# MeV Dark Energy Emission from a De Sitter Universe

^{1}

^{2}

^{3}

^{4}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. The LSS Model

## 3. Astrophysical Tests

## 4. The Underneath Field Theory, a Revision

## 5. Discussion and Conclusions

## Author Contributions

## Funding

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Riess, A.G.; Filippenko, A.V.; Challis, P.; Clocchiatti, A.; Diercks, A.; Garnavich, P.M.; Gilliland, R.L.; Hogan, C.J.; Jha, S.; Kirshner, R.P.; et al. Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant. Astron. J.
**1998**, 116, 1009. [Google Scholar] [CrossRef] - Perlmutter, S.; Aldering, G.; Goldhaber, G.; Knop, R.A.; Nugent, P.; Castro, P.G.; Deustua, S.; Fabbro, S.; Goobar, A.; Groom, D.E.; et al. Measurements of Ω and Λ from 42 High-Redshift Supernovae. Astrophys. J.
**1999**, 517, 565. [Google Scholar] [CrossRef] - Aghanim, N.; Akrami, Y.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A.J.; Barreiro, R.B.; Bartolo, N.; Basak, S.; et al. Planck/2018 results. VI. Cosmological parameters. Astron. Astrophys.
**2020**, 641, A6. [Google Scholar] [CrossRef] - Zeldovich, Y.B. The cosmological constant and the theory of elementary particles. Sov. Phys. Uspekhi
**1968**, 11, 381. [Google Scholar] [CrossRef] - Weinberg, S. The cosmological constant problem. Rev. Mod. Phys.
**1989**, 61, 1. [Google Scholar] [CrossRef] - Bondi, H.; Gold, T. The Steady-State Theory of the Expanding Universe. Mon. Not. R. Astron. Soc.
**1948**, 108, 252–270. [Google Scholar] [CrossRef] - Weinberg, S. Gravitation and Cosmology; Wiley: Hoboken, NJ, USA, 1972. [Google Scholar]
- Trevisani, S.R.G.; Lima, J.A.S. Gravitational matter creation, multi-fluid cosmology and kinetic theory. Eur. Phys. J. C
**2023**, 83, 244. [Google Scholar] [CrossRef] - Cárdenas, V.H.; Cruz, M.; Lepe, S. Cosmic expansion with matter creation and bulk viscosity. Phys. Rev. D
**2020**, 102, 123543. [Google Scholar] [CrossRef] - Lima, J.A.S.; Santos, R.C.; Cunha, J.V. Is ΛCDM an effective CCDM cosmology? J. Cosmol. Astropart. Phys.
**2016**, 3, 027. [Google Scholar] [CrossRef] - Vargas dos Santos, M.; Waga, I.; Ramos, R.O. Degeneracy between CCDM and ΛCDM cosmologies. Phys. Rev. D
**2014**, 90, 127301. [Google Scholar] [CrossRef] - Ramos, R.O.; Vargas dos Santos, M.; Waga, I. Matter creation and cosmic acceleration. Phys. Rev. D
**2014**, 89, 083524. [Google Scholar] [CrossRef] - Carroll, S.M. The Cosmological constant. Living Rev. Rel.
**2001**, 4, 1. [Google Scholar] [CrossRef] [PubMed] - Hoyle, F. A New Model for the Expanding Universe. Mon. Not. R. Astron. Soc.
**1948**, 108, 372–382. [Google Scholar] [CrossRef] - Hoyle, F. On the Cosmological Problem. Mon. Not. R. Astron. Soc.
**1949**, 109, 365–371. [Google Scholar] [CrossRef] - Einstein, A. Do gravitational fields play an essential role in the structure of elementary particles of matter. Siz. Preuss. Acad. Scis.
**1919**, 1919, 349. [Google Scholar] - Ellis, G.F.R.; van Elst, H.; Murugan, J.; Uzan, J.P. On the trace-free Einstein equations as a viable alternative to general relativity. Class. Quantum Gravity
**2011**, 28, 225007. [Google Scholar] [CrossRef] - Josset, T.; Perez, A.; Sudarsky, D. Dark Energy from Violation of Energy Conservation. Phys. Rev. Lett.
**2017**, 118, 021102. [Google Scholar] [CrossRef] [PubMed] - Mitras, A. Interpretational conflicts between the static and non-static forms of the de Sitter metric. Sci. Rep.
**2012**, 2, 923. [Google Scholar] [CrossRef] - Aghanim, N.; Akrami, Y.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A.J.; Barreiro, R.B.; Bartolo, N.; Basak, S.; et al. Planck 2018 results. V. CMB power spectra and likelihoods. Astron. Astrophys.
**2020**, 641, A5. [Google Scholar] [CrossRef] - Riess, A.G.; Casertano, S.; Yuan, W.; Bowers, J.B.; Macri, L.; Zinn, J.C.; Scolnic, D. Cosmic Distances Calibrated to 1% Precision with Gaia EDR3 Parallaxes and Hubble Space Telescope Photometry of 75 Milky Way Cepheids Confirm Tension with ΛCDM. Astrophys. J. Lett.
**2021**, 908, L6. [Google Scholar] [CrossRef] - Penzias, A.A.; Wilson, R.W. A Measurement of Excess Antenna Temperature at 4080 Mc/s. Astrophys. J.
**1965**, 142, 419–421. [Google Scholar] [CrossRef] - De Angelis, A.; Galanti, G.; Roncadelli, M. Transparency of the Universe to gamma rays. Mon. Not. R. Astron. Soc.
**2013**, 432, 3245–3249. [Google Scholar] [CrossRef] - Gilmore, R.; Somerville, R.; Primack, J.; Dominguez, A. Semi-analytic modeling of the EBL and consequences for extragalactic gamma-ray spectra. Mon. Not. R. Astron. Soc.
**2012**, 422, 3189. [Google Scholar] [CrossRef] - Franceschini, A.; Rodighiero, G.; Vaccari, M. The extragalactic optical-infrared background radiations, their time evolution and the cosmic photon-photon opacity. Astron. Astrophys.
**2008**, 487, 837. [Google Scholar] [CrossRef] - Domínguez, A.; Primack, J.R.; Rosario, D.J.; Prada, F.; Gilmore, R.C.; Faber, S.M.; Koo, D.C.; Somerville, R.S.; Pérez-Torres, M.A.; Pérez-González, P.; et al. Extragalactic Background Light Inferred from AEGIS Galaxy SED-type Fractions. Mon. Not. R. Astron. Soc.
**2011**, 410, 2556. [Google Scholar] [CrossRef] - Breit, G.; Wheeler, J.A. Collision of Two Light Quanta. Phys. Rev.
**1934**, 46, 1087–1091. [Google Scholar] [CrossRef] - Weidenspointner, G.; Varendorff, M.; Kappadath, S.C.; Bennett, K.; Bloemen, H.; Diehl, R.; Hermsen, W.; Lichti, G.G.; Ryan, J.; Schönfelder, V. The cosmic diffuse gamma-ray background measured with COMPTEL. AIP Conf. Proc.
**2000**, 510, 467–470. [Google Scholar] [CrossRef] - Strong, A.W.; Moskalenko, I.V.; Reimer, O. A new determination of the extragalactic diffuse gamma-ray background from egret data. Astrophys. J.
**2004**, 613, 956–961. [Google Scholar] [CrossRef] - Ajello, M.; Greiner, J.; Sato, G.; Willis, D.R.; Kanbach, G.; Strong, A.W.; Diehl, R.; Hasinger, G.; Gehrels, N.; Markwardt, C.B.; et al. Cosmic X-ray Background and Earth Albedo Spectra with Swift BAT. Astrophys. J.
**2008**, 689, 666. [Google Scholar] [CrossRef] - Oberlack, U. Extragalactic diffuse gamma-ray emission at high energies. Physics
**2010**, 3, 21. [Google Scholar] [CrossRef] - Akaike, H. A New Look at the Statistical Model Identification. IEEE Trans. Autom. Control
**1974**, 19, 716–723. [Google Scholar] [CrossRef] - Sugiura, N. Further analysts of the data by akaike’s information criterion and the finite corrections. Commun. Stat.-Theory Methods
**1978**, 7, 13–26. [Google Scholar] [CrossRef] - Aramaki, T.; Adrian, P.O.H.; Karagiorgi, G.; Odaka, H. Dual MeV gamma-ray and dark matter observatory—GRAMS Project. Astropart. Phys.
**2020**, 114, 107–114. [Google Scholar] [CrossRef] - Shutt, T.; Akerib, D.; Breur, S.; Buuck, M.; Dragone, A.; Digel, S.; Haller, G.; Hitchcock, O.; Linehan, R.; Luitz, S.; et al. A Next-Generation LAr TPC-Based MeV Gamma Ray Instrument. Available online: https://www.snowmass21.org/docs/files/summaries/CF/SNOWMASS21-CF7CF1-NF7NF10-IF8IF0Shutt-224.pdf (accessed on 13 November 2023).
- García-Aspeitia, M.A.; Martínez-Robles, C.; Hernández-Almada, A.; Magaña, J.; Motta, V. Cosmic acceleration in unimodular gravity. Phys. Rev.
**2019**, D99, 123525. [Google Scholar] [CrossRef] - García-Aspeitia, M.A.; Hernández-Almada, A.; Magaña, J.; Motta, V. The Universe acceleration from the Unimodular gravity view point: Background and linear perturbations. Phys. Dark Univ.
**2021**, 32, 100840. [Google Scholar] [CrossRef] - Zhang, M.J.; Li, H.; Xia, J.Q. What do we know about cosmography. Eur. Phys. J.
**2017**, C77, 434. [Google Scholar] [CrossRef] - Zel’dovich, Y.B.; Novikov, I.D. The Hypothesis of Cores Retarded during Expansion and the Hot Cosmological Model. Astron. Zhurnal
**1966**, 43, 758. [Google Scholar] - Hawking, S. Gravitationally collapsed objects of very low mass. Mon. Not. R. Astron. Soc.
**1971**, 152, 75. [Google Scholar] [CrossRef] - Carr, B.J.; Hawking, S.W. Black Holes in the Early Universe. Mon. Not. R. Astron. Soc.
**1974**, 168, 399–415. [Google Scholar] [CrossRef] - Gonzalez-Morales, A.X.; Profumo, S.; Reynoso-Córdova, J. Prospects for indirect MeV Dark Matter detection with Gamma Rays in light of Cosmic Microwave Background Constraints. Phys. Rev. D
**2017**, 96, 063520. [Google Scholar] [CrossRef] - Boudaud, M.; Lacroix, T.; Stref, M.; Lavalle, J. Robust cosmic-ray constraints on p-wave annihilating MeV dark matter. Phys. Rev. D
**2019**, 99, 061302. [Google Scholar] [CrossRef] - Diósi, L. A universal master equation for the gravitational violation of quantum mechanics. Phys. Lett. A
**1987**, 120, 377–381. [Google Scholar] [CrossRef] - Diósi, L. Models for universal reduction of macroscopic quantum fluctuations. Phys. Rev. A
**1989**, 40, 1165–1174. [Google Scholar] [CrossRef] [PubMed] - Penrose, R. On Gravity’s role in Quantum State Reduction. Gen. Relativ. Gravit.
**1996**, 28, 581–600. [Google Scholar] [CrossRef] - Peccei, R.D. The Strong CP problem and axions. Lect. Notes Phys.
**2008**, 741, 3–17. [Google Scholar] [CrossRef] - Essig, R. Working Group Report: New Light Weakly Coupled Particles. In Proceedings of the Snowmass 2013: Snowmass on the Mississippi, Minneapolis, MN, USA, 29 July–6 August 2013; p. 10. [Google Scholar]

**Figure 1.**Photon survival probability due to interaction with the 30 MeV radiation from a given z as standard photons. For comparison, survival probability due to CMB is included. Everything above such lines is attenuated; we illustrate this as the shadow area in the CMB case.

**Figure 2.**Energy flux vs energy. Black and grey markers are COMPTEL and EGRET data, respectively. The solid blue line corresponds to Bkg+Signal fit, and the solid red line to Bkg is composed of Bkg${}_{1}$ (dot-dashed red line) and Bkg${}_{2}$ (dotted red line).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Alcántara-Pérez, Y.B.; García-Aspeitia, M.A.; Martínez-Huerta, H.; Hernández-Almada, A.
MeV Dark Energy Emission from a De Sitter Universe. *Universe* **2023**, *9*, 513.
https://doi.org/10.3390/universe9120513

**AMA Style**

Alcántara-Pérez YB, García-Aspeitia MA, Martínez-Huerta H, Hernández-Almada A.
MeV Dark Energy Emission from a De Sitter Universe. *Universe*. 2023; 9(12):513.
https://doi.org/10.3390/universe9120513

**Chicago/Turabian Style**

Alcántara-Pérez, Yasmín B., Miguel. A. García-Aspeitia, Humberto Martínez-Huerta, and Alberto Hernández-Almada.
2023. "MeV Dark Energy Emission from a De Sitter Universe" *Universe* 9, no. 12: 513.
https://doi.org/10.3390/universe9120513