( α + 1 ) ( α + 2 ) F ( ω 1 , ω 1 + η ( ω 2 , ω 1 ) ) + 2 ( α + 1 ) ( α + 2 ) G ( ω 1 , ω 1 + η ( ω 2 , ω 1 ) ) = ( α 2 + α + 2 ) F ( ω 1 , ω 1 + η ( ω 2 , ω 1 ) ) + 2 α G ( ω 1 , ω 1 + η ( ω 2 , ω 1 ) ) α ( α + 1 ) ( α + 2 ) .
Theorem 5.
Let h 1 , h 2 : [ 0 , 1 ] R be non-negative functions and h 1 ( 1 2 ) h 2 ( 1 2 ) 0 . Let ψ , φ : I = [ ω 1 , ω 1 + η ( ω 2 , ω 1 ) ] R \ { 0 } X I + be two harmonically h 1 - and h 2 -preinvex interval-valued functions, respectively, such that ψ = [ ψ ̲ , ψ ¯ ] , φ = [ φ ̲ , φ ¯ ] and ω 1 , ω 2 I with ω 1 < ω 1 + η ( ω 2 , ω 1 ) . If ψ φ L [ ω 1 , ω 1 + η ( ω 2 , ω 1 ) ] , α > 0 and η holds condition C, then
1 α h 1 ( 1 2 ) h 2 ( 1 2 ) ψ 2 ω 1 ( ω 1 + η ( ω 2 , ω 1 ) ) 2 ω 1 + η ( ω 2 , ω 1 ) φ 2 ω 1 ( ω 1 + η ( ω 2 , ω 1 ) ) 2 ω 1 + η ( ω 2 , ω 1 ) Γ ( α ) ω 1 ( ω 1 + η ( ω 2 , ω 1 ) ) η ( ω 2 , ω 1 ) α J ( 1 ω 1 + η ( ω 2 , ω 1 ) ) + α ( ψ o Ω ) 1 ω 1 ( φ o Ω ) 1 ω 1 + J ( 1 ω 1 ) α ( ψ o Ω ) 1 ω 1 + η ( ω 2 , ω 1 ) ( φ o Ω ) 1 ω 1 + η ( ω 2 , ω 1 ) + F ( ω 1 , ω 1 + η ( ω 2 , ω 1 ) ) 0 1 ( t α 1 + ( 1 t ) α 1 ) h 1 ( t ) h 2 ( 1 t ) d t + G ( ω 1 , ω 1 + η ( ω 2 , ω 1 ) ) 0 1 ( t α 1 + ( 1 t ) α 1 ) h 1 ( t ) h 2 ( t ) d t ,
where F ( ω 1 , ω 1 + η ( ω 2 , ω 1 ) ) and G ( ω 1 , ω 1 + η ( ω 2 , ω 1 ) ) are defined as previous.
Proof. 
As ψ is harmonically h 1 -preinvex interval-valued function on [ ω 1 , ω 1 + η ( ω 2 , ω 1 ) ] , we have
1 h 1 ( 1 2 ) ψ 2 u ( u + η ( v , u ) ) 2 u + η ( v , u ) ψ ( u ) + ψ ( v ) , u , v [ ω 1 , ω 1 + η ( ω 2 , ω 1 ) ] .
Let u = ω 1 ( ω 1 + η ( ω 2 , ω 1 ) ) ω 1 + ( 1 t ) η ( ω 2 , ω 1 ) and v = ω 1 ( ω 1 + η ( ω 2 , ω 1 ) ) ω 1 + t η ( ω 2 , ω 1 ) . Then, using Condition C in (24), we find
1 h 1 ( 1 2 ) ψ 2 ω 1 ( ω 1 + η ( ω 2 , ω 1 ) ) 2 ω 1 + η ( ω 2 , ω 1 ) ψ ω 1 ( ω 1 + η ( ω 2 , ω 1 ) ) ω 1 + ( 1 t ) η ( ω 2 , ω 1 ) + ψ ω 1 ( ω 1 + η ( ω 2 , ω 1 ) ) ω 1 + t η ( ω 2 , ω 1 ) .
Similarly,
1 h 2 ( 1 2 ) φ 2 ω 1 ( ω 1 + η ( ω 2 , ω 1 ) ) 2 ω 1 + η ( ω 2 , ω 1 ) φ ω 1 ( ω 1 + η ( ω 2 , ω 1 ) ) ω 1 + ( 1 t ) η ( ω 2 , ω 1 ) + φ ω 1 ( ω 1 + η ( ω 2 , ω 1 ) ) ω 1 + t η ( ω 2 , ω 1 ) .
