# Fast Extended Depth-of-Field Reconstruction for Complex Holograms Using Block Partitioned Entropy Minimization

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Background

## 2. Optical Scanning Holography

## 3. Proposed Method

## 4. Experimental Results

## 5. Conclusions

## Author Contributions

## Acknowledgments

## Conflicts of Interest

## References

- Poon, T.-C.; Liu, J.-P. Introduction to Modern Digital Holography with MATLAB; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Poon, T.-C. Optical Scanning Holography with MATLAB; Springer US: New York, NY, USA, 2007. [Google Scholar]
- Zhang, T.; Yamaguchi, I. Three-dimensional microscopy with phase-shifting digital holography. Opt. Lett.
**1998**, 23, 1221–1223. [Google Scholar] [CrossRef] [PubMed] - Awatsuji, Y.; Tahara, T.; Kaneko, A.; Koyama, T.; Nishio, K.; Ura, S.; Kubota, T.; Matoba, O. Parallel two-step phase-shifting digital holography. Appl. Opt.
**2008**, 47, D183–D189. [Google Scholar] [CrossRef] [PubMed] - Jackin, B.; Narayanamurthy, C.; Yatagai, T. Geometric phase shifting digital holography. Opt. Lett.
**2016**, 41, 2648–2651. [Google Scholar] [CrossRef] [PubMed] - Kashter, Y.; Vijayakumar, A.; Miyamoto, Y.; Rosen, J. Enhanced super resolution using Fresnel incoherent correlation holography with structured illumination. Opt. Lett.
**2016**, 41, 1558–1561. [Google Scholar] [CrossRef] [PubMed] - Katz, B.; Rosen, J.; Kelner, R.; Brooker, G. Enhanced resolution and throughput of Fresnel incoherent correlation holography (FINCH) using dual diffractive lenses on a spatial light modulator (SLM). Opt. Express
**2012**, 20, 9109–9121. [Google Scholar] [CrossRef] [PubMed] - Kelner, R.; Rosen, J.; Brooker, G. Enhanced resolution in Fourier incoherent single channel holography (FISCH) with reduced optical path difference. Opt. Express
**2013**, 21, 20131–20144. [Google Scholar] [CrossRef] [PubMed] - Shimobaba, T.; Yamanashi, H.; Kakue, T.; Oikawa, M.; Okada, N.; Endo, Y.; Hirayama, R.; Masuda, N.; Ito, T. In-line digital holographic microscopy using a consumer scanner. Sci. Rep.
**2013**, 3, 2664. [Google Scholar] [CrossRef] [PubMed] - Kim, T. Optical sectioning by optical scanning holography and a Wiener filter. Appl. Opt.
**2006**, 45, 872–879. [Google Scholar] [CrossRef] [PubMed] - Kim, T.; Poon, T.-C.; Indebetouw, G. Depth detection and image recovery in remote sensing by optical scanning holography. Opt. Eng.
**2002**, 41, 1331–1338. [Google Scholar] - Kim, H.; Min, S.; Lee, B.; Poon, T.-C. Optical sectioning for optical scanning holography using phase-space filtering with Wigner distribution functions. Appl. Opt.
**2008**, 47, D164–D175. [Google Scholar] [CrossRef] [PubMed] - Zhang, X.; Lam, E.; Kim, T.; Kim, Y.; Poon, T.-C. Blind sectional image reconstruction for optical scanning holography. Opt. Lett.
**2009**, 34, 3098–3100. [Google Scholar] [CrossRef] [PubMed] - Zhang, X.; Lam, E.; Poon, T.-C. Reconstruction of sectional images in holography using inverse imaging. Opt. Express
**2008**, 16, 17215–17226. [Google Scholar] [CrossRef] [PubMed] - Zhao, F.; Qu, X.; Zhang, X.; Poon, T.-C.; Kim, T.; Kim, Y.; Liang, J. Solving inverse problems for optical scanning holography using an adaptively iterative shrinkage-thresholding algorithm. Opt. Express
**2012**, 20, 5942–5954. [Google Scholar] [CrossRef] [PubMed] - Tsang, P.W.M.; Cheung, K.; Kim, T.; Kim, Y.; Poon, T.-C. Fast reconstruction of sectional images in digital holography. Opt. Lett.
**2011**, 36, 2650–2652. [Google Scholar] [CrossRef] [PubMed] - Ren, Z.; Chen, N.; Chan, A.; Lam, E. Autofocusing of Optical Scanning Holography Based on Entropy Minimization. In Proceedings of the Digital Holography & 3-D Imaging Meeting, OSA Technical Digest, Shanghai, China, 24–28 May 2015; Paper DT4A.4. Optical Society of America: Washington, DC, USA, 2015. [Google Scholar] [Green Version]
- Ren, Z.; Chen, N.; Lam, E.Y. Extended focused imaging and depth map reconstruction in optical scanning holography. Appl. Opt.
**2016**, 55, 1040–1047. [Google Scholar] [CrossRef] [PubMed] - Jiao, A.S.M.; Tsang, P.W.M. Enhanced Autofocusing Scheme in Digital Holography Based on Hologram Decomposition. In Proceedings of the 2016 IEEE 14th International Conference on Industrial Informatics (INDIN), Poitiers, France, 19–21 July 2016; Volume 16, pp. 541–545. [Google Scholar]
- Jiao, A.S.M.; Tsang, P.W.M.; Poon, T.-C.; Liu, J.-P.; Lee, C.-C.; Lam, Y.K. Automatic decomposition of a complex hologram based on the virtual diffraction plane framework. J. Opt.
**2014**, 16, 075401. [Google Scholar] [CrossRef] - Tsang, P.W.M.; Poon, T.-C.; Kim, T.; Kim, Y. Fast reconstruction of digital holograms for extended depths of field. Chin. Opt. Lett.
**2016**, 14, 070901. [Google Scholar] [CrossRef] - Liu, J.-P.; Guo, C.; Hsiao, W.; Poon, T.-C.; Tsang, P.W.M. Coherence experiments in single-pixel digital holography. Opt. Lett.
**2015**, 40, 2366–2369. [Google Scholar] [CrossRef] [PubMed] - Mir, H.; Xu, P.; Beek, P.V. An extensive empirical evaluation of focus measures for digital photography. In Proceedings of the Digital Photography X, San Francisco, CA, USA, 2–6 February 2014; Volume 9023I, p. 90230I. [Google Scholar]

**Figure 3.**Partitioning an image ${S}_{j}\left(x,y\right)$ into non-overlapping square blocks of size $M\times M$.

**Figure 4.**(

**a**) Sine hologram of hologram “A”; (

**b**) Cosine hologram of hologram “A”; (

**c**) Sine hologram of hologram “B”; (

**d**) Cosine hologram of hologram “B”.

**Figure 5.**(

**a**) Reconstructed image of hologram “A” at 0.021 m; (

**b**) Reconstructed image of hologram “A” at 0.024 m; (

**c**) Reconstructed image of hologram “B” at 0.0197 m; (

**d**) Reconstructed image of hologram “B” at 0.027 m.

**Figure 6.**(

**a**) Depth map of hologram “A” obtained with our proposed method (M = 32) without filtering; (

**b**) Depth map of hologram “B” obtained with our proposed method (M = 32) without filtering; (

**c**) Extended depth of field (EDF) image of hologram “A” reconstructed with our proposed method (M = 32) without filtering on the depth map; (

**d**) EDF image of hologram “B” reconstructed with our proposed method (M = 32) without filtering on the depth map.

**Figure 7.**(

**a**) Depth map of hologram “A” obtained with our proposed method (M = 32) with filtering; (

**b**) Depth map of hologram “B” obtained with our proposed method (M = 32) with filtering; (

**c**) EDF image of hologram “A” reconstructed with our proposed method (M = 32) with filtering on the depth map; (

**d**) EDF image of hologram “B” reconstructed with our proposed method (M = 32) with filtering on the depth map.

**Figure 8.**(

**a**) EDF image of hologram “A” reconstructed with our proposed method (M = 20) with filtering on the depth map; (

**b**) EDF image of hologram “B” reconstructed with our proposed method (M = 20) with filtering on the depth map.

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Tsang, P.W.M.; Poon, T.-C.; Liu, J.-P.
Fast Extended Depth-of-Field Reconstruction for Complex Holograms Using Block Partitioned Entropy Minimization. *Appl. Sci.* **2018**, *8*, 830.
https://doi.org/10.3390/app8050830

**AMA Style**

Tsang PWM, Poon T-C, Liu J-P.
Fast Extended Depth-of-Field Reconstruction for Complex Holograms Using Block Partitioned Entropy Minimization. *Applied Sciences*. 2018; 8(5):830.
https://doi.org/10.3390/app8050830

**Chicago/Turabian Style**

Tsang, Peter Wai Ming, Ting-Chung Poon, and Jung-Ping Liu.
2018. "Fast Extended Depth-of-Field Reconstruction for Complex Holograms Using Block Partitioned Entropy Minimization" *Applied Sciences* 8, no. 5: 830.
https://doi.org/10.3390/app8050830