Next Article in Journal
Unveiling the Synergy of Coupled Gold Nanoparticles and J-Aggregates in Plexcitonic Systems for Enhanced Photochemical Applications
Previous Article in Journal
Impact of Surface Trap States on Electron and Energy Transfer in CdSe Quantum Dots Studied by Femtosecond Transient Absorption Spectroscopy
Previous Article in Special Issue
A Study on the Dynamic Tunning Range of CVD Graphene at Microwave Frequency: Determination, Prediction and Application
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Editorial

Nanotechnologies and Nanomaterials: Selected Papers from CCMR

1
School of Science, Wuhan University of Technology, Wuhan 430070, China
2
Department of Electronic Engineering, College of Electronics and Information, Kwangwoon University, Nowon-gu, Seoul 01897, Republic of Korea
*
Author to whom correspondence should be addressed.
Nanomaterials 2024, 14(1), 36; https://doi.org/10.3390/nano14010036
Submission received: 10 October 2023 / Revised: 17 November 2023 / Accepted: 13 December 2023 / Published: 22 December 2023
(This article belongs to the Special Issue Nanotechnologies and Nanomaterials: Selected Papers from CCMR)
Nanomaterial technology for the synthesis, processing, and fabrication of low-dimensional materials is where disciplines merge into a remarkable range of applications, from optoelectronics to health care (contribution 1–7), which affect the lives of millions. With the rapid development of science and technology, people have gradually realized that the variety of materials currently available cannot entirely meet the ever-increasing demand for minimalization and integration for devices. Nanomaterials, endowed with a facile controllability of directionally optical and electrical properties, have great potential to overcome the huge challenges related to the restricted area and balanced performance of multifunctional devices (contribution 8–10). Thus, the swift development of nanomaterial technology especially benefits burgeoning fields, such as Internet of Things [1], energy conversion [2], intelligent sensing [3], and even biomimetics [4].
Establishing how to efficiently control topology of nanomaterials is an essential issue in order to tailor their optical and electrical properties, which can be achieved by means of controllable growth in certain orientations, as well as stoichiometry. For chemical synthesis, the reaction of precursors is generally associated with catalyst and thermal supply, and isotropically spherical nanostructures can be obtained through individual nucleation and growth processes [5]. Meanwhile, anisotropic nanostructures (i.e., nanowires, nanorods, nanoflowers, etc.) are commonly synthesized via preferential growth in certain directions via selective passivation [6], and the obtained nanostructures can be uniformly dispersed into various solutions after ligand exchange. However, the long-term stability and well-aligned patterns of these nanomaterials still remain major problems for the practical applications of chemical synthesized nanostructures, and thus abundant research has focused on the synthesis methods [7], ligand exchange and passivation [8], and coating approaches [9], which will be briefly described in this Special Issue. For example, Henrieta Markevičiūtė et al. chemically deposited Ag–Se nanostructure films on a–Se/nylon, and the structural and optical properties of the composite nanostructures were systematically investigated (contribution 11). On the other hand, the nanostructures can also be directly fabricated via deposition and lithography, and the stoichiometry during deposition and the manufacturing cost are the two main concerns for the technique. In another study in this Special Issue, the fabrication approach for In-Sn-Zn oxide (ITZO) nanocomposite films via high-power impulse magnetron sputtering at room temperature is systematically investigated, and variations in carrier mobility can be correspondingly optimized through the a control of pulse off-time (contribution 12). To lower the expense for the lithography process, the nanopillar and nanohole arrays fabricated using the roll-to-roll nanoimprint lithography are systematically discussed in this Special Issue (contribution 13), which can uniformly realize large-scale manufacturing for well-defined nanostructures (contribution 14). In addition, various methods have been successfully realized to systematically engineer the surface morphology and stoichiometry for nanomaterials, i.e., electrostatic nano-assembly (contribution 15), pulsed-flow-induced fluidization (contribution 16), high-power-impulse magnetron sputtering (contribution 17), ink-jet printing (contribution 18), optimized e-beam-lithography (contribution 19), the simple template-free hydrothermal method (contribution 20), femtosecond laser-assisted fabrication (contribution 21), magnesiothermic catalysis (contribution 22), and even a simple grinding method (contribution 23). To date, the relatively facile approaches to achieve adjustable optical and electrical properties include variations to temperature (contribution 24,25), annealing durations (contribution 26), light radiation (contribution 27,28), and background gas (contribution 29,30). To accurately predict the effect of growth conditions, numerous simulation models and characterization systems have been established based on first principles studies (contribution 31–33) and micro-nano characterization techniques (contribution 34–36), respectively.