From (25) and (26), we find
1 h 1 ( 1 2 ) h 2 ( 1 2 ) ψ 2 ω 1 ( ω 1 + η ( ω 2 , ω 1 ) ) 2 ω 1 + η ( ω 2 , ω 1 ) φ 2 ω 1 ( ω 1 + η ( ω 2 , ω 1 ) ) 2 ω 1 + η ( ω 2 , ω 1 ) ψ ω 1 ( ω 1 + η ( ω 2 , ω 1 ) ) ω 1 + ( 1 t ) η ( ω 2 , ω 1 ) + ψ ω 1 ( ω 1 + η ( ω 2 , ω 1 ) ) ω 1 + t η ( ω 2 , ω 1 ) × φ ω 1 ( ω 1 + η ( ω 2 , ω 1 ) ) ω 1 + ( 1 t ) η ( ω 2 , ω 1 ) + φ ω 1 ( ω 1 + η ( ω 2 , ω 1 ) ) ω 1 + t η ( ω 2 , ω 1 ) = ψ ω 1 ( ω 1 + η ( ω 2 , ω 1 ) ) ω 1 + ( 1 t ) η ( ω 2 , ω 1 ) φ ω 1 ( ω 1 + η ( ω 2 , ω 1 ) ) ω 1 + ( 1 t ) η ( ω 2 , ω 1 ) + ψ ω 1 ( ω 1 + η ( ω 2 , ω 1 ) ) ω 1 + t η ( ω 2 , ω 1 ) φ ω 1 ( ω 1 + η ( ω 2 , ω 1 ) ) ω 1 + t η ( ω 2 , ω 1 ) + ψ ω 1 ( ω 1 + η ( ω 2 , ω 1 ) ) ω 1 + ( 1 t ) η ( ω 2 , ω 1 ) φ ω 1 ( ω 1 + η ( ω 2 , ω 1 ) ) ω 1 + t η ( ω 2 , ω 1 ) + ψ ω 1 ( ω 1 + η ( ω 2 , ω 1 ) ) ω 1 + t η ( ω 2 , ω 1 ) φ ω 1 ( ω 1 + η ( ω 2 , ω 1 ) ) ω 1 + ( 1 t ) η ( ω 2 , ω 1 ) .
As ψ ( u ) and φ ( u ) X I + , u [ ω 1 , ω 1 + η ( ω 2 , ω 1 ) ] are two harmonically h 1 - and h 2 - preinvex interval-valued functions, respectively. Therefore,
ψ ω 1 ( ω 1 + η ( ω 2 , ω 1 ) ) ω 1 + ( 1 t ) η ( ω 2 , ω 1 ) φ ω 1 ( ω 1 + η ( ω 2 , ω 1 ) ) ω 1 + t η ( ω 2 , ω 1 ) h 1 ( t ) h 2 ( t ) ψ ( ω 1 + η ( ω 2 , ω 1 ) ) φ ( ω 1 ) + h 1 ( 1 t ) h 2 ( 1 t ) ψ ( ω 1 ) φ ( ω 1 + η ( ω 2 , ω 1 ) ) + h 1 ( t ) h 2 ( 1 t ) ψ ( ω 1 + η ( ω 2 , ω 1 ) ) φ ( ω 1 + η ( ω 2 , ω 1 ) ) + h 1 ( 1 t ) h 2 ( t ) ψ ( ω 1 ) φ ( ω 1 ) .
Similarly,
ψ ω 1 ( ω 1 + η ( ω 2 , ω 1 ) ) ω 1 + t η ( ω 2 , ω 1 ) φ ω 1 ( ω 1 + η ( ω 2 , ω 1 ) ) ω 1 + ( 1 t ) η ( ω 2 , ω 1 ) h 1 ( t ) h 2 ( t ) ψ ( ω 1 ) φ ( ω 1 + η ( ω 2 , ω 1 ) ) + h 1 ( 1 t ) h 2 ( 1 t ) ψ ( ω 1 + η ( ω 2 , ω 1 ) ) φ ( ω 1 ) + h 1 ( t ) h 2 ( 1 t ) ψ ( ω 1 ) φ ( ω 1 ) + h 1 ( 1 t ) h 2 ( t ) ψ ( ω 1 + η ( ω 2 , ω 1 ) ) φ ( ω 1 + η ( ω 2 , ω 1 ) ) .
Adding (28) and (29), we obtain
