# Active Disturbance Rejection Control of Full-Bridge DC–DC Converter for a Pulse Power Supply with Controllable Charging Time

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Topology and Operation Principle

#### 2.1. Topology

#### 2.2. Operation Principle

- All components are considered ideal;
- Input voltage is a constant;
- Regardless of the transformer saturation effect.

- Interval 1 (${t}_{0}$ − ${t}_{1}$)

- Interval 2 (${t}_{1}-{t}_{2}$)

- Supplying Stage

- Discharging Stage

## 3. System Structure

## 4. ADRC-Based Current Control

#### 4.1. Formation of ADRC-Based Current Controller

#### 4.2. Stability Analysis

## 5. Simulation Results and Experimental Verification

#### 5.1. Simulation Results

#### 5.1.1. Steady-State Performance

#### 5.1.2. Robustness under Parameter Variations

#### 5.1.3. Transient Performance

#### 5.1.4. Anti-Disturbance Performance

#### 5.2. Experimental Results

## 6. Conclusions

- If the system is applied to long-line applications, the stray parameters existing in the line will cause changes in the system parameters, which will bring difficulties to the design of the controller.
- Since the pulse discharge is used by the gas spark switch, continuous discharge will cause the ablation of the switching electrode, resulting in fluctuations in the discharge voltage.

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## References

- Davari, P.; Zare, F.; Ghosh, A.; Akiyama, H. High-Voltage Modular Power Supply Using Parallel and Series Configurations of Flyback Converter for Pulsed Power Applications. IEEE Trans. Plasma Sci.
**2012**, 40, 2578–2587. [Google Scholar] [CrossRef] - Akiyama, H.; Sakugawa, T.; Namihira, T.; Takaki, K.; Minamitani, Y.; Shimomura, N. Industrial Applications of Pulsed Power Technology. IEEE Trans. Dielectr. Electr. Insul.
**2007**, 14, 1051–1064. [Google Scholar] [CrossRef] - Elserougi, A.; Ahmed, S.; Massoud, A. High voltage pulse generator based on DC-to-DC boost converter with capacitor-diode voltage multipliers for bacterial decontamination. In Proceedings of the IECON 2015—41st Annual Conference of the IEEE Industrial Electronics Society, Yokohama, Japan, 9–12 November 2015. [Google Scholar]
- Nuccitelli, R. Nanosecond pulsed electric fields cause melanomas to self-destruct. In Proceedings of the Conference Record of the 2006 Twenty-Seventh International Power Modulator Symposium, Arlington, VA, USA, 14–18 May 2006. [Google Scholar]
- Sethian, J.D. Pulsed power for a rep-rate, electron beam pumped KrF laser. IEEE Trans. Plasma Sci.
**2000**, 28, 1333–1337. [Google Scholar] [CrossRef] - Tsoi, T.; Whitworth, C.; Kim, M.; Bayne, S.; O’Brien, H.; Ogunniyi, A. SiC GTOs Thyristor for Long Term Reliability on Pulsed Power Application Test. In Proceedings of the 2021 IEEE Pulsed Power Conference (PPC), Denver, CO, USA, 12–16 December 2021. [Google Scholar]
- Collier, L.; Kajiwara, T.; Dickens, J.; Mankowski, J.; Neuber, A. Fast SiC Switching Limits for Pulsed Power Applications. IEEE Trans. Plasma Sci.
**2019**, 47, 5306–5313. [Google Scholar] [CrossRef] - Nakayama, K.; Tanaka, Y.; Kato, T.; Kojima, K.; Sometani, M.; Yonezawa, Y. 10 kV SiC thyristor for High Voltage Pulsed Power Generators. In Proceedings of the 2023 IEEE Applied Power Electronics Conference and Exposition (APEC), Orlando, FL, USA, 19–23 March 2023. [Google Scholar]
- Liang, S.; Guo, J.; Liu, H.; Wang, J. Evaluation of High-Voltage 4H-SiC Gate Turn-off Thyristor for Pulsed Power Application. In Proceedings of the 2021 IEEE 1st International Power Electronics and Application Symposium (PEAS), Shanghai, China, 13–15 November 2021. [Google Scholar]
- Ren, X.; Xu, Z.-W.; Xu, K.; Zhang, Z.; Chen, Q. SiC Stacked-Capacitor Converters for Pulse Applications. IEEE Trans. Power Electron.
**2019**, 34, 4450–4464. [Google Scholar] [CrossRef] - Redondo, L.M. A DC Voltage-Multiplier Circuit Working as a High-Voltage Pulse Generator. IEEE Trans. Plasma Sci.
**2010**, 38, 2725–2729. [Google Scholar] [CrossRef] - Ahn, S.-H.; Ryoo, H.-J.; Gong, J.-W.; Jang, S.-R. Low-Ripple and High-Precision High-Voltage DC Power Supply for Pulsed Power Applications. IEEE Trans. Plasma Sci.
**2014**, 42, 3023–3033. [Google Scholar] [CrossRef] - Zabihi, S.; Zare, F.; Ledwich, G.; Ghosh, A.; Akiyama, H. A new pulsed power supply topology based on positive buck-boost converters concept. IEEE Trans. Dielectr. Electr. Insul.
**2010**, 17, 1901–1911. [Google Scholar] [CrossRef] - Zabihi, S.; Zare, F.; Ledwich, G.; Ghosh, A.; Akiyama, H. A Novel High-Voltage Pulsed-Power Supply Based on Low-Voltage Switch–Capacitor Units. IEEE Trans. Plasma Sci.
**2010**, 38, 2877–2887. [Google Scholar] [CrossRef] - Yao, Y.; Krishnamoorthy, H.S.; Yerra, S. Linear Assisted DC/DC Converter for Pulsed Mode Power Applications. In Proceedings of the 2020 IEEE International Conference on Power Electronics, Smart Grid and Renewable Energy (PESGRE2020), Cochin, India, 2–4 January 2020. [Google Scholar]
- Safaee, A.; Jain, P.K.; Bakhshai, A. An Adaptive ZVS Full-Bridge DC–DC Converter With Reduced Conduction Losses and Frequency Variation Range. IEEE Trans. Power Electron.
**2015**, 30, 4107–4118. [Google Scholar] [CrossRef] - Xie, Y.; Ghaemi, R.; Sun, J.; Freudenberg, J.S. Implicit Model Predictive Control of a Full Bridge DC–DC Converter. IEEE Trans. Power Electron.
**2009**, 24, 2704–2713. [Google Scholar] [CrossRef] - He, H.; Si, T.; Sun, L.; Liu, B.; Li, Z. Linear Active Disturbance Rejection Control for Three-Phase Voltage-Source PWM Rectifier. IEEE Access
**2020**, 8, 45050–45060. [Google Scholar] [CrossRef] - Su, Y.; Ge, X.; Xie, D.; Wang, K. An Active Disturbance Rejection Control-Based Voltage Control Strategy of Single-Phase Cascaded H-Bridge Rectifiers. IEEE Trans. Ind. Appl.
**2020**, 56, 5182–5193. [Google Scholar] [CrossRef] - Tiwari, N.; Agarwal, P.; Srivastava, S.P. Performance investigation of modified hysteresis current controller with the permanent magnet synchronous motor drive. IET Electr. Power Appl.
**2020**, 4, 101–108. [Google Scholar] [CrossRef] - Kang, B.J.; Liaw, C.M. A robust hysteresis current-controlled PWM inverter for linear PMSM driven magnetic suspended positioning system. IEEE Trans. Ind. Electron.
**2021**, 48, 956–967. [Google Scholar] [CrossRef] - Zhang, X.; Hou, B.; Mei, Y. Deadbeat Predictive Current Control of Permanent-Magnet Synchronous Motors with Stator Current and Disturbance Observer. IEEE Trans. Power Electron.
**2017**, 32, 3818–3834. [Google Scholar] [CrossRef] - Türker, T.; Buyukkeles, Y.; Bakan, A.F. A Robust Predictive Current Controller for PMSM Drives. IEEE Trans. Ind. Electron.
**2016**, 63, 3906–3914. [Google Scholar] [CrossRef] - Liu, X.; Yu, H.; Yu, J.; Zhao, L. Combined Speed and Current Terminal Sliding Mode Control With Nonlinear Disturbance Observer for PMSM Drive. IEEE Access
**2018**, 6, 29594–29601. [Google Scholar] [CrossRef] - Wang, L.; Chai, T.; Zhai, L. Neural-Network-Based Terminal Sliding-Mode Control of Robotic Manipulators Including Actuator Dynamics. IEEE Trans. Ind. Electron.
**2009**, 56, 3296–3304. [Google Scholar] [CrossRef] - Qu, L.; Qiao, W. Active-Disturbance-Rejection-Based Sliding-Mode Current Control for Permanent-Magnet Synchronous Motors. IEEE Trans. Power Electron.
**2021**, 36, 751–760. [Google Scholar] [CrossRef] - Chen, W. Indirect Input-Series Output-Parallel DC–DC Full Bridge Converter System Based on Asymmetric Pulse width Modulation Control Strategy. IEEE Trans. Power Electron.
**2019**, 34, 3164–3177. [Google Scholar] [CrossRef] - Li, C.; Zhang, Y.; Cao, Z.; XU, D. Single-Phase Single-Stage Isolated ZCS Current-Fed Full-Bridge Converter for High-Power AC/DC Applications. IEEE Trans. Power Electron.
**2017**, 32, 6800–6812. [Google Scholar] [CrossRef] - Kulasekaran, S.; Ayyanar, R. Analysis, Design, and Experimental Results of the Semidual-Active-Bridge Converter. IEEE Trans. Power Electron.
**2014**, 29, 5136–5147. [Google Scholar] [CrossRef] - Jin, H.; Chen, Y.; Lan, W. Replacing PI Control With First-Order Linear ADRC. In Proceedings of the 2019 IEEE 8th Data Driven Control and Learning Systems Conference (DDCLS), Dali, China, 24–27 May 2019. [Google Scholar]
- Tian, G.; Gao, Z. Frequency Response Analysis of Active Disturbance Rejection Based Control System. In Proceedings of the 2007 IEEE International Conference on Control Applications, Singapore, 1–3 October 2007. [Google Scholar]

**Figure 3.**Operation stages with USPWM. (

**a**) The operating circuit of Interval 1; (

**b**) the operating circuit of Interval 2.

**Figure 9.**The Bode diagram of the system: (

**a**) Bode plot of ${G}_{vy}\left(s\right)$ by changing the controller bandwidth; (

**b**) Bode plot of ${G}_{vy}\left(s\right)$ by changing the observer bandwidth.

**Figure 10.**Steady-state performance: (

**a**) charge current responses under steady-state operation; (

**b**) voltage waveform on capacitor ${C}_{f}$.

**Figure 11.**PI-based robustness under parameter variations: (

**a**) charge current response under leakage inductance variation; (

**b**) voltage waveform on capacitor ${C}_{f}$.

**Figure 12.**ADRCI-based robustness under parameter variations: (

**a**) charge current response under leakage inductance variation; (

**b**) voltage waveform on capacitor ${C}_{f}$.

**Figure 13.**Transient performance based on PI and ADRC: (

**a**) PI-based control; (

**b**) ADRC-based control.

**Figure 20.**Current performance under disturbance based on PI control and ADRC control: (

**a**) PI-based control; (

**b**) LADRC-based control.

System Parameters | Symbols | Value |

Input side DC voltage | ${U}_{dc}$ | 300 V |

Input side capacitor | $C$ | 2350 $\mathsf{\mu}\mathrm{F}$ |

Leakage induction of transformer | ${L}_{k}$ | 10 $\mathsf{\mu}\mathrm{H}$ |

Transformer ratio reciprocal | $n$ | 36 |

Output side line impedance | ${R}_{Lf}$ | 50 $\mathsf{\Omega}$ |

Output side inductor | ${L}_{f}$ | 1.0 $\mathrm{m}\mathrm{H}$ |

Output side capacitor | ${C}_{f}$ | 10 $\mathsf{\mu}\mathrm{F}$ |

Control Parameters | Symbols | Value |

Proportional gain | ${k}_{p}$ | 20 |

Integral gain | ${k}_{i}$ | 100 |

Controller bandwidth | ${\omega}_{c}$ | 500 |

Observer bandwidth | ${\omega}_{0}$ | 1000 |

Compensation factor | $b$ | 10 |

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Kang, Z.; Li, Y.
Active Disturbance Rejection Control of Full-Bridge DC–DC Converter for a Pulse Power Supply with Controllable Charging Time. *Electronics* **2023**, *12*, 5018.
https://doi.org/10.3390/electronics12245018

**AMA Style**

Kang Z, Li Y.
Active Disturbance Rejection Control of Full-Bridge DC–DC Converter for a Pulse Power Supply with Controllable Charging Time. *Electronics*. 2023; 12(24):5018.
https://doi.org/10.3390/electronics12245018

**Chicago/Turabian Style**

Kang, Zhongjian, and Yuntong Li.
2023. "Active Disturbance Rejection Control of Full-Bridge DC–DC Converter for a Pulse Power Supply with Controllable Charging Time" *Electronics* 12, no. 24: 5018.
https://doi.org/10.3390/electronics12245018