# Investigation of Interaction between Dislocation Loop and Coherent Twin Boundary in BCC Ta Film during Nanoindentation

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Methods

## 3. Results and Discussion

## 4. Conclusions

## Acknowledgments

## Author Contributions

## Conflicts of Interest

## References

- Varillas, J.; Očenášek, J.; Torner, J.; Alcalá, J. Unraveling deformation mechanisms around FCC and BCC nanocontacts through slip trace and pileup topography analyses. Acta Mater.
**2017**, 125, 431–441. [Google Scholar] [CrossRef] - Mohr, M.; Daccache, L.; Horvat, S.; Brühne, K.; Jacob, T.; Fecht, H.-J. Influence of grain boundaries on elasticity and thermal conductivity of nanocrystalline diamond films. Acta Mater.
**2017**, 122, 92–98. [Google Scholar] [CrossRef] - Fu, T.; Peng, X.; Chen, X.; Weng, S.; Hu, N.; Li, Q.; Wang, Z. Molecular dynamics simulation of nanoindentation on Cu/Ni nanotwinned multilayer films using a spherical indenter. Sci. Rep.
**2016**, 6, 35665. [Google Scholar] [CrossRef] [PubMed] - Zhou, X.; Ouyang, B.; Curtin, W.A.; Song, J. Atomistic investigation of the influence of hydrogen on dislocation nucleation during nanoindentation in Ni and Pd. Acta Mater.
**2016**, 116, 364–369. [Google Scholar] [CrossRef] - Liu, Q.; Deng, L.; Wang, X. Interactions between prismatic dislocation loop and coherent twin boundary under nanoindentation investigated by molecular dynamics. Mater. Sci. Eng. A
**2016**, 676, 182–190. [Google Scholar] [CrossRef] - Fu, T.; Peng, X.; Weng, S.; Zhao, Y.; Gao, F.; Deng, L.; Wang, Z. Molecular dynamics simulation of effects of twin interfaces on Cu/Ni multilayers. Mater. Sci. Eng. A
**2016**, 658, 1–7. [Google Scholar] [CrossRef] - Li, J.; Fang, Q.H.; Liu, B.; Liu, Y.; Liu, Y.W.; Wen, P.H. Mechanism of crack healing at room temperature revealed by atomistic simulations. Acta Mater.
**2015**, 95, 291–301. [Google Scholar] [CrossRef] - Goel, S.; Beake, B.; Chan, C.-W.; Haque Faisal, N.; Dunne, N. Twinning anisotropy of tantalum during nanoindentation. Mater. Sci. Eng. A
**2015**, 627, 249–261. [Google Scholar] [CrossRef] [Green Version] - Remington, T.P.; Ruestes, C.J.; Bringa, E.M.; Remington, B.A.; Lu, C.H.; Kad, B.; Meyers, M.A. Plastic deformation in nanoindentation of tantalum: A new mechanism for prismatic loop formation. Acta Mater.
**2014**, 78, 378–393. [Google Scholar] [CrossRef] - Ruestes, C.J.; Stukowski, A.; Tang, Y.; Tramontina, D.R.; Erhart, P.; Remington, B.A.; Urbassek, H.M.; Meyers, M.A.; Bringa, E.M. Atomistic simulation of tantalum nanoindentation: Effects of indenter diameter, penetration velocity, and interatomic potentials on defect mechanisms and evolution. Mater. Sci. Eng. A
**2014**, 613, 390–403. [Google Scholar] [CrossRef] - Hahn, E.N.; Meyers, M.A. Grain-size dependent mechanical behavior of nanocrystalline metals. Mater. Sci. Eng. A
**2015**, 646, 101–134. [Google Scholar] [CrossRef] - Meyers, M.A.; Mishra, A.; Benson, D.J. Mechanical properties of nanocrystalline materials. Prog. Mater. Sci.
**2006**, 51, 427–556. [Google Scholar] [CrossRef] - Li, X.; Wei, Y.; Lu, L.; Lu, K.; Gao, H. Dislocation nucleation governed softening and maximum strength in nano-twinned metals. Nature
**2010**, 464, 877–880. [Google Scholar] [CrossRef] [PubMed] - Lu, L.; Shen, Y.; Chen, X.; Qian, L.; Lu, K. Ultrahigh strength and high electrical conductivity in copper. Science
**2004**, 304, 422–426. [Google Scholar] [CrossRef] [PubMed] - Lu, L.; Chen, X.; Huang, X.; Lu, K. Revealing the Maximum Strength in Nanotwinned Copper. Nature
**2009**, 323, 607–610. [Google Scholar] [CrossRef] [PubMed] - Tian, Y.; Xu, B.; Yu, D.; Ma, Y.; Wang, Y.; Jiang, Y.; Hu, W.; Tang, C.; Gao, Y.; Luo, K.; et al. Ultrahard nanotwinned cubic boron nitride. Nature
**2013**, 493, 385–388. [Google Scholar] [CrossRef] [PubMed] - Huang, Q.; Yu, D.; Xu, B.; Hu, W.; Ma, Y.; Wang, Y.; Zhao, Z.; Wen, B.; He, J.; Liu, Z.; et al. Nanotwinned diamond with unprecedented hardness and stability. Nature
**2014**, 510, 250–253. [Google Scholar] [CrossRef] [PubMed] - Sandoval, L.A.; Surh, M.P.; Chernov, A.A.; Richards, D.F. Growth of deformation twins in tantalum via coherent twin boundary migration. J. Appl. Phys.
**2013**, 114, 113511. [Google Scholar] [CrossRef] - Li, J.; Guo, J.; Luo, H.; Fang, Q.; Wu, H.; Zhang, L.; Liu, Y. Study of nanoindentation mechanical response of nanocrystalline structures using molecular dynamics simulations. Appl. Surf. Sci.
**2016**, 364, 190–200. [Google Scholar] [CrossRef] - Sha, Z.D.; Branicio, P.S.; Sorkin, V.; Pei, Q.X.; Zhang, Y.W. Effects of grain size and temperature on mechanical and failure properties of ultrananocrystalline diamond. Diam. Relat. Mater.
**2011**, 20, 1303–1309. [Google Scholar] [CrossRef] - Sha, Z.D.; Quek, S.S.; Pei, Q.X.; Liu, Z.S.; Wang, T.J.; Shenoy, V.B.; Zhang, Y.W. Inverse pseudo Hall-Petch relation in polycrystalline graphene. Sci. Rep.
**2014**, 4, 5991. [Google Scholar] [CrossRef] [PubMed] - Daw, M.S.; Baskes, M.I. Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals. Phys. Rev. B
**1984**, 29, 6443–6453. [Google Scholar] [CrossRef] - Zhou, H.; Gao, H. A Plastic Deformation Mechanism by Necklace Dislocations Near Crack-like Defects in Nanotwinned Metals. J. Appl. Mech.
**2015**, 82, 071015. [Google Scholar] [CrossRef] - Zhu, Y.; Li, Z.; Huang, M.; Liu, Y. Strengthening mechanisms of the nanolayered polycrystalline metallic multilayers assisted by twins. Int. J. Plast.
**2015**, 72, 168–184. [Google Scholar] [CrossRef] - Jin, Z.H.; Gumbsch, P.; Albe, K.; Ma, E.; Lu, K.; Gleiter, H.; Hahn, H. Interactions between non-screw lattice dislocations and coherent twin boundaries in face-centered cubic metals. Acta Mater.
**2008**, 56, 1126–1135. [Google Scholar] [CrossRef] - Fu, T.; Peng, X.; Zhao, Y.; Feng, C.; Huang, C.; Li, Q.; Wang, Z. MD simulation of effect of crystal orientations and substrate temperature on growth of Cu/Ni bilayer films. Appl. Phys. A
**2016**, 122, 67. [Google Scholar] [CrossRef] - Ravelo, R.; Germann, T.C.; Guerrero, O.; An, Q.; Holian, B.L. Shock-induced plasticity in tantalum single crystals: Interatomic potentials and large-scale molecular-dynamics simulations. Phys. Rev. B
**2013**, 88, 134101. [Google Scholar] [CrossRef] - Hahn, E.N.; Fensin, S.J.; Germann, T.C.; Meyers, M.A. Symmetric tilt boundaries in body-centered cubic tantalum. Scr. Mater.
**2016**, 116, 108–111. [Google Scholar] [CrossRef] - Adelman, S.A. Generalized Langevin equation approach for atom/solid-surface scattering: General formulation for classical scattering off harmonic solids. J. Chem. Phys.
**1976**, 64, 2375. [Google Scholar] [CrossRef] - Wu, Z.X.; Zhang, Y.W.; Srolovitz, D.J. Dislocation–twin interaction mechanisms for ultrahigh strength and ductility in nanotwinned metals. Acta Mater.
**2009**, 57, 4508–4518. [Google Scholar] [CrossRef] - Salehinia, I.; Lawrence, S.K.; Bahr, D.F. The effect of crystal orientation on the stochastic behavior of dislocation nucleation and multiplication during nanoindentation. Acta Mater.
**2013**, 61, 1421–1431. [Google Scholar] [CrossRef] - Fu, T.; Peng, X.; Zhao, Y.; Sun, R.; Yin, D.; Hu, N.; Wang, Z. Molecular dynamics simulation of the slip systems in VN. RSC Adv.
**2015**, 5, 77831–77838. [Google Scholar] [CrossRef] - Fu, T.; Peng, X.; Huang, C.; Zhao, Y.; Weng, S.; Chen, X.; Hu, N. Effects of twin boundaries in vanadium nitride films subjected to tensile/compressive deformations. Appl. Surf. Sci.
**2017**, 426, 262–270. [Google Scholar] [CrossRef] - Aghababaei, R.; Joshi, S.P. Micromechanics of tensile twinning in magnesium gleaned from molecular dynamics simulations. Acta Mater.
**2014**, 69, 326–342. [Google Scholar] [CrossRef] - Alhafez, I.A.; Ruestes, C.J.; Gao, Y.; Urbassek, H.M. Nanoindentation of hcp metals: A comparative simulation study of the evolution of dislocation networks. Nanotechnology
**2016**, 27, 045706. [Google Scholar] [CrossRef] [PubMed] - Yang, B.; Zheng, B.; Hu, X.; Zhang, K.; Li, Y.; He, P.; Yue, Z. Atomistic simulation of nanoindentation on incipient plasticity and dislocation evolution in γ/γ′ phase with interface and void. Comput. Mater. Sci.
**2016**, 114, 172–177. [Google Scholar] [CrossRef] - Fang, T.-H.; Chang, W.-Y.; Huang, J.-J. Dynamic characteristics of nanoindentation using atomistic simulation. Acta Mater.
**2009**, 57, 3341–3348. [Google Scholar] [CrossRef] - Zhang, Z.; Yang, S.; Guo, D.; Yuan, B.; Guo, X.; Zhang, B.; Huo, Y. Deformation twinning evolution from a single crystal in a face-centered-cubic ternary alloy. Sci. Rep.
**2015**, 5, 11290. [Google Scholar] [CrossRef] [PubMed] - Gao, Y.; Ruestes, C.J.; Tramontina, D.R.; Urbassek, H.M. Comparative simulation study of the structure of the plastic zone produced by nanoindentation. J. Mech. Phys. Solids
**2015**, 75, 58–75. [Google Scholar] [CrossRef] - Stukowski, A. Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool. Model. Simul. Mater. Sci. Eng.
**2010**, 18, 015012. [Google Scholar] [CrossRef] - Shi, Z.; Singh, C.V. Competing twinning mechanisms in body-centered cubic metallic nanowires. Scr. Mater.
**2016**, 113, 214–217. [Google Scholar] [CrossRef] - Stukowski, A.; Bulatov, V.V.; Arsenlis, A. Automated identification and indexing of dislocations in crystal interfaces. Model. Simul. Mater. Sci. Eng.
**2012**, 20, 085007. [Google Scholar] [CrossRef] - Sun, J.; Fang, L.; Sun, K.; Han, J. Direct observation of dislocations originating from perfect twin boundaries. Scr. Mater.
**2011**, 65, 501–504. [Google Scholar] [CrossRef] - Li, N.; Wang, J.; Misra, A.; Zhang, X.; Huang, J.Y.; Hirth, J.P. Twinning dislocation multiplication at a coherent twin boundary. Acta Mater.
**2011**, 59, 5989–5996. [Google Scholar] [CrossRef] - Zhu, T.; Gao, H. Plastic deformation mechanism in nanotwinned metals: An insight from molecular dynamics and mechanistic modeling. Scr. Mater.
**2012**, 66, 843–848. [Google Scholar] [CrossRef] - Bristowe, P.D.; Crocker, A.G. A computer simulation study of the structures of twin boundaries in body-centred cubic crystals. Philos. Mag.
**1975**, 31, 503–517. [Google Scholar] [CrossRef] - Zhu, L.; Ruan, H.; Li, X.; Dao, M.; Gao, H.; Lu, J. Modeling grain size dependent optimal twin spacing for achieving ultimate high strength and related high ductility in nanotwinned metals. Acta Mater.
**2011**, 59, 5544–5557. [Google Scholar] [CrossRef] - Sansoz, F.; Lu, K.; Zhu, T.; Misra, A. Strengthening and plasticity in nanotwinned metals. MRS Bull.
**2016**, 41, 292–297. [Google Scholar] [CrossRef]

**Figure 2.**Evolution of dislocations in sample: (

**a**) h = 23 Å, (

**b**) h = 27.05 Å, (

**c**) h = 34.1 Å, (

**d**) h = 43.4 Å, (

**e**) h = 45.95 Å, and (

**f**) h = 47.45 Å. <111> type dislocations are indicated with green lines, <100> type dislocations with pink lines, and Burger’s vectors with blue arrows.

**Figure 3.**Microstructure evolution of the sample at different h, with atoms colored by polyhedral template matching (PTM). Upper row of figures show defects in the first layer, lower row of figures show defects in the second layer.

**Figure 4.**Sliced atomic configurations related to dislocationcoherent twin boundary (CTB) interaction, in (

**a**–

**f**) atoms are colored by PTM, corresponding distributions of Mises stress are shown in (

**g**–

**n**). In Figures (

**a**)–(

**f**) the dislocations activities are indicated by white circles, and the corresponding stress concentration in Figures (

**g**)–(

**n**) is also indicated by white circles.

**Figure 5.**Schematic illustration for interaction between dislocation and CTB. (

**a**) a set of incident <111> full dislocations, (

**b**) dislocations absorption, (

**c**) direct slip transmission, and (

**d**) dislocations desorption.

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Huang, C.; Peng, X.; Yang, B.; Zhao, Y.; Weng, S.; Fu, T.
Investigation of Interaction between Dislocation Loop and Coherent Twin Boundary in BCC Ta Film during Nanoindentation. *Nanomaterials* **2017**, *7*, 375.
https://doi.org/10.3390/nano7110375

**AMA Style**

Huang C, Peng X, Yang B, Zhao Y, Weng S, Fu T.
Investigation of Interaction between Dislocation Loop and Coherent Twin Boundary in BCC Ta Film during Nanoindentation. *Nanomaterials*. 2017; 7(11):375.
https://doi.org/10.3390/nano7110375

**Chicago/Turabian Style**

Huang, Cheng, Xianghe Peng, Bo Yang, Yinbo Zhao, Shayuan Weng, and Tao Fu.
2017. "Investigation of Interaction between Dislocation Loop and Coherent Twin Boundary in BCC Ta Film during Nanoindentation" *Nanomaterials* 7, no. 11: 375.
https://doi.org/10.3390/nano7110375