ψ ω 1 ( ω 1 + η ( ω 2 , ω 1 ) ) ω 1 + ( 1 t ) η ( ω 2 , ω 1 ) φ ω 1 ( ω 1 + η ( ω 2 , ω 1 ) ) ω 1 + t η ( ω 2 , ω 1 ) + ψ ω 1 ( ω 1 + η ( ω 2 , ω 1 ) ) ω 1 + t η ( ω 2 , ω 1 ) φ ω 1 ( ω 1 + η ( ω 2 , ω 1 ) ) ω 1 + ( 1 t ) η ( ω 2 , ω 1 ) G ( ω 1 , ω 1 + η ( ω 2 , ω 1 ) ) [ h 1 ( t ) h 2 ( t ) + h 1 ( 1 t ) h 2 ( 1 t ) ] + F ( ω 1 , ω 1 + η ( ω 2 , ω 1 ) ) [ h 1 ( 1 t ) h 2 ( t ) + h 1 ( t ) h 2 ( 1 t ) ] .
From (27) and (30), we have
1 h 1 ( 1 2 ) h 2 ( 1 2 ) ψ 2 ω 1 ( ω 1 + η ( ω 2 , ω 1 ) ) 2 ω 1 + η ( ω 2 , ω 1 ) φ 2 ω 1 ( ω 1 + η ( ω 2 , ω 1 ) ) 2 ω 1 + η ( ω 2 , ω 1 ) ψ ω 1 ( ω 1 + η ( ω 2 , ω 1 ) ) ω 1 + ( 1 t ) η ( ω 2 , ω 1 ) φ ω 1 ( ω 1 + η ( ω 2 , ω 1 ) ) ω 1 + ( 1 t ) η ( ω 2 , ω 1 ) + ψ ω 1 ( ω 1 + η ( ω 2 , ω 1 ) ) ω 1 + t η ( ω 2 , ω 1 ) φ ω 1 ( ω 1 + η ( ω 2 , ω 1 ) ) ω 1 + t η ( ω 2 , ω 1 ) + G ( ω 1 , ω 1 + η ( ω 2 , ω 1 ) ) [ h 1 ( t ) h 2 ( t ) + h 1 ( 1 t ) h 2 ( 1 t ) ] d t + F ( ω 1 , ω 1 + η ( ω 2 , ω 1 ) ) [ h 1 ( 1 t ) h 2 ( t ) + h 1 ( t ) h 2 ( 1 t ) ] d t .
Multiplying (31) by t α 1 , then integrating over [ 0 , 1 ] with respect to t, we find
1 h 1 ( 1 2 ) h 2 ( 1 2 ) ( I R ) 0 1 t α 1 ψ 2 ω 1 ( ω 1 + η ( ω 2 , ω 1 ) ) 2 ω 1 + η ( ω 2 , ω 1 ) φ 2 ω 1 ( ω 1 + η ( ω 2 , ω 1 ) ) 2 ω 1 + η ( ω 2 , ω 1 ) d t ( I R ) 0 1 t α 1 ψ ω 1 ( ω 1 + η ( ω 2 , ω 1 ) ) ω 1 + ( 1 t ) η ( ω 2 , ω 1 ) φ ω 1 ( ω 1 + η ( ω 2 , ω 1 ) ) ω 1 + ( 1 t ) η ( ω 2 , ω 1 ) d t + ( I R ) 0 1 t α 1 ψ ω 1 ( ω 1 + η ( ω 2 , ω 1 ) ) ω 1 + t η ( ω 2 , ω 1 ) φ ω 1 ( ω 1 + η ( ω 2 , ω 1 ) ) ω 1 + t η ( ω 2 , ω 1 ) d t + G ( ω 1 , ω 1 + η ( ω 2 , ω 1 ) ) ( I R ) 0 1 t α 1 [ h 1 ( t ) h 2 ( t ) + h 1 ( 1 t ) h 2 ( 1 t ) ] d t + F ( ω 1 , ω 1 + η ( ω 2 , ω 1 ) ) ( I R ) 0 1 t α 1 [ h 1 ( 1 t ) h 2 ( t ) + h 1 ( t ) h 2 ( 1 t ) ] d t .
This implies
1 α h 1 ( 1 2 ) h 2 ( 1 2 ) ψ 2 ω 1 ( ω 1 + η ( ω 2 , ω 1 ) ) 2 ω 1 + η ( ω 2 , ω 1 ) φ 2 ω 1 ( ω 1 + η ( ω 2 , ω 1 ) ) 2 ω 1 + η ( ω 2 , ω 1 ) Γ ( α ) ω 1 ( ω 1 + η ( ω 2 , ω 1 ) ) η ( ω 2 , ω 1 ) α J ( 1 ω 1 + η ( ω 2 , ω 1 ) ) + α ( ψ o Ω ) 1 ω 1 φ o Ω 1 ω 1 + J ( 1 ω 1 ) α ( ψ o Ω ) 1 ω 1 + η ( ω 2 , ω 1 ) ( φ o Ω ) 1 ω 1 + η ( ω 2 , ω 1 ) + F ( ω 1 , ω 1 + η ( ω 2 , ω 1 ) ) 0 1 ( t α 1 + ( 1 t ) α 1 ) h 1 ( t ) h 2 ( 1 t ) ] d t + G ( ω 1 , ω 1 + η ( ω 2 , ω 1 ) ) 0 1 ( t α 1 + ( 1 t ) α 1 ) h 1 ( t ) h 2 ( t ) d t .
