# Magnetized Black Holes: Interplay between Charge and Rotation

^{1}

^{2}

^{*}

^{†}

## Abstract

**:**

## 1. Introduction

## 2. Magnetized Kerr–Newman Black Hole in Charge Equilibrium

## 3. Weak Magnetic Field and Particle Acceleration

## 4. Conclusions

## Author Contributions

## Funding

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Chandrasekhar, S. The Mathematical Theory of Black Holes; Oxford University Press: Oxford, UK, 1983. [Google Scholar]
- DeWitt, C.; DeWitt, B.S. Black Holes. Lectures Delivered at the Summer School of Theoretical Physics of the University of Grenoble at Les Houches; Gordon and Breach: New York, NY, USA, 1973. [Google Scholar]
- Punsly, B. Black Hole Gravito-Hydromagnetics; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Ruffini, R.; Wilson, J.R. Relativistic magnetohydrodynamical effects of plasma accreting into a black hole. Phys. Rev. D
**1975**, 12, 2959. [Google Scholar] [CrossRef] - Newman, E.T.; Couch, E.; Chinnapared, K.; Exton, A.; Prakash, A.; Torrence, R. Metric of a rotating, charged mass. J. Math. Phys.
**1965**, 6, 918. [Google Scholar] [CrossRef] - Baez, N.B.; García Díaz, A.G. The most general magnetized Kerr-Newman metric. J. Math. Phys.
**1986**, 27, 562. [Google Scholar] [CrossRef] - Ernst, F.J.; Wild, W.J. Kerr black holes in a magnetic universe. J. Math. Phys.
**1976**, 12, 1845. [Google Scholar] [CrossRef] - Kramer, D.; Stephani, H.; MacCallum, M.; Herlt, E. Exact Solutions of the Einstein’s Field Equations; Deutscher Verlag der Wissenschaften: Berlin/Heidelberg, Germany, 1980. [Google Scholar]
- Romero, G.E.; Vila, G.S. Introduction to Black Hole Astrophysics; Lecture Notes in Physics; Springer: Berlin, Germany, 2014; Volume 876. [Google Scholar]
- Wald, R.M. General Relativity; University of Chicago Press: Chicago, IL, USA, 1984. [Google Scholar]
- Kerr, R.P. Gravitational field of a spinning mass as an example of algebraically special metrics. Phys. Rev. Lett.
**1963**, 11, 237. [Google Scholar] [CrossRef] - Gal’tsov, D.V. Particles and Fields around Black Holes; Moscow University Press: Moscow, Russia, 1986. [Google Scholar]
- Christodoulou, D.; Ruffini, R. On the electrodynamics of collapsed objects. In Black Holes; DeWitt, C., DeWitt, B.S., Eds.; Gordon and Breach Science Publishers: New York, NY, USA, 1973; p. R151. [Google Scholar]
- Kinnersley, W. Generation of stationary Einstein-Maxwell fields. J. Math. Phys.
**1973**, 14, 651. [Google Scholar] [CrossRef] - García Díaz, A. Magnetic generalization of the Kerr-Newman metric. J. Math. Phys.
**1985**, 26, 155. [Google Scholar] [CrossRef] - Hiscock, W.A. On black holes in magnetic universes. J. Math. Phys.
**1981**, 22, 1828. [Google Scholar] [CrossRef] - Karas, V.; Vokrouhlický, D. On interpretation of the magnetized Kerr-Newman black hole. J. Math. Phys.
**1990**, 32, 714. [Google Scholar] [CrossRef][Green Version] - Karas, V.; Budínová, Z. Magnetic fluxes across black holes in a strong magnetic field regime. Phys. Scr.
**2000**, 61, 253. [Google Scholar] [CrossRef] - Karas, V. Magnetic fluxes across black holes. Exact models. Bull. Astron. Inst. Czechoslov.
**1988**, 39, 30. [Google Scholar] - Ruffini, R. On gravitationally collapsed objects. In Relativity, Quanta and Cosmology in the Development of the Scientific Thought of Albert Einstein; Pantaleo, M., de Finis, F., Eds.; Johnson Reprint Corp.: New York, NY, USA, 1979; pp. 599–658. [Google Scholar]
- Damour, T.; Hanni, R.S.; Ruffini, R.; Wilson, J.R. Regions of magnetic support of a plasma around a black hole. Phys. Rev. D
**1978**, 17, 1518. [Google Scholar] [CrossRef] - Hanni, R.S.; Valdarnini, R. Magnetic support near a charged rotating black hole. Phys. Lett. A
**1979**, 70, 92. [Google Scholar] [CrossRef] - Lyutikov, M. Schwarzschild black holes as unipolar inductors: Expected electromagnetic power of a merger. Phys. Rev. D
**2011**, 83, 064001. [Google Scholar] [CrossRef][Green Version] - Morozova, V.S.; Rezzolla, L.; Ahmedov, B.J. Nonsingular electrodynamics of a rotating black hole moving in an asymptotically uniform magnetic test field. Phys. Rev. D
**2014**, 89, 104030. [Google Scholar] [CrossRef][Green Version] - Karas, V.; Vokrouhlický, D. Dynamics of charged particles near a black hole in a magnetic field. J. Phys. I France
**1991**, 1, 1005. [Google Scholar] [CrossRef] - Bičák, J.; Dvořák, L. Stationary electromagnetic fields around black holes. III. Phys. Rev. D
**1980**, 22, 2933. [Google Scholar] [CrossRef] - King, A.R.; Lasota, J.P.; Kundt, W. Black holes and magnetic fields. Phys. Rev. D
**1975**, 12, 3037. [Google Scholar] [CrossRef] - Stuchlík, Z.; Kološ, M.; Kovář, J.; Slaný, P.; Tursunov, A. Influence of cosmic repulsion and magnetic fields on accretion disks rotating around Kerr black holes. Universe
**2020**, 6, 26. [Google Scholar] [CrossRef][Green Version] - Ruffini, R. On the energetics of black holes. In Black Holes (Les Astres Occlus), Lectures Delivered at the Summer School of Theoretical Physics of the University of Grenoble at Les Houches; DeWitt, C., DeWitt, B.S., Eds.; Gordon and Breach: New York, NY, USA, 1973; pp. 451–546. [Google Scholar]
- Carter, B. Black hole equilibrium states. In Black Holes (Les Astres Occlus), Lectures Delivered at the Summer School of Theoretical Physics of the University of Grenoble at Les Houches; DeWitt, C., DeWitt, B.S., Eds.; Gordon and Breach: New York, NY, USA, 1973; pp. 57–214. [Google Scholar]
- Wald, R.M. On uniqueness of the Kerr-Newman black holes. J. Math. Phys.
**1972**, 13, 490. [Google Scholar] [CrossRef] - Lukes-Gerakopoulos, G. Adjusting chaotic indicators to curved spacetimes. Phys. Rev. D
**2014**, 89, 043002. [Google Scholar] [CrossRef][Green Version] - Pánis, R.; Kološ, M.; Stuchlík, Z. Determination of chaotic behaviour in time series generated by charged particle motion around magnetized Schwarzschild black holes. Eur. Phys. J. C
**2019**, 79, 479. [Google Scholar] [CrossRef][Green Version] - Karas, V.; Vokrouhlický, D. Chaotic motion of test particles in the Ernst space-time. Gen. Relativ. Gravit.
**1992**, 24, 729–743. [Google Scholar] [CrossRef] - Stuchlík, Z.; Kološ, M.; Tursunov, A. Large-scale magnetic fields enabling fitting of the high-frequency QPOs observed around supermassive black holes. Publ. Astron. Soc. Jpn.
**2022**, 74, 1220. [Google Scholar] [CrossRef] - Kopáček, O.; Karas, V.; Kovář, J.; Stuchlík, Z. Transition from regular to chaotic circulation in magnetized coronae near compact objects. Astrophys. J.
**2010**, 722, 1240. [Google Scholar] [CrossRef] - Stuchlík, Z.; Kološ, M. Acceleration of the charged particles due to chaotic scattering in the combined black hole gravitational field and asymptotically uniform magnetic field. Eur. Phys. J. C
**2016**, 76, 32. [Google Scholar] [CrossRef][Green Version] - Karas, V.; Kopáček, O. Near horizon structure of escape zones of electrically charged particles around weakly magnetized rotating black hole: Case of oblique magnetosphere. Astron. Nachrichten
**2021**, 342, 357. [Google Scholar] [CrossRef] - Stuchlík, Z.; Kološ, M.; Tursunov, A. Penrose process: Its variants and astrophysical applications. Universe
**2021**, 7, 416. [Google Scholar] [CrossRef] - Tursunov, A.; Stuchlík, Z.; Kološ, M. Supermassive black holes as possible sources of ultrahigh-energy cosmic rays. Astrophys. J.
**2020**, 895, 14. [Google Scholar] [CrossRef] - Penrose, R. Gravitational collapse: The role of General Relativity. Riv. Nuovo C.
**1969**, 1, 252. [Google Scholar] - Blandford, R.D.; Znajek, R.L. Electromagnetic extraction of energy from Kerr black holes. Mon. Not. R. Astron. Soc.
**1977**, 179, 433. [Google Scholar] [CrossRef] - Dadhich, N.; Tursunov, A.; Ahmedov, B.; Stuchlík, Z. The distinguishing signature of magnetic Penrose process. Mon. Not. R. Astron. Soc. Lett.
**2018**, 478, L89. [Google Scholar] [CrossRef][Green Version] - Dai, Z.G. Inspiral of a spinning black hole-magnetized neutron star binary: Increasing charge and electromagnetic emission. Astrophys. J. Lett.
**2019**, 873, L13. [Google Scholar] [CrossRef][Green Version] - Adari, P.; Berens, R.; Levin, J. Charging up boosted black holes. Phys. Rev. D
**2023**, 107, 044055. [Google Scholar] [CrossRef] - Okamoto, I.; Song, Y. Energy self-extraction of a Kerr black hole through its frame-dragged force-free magnetosphere. arXiv
**2023**, arXiv:1904.11978. [Google Scholar] - Santos, J.; Cardoso, V.; Natário, J. Electromagnetic radiation reaction and energy extraction from black holes: The tail term cannot be ignored. Phys. Rev. D
**2023**, 107, 064046. [Google Scholar] [CrossRef] - Ruffini, R.; Bernardini, M.G.; Bianco, C.L. On gamma-ray bursts. In Proceedings of the Eleventh Marcel Grossmann Meeting on Recent Developments in Theoretical and Experimental General Relativity, Gravitation and Relativistic Field Theories, Berlin, Germany, 23–29 July 2006; Kleinert, H., Jantzen, R.T., Ruffini, R., Eds.; World Scientific Publishing Co.: Singapore, 2008. [Google Scholar]
- Fryer, C.L.; Rueda, J.A.; Ruffini, R. Hypercritical accretion, induced gravitational collapse, and binary-driven hypernovae. Astrophys. J. Lett.
**2014**, 793, L36. [Google Scholar] [CrossRef][Green Version] - Komissarov, S.S. Electrically charged black holes and the Blandford-Znajek mechanism. Mon. Not. R. Astron. Soc.
**2022**, 512, 2798. [Google Scholar] [CrossRef] - Metzger, B.D. Luminous fast blue optical transients and type Ibn/Icn SNe from Wolf-Rayet/Black hole mergers. Astrophys. J.
**2022**, 932, 84. [Google Scholar] [CrossRef] - Rueda, J.A.; Ruffini, R. On the induced gravitational collapse of a neutron star to a black hole by a type Ib/c supernova. Astrophys. J. Lett.
**2012**, 758, L7. [Google Scholar] [CrossRef][Green Version] - Ruffini, R.; Wang, Y.; Aimuratov, Y.; de Almeida, U.B.; Becerra, L.; Bianco, C.L.; Xue, S.S. Early X-ray flares in GRBs. Astrophys. J.
**2018**, 852, 53. [Google Scholar] [CrossRef][Green Version] - Ruffini, R.; Treves, A. On a magnetized rotating sphere. Astrophys. Lett.
**1973**, 13, 109. [Google Scholar] - Tursunov, A.; Zajaček, M.; Eckart, A.; Kološ, M.; Britzen, S.; Stuchlík, Z.; Karas, V. Effect of electromagnetic interaction on Galactic center flare components. Astrophys. J.
**2020**, 897, 99. [Google Scholar] [CrossRef]

**Figure 1.**Surface plot of the magnetic flux function, $F(a,e)$, across a hemisphere bounded by $\theta =\pi /2$ and located on the MKN black hole horizon. A fixed value of the magnetization parameter $\beta =0.05$ has been selected. Projected contours are also shown for improved clarity of the plot. The surface is restricted by the condition for the emergence of the event horizon, ${a}^{2}+{e}^{2}\le 1$. Four circles of $\sqrt{(}{a}^{2}+{e}^{2})=0.25$, 0.5, 0.75, and 1.0 are shown to guide the eye. The yellow band on the surface, denoted by “Z”, indicates where the total electric charge is zero. Note: Unlike the case of a weakly magnetized black hole, the moment of vanishing charge does not coincide with zero of the charge parameter, $e=0$. On the other hand, $Q(a,e=0)$ does not vanish and its graph is shown by a solid curve “Q”. This is the feature of the exact MKN metric, where the two nulls do not generally coincide, as further detailed in [17] (this figure has been reproduced with permission from Physica Scripta article ref. [18]).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Karas, V.; Stuchlík, Z.
Magnetized Black Holes: Interplay between Charge and Rotation. *Universe* **2023**, *9*, 267.
https://doi.org/10.3390/universe9060267

**AMA Style**

Karas V, Stuchlík Z.
Magnetized Black Holes: Interplay between Charge and Rotation. *Universe*. 2023; 9(6):267.
https://doi.org/10.3390/universe9060267

**Chicago/Turabian Style**

Karas, Vladimír, and Zdeněk Stuchlík.
2023. "Magnetized Black Holes: Interplay between Charge and Rotation" *Universe* 9, no. 6: 267.
https://doi.org/10.3390/universe9060267