Photodetection can convert the message carried by light irradiation (i.e., wavelength, polarization, intensity) into readable electronic signals, and the performance of photodetectors strongly depends on photoactive layers. Nanomaterials with tunable optical properties depending on the topology provide a feasible approach for achieving an accurate response to light irradiation, triggering enthusiastic interest in developing sensitive low-dimensional photoactive materials. However, the disconnected morphology induced by many cracks during deposition is commonly believed to hinder carrier extraction and transfer within photoactive layers fabricated by nanomaterials, which urgently requires a plausible strategy to address. In another study in this Special Issue, ZnO quantum dots in a toluene solution are used as antisolvents for the formation of continuous films with 2D (PEA)2PbI4 nanosheets as a result of accelerated crystallization, and the carrier transfer highway is spontaneously established with the existence of ZnO quantum dots owing to the well-matched bandgaps (contribution 37). Collective oscillation of surface free electrons on metal nanoparticles can effectively concentrate incident light into photoactive layers, resulting in radically improved light absorption. Thus, silver triangular nanoprism arrays on WSe2 are proposed for fabricating spectra and polarization dual-sensitive photoreactors, which are realized by directionally boosted light absorption due to the silver triangular nanoprism arrays (contribution 38).
Additionally, the emission efficiency has been noticeably boosted by intensified hole injection (contribution 39) and spatial light modulation (contribution 40,41) with the existence of nanomaterials for light emitting and terahertz devices. In addition to light-emitting devices, nanomaterials have been widely witnessed in energy conversion devices and the synthesis of nanocomposites (contribution 42–44), and elaborately designed (contribution 45) nanostructures provide a facile approach for the enhancement of the conversion efficiency for Li-ion batteries and solar cells. Nanocomposites have been successfully introduced to electrochemical catalysts or photocatalysts during the hydrogen evolution (contribution 46–51) and oxygen evolution reactions (contribution 52–55), facilitating the carrier transition with semiconductor nanocomposites and even metallic materials. Nanotechnology has also emerged in the fabrication of transistors (contribution 56–59) and artificial synapses (contribution 60) for enhancing the performance with a controllable resistance for the barriers, and the conductivity of electrodes (contribution 61) and capacity (contribution 62) for supercapacitors can be also effectively optimized via nanotechnologies.
This Special Issue also includes studies on the novel strategies for distinctive sensing techniques, including chemical sensors, gas monitoring, biosensors, acoustic sensors, and even special detection for different irradiations (contribution 63–7 6). We sincerely hope readers will find useful information for their research, and that all of these works can spark more interesting ideas in various research fields.

Conflicts of Interest

The authors declare no conflict of interest.

List of Contributions

  • Balasooriya, I.L.; Chen, J.; Korale Gedara, S.M.; Han, Y.; Wickramaratne, M.N. Applications of Nano Hydroxyapatite as Adsorbents: A Review. Nanomaterials 2022, 12, 2324. https://doi.org/10.3390/nano12142324.
  • Li, X.; Peng, Y.; Deng, Y.; Ye, F.; Zhang, C.; Hu, X.; Liu, Y.; Zhang, D. Recycling and Reutilizing Polymer Waste via Electrospun Micro/Nanofibers: A Review. Nanomaterials 2022, 12, 1663. https://doi.org/10.3390/nano12101663.
  • Dzulkharnien, N.S.F.; Rohani, R. A Review on Current Designation of Metallic Nanocomposite Hydrogel in Biomedical Applications. Nanomaterials 2022, 12, 1629. https://doi.org/10.3390/nano12101629.
  • Li, X.; Peng, Y.; He, Y.; Zhang, C.; Zhang, D.; Liu, Y. Research Progress on Sound Absorption of Electrospun Fibrous Composite Materials. Nanomaterials 2022, 12, 1123. https://doi.org/10.3390/nano12071123.
  • Ali Dheyab, M.; Abdul Aziz, A.; Jameel, M.S.; Moradi Khaniabadi, P. Recent Advances in Synthesis, Medical Applications and Challenges for Gold-Coated Iron Oxide: Comprehensive Study. Nanomaterials 2021, 11, 2147. https://doi.org/10.3390/nano11082147.
  • Yang, J.; Yue, L.; Yang, Z.; Miao, Y.; Ouyang, R.; Hu, Y. Metal-Based Nanomaterials: Work as Drugs and Carriers against Viral Infections. Nanomaterials 2021, 11, 2129. https://doi.org/10.3390/nano11082129.
  • Yang, S.; Lei, G.; Xu, H.; Lan, Z.; Wang, Z.; Gu, H. Metal Oxide Based Heterojunctions for Gas Sensors: A Review. Nanomaterials 2021, 11, 1026. https://doi.org/10.3390/nano11041026.