Remark 6.
If we put η ( ω 2 , ω 1 ) = ω 2 ω 1 in the above theorem, we obtain Theorem 7 of [50].
Remark 7.
If we put η ( ω 2 , ω 1 ) = ω 2 ω 1 and α = 1 in the above theorem, we obtain Theorem 4 of [38].
Corollary 6.
If α = 1 , then Theorem 5 gives the following result:
1 2 h 1 ( 1 2 ) h 2 ( 1 2 ) ψ 2 ω 1 ( ω 1 + η ( ω 2 , ω 1 ) ) 2 ω 1 + η ( ω 2 , ω 1 ) φ 2 ω 1 ( ω 1 + η ( ω 2 , ω 1 ) ) 2 ω 1 + η ( ω 2 , ω 1 ) ω 1 ( ω 1 + η ( ω 2 , ω 1 ) ) η ( ω 2 , ω 1 ) ω 1 ω 1 + η ( ω 2 , ω 1 ) ) ψ ( u ) φ ( u ) u 2 d u + F ( ω 1 , ω 1 + η ( ω 2 , ω 1 ) ) 0 1 h 1 ( t ) h 2 ( 1 t ) d t + G ( ω 1 , ω 1 + η ( ω 2 , ω 1 ) ) 0 1 h 1 ( t ) h 2 ( t ) d t .
Corollary 7.
If h 1 ( t ) = h 2 ( t ) = t , then Theorem 5 gives the following result:
4 α ψ 2 ω 1 ( ω 1 + η ( ω 2 , ω 1 ) ) 2 ω 1 + η ( ω 2 , ω 1 ) φ 2 ω 1 ( ω 1 + η ( ω 2 , ω 1 ) ) 2 ω 1 + η ( ω 2 , ω 1 ) Γ ( α ) ψ ω 1 ( ω 1 + η ( ω 2 , ω 1 ) ) η ( ω 2 , ω 1 ) α J ( 1 ω 1 + η ( ω 2 , ω 1 ) ) + α ( ψ o Ω ) 1 ω 1 φ o Ω 1 ω 1 + J ( 1 ω 1 ) α ( ψ o Ω ) 1 ω 1 + η ( ω 2 , ω 1 ) ( φ o Ω ) 1 ω 1 + η ( ω 2 , ω 1 ) + F ( ω 1 , ω 1 + η ( ω 2 , ω 1 ) ) 0 1 t ( 1 t ) ( t α 1 + ( 1 t ) α 1 ) d t + G ( ω 1 , ω 1 + η ( ω 2 , ω 1 ) ) 0 1 t 2 ( t α 1 + ( 1 t ) α 1 ) d t = Γ ( α ) ψ ω 1 ( ω 1 + η ( ω 2 , ω 1 ) ) η ( ω 2 , ω 1 ) α J ( 1 ω 1 + η ( ω 2 , ω 1 ) ) + α ( ψ o Ω ) 1 ω 1 φ o Ω 1 ω 1 + J ( 1 ω 1 ) α ( ψ o Ω ) 1 ω 1 + η ( ω 2 , ω 1 ) ( φ o Ω ) 1 ω 1 + η ( ω 2 , ω 1 ) + 2 ( α + 1 ) ( α + 2 ) F ( ω 1 , ω 1 + η ( ω 2 , ω 1 ) ) + α 2 + α + 2 α ( α + 1 ) ( α + 2 ) G ( ω 1 , ω 1 + η ( ω 2 , ω 1 ) ) = Γ ( α ) ψ ω 1 ( ω 1 + η ( ω 2 , ω 1 ) ) η ( ω 2 , ω 1 ) α J ( 1 ω 1 + η ( ω 2 , ω 1 ) ) + α ( ψ o Ω ) 1 ω 1 φ o Ω 1 ω 1 + J ( 1 ω 1 ) α ( ψ o Ω ) 1 ω 1 + η ( ω 2 , ω 1 ) ( φ o Ω ) 1 ω 1 + η ( ω 2 , ω 1 ) + 2 α F ( ω 1 , ω 1 + η ( ω 2 , ω 1 ) ) + ( α 2 + α + 2 ) G ( ω 1 , ω 1 + η ( ω 2 , ω 1 ) ) α ( α + 1 ) ( α + 2 ) .

5. Results and Discussions

After illustrating the concept of interval-valued functions, this paper proposes a new definition of harmonically h-preinvex interval-valued functions. Further, with the help of the proposed harmonically h-preinvexity for interval-valued functions, we have proven H–H-type inclusions for interval-valued R–L fractional integrals. From the definition of harmonically h-preinvex interval-valued function, we can see that every harmonical h-convex interval-valued function is harmonically h-preinvex interval-valued function with respect to η ( v , u ) = v u . The results obtained in this paper are generalization of the results of Zhao et al. [38] and Shi et al. [50]. Moreover, some particular cases of our main outcomes are considered.

6. Conclusions and Future Directions

In this paper, we have introduced harmonically h-preinvex interval-valued functions which include harmonical h-convex interval-valued functions and harmonical convex interval-valued functions as special cases. We have obtained H–H-type fractional inclusions for harmonically h-preinvex interval-valued functions. After that, we have proven fractional H–H-type inclusions for the product of two harmonically h-preinvex interval-valued functions. The results obtained in this paper may be extended for other kinds of interval-valued fractional integrals including harmonically h-preinvex interval-valued functions. In the future, we can investigate the interval-valued preinvexity on coordinates and establish new inclusions of H–H-type for interval-valued coordinated preinvex functions. It is expected that current work will motivate researchers working in fractional calculus, interval analysis, and other related areas.

Author Contributions

Formal analysis, K.K.L., J.B., N.S. and S.K.M.; funding acquisition, K.K.L.; investigation, S.K.M.; methodology, J.B., N.S. and S.K.M.; supervision, S.K.M.; validation, N.S.; writing—original draft, J.B.; writing—review and editing, K.K.L., J.B. and N.S. All authors have read and agreed to the published version of the manuscript.

Funding

Second author is financially supported by the Ministry of Science and Technology, Department of Science and Technology, New Delhi, India, through Registration No. DST/INSPIRE Fellowship/[IF190355] and the fourth author is financially supported by “Research Grant for Faculty” (IoE Scheme) under Dev. Scheme NO. 6031 and Department of Science and Technology, SERB, New Delhi, India through grant no.: MTR/2018/000121.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

No data were used to support this study.

Acknowledgments

The authors are indebted to the anonymous reviewers for their valuable comments and remarks that helped to improve the presentation and quality of the manuscript.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. İşcan, I. Hermite-Hadamard’s inequalities for preinvex functions via fractional integrals and related fractional inequalities. arXiv 2012, arXiv:1204.0272. [Google Scholar]
  2. Noor, M.A. Hadamard integral inequalities for product of two preinvex functions. Nonlinear Anal. Forum. 2009, 14, 167–173. [Google Scholar]
  3. Sharma, N.; Bisht, J.; Mishra, S.K. Hermite–Hadamard-type inequalities for functions whose derivatives are strongly η-convex via fractional integrals. In Indo-French Seminar on Optimization, Variational Analysis and Applications; Springer: Berlin/Heidelberg, Germany, 2020; pp. 83–102. [Google Scholar]
  4. Sharma, N.; Bisht, J.; Mishra, S.K.; Hamdi, A. Some majorization integral inequalities for functions defined on rectangles via strong convexity. J. Inequal. Spec. Funct. 2019, 10, 21–34. [Google Scholar]
  5. Sharma, N.; Mishra, S.K.; Hamdi, A. A weighted version of Hermite-Hadamard-type inequalities for strongly GA-convex functions. Int. J. Adv. Appl. Sci. 2020, 7, 113–118. [Google Scholar]
  6. Wu, X.; Wang, J.; Zhang, J. Hermite–Hadamard-type inequalities for convex functions via the fractional integrals with exponential kernel. Mathematics 2019, 7, 845. [Google Scholar] [CrossRef] [Green Version]
  7. Hanson, M.A. On sufficiency of the kuhn-tucker conditions. J. Math. Anal. Appl. 1981, 80, 545–550. [Google Scholar] [CrossRef] [Green Version]
  8. Ben-Israel, A.; Mond, B. What is invexity? ANZIAM J. 1986, 28, 1–9. [Google Scholar] [CrossRef] [Green Version]
  9. Yang, X.M.; Li, D. On properties of preinvex functions. J. Math. Anal. Appl. 2001, 256, 229–241. [Google Scholar] [CrossRef] [Green Version]
  10. Moore, R.E. Interval Analysis; Prentice-Hall: Englewood Cliffs, NJ, USA, 1966. [Google Scholar]
  11. Moore, R.E.; Kearfott, R.B.; Cloud, M.J. Introduction to Interval Analysis; SIAM: Philadelphia, PA, USA, 2009. [Google Scholar]
  12. Bhurjee, A.K.; Panda, G. Multi-objective interval fractional programming problems: An approach for obtaining efficient solutions. Opsearch 2015, 52, 156–167. [Google Scholar] [CrossRef]
  13. Lupulescu, V. Fractional calculus for interval-valued functions. Fuzzy Sets Syst. 2015, 265, 63–85. [Google Scholar] [CrossRef]
  14. Li, L.; Liu, S.; Zhang, J. On interval-valued invex mappings and optimality conditions for interval-valued optimization problems. J. Inequal. Appl. 2015, 2015, 179. [Google Scholar] [CrossRef] [Green Version]
  15. Chalco-Cano, Y.; Lodwick, W.A.; Condori-Equice, W. Ostrowski type inequalities and applications in numerical integration for interval-valued functions. Soft Comput. 2015, 19, 3293–3300. [Google Scholar] [CrossRef]
  16. Guo, Y.; Ye, G.; Zhao, D.; Liu, W. gH-symmetrically derivative of interval-valued functions and applications in interval-valued optimization. Symmetry 2019, 11, 1203. [Google Scholar] [CrossRef] [Green Version]
  17. Moore, R.E. Methods and Applications of Interval Analysis; SIAM: Philadelphia, PA, USA, 1979. [Google Scholar]
  18. Rothwell, E.J.; Cloud, M.J. Automatic error analysis using intervals. IEEE Trans. Educ. 2011, 55, 9–15. [Google Scholar] [CrossRef]
  19. Snyder, J.M. Interval analysis for computer graphics. In Proceedings of the 19th Annual Conference on Computer Graphics and Interactive Techniques, Chicago, IL, USA, 27–31 July 1992; pp. 121–130. [Google Scholar]
  20. İşcan, I. Hermite-Hadamard-type inequalities for harmonically convex functions. Hacet. J. Math. Stat. 2014, 43, 935–942. [Google Scholar] [CrossRef]
  21. Noor, M.A.; Noor, K.I.; Awan, M.U.; Li, J. On Hermite-Hadamard inequalities for h-preinvex functions. Filomat 2014, 28, 1463–1474. [Google Scholar] [CrossRef]
  22. Noor, M.A.; Noor, K.I.; Iftikhar, S. Fractional ostrowski inequalities for harmonic h-preinvex functions. Facta Univ. Ser. Math. Inform. 2016, 31, 417–445. [Google Scholar]
  23. Deng, Y.; Kalsoom, H.; Wu, S. Some new quantum Hermite–Hadamard-type estimates within a class of generalized (s, m)-preinvex functions. Symmetry 2019, 11, 1283. [Google Scholar] [CrossRef] [Green Version]
  24. Kashuri, A.; Set, E.; Liko, R. Some new fractional trapezium-type inequalities for preinvex functions. Fractal Fract. 2019, 3, 12. [Google Scholar] [CrossRef] [Green Version]
  25. Mehmood, S.; Zafar, F.; Yasmin, N. Hermite-Hadamard-Fejér Type Inequalities for Preinvex Functions Using Fractional Integrals. Mathematics 2019, 7, 467. [Google Scholar] [CrossRef] [Green Version]
  26. Noor, M.A.; Noor, K.I.; Rashid, S. Some new classes of preinvex functions and inequalities. Mathematics 2019, 7, 29. [Google Scholar] [CrossRef] [Green Version]
  27. Rashid, S.; Latif, M.A.; Hammouch, Z.; Chu, Y.M. Fractional integral inequalities for strongly h-preinvex functions for a kth order differentiable functions. Symmetry 2019, 11, 1448. [Google Scholar] [CrossRef] [Green Version]
  28. Sial, I.B.; Ali, M.A.; Murtaza, G.; Ntouyas, S.K.; Soontharanon, J.; Sitthiwirattham, T. On Some New Inequalities of Hermite–Hadamard Midpoint and Trapezoid Type for Preinvex Functions in (p, q)-Calculus. Symmetry 2021, 13, 1864. [Google Scholar] [CrossRef]
  29. Sitho, S.; Ali, M.A.; Budak, H.; Ntouyas, S.K.; Tariboon, J. Trapezoid and Midpoint Type Inequalities for Preinvex Functions via Quantum Calculus. Mathematics 2021, 9, 1666. [Google Scholar] [CrossRef]
  30. Tariq, M.; Ahmad, H.; Budak, H.; Sahoo, S.K.; Sitthiwirattham, T.; Reunsumrit, J. A Comprehensive Analysis of Hermite–Hadamard Type Inequalities via Generalized Preinvex Functions. Axioms 2021, 10, 328. [Google Scholar] [CrossRef]
  31. Chalco-Cano, Y.; Flores-Franulič, A.; Román-Flores, H. Ostrowski type inequalities for interval-valued functions using generalized Hukuhara derivative. Comput. Appl. Math. 2012, 31, 457–472. [Google Scholar]
  32. Zhao, D.; Ye, G.; Liu, W.; Torres, D.F.M. Some inequalities for interval-valued functions on time scales. Soft Comput. 2019, 23, 6005–6015. [Google Scholar] [CrossRef] [Green Version]
  33. Budak, H.; Tunç, T.; Sarikaya, M.Z. Fractional Hermite-Hadamard-type inequalities for interval-valued functions. Proc. Am. Math. Soc. 2020, 148, 705–718. [Google Scholar] [CrossRef] [Green Version]
  34. Lou, T.; Ye, G.; Zhao, D.F.; Liu, W. Iq-Calculus and Iq-Hermite–Hadamard inequalities for interval-valued functions. Adv. Differ. Equ. 2020, 2020, 446. [Google Scholar] [CrossRef]
  35. Tariboon, J.; Ali, M.A.; Budak, H.; Ntouyas, S.K. Hermite–Hadamard Inclusions for Co-Ordinated Interval-Valued Functions via Post-Quantum Calculus. Symmetry 2021, 13, 1216. [Google Scholar] [CrossRef]
  36. Wannalookkhee, F.; Nonlaopon, K.; Tariboon, J.; Ntouyas, S.K. On Hermite-Hadamard-type inequalities for coordinated convex functions via (p, q)-calculus. Mathematics 2021, 9, 698. [Google Scholar] [CrossRef]
  37. Ali, M.A.; Budak, H.; Murtaza, G.; Chu, Y.M. Post-quantum Hermite–Hadamard type inequalities for interval-valued convex functions. J. Inequal. Appl. 2021, 2021, 84. [Google Scholar] [CrossRef]
  38. Zhao, D.; An, T.; Ye, G.; Torres, D.F.M. On Hermite-Hadamard type inequalities for harmonical h-convex interval-valued functions. Math. Inequal. Appl. 2020, 23, 95–105. [Google Scholar]
  39. Zhao, D.; Ali, M.A.; Murtaza, G.; Zhang, Z. On the Hermite–Hadamard inequalities for interval-valued coordinated convex functions. Adv. Differ. Equ. 2020, 2020, 570. [Google Scholar] [CrossRef]
  40. Zhao, D.; Zhao, G.; Ye, G.; Liu, W.; Dragomir, S.S. On Hermite–Hadamard-type Inequalities for Coordinated h-Convex Interval-Valued Functions. Mathematics 2021, 9, 2352. [Google Scholar] [CrossRef]
  41. Sharma, N.; Singh, S.K.; Mishra, S.K.; Hamdi, A. Hermite-Hadamard-type inequalities for interval-valued preinvex functions via Riemann–Liouville fractional integrals. J. Inequal. Appl. 2021, 2021, 98. [Google Scholar] [CrossRef]
  42. Zhou, H.; Saleem, M.S.; Nazeer, W.; Shah, A.F. Hermite-Hadamard-type inequalities for interval-valued exponential type preinvex functions via Riemann-Liouville fractional integrals. AIMS Math. 2021, 7, 2602–2617. [Google Scholar] [CrossRef]
  43. Román-Flores, H.; Chalco-Cano, Y.; Lodwick, W.A. Some integral inequalities for interval-valued functions. Comput. Appl. Math. 2018, 37, 1306–1318. [Google Scholar] [CrossRef]
  44. Shi, F.; Ye, G.; Zhao, D.; Liu, W. Some fractional Hermite–Hadamard-type inequalities for interval-valued coordinated functions. Adv. Differ. Equ. 2021, 2021, 32. [Google Scholar] [CrossRef]
  45. Zhao, D.; An, T.; Ye, G.; Liu, W. Chebyshev type inequalities for interval-valued functions. Fuzzy Sets Syst. 2020, 396, 82–101. [Google Scholar] [CrossRef]
  46. An, Y.; Ye, G.; Zhao, D.; Liu, W. Hermite-Hadamard-type inequalities for interval (h1, h2)-convex functions. Mathematics 2019, 7, 436. [Google Scholar] [CrossRef] [Green Version]
  47. Kalsoom, H.; Latif, M.A.; Khan, Z.A.; Vivas-Cortez, M. Some New Hermite-Hadamard-Fejér Fractional Type Inequalities for h-Convex and Harmonically h-Convex Interval-Valued Functions. Mathematics 2021, 10, 74. [Google Scholar] [CrossRef]
  48. Kara, H.; Ali, M.A.; Budak, H. Hermite-Hadamard-type inequalities for interval-valued coordinated convex functions involving generalized fractional integrals. Math. Methods Appl. Sci. 2021, 44, 104–123. [Google Scholar] [CrossRef]
  49. Khan, M.B.; Noor, M.A.; Abdeljawad, T.; Mousa, A.A.A.; Abdalla, B.; Alghamdi, S.M. LR-Preinvex Interval-Valued Functions and Riemann–Liouville Fractional Integral Inequalities. Fractal Fract. 2021, 5, 243. [Google Scholar] [CrossRef]
  50. Shi, F.; Ye, G.; Zhao, D.; Liu, W. Some fractional Hermite-Hadamard type inequalities for interval-valued functions. Mathematics 2020, 8, 534. [Google Scholar] [CrossRef] [Green Version]
  51. Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; North-Holland Mathematics Studies; Elsevier: Amsterdam, The Netherlands, 2006; Volume 204. [Google Scholar]
  52. Anderson, G.D.; Vamanamurthy, M.K.; Vuorinen, M. Generalized convexity and inequalities. J. Math. Anal. Appl. 2007, 335, 1294–1308. [Google Scholar] [CrossRef] [Green Version]
  53. Noor, M.A.; Noor, K.I.; Iftikhar, S. Hermite-Hadamard inequalities for harmonic preinvex functions. Saussurea 2016, 6, 34–53. [Google Scholar]
  54. Mohan, S.R.; Neogy, S.K. On invex sets and preinvex functions. J. Math. Anal. Appl. 1995, 189, 901–908. [Google Scholar] [CrossRef] [Green Version]
  55. Noor, M.A. Hermite-Hadamard integral inequalities for log-preinvex functions. J. Math. Anal. Approx. Theory 2007, 2, 126–131. [Google Scholar]
  56. Liu, X.L.; Ye, G.J.; Zhao, D.F.; Liu, W. Fractional Hermite-Hadamard-type inequalities for interval-valued functions. J. Inequal. Appl. 2019, 2019, 266. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Lai, K.K.; Bisht, J.; Sharma, N.; Mishra, S.K. Hermite-Hadamard-Type Fractional Inclusions for Interval-Valued Preinvex Functions. Mathematics 2022, 10, 264. https://doi.org/10.3390/math10020264

AMA Style

Lai KK, Bisht J, Sharma N, Mishra SK. Hermite-Hadamard-Type Fractional Inclusions for Interval-Valued Preinvex Functions. Mathematics. 2022; 10(2):264. https://doi.org/10.3390/math10020264

Chicago/Turabian Style

Lai, Kin Keung, Jaya Bisht, Nidhi Sharma, and Shashi Kant Mishra. 2022. "Hermite-Hadamard-Type Fractional Inclusions for Interval-Valued Preinvex Functions" Mathematics 10, no. 2: 264. https://doi.org/10.3390/math10020264

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop