# Virial Theorem in Nonlocal Newtonian Gravity

## Abstract

**:**

## 1. Introduction

## 2. Modification of the Inverse Square Force Law

## 3. Virial Theorem

## 4. Dark Matter

## 5. Effective Dark Matter

#### 5.1. Clusters of Galaxies: ${f}_{DM}\approx {\alpha}_{0}\phantom{\rule{0.166667em}{0ex}}\u03f5\left(p\right)$

#### 5.2. Galaxies: ${f}_{DM}<{\mathcal{D}}_{0}/{\lambda}_{0}$

## 6. Discussion

## Acknowledgments

## Conflicts of Interest

## References

- Einstein, A. The Meaning of Relativity; Princeton University Press: Princeton, NJ, USA, 1955. [Google Scholar]
- Hehl, F.W.; Mashhoon, B. Nonlocal gravity simulates dark matter. Phys. Lett. B
**2009**, 673, 279–282. [Google Scholar] [CrossRef] - Hehl, F.W.; Mashhoon, B. Formal framework for a nonlocal generalization of Einstein’s theory of gravitation. Phys. Rev. D
**2009**, 79, 064028. [Google Scholar] [CrossRef] - Blome, H.-J.; Chicone, C.; Hehl, F.W.; Mashhoon, B. Nonlocal modification of Newtonian gravity. Phys. Rev. D
**2010**, 81, 065020. [Google Scholar] [CrossRef] - Mashhoon, B. Nonlocal gravity. In Cosmology and Gravitation; Novello, M., Begliaffa, S.E.P., Eds.; Cambridge Scientific Publishers: Cambridge, UK, 2011; pp. 1–9. [Google Scholar]
- Chicone, C.; Mashhoon, B. Nonlocal gravity: Modified Poisson’s equation. J. Math. Phys.
**2012**, 53, 042501. [Google Scholar] [CrossRef] - Chicone, C.; Mashhoon, B. Linearized gravitational waves in nonlocal general relativity. Phys. Rev. D
**2013**, 87, 064015. [Google Scholar] [CrossRef] - Mashhoon, B. Nonlocal gravity: Damping of linearized gravitational waves. Class. Quantum Gravity
**2013**, 30, 155008. [Google Scholar] [CrossRef] - Rahvar, S.; Mashhoon, B. Observational tests of nonlocal gravity: Galaxy rotation curves and clusters of galaxies. Phys. Rev. D
**2014**, 89, 104011. [Google Scholar] [CrossRef] - Mashhoon, B. Nonlocal gravity: The general linear approximation. Phys. Rev. D
**2014**, 90, 124031. [Google Scholar] [CrossRef] - Mashhoon, B. Nonlocal general relativity. Galaxies
**2015**, 3, 1–17. [Google Scholar] [CrossRef] - Chicone, C.; Mashhoon, B. Nonlocal gravity in the Solar System. Class. Quantum Gravity
**2016**, 33, 075005. [Google Scholar] [CrossRef] - Chicone, C.; Mashhoon, B. Nonlocal Newtonian cosmology. 2015; arXiv:1510.07316 [gr-qc]. [Google Scholar]
- Iorio, L. Gravitational Anomalies in the Solar System? Int. J. Mod. Phys. D
**2015**, 24, 1530015. [Google Scholar] [CrossRef] - Deng, X.-M.; Xie, Y. Solar System test of the nonlocal gravity and the necessity for a screening mechanism. Ann. Phys.
**2015**, 361, 62–71. [Google Scholar] [CrossRef] - Abramowitz, M.; Stegun, I.A. Handbook of Mathematical Functions; National Bureau of Standards: Washington, DC, USA, 1964. [Google Scholar]
- Adelberger, E.G.; Heckel, B.R.; Nelson, A.E. Tests of the Gravitational Inverse-Square Law. Ann. Rev. Nucl. Part. Sci.
**2003**, 53, 77–121. [Google Scholar] [CrossRef] - Hoyle, C.D.; Kapner, D.J.; Heckel, B.R.; Adelberger, E.G.; Gundlach, J.H.; Schmidt, U.; Swanson, H.E. Sub-millimeter tests of the gravitational inverse-square law. Phys. Rev. D
**2004**, 70, 042004. [Google Scholar] [CrossRef] - Adelberger, E.G.; Heckel, B.R.; Hoedl, S.A.; Hoyle, C.D.; Kapner, D.J.; Upadhye, A. Particle-Physics Implications of a Recent Test of the Gravitational Inverse-Square Law. Phys. Rev. Lett.
**2007**, 98, 131104. [Google Scholar] [CrossRef] [PubMed] - Kapner, D.J.; Cook, T.S.; Adelberger, E.G.; Gundlach, J.H.; Heckel, B.R.; Hoyle, C.D.; Swanson, H.E. Tests of the Gravitational Inverse-Square Law below the Dark-Energy Length Scale. Phys. Rev. Lett.
**2007**, 98, 021101. [Google Scholar] [CrossRef] [PubMed] - Little, S.; Little, M. Laboratory test of Newton’s law of gravity for small accelerations. Class. Quantum Gravity
**2014**, 31, 195008. [Google Scholar] [CrossRef] - Tohline, J.E. Stabilizing a Cold Disk with a 1/r Force Law. In IAU Symposium 100, Internal Kinematics and Dynamics of Galaxies; Athanassoula, E., Ed.; Reidel: Dordrecht, The Netherlands, 1983; pp. 205–206. [Google Scholar]
- Tohline, J.E. Does Gravity Exhibit a 1/r Force on the Scale of Galaxies? Ann. N. Y. Acad. Sci.
**1984**, 422, 390–390. [Google Scholar] [CrossRef] - Kuhn, J.R.; Burns, C.A.; Schorr, A.J. Numerical Coincidences, Fictional Forces, and the Galactic Dark Matter Distribution. 1986; Unpublished work. [Google Scholar]
- Kuhn, J.R.; Kruglyak, L. Non-Newtonian forces and the invisible mass problem. Astrophys. J.
**1987**, 313, 1–12. [Google Scholar] [CrossRef] - Bekenstein, J.D. Second Canadian Conference on General Relativity and Relativistic Astrophysics; Coley, A., Dyer, C., Tupper, T., Eds.; World Scientific: Singapore, 1988; p. 68. [Google Scholar]
- Hees, A.; Hestroffer, D.; Le Poncin-Lafitte, C.; David, P. Tests of gravitation with Gaia observations of Solar System Objects. 2015; arXiv: 1509.06868. [Google Scholar]
- Buscaino, B.; DeBra, D.; Graham, P.W.; Gratta, G.; Wiser, T.D. Testing long-distance modifications of gravity to 100 astronomical units. Phys. Rev. D
**2015**, 92, 104048. [Google Scholar] [CrossRef] - Aprile, E.; Alfonsi, M.; Arisaka, K.; Arneodo, F.; Balan, C.; Baudis, L.; Bauermeister, B.; Behrens, A.; Beltrame, P.; Bokeloh, K.; et al. Dark Matter Results from 225 Live Days of XENON100 Data. Phys. Rev. Lett.
**2012**, 109, 181301. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Akerib, D.S.; Araújo, H.M.; Bai, X.; Bailey, A.J.; Balajthy, J.; Bedikian, S.; Bernard, E.; Bernstein, A.; Bolozdynya, A.; Bradley, A.; et al. First Results from the LUX Dark Matter Experiment at the Sanford Underground Research Facility. Phys. Rev. Lett.
**2014**, 112, 091303. [Google Scholar] [CrossRef] [PubMed] - Agnese, R.; Anderson, A.J.; Asai, M.; Balakishiyeva, D.; Basu Thakur, R.; Bauer, D.A.; Beaty, J.; Billard, J.; Borgland, A.; Bowles, M.A.; et al. Search for Low-Mass Weakly Interacting Massive Particles with SuperCDMS. Phys. Rev. Lett.
**2014**, 112, 241302. [Google Scholar] - Baudis, L. Dark matter searches. Ann. Phys.
**2016**, 528, 74–83. [Google Scholar] [CrossRef] - Zwicky, F. Die Rotverschiebung von extragalaktischen Nebeln. Helv. Phys. Acta
**1933**, 6, 110–127. [Google Scholar] - Zwicky, F. On the Masses of Nebulae and of Clusters of Nebulae. Astrophys. J.
**1937**, 86, 217–246. [Google Scholar] [CrossRef] - Rubin, V.C.; Ford, W.K. Rotation of the Andromeda Nebula from a Spectroscopic Survey of Emission Regions. Astrophys. J.
**1970**, 159, 379–403. [Google Scholar] [CrossRef] - Roberts, M.S.; Whitehurst, R.N. The rotation curve and geometry of M31 at large galactocentric distances. Astrophys. J.
**1975**, 201, 327–346. [Google Scholar] [CrossRef] - Sofue, Y.; Rubin, V. Rotation Curves of Spiral Galaxies. Annu. Rev. Astron. Astrophys.
**2001**, 39, 137–174. [Google Scholar] [CrossRef] - Seigar, M.S. Dark Matter in the Universe; Morgan and Claypool: San Rafael, CA, USA, 2015. [Google Scholar]
- Harvey, D.; Massey, R.; Kitching, T.; Taylor, A.; Tittley, E. The nongravitational interactions of dark matter in colliding galaxy clusters. Science
**2015**, 347, 1462–1465. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Clowe, D.; Bradač, M.; Gonzalez, A.H.; Markevitch, M.; Randall, S.W.; Jones, C.; Zaritsky, D. A direct empirical proof of the existence of dark matter. Astrophys. J. Lett.
**2006**, 648, L109–L113. [Google Scholar] [CrossRef] - Clowe, D.; Randall, S.W.; Markevitch, M. Catching a bullet: direct evidence for the existence of dark matter. Nucl. Phys. B Proc. Suppl.
**2007**, 173, 28–31. [Google Scholar] [CrossRef] - Bini, D.; Mashhoon, B. Nonlocal gravity: Conformally flat spacetimes. Int. J. Geom. Methods Mod. Phys.
**2016**, 13, 1650081. [Google Scholar] [CrossRef] - Barmby, P.; Ashby, M.L.N.; Bianchi, L.; Engelbracht, C.W.; Gehrz, R.D.; Gordon, K.D.; Hinz, J.L.; Huchra, J.P.; Humphreys, R.M.; Pahre, M.A.; et al. Dusty waves on a starry sea: The mid-infrared view of M31. Astrophys. J.
**2006**, 650, L45–L49. [Google Scholar] [CrossRef] - Barmby, P.; Ashby, M.L.N.; Bianchi, L.; Engelbracht, C.W.; Gehrz, R.D.; Gordon, K.D.; Hinz, J.L.; Huchra, J.P.; Humphreys, R.M.; Pahre, M.A.; et al. Erratum: “Dusty Waves on a Starry Sea: The Mid-Infrared View of M31”. Astrophys. J.
**2007**, 655, L61–L61. [Google Scholar] [CrossRef] - Tamm, A.; Tempel, E.; Tenjes, P.; Tihhonova, O.; Tuvikene, T. Stellar mass map and dark matter distribution in M31. Astron. Astrophys.
**2012**, 546, A4. [Google Scholar] [CrossRef] - Corbelli, E. Dark matter and visible baryons in M33. Mon. Not. R. Astron. Soc.
**2003**, 342, 199–207. [Google Scholar] [CrossRef] - Pota, V.; Romanowsky, A.J.; Brodie, J.P.; Peñarrubia, J.; Forbes, D.A.; Napolitano, N.R.; Foster, C.; Walker, M.G.; Strader, J.; Roediger, J.C. The SLUGGS survey: Multipopulation dynamical modelling of the elliptical galaxy NGC 1407 from stars and globular clusters. Mon. Not. R. Astron. Soc.
**2015**, 450, 3345–3358. [Google Scholar] [CrossRef] - Morganti, L.; Gerhard, O.; Coccato, L.; Martinez-Valpuesta, I.; Arnaboldi, M. Elliptical galaxies with rapidly decreasing velocity dispersion profiles: NMAGIC models and dark halo parameter estimates for NGC 4494. Mon. Not. R. Astron. Soc.
**2013**, 431, 3570–3588. [Google Scholar] [CrossRef] - De Arriba, L.P.; Balcells, M.; Falcón-Barroso, J.; Trujillo, I. The discrepancy between dynamical and stellar masses in massive compact galaxies traces non-homology. Mon. Not. R. Astron. Soc.
**2014**, 440, 1634–1648. [Google Scholar] [CrossRef] - Sollima, A.; Bellazzini, M.; Lee, J.-W. A comparison between the stellar and dynamical masses of six globular clusters. Astrophys. J.
**2012**, 755, 156. [Google Scholar] [CrossRef] - Oh, S.-H.; Hunter, D.A.; Brinks, E.; Elmegreen, B.G.; Schruba, A.; Walter, F.; Rupen, M.P.; Young, L.M.; Simpson, C.E.; Johnson, M.C. High-resolution mass models of dwarf galaxies from LITTLE THINGS. Astron. J.
**2015**, 149, 180. [Google Scholar] [CrossRef] - Kuhn, J.R.; Miller, R.H. Dwarf spheroidal galaxies and resonant orbital coupling. Astrophys. J. Lett.
**1989**, 341, L41–L45. [Google Scholar] [CrossRef] - Fleck, J.-J.; Kuhn, J.R. Parametric dwarf spheroidal tidal interaction. Astrophys. J.
**2003**, 592, 147–160. [Google Scholar] [CrossRef] - Muñoz, R.R.; Frinchaboy, P.M.; Majewski, S.R.; Kuhn, J.R.; Chou, M.-Y.; Palma, C.; Sohn, S.T.; Patterson, R.J.; Siegel, M.H. Exploring Halo Substructure with Giant Stars: The Velocity Dispersion Profiles of the Ursa Minor and Draco Dwarf Spheroidal Galaxies at Large Angular Separations. Astrophys. J. Lett.
**2005**, 631, L137–L141. [Google Scholar] [CrossRef]

© 2016 by the author; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Mashhoon, B.
Virial Theorem in Nonlocal Newtonian Gravity. *Universe* **2016**, *2*, 9.
https://doi.org/10.3390/universe2020009

**AMA Style**

Mashhoon B.
Virial Theorem in Nonlocal Newtonian Gravity. *Universe*. 2016; 2(2):9.
https://doi.org/10.3390/universe2020009

**Chicago/Turabian Style**

Mashhoon, Bahram.
2016. "Virial Theorem in Nonlocal Newtonian Gravity" *Universe* 2, no. 2: 9.
https://doi.org/10.3390/universe2020009