  • Lozovoy, K.A.; Izhnin, I.I.; Kokhanenko, A.P.; Dirko, V.V.; Vinarskiy, V.P.; Voitsekhovskii, A.V.; Fitsych, O.I.; Akimenko, N.Y. Single-Element 2D Materials beyond Graphene: Methods of Epitaxial Synthesis. Nanomaterials 2022, 12, 2221. https://doi.org/10.3390/nano12132221.
  • Douloudi, M.; Nikoli, E.; Katsika, T.; Vardavoulias, M.; Arkas, M. Dendritic Polymers as Promising Additives for the Manufacturing of Hybrid Organoceramic Nanocomposites with Ameliorated Properties Suitable for an Extensive Diversity of Applications. Nanomaterials 2021, 11, 19. https://doi.org/10.3390/nano11010019.
  • Chen, H.; Liu, Z.-G.; Geng, M.-Y.; Meng, X.-Y.; Fu, W.-L.; Ju, L.; Yu, B.-Y.; Yang, W.; Dai, Y.-Q.; Lu, W.-B. A Study on the Dynamic Tunning Range of CVD Graphene at Microwave Frequency: Determination, Prediction and Application. Nanomaterials 2022, 12, 4424. https://doi.org/10.3390/nano12244424.
  • Krylova, V.; Dukštienė, N.; Markevičiūtė, H. Ag–Se/Nylon Nanocomposites Grown by Template-Engaged Reaction: Microstructures, Composition, and Optical Properties. Nanomaterials 2022, 12, 2584. https://doi.org/10.3390/nano12152584.
  • Sun, H.; Li, Z.-Y.; Chen, S.-C.; Liao, M.-H.; Gong, J.-H.; Bai, Z.; Wang, W.-X. In-Sn-Zn Oxide Nanocomposite Films with Enhanced Electrical Properties Deposited by High-Power Impulse Magnetron Sputtering. Nanomaterials 2021, 11, 2016. https://doi.org/10.3390/nano11082016.
  • Jang, H.-I.; Yoon, H.-S.; Lee, T.-I.; Lee, S.; Kim, T.-S.; Shim, J.; Park, J.H. Creation of Curved Nanostructures Using Soft-Materials-Derived Lithography. Nanomaterials 2020, 10, 2414. https://doi.org/10.3390/nano10122414.
  • Tahir, U.; Kim, J.I.; Javeed, S.; Khaliq, A.; Kim, J.-H.; Kim, D.-I.; Jeong, M.Y. Process Optimization for Manufacturing Functional Nanosurfaces by Roll-To-Roll Nanoimprint Lithography. Nanomaterials 2022, 12, 480. https://doi.org/10.3390/nano12030480.
  • Yokoi, A.; Tan, W.K.; Kuroda, T.; Kawamura, G.; Matsuda, A.; Muto, H. Design of Heat-Conductive hBN–PMMA Composites by Electrostatic Nano-Assembly. Nanomaterials 2020, 10, 134. https://doi.org/10.3390/nano10010134.
  • Asif, M.; Al-Ghurabi, E.H.; Fatehmulla, A. Pulsed Fluidization of Nanosilica: Rigorous Evaluation of the Efficacy of Pulsation Frequency. Nanomaterials 2022, 12, 2158. https://doi.org/10.3390/nano12132158.
  • Zhao, M.-J.; Zhang, J.-F.; Huang, J.; Chen, Z.-Z.; Xie, A.; Wu, W.-Y.; Huang, C.-J.; Wuu, D.-S.; Lien, S.-Y.; Zhu, W.-Z. Role of Ambient Hydrogen in HiPIMS-ITO Film during Annealing Process in a Large Temperature Range. Nanomaterials 2022, 12, 1995. https://doi.org/10.3390/nano12121995.
  • Feng, F.; Hong, H.; Gao, X.; Ren, T.; Ma, Y.; Feng, P. Effectiveness of Oxygen during Sintering of Silver Thin Films Derived by Nanoparticle Ink. Nanomaterials 2022, 12, 1908. https://doi.org/10.3390/nano12111908.
  • Lee, Y.; Lee, S.H.; Son, H.S.; Lee, S. Reduced Electron Temperature in Silicon Multi-Quantum-Dot Single-Electron Tunneling Devices. Nanomaterials 2022, 12, 603. https://doi.org/10.3390/nano12040603.
  • Man, L.-F.; Kwong, T.-L.; Wong, W.-T.; Yung, K.-F. Mesoporous Zn/MgO Hexagonal Nano-Plates as a Catalyst for Camelina Oil Biodiesel Synthesis. Nanomaterials 2021, 11, 2690. https://doi.org/10.3390/nano11102690.
  • Hwang, T.-Y.; Kim, Y.-d.; Cho, J.; Lee, H.-J.; Lee, H.-S.; Lee, B. Multi-Angular Colorimetric Responses of Uni- and Omni-Directional Femtosecond Laser-Induced Periodic Surface Structures on Metals. Nanomaterials 2021, 11, 2010. https://doi.org/10.3390/nano11082010.
  • Niu, T.; Zhou, B.; Zhang, Z.; Ji, X.; Yang, J.; Xie, Y.; Wang, H.; Du, A. Low-Temperature Synthesis of Monolithic Titanium Carbide/Carbon Composite Aerogel. Nanomaterials 2020, 10, 2527. https://doi.org/10.3390/nano10122527.
  • Wang, H.; Sun, Z.; Wei, Z.; Wu, Y. A Simple Grinding Method for Preparing Ultra-Thin Boron Nanosheets. Nanomaterials 2022, 12, 1784. https://doi.org/10.3390/nano12111784.
  • Lee, S.; Kim, J.; Lee, S.; Cha, H.-J.; Son, C.-S.; Son, Y.-G.; Hwang, D. Variations in the Physical Properties of RF-Sputtered CdS Thin Films Observed at Substrate Temperatures Ranging from 25 °C to 500 °C. Nanomaterials 2022, 12, 1618. https://doi.org/10.3390/nano12101618.
  • Huang, P.-H.; Zhang, Z.-X.; Hsu, C.-H.; Wu, W.-Y.; Ou, S.-L.; Huang, C.-J.; Wuu, D.-S.; Lien, S.-Y.; Zhu, W.-Z. Deposition Mechanism and Characterization of Plasma-Enhanced Atomic Layer-Deposited SnOx Films at Different Substrate Temperatures. Nanomaterials 2022, 12, 2859. https://doi.org/10.3390/nano12162859.
  • Abujabal, M.; Abunahla, H.; Mohammad, B.; Alazzam, A. Tunable Switching Behavior of GO-Based Memristors Using Thermal Reduction. Nanomaterials 2022, 12, 1812. https://doi.org/10.3390/nano12111812.
  • Liu, Y.; Li, C.; Fan, S.; Song, X.; Wan, Z. The Effect of Annealing and Optical Radiation Treatment on Graphene Resonators. Nanomaterials 2022, 12, 2725. https://doi.org/10.3390/nano12152725.
  • Lee, H.Y.; Haidari, M.M.; Kee, E.H.; Choi, J.S.; Park, B.H.; Campbell, E.E.B.; Jhang, S.H. Charge Transport in UV-Oxidized Graphene and Its Dependence on the Extent of Oxidation. Nanomaterials 2022, 12, 2845. https://doi.org/10.3390/nano12162845.
  • Wu, G.; Sahoo, A.K. Influence of Oxygen Flow Rate on Channel Width Dependent Electrical Properties of Indium Gallium Zinc Oxide Thin-Film Transistors. Nanomaterials 2020, 10, 2357. https://doi.org/10.3390/nano10122357.
  • Yu, H.; Jiang, K.; Kang, S.G.; Men, Y.; Shin, E.W. Hexagonal and Monoclinic Phases of La2O2CO3 Nanoparticles and Their Phase-Related CO2 Behavior. Nanomaterials 2020, 10, 2061. https://doi.org/10.3390/nano10102061.
  • Li, W.; Wang, X.; Feng, X.; Du, Y.; Zhang, X.; Xie, Y.; Chen, X.; Lu, Y.; Wang, W. Deformation Mechanism of Depositing Amorphous Cu-Ta Alloy Film via Nanoindentation Test. Nanomaterials 2022, 12, 1022. https://doi.org/10.3390/nano12061022.
  • Zhang, L.; Cui, Z. Theoretical Study on Electronic, Magnetic and Optical Properties of Non-Metal Atoms Adsorbed onto Germanium Carbide. Nanomaterials 2022, 12, 1712. https://doi.org/10.3390/nano12101712.
  • Chung, Y.J.; Lee, G.H.; Beom, H.G. Atomistic Insights into the Phase Transformation of Single-Crystal Silicon during Nanoindentation. Nanomaterials 2022, 12, 2071. https://doi.org/10.3390/nano12122071.
  • Choi, H.-K.; Cha, J.; Choi, C.-G.; Kim, J.; Hong, S. Effect of Point Defects on Electronic Structure of Monolayer GeS. Nanomaterials 2021, 11, 2960. https://doi.org/10.3390/nano11112960.
  • Ali, S.S.; Arsad, A.; Roberts, K.L.; Asif, M. Effect of Voidage on the Collapsing Bed Dynamics of Fine Particles: A Detailed Region-Wise Study. Nanomaterials 2022, 12, 2019. https://doi.org/10.3390/nano12122019.
  • Kovalev, A.I.; Vakhrushev, V.O.; Beake, B.D.; Konovalov, E.P.; Wainstein, D.L.; Dmitrievskii, S.A.; Fox-Rabinovich, G.S.; Veldhuis, S. Damage Accumulation Phenomena in Multilayer (TiAlCrSiY)N/(TiAlCr)N, Monolayer (TiAlCrSiY)N Coatings and Silicon upon Deformation by Cyclic Nanoindentation. Nanomaterials 2022, 12, 1312. https://doi.org/10.3390/nano12081312.
  • Liu, S.; Li, H.; Lu, H.; Wang, Y.; Wen, X.; Deng, S.; Li, M.; Liu, S.; Wang, C.; Li, X. High Performance 0D ZnO Quantum Dot/2D (PEA)2PbI4 Nanosheet Hybrid Photodetectors Fabricated via a Facile Antisolvent Method. Nanomaterials 2022, 12, 4217–4217. https://doi.org/10.3390/nano12234217.
  • Guskov, A.; Lavrov, S.; Galiev, R. Polarization Sensitive Photodetectors Based on Two-Dimensional WSe2. Nanomaterials 2022, 12, 1854. https://doi.org/10.3390/nano12111854.
  • Park, C.Y.; Choi, B. Enhanced Hole Injection Characteristics of a Top Emission Organic Light-Emitting Diode with Pure Aluminum Anode. Nanomaterials 2021, 11, 2869. https://doi.org/10.3390/nano11112869.
  • Peng, K.; Zhang, N.; Zhang, J.; Chen, P.; Yan, J.; Zheng, C.; Jiang, Z.; Zhong, Z. Extensive Broadband Near-Infrared Emissions from GexSi1−x Alloys on Micro-Hole Patterned Si(001) Substrates. Nanomaterials 2021, 11, 2545. https://doi.org/10.3390/nano11102545.
  • Yin, S.; Zeng, D.; Chen, Y.; Huang, W.; Zhang, C.; Zhang, W.; E, Y. Optically Controlled Terahertz Dynamic Beam Splitter with Adjustable Split Ratio. Nanomaterials 2022, 12, 1169. https://doi.org/10.3390/nano12071169.
  • Xu, J.; Wang, Q.; Li, B.; Yao, W.; He, M. Ti3Si0.75Al0.25C2 Nanosheets as Promising Anode Material for Li-Ion Batteries. Nanomaterials 2021, 11, 3449. https://doi.org/10.3390/nano11123449.
  • Dasarathan, S.; Ali, M.; Jung, T.-J.; Sung, J.; Ha, Y.-C.; Park, J.-W.; Kim, D. Vertically Aligned Binder-Free TiO2 Nanotube Arrays Doped with Fe, S and Fe-S for Li-ion Batteries. Nanomaterials 2021, 11, 2924. https://doi.org/10.3390/nano11112924.
  • Sim, G.S.; Shaji, N.; Santhoshkumar, P.; Park, J.W.; Ho, C.W.; Nanthagopal, M.; Kim, H.K.; Lee, C.W. Silkworm Protein-Derived Nitrogen-Doped Carbon-Coated Li[Ni0.8Co0.15Al0.05]O2 for Lithium-Ion Batteries. Nanomaterials 2022, 12, 1166. https://doi.org/10.3390/nano12071166.
  • Su, D.; Lv, L.; Yang, Y.; Zhou, H.-L.; Iqbal, S.; Zhang, T. Simple Self-Assembly Strategy of Nanospheres on 3D Substrate and Its Application for Enhanced Textured Silicon Solar Cell. Nanomaterials 2021, 11, 2581. https://doi.org/10.3390/nano11102581.
  • Kaewmeesri, R.; Nonkumwong, J.; Witoon, T.; Laosiripojana, N.; Faungnawakij, K. Effect of Water and Glycerol in Deoxygenation of Coconut Oil over Bimetallic NiCo/SAPO-11 Nanocatalyst under N2 Atmosphere. Nanomaterials 2020, 10, 2548. https://doi.org/10.3390/nano10122548.
  • Cui, Y.; Song, H.; Shi, Y.; Ge, P.; Chen, M.; Xu, L. Enhancing the Low-Temperature CO Oxidation over CuO-Based α-MnO2 Nanowire Catalysts. Nanomaterials 2022, 12, 2083. https://doi.org/10.3390/nano12122083.
  • Nimal, R.; Yahya, R.; Shah, A.; Khan, M.A.; Zia, M.A.; Shah, I. Development of Electrolyzer Using NiCo(OH)2 Layered Double Hydroxide Catalyst for Efficient Water Oxidation Reaction. Nanomaterials 2022, 12, 1819. https://doi.org/10.3390/nano12111819.
  • Su, J.-C.; Hsieh, T.-L.; Yang, S.-M.; Chao, S.-C.; Lu, K.-C. Fabrication and Photocatalytic Properties of Zinc Tin Oxide Nanowires Decorated with Silver Nanoparticles. Nanomaterials 2022, 12, 1201. https://doi.org/10.3390/nano12071201.
  • Li, C.; Cheng, J.; Ye, Q.; Meng, F.; Wang, X.; Dai, H. The Deactivation Mechanism of the Mo-Ce/Zr-PILC Catalyst Induced by Pb for the Selective Catalytic Reduction of NO with NH3. Nanomaterials 2021, 11, 2641. https://doi.org/10.3390/nano11102641.
  • Burse, S.; Kulkarni, R.; Mandavkar, R.; Habib, M.A.; Lin, S.; Chung, Y.-U.; Jeong, J.-H.; Lee, J. Vanadium-Doped FeBP Microsphere Croissant for Significantly Enhanced Bi-Functional HER and OER Electrocatalyst. Nanomaterials 2022, 12, 3283. https://doi.org/10.3390/nano12193283.
  • Saber, O.; Osama, A.; Alshoaibi, A.; Shaalan, N.M.; Osama, D. New Approach for Designing Zinc Oxide Nanohybrids to Be Effective Photocatalysts for Water Purification in Sunlight. Nanomaterials 2022, 12, 2005. https://doi.org/10.3390/nano12122005.
  • Yuan, G.; Zhang, G.; Li, K.; Li, F.; Cao, Y.; He, J.; Huang, Z.; Jia, Q.; Zhang, S.; Zhang, H. Preparation and Photocatalytic Performance for Degradation of Rhodamine B of AgPt/Bi4Ti3O12 Composites. Nanomaterials 2020, 10, 2206. https://doi.org/10.3390/nano10112206.
  • Kobkeatthawin, T.; Chaveanghong, S.; Trakulmututa, J.; Amornsakchai, T.; Kajitvichyanukul, P.; Smith, S.M. Photocatalytic Activity of TiO2/g-C3N4 Nanocomposites for Removal of Monochlorophenols from Water. Nanomaterials 2022, 12, 2852. https://doi.org/10.3390/nano12162852.
  • Huang, R.; Zhang, M.; Zheng, Z.; Wang, K.; Liu, X.; Chen, Q.; Luo, D. Photocatalytic Degradation of Tobacco Tar Using CsPbBr3 Quantum Dots Modified Bi2WO6 Composite Photocatalyst. Nanomaterials 2021, 11, 2422. https://doi.org/10.3390/nano11092422.
  • Shin, D.-H.; You, Y.G.; Jo, S.I.; Jeong, G.-H.; Campbell, E.E.B.; Chung, H.-J.; Jhang, S.H. Low-Power Complementary Inverter Based on Graphene/Carbon-Nanotube and Graphene/MoS2 Barristors. Nanomaterials 2022, 12, 3820. https://doi.org/10.3390/nano12213820.
  • Lee, J.-H.; Choi, I.; Jeong, N.B.; Kim, M.; Yu, J.; Jhang, S.H.; Chung, H.-J. Simulation of Figures of Merit for Barristor Based on Graphene/Insulator Junction. Nanomaterials 2022, 12, 3029. https://doi.org/10.3390/nano12173029.
  • Sánchez, F.; Sánchez, V.; Wang, C. Independent Dual-Channel Approach to Mesoscopic Graphene Transistors. Nanomaterials 2022, 12, 3223. https://doi.org/10.3390/nano12183223.
  • Na, J.; Park, C.; Lee, C.H.; Choi, W.R.; Choi, S.; Lee, J.-U.; Yang, W.; Cheong, H.; Campbell, E.E.B.; Jhang, S.H. Indirect Band Gap in Scrolled MoS2 Monolayers. Nanomaterials 2022, 12, 3353. https://doi.org/10.3390/nano12193353.
  • Ryu, H.; Kim, S. Improved Pulse-Controlled Conductance Adjustment in Trilayer Resistors by Suppressing Current Overshoot. Nanomaterials 2020, 10, 2462. https://doi.org/10.3390/nano10122462.
  • Wang, P.; Ding, X.; Zhe, R.; Zhu, T.; Qing, C.; Liu, Y.; Wang, H.-E. Synchronous Defect and Interface Engineering of NiMoO4 Nanowire Arrays for High-Performance Supercapacitors. Nanomaterials 2022, 12, 1094. https://doi.org/10.3390/nano12071094.
  • Saber, O.; Ansari, S.A.; Osama, A.; Osama, M. One-Dimensional Nanoscale Si/Co Based on Layered Double Hydroxides towards Electrochemical Supercapacitor Electrodes. Nanomaterials 2022, 12, 1404. https://doi.org/10.3390/nano12091404.
  • Vázquez-Vélez, E.; Martínez, H.; Castillo, F. Degradation of Acid Red 1 Catalyzed by Peroxidase Activity of Iron Oxide Nanoparticles and Detected by SERS. Nanomaterials 2021, 11, 3044. https://doi.org/10.3390/nano11113044.
  • Kulkarni, R.; Kunwar, S.; Mandavkar, R.; Jeong, J.-H.; Lee, J. Hydrogen Peroxide Detection by Super-Porous Hybrid CuO/Pt NP Platform: Improved Sensitivity and Selectivity. Nanomaterials 2020, 10, 2034. https://doi.org/10.3390/nano10102034.
  • Abd-Elsabour, M.; Alsoghier, H.M.; Alhamzani, A.G.; Abou-Krisha, M.M.; Yousef, T.A.; Assaf, H.F. A Novel Electrochemical Sensor for Detection of Nicotine in Tobacco Products Based on Graphene Oxide Nanosheets Conjugated with (1,2-Naphthoquinone-4-Sulphonic Acid) Modified Glassy Carbon Electrode. Nanomaterials 2022, 12, 2354. https://doi.org/10.3390/nano12142354.
  • Zhang, H.; Du, W.; Zhang, J.; Ahuja, R.; Qian, Z. Nitrogen-Containing Gas Sensing Properties of 2-D Ti2N and Its Derivative Nanosheets: Electronic Structures Insight. Nanomaterials 2021, 11, 2459. https://doi.org/10.3390/nano11092459.
  • Chang, H.-W.; Dong, C.-L.; Chen, Y.-H.; Xu, Y.-Z.; Huang, T.-C.; Chen, S.-C.; Liu, F.-J.; Lai, Y.-H.; Tsai, Y.-C. Extended Graphite Supported Flower-like MnO2 as Bifunctional Materials for Supercapacitors and Glucose Sensing. Nanomaterials 2021, 11, 2881. https://doi.org/10.3390/nano11112881.
  • Cai, H.; Wang, M.; Wu, Z.; Liu, J.; Wang, X. Performance Enhancement of SPR Biosensor Using Graphene–MoS2 Hybrid Structure. Nanomaterials 2022, 12, 2219. https://doi.org/10.3390/nano12132219.
  • Li, C.; Xiao, X.; Liu, Y.; Song, X. Evaluating a Human Ear-Inspired Sound Pressure Amplification Structure with Fabry–Perot Acoustic Sensor Using Graphene Diaphragm. Nanomaterials 2021, 11, 2284. https://doi.org/10.3390/nano11092284.
  • Kallas, P.; Haugen, H.J.; Gadegaard, N.; Stormonth-Darling, J.; Hulander, M.; Andersson, M.; Valen, H. Adhesion of Escherichia Coli to Nanostructured Surfaces and the Role of Type 1 Fimbriae. Nanomaterials 2020, 10, 2247. https://doi.org/10.3390/nano10112247.
  • Kumar, R.; Kehr, N.S. 3D-Printable Oxygen- and Drug-Carrying Nanocomposite Hydrogels for Enhanced Cell Viability. Nanomaterials 2022, 12, 1304. https://doi.org/10.3390/nano12081304.
  • Singh, J.P.; Park, J.Y.; Chae, K.H.; Ahn, D.; Lee, S. Soft X-ray Absorption Spectroscopic Investigation of Li(Ni0.8Co0.1Mn0.1)O2 Cathode Materials. Nanomaterials 2020, 10, 759. https://doi.org/10.3390/nano10040759.
  • Islam, K.; Haque, M.; Kumar, A.; Hoq, A.; Hyder, F.; Hoque, S.M. Manganese Ferrite Nanoparticles (MnFe2O4): Size Dependence for Hyperthermia and Negative/Positive Contrast Enhancement in MRI. Nanomaterials 2020, 10, 2297. https://doi.org/10.3390/nano10112297.
  • Aguila, M.A.C.; Esmenda, J.C.; Wang, J.-Y.; Chen, Y.-C.; Lee, T.-H.; Yang, C.-Y.; Lin, K.-H.; Chang-Liao, K.-S.; Kafanov, S.; Pashkin, Y.A.; et al. Photothermal Responsivity of van der Waals Material-Based Nanomechanical Resonators. Nanomaterials 2022, 12, 2675. https://doi.org/10.3390/nano12152675.
  • Huang, C.-H.; Lu, Y.-J.; Pan, Y.-C.; Liu, H.-L.; Chang, J.-Y.; Sie, J.-L.; Pijanowska, D.G.; Yang, C.-M. Nanohollow Titanium Oxide Structures on Ti/FTO Glass Formed by Step-Bias Anodic Oxidation for Photoelectrochemical Enhancement. Nanomaterials 2022, 12, 1925. https://doi.org/10.3390/nano12111925.
  • Ali, S.S.; Arsad, A.; Hossain, S.S.; Asif, M. A Detailed Insight into Acoustic Attenuation in a Static Bed of Hydrophilic Nanosilica. Nanomaterials 2022, 12, 1509. https://doi.org/10.3390/nano12091509.

References

  1. Ghder Soliman, W.; Swathi, C.; Yasasvi, T.; Keerthi Priya, B.; Akhila Reddy, D. Review on Poly(Ethylene Oxide)-Based Electrolyte and Anode Nanomaterials for the Internet of Things Node-Level Lithium-Ion Batteries. Mater. Today Proc. 2021, 42, 429–435. [Google Scholar] [CrossRef]
  2. Ge, R.; Huo, J.; Sun, M.; Zhu, M.; Liu, Y.; Chou, S.; Li, W. Surface and Interface Engineering: Molybdenum Carbide–Based Nanomaterials for Electrochemical Energy Conversion. Small 2019, 17, 1903380. [Google Scholar] [CrossRef] [PubMed]
  3. Zhu, X.; Lin, L.; Wu, R.; Zhu, Y.; Sheng, Y.; Nie, P.; Liu, P.; Xu, L.; Wen, Y. Portable Wireless Intelligent Sensing of Ultra-Trace Phytoregulator α-Naphthalene Acetic Acid Using Self-Assembled Phosphorene/Ti3Cs-MXene Nanohybrid with High Ambient Stability on Laser Induced Porous Graphene as Nanozyme Flexible Electrode. Biosens. Bioelectron. 2021, 179, 113062. [Google Scholar] [CrossRef] [PubMed]
  4. Jackman, J.A.; Bo Kyeong Yoon; Ouyang, L. ; Wang, N.; Abdul Rahim Ferhan; Kim, J.; Tetsuro Majima; Cho, N.-J. Biomimetic Nanomaterial Strategies for Virus Targeting: Antiviral Therapies and Vaccines. Adv. Funct. Mater. 2020, 31, 2008352. [Google Scholar] [CrossRef]
  5. Luo, D.; Zheng, L.; Zhang, Z.; Li, M.; Chen, Z.; Cui, R.; Shen, Y.; Li, G.; Feng, R.; Zhang, S.; et al. Constructing Multifunctional Solid Electrolyte Interface via In-Situ Polymerization for Dendrite-Free and Low N/P Ratio Lithium Metal Batteries. Nat. Commun. 2021, 12, 186. [Google Scholar] [CrossRef] [PubMed]
  6. Velázquez-Salazar, J.J.; Bazán-Díaz, L.; Zhang, Q.; Mendoza-Cruz, R.; Montano-Priede, L.; Guisbiers, G.; Large, N.; Link, S.; José-Yacamán, M. Controlled Overgrowth of Five-Fold Concave Nanoparticles into Plasmonic Nanostars and Their Single-Particle Scattering Properties. ACS Nano 2019, 13, 10113–10128. [Google Scholar] [CrossRef] [PubMed]
  7. Shah, A.H.; Rather, M.A. Effect of Calcination Temperature on the Crystallite Size, Particle Size and Zeta Potential of TiO2 Nanoparticles Synthesized via Polyol-Mediated Method. Mater. Today Proc. 2020, 44, 482–488. [Google Scholar] [CrossRef]
  8. Gualdrón-Reyes, A.F.; Roser Fernández-Climent; Masi, S. ; Mesa, C.A.; Echeverría-Arrondo, C.; Aiello, F.; Balzano, F.; Uccello-Barretta, G.; Rodriguez-Pereira, J.; Gimenez, S.; et al. Efficient Ligand Passivation Enables Ultrastable CsPbX3 Perovskite Nanocrystals in Fully Alcohol Environments. Adv. Opt. Mater. 2023, 11, 2203096. [Google Scholar] [CrossRef]
  9. Braim, F.S.; Ab Razak NN, A.N.; Aziz, A.A.; Dheyab, M.A.; Ismael, L.Q. Layla Qasim Ismael Optimization of Ultrasonic-Assisted Approach for Synthesizing a Highly Stable Biocompatible Bismuth-Coated Iron Oxide Nanoparticles Using a Face-Centered Central Composite Design. Ultrason. Sonochem. 2023, 95, 106371. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Li, M.-Y.; Lee, J. Nanotechnologies and Nanomaterials: Selected Papers from CCMR. Nanomaterials 2024, 14, 36. https://doi.org/10.3390/nano14010036

AMA Style

Li M-Y, Lee J. Nanotechnologies and Nanomaterials: Selected Papers from CCMR. Nanomaterials. 2024; 14(1):36. https://doi.org/10.3390/nano14010036

Chicago/Turabian Style

Li, Ming-Yu, and Jihoon Lee. 2024. "Nanotechnologies and Nanomaterials: Selected Papers from CCMR" Nanomaterials 14, no. 1: 36. https://doi.org/10.3390/nano14010036

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop