# PPG Signals-Based Blood-Pressure Estimation Using Grid Search in Hyperparameter Optimization of CNN–LSTM

^{1}

^{2}

^{3}

^{4}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Materials and Methods

#### 2.1. Dataset

#### 2.2. Preprocessing

#### 2.3. Hyperparameters Tuning for the Proposed Model

#### Optimizer, Learning Rate, and Batch Size

- The stochastic gradient descent (SGD) optimizer updates the parameters iteratively by subtracting the gradient multiplied by the learning rate, as described in Equation (3):$${W}_{new}={W}_{old}-\alpha \nabla L\left({W}_{old},{x}_{i},{y}_{i}\right)$$

- b.
- Root mean square propagation (RMSprop): The RMSprop optimizer adapts the learning rate for each parameter based on the gradient changes in the previous iterations. RMSprop utilizes the average squared estimation of the previous gradients to adjust the learning rate at each parameter update step. The formula for RMSprop is described in Equations (4) and (5), where ρ represents the forgetting factor (set to 0.9) and t denotes the current time step:$${W}_{new}={W}_{old}-\frac{\alpha}{\sqrt{MeanSqure\left(W,t\right)}}\nabla L\left({W}_{old}\right)$$$$Meansquare\left(W,t\right)\rho MeanSquare\left(W,t-1\right)+\left(1-\rho \right){\left(\nabla L\left(W\right)\right)}^{2}$$

- c.
- Adaptive moment estimation (Adam): Adam is the most commonly used optimization algorithm in deep learning for training models. The Adam optimizer combines momentum optimization concepts and RMSprop to effectively update model parameters during the training process. The Adam optimizer is widely employed in training deep learning models on time series datasets because it accelerates convergence and achieves superior results. The formula for the Adam optimizer is shown in Equation (6):$${m}_{t}={\rho}_{1}{m}_{t-1}+\left(1-{\rho}_{1}\right){g}_{t}$$$${u}_{t}={\rho}_{1}{u}_{t-1}+\left(1-{\rho}_{2}\right){g}_{t}{}^{2}$$$$\widehat{{m}_{t}}=\frac{{m}_{t}}{1-{\rho}_{1}t}$$$$\widehat{{u}_{t}}=\frac{{u}_{t}}{1-{\rho}_{2}t}$$

- d.
- Adadelta is an extension from AdaGrad, which is calculated by using Equation (12), where RMS is root mean square error:$${W}_{i+1}={W}_{t}-\frac{RMS{\left[\Delta W\right]}_{i-1}}{RMS{\left[g\right]}_{t}}{g}_{t}$$

#### 2.4. Proposed Deep Learning Model for Estimating BP

#### 2.4.1. Long Short Term-Memory (LSTM) Architecture

#### 2.4.2. LSTM-Based Autoencoder

#### 2.4.3. CNN–LSTM Architecture

#### 2.5. Metrics and Evaluation

**The IEEE standard:**For analyzing the performance, the IEEE standard was proposed using the MAEs as the parameters, as used in the current standard [40]. As shown in Table 1, an A grade was attained when the mean absolute difference (MAD) ≤ 5 mmHg. The MAE was the average difference between the actual and predicted values, as shown in Equation (13). Here, $n$ is for the data size, ${p}_{i}$ is the test measurement and ${y}_{i}$ is the average of reference measurement.

**British Hypertension Society (BHS) standard:**The BHS is a standard used to assess BP measurement devices and methods. According to the BHS standard, the performance is determined by the absolute error, which is divided into three categories: A, B, and C. If the evaluation score was less than grade C, the study failed to meet the minimum requirements of the BHS standard. As per the standard, the absolute percentage error of prediction must be ≤5, 10, and 15 mmHg to achieve grades A, B, and C, respectively [41].

**Association for the Advancement of Medical Instrumentation (AAMI) standard:**The AAMI standard is used to evaluate SBP and DBP measurement devices and algorithms. This evaluation assesses the mean error (ME) and standard deviation (SD) [42]. As shown in Table 1, the ME should be ≤5 mmHg, and the SD should be ≤8 mmHg. The ME represents the average error between the predicted and actual values, as shown in Equation (14). The estimated values $\widehat{y}$ = [y1, y2, …, yn] and ${y}_{i}$ = [y1, y2, …, yn] are the ground truth values and N is the total sample size.

## 3. Results

## 4. Discussion

## 5. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## References

- Gupta, B. Monitoring in the ICU Anaesthesia Update. Updat. Anaethesia
**2012**, 28, 37–42. [Google Scholar] - Martínez, G.; Howard, N.; Abbott, D.; Lim, K.; Ward, R.; Elgendi, M. Can Photoplethysmography Replace Arterial Blood Pressure in the Assessment of Blood Pressure? J. Clin. Med.
**2018**, 7, 316. [Google Scholar] [CrossRef][Green Version] - Allen, J. Photoplethysmography and Its Application in Clinical Physiological Measurement. Physiol. Meas.
**2007**, 28, R1–R39. [Google Scholar] [CrossRef] [PubMed][Green Version] - Elgendi, M.; Fletcher, R.; Liang, Y.; Howard, N.; Lovell, N.H.; Abbott, D.; Lim, K.; Ward, R. The Use of Photoplethysmography for Assessing Hypertension. NPJ Digit. Med.
**2019**, 2, 60. [Google Scholar] [CrossRef][Green Version] - Park, J.; Seok, H.S.; Kim, S.S.; Shin, H. Photoplethysmogram Analysis and Applications: An Integrative Review. Front. Physiol.
**2022**, 12, 808451. [Google Scholar] [CrossRef] [PubMed] - Elgendi, M. On the Analysis of Fingertip Photoplethysmogram Signals. Curr. Cardiol. Rev.
**2012**, 8, 14–25. [Google Scholar] [CrossRef] [PubMed] - Zhang, Y.; Feng, Z. A SVM Method for Continuous Blood Pressure Estimation from a PPG Signal. In Proceedings of the ACM International Conference Proceeding Series, Singapore, 24 February 2017; Association for Computing Machinery: New York, NY, USA, 2017; pp. 128–132. [Google Scholar]
- Hasanzadeh, N.; Ahmadi, M.M.; Mohammadzade, H. Blood Pressure Estimation Using Photoplethysmogram Signal and Its Morphological Features. IEEE Sens. J.
**2020**, 20, 4300–4310. [Google Scholar] [CrossRef] - Samimi, H.; Dajani, H.R. Cuffless Blood Pressure Estimation Using Calibrated Cardiovascular Dynamics in the Photoplethysmogram. Bioengineering
**2022**, 9, 446. [Google Scholar] [CrossRef] - Slapničar, G.; Mlakar, N.; Luštrek, M. Blood Pressure Estimation from Photoplethysmogram Using a Spectro-Temporal Deep Neural Network. Sensors
**2019**, 19, 3420. [Google Scholar] [CrossRef][Green Version] - Ibtehaz, N.; Mahmud, S.; Chowdhury, M.E.H.; Khandakar, A.; Khan, M.S.; Ayari, M.A.; Tahir, A.M.; Rahman, M.S. PPG2ABP: Translating Photoplethysmogram (PPG) Signals to Arterial Blood Pressure (ABP) Waveforms. Bioengineering
**2022**, 11, 692. [Google Scholar] [CrossRef] - Aguirre, N.; Grall-Maës, E.; Cymberknop, L.J.; Armentano, R.L. Blood Pressure Morphology Assessment from Photoplethysmogram and Demographic Information Using Deep Learning with Attention Mechanism. Sensors
**2021**, 21, 2167. [Google Scholar] [CrossRef] [PubMed] - Samimi, H.; Dajani, H.R. PPG-Based Calibration-Free Cuffless Blood Pressure Estimation Method Using Cardiovascular Dynamics. Sensors
**2023**, 23, 4145. [Google Scholar] [CrossRef] [PubMed] - Shafiq, M.; Gu, Z. Deep Residual Learning for Image Recognition: A Survey. Appl. Sci.
**2022**, 12, 8972. [Google Scholar] - Maeda-Gutiérrez, V.; Galván-Tejada, C.E.; Zanella-Calzada, L.A.; Celaya-Padilla, J.M.; Galván-Tejada, J.I.; Gamboa-Rosales, H.; Luna-García, H.; Magallanes-Quintanar, R.; Guerrero Méndez, C.A.; Olvera-Olvera, C.A. Comparison of Convolutional Neural Network Architectures for Classification of Tomato Plant Diseases. Appl. Sci.
**2020**, 10, 1245. [Google Scholar] [CrossRef][Green Version] - Li, Y.H.; Harfiya, L.N.; Chang, C.C. Featureless Blood Pressure Estimation Based on Photoplethysmography Signal Using CNN and BiLSTM for IoT Devices. Wirel. Commun. Mob. Comput.
**2021**, 2021, 9085100. [Google Scholar] [CrossRef] - Alzubaidi, L.; Zhang, J.; Humaidi, A.J.; Al-Dujaili, A.; Duan, Y.; Al-Shamma, O.; Santamaría, J.; Fadhel, M.A.; Al-Amidie, M.; Farhan, L. Review of Deep Learning: Concepts, CNN Architectures, Challenges, Applications, Future Directions. J. Big Data
**2021**, 8, 53. [Google Scholar] [CrossRef] - Johnson, A.E.W.; Pollard, T.J.; Shen, L.; Lehman, L.W.H.; Feng, M.; Ghassemi, M.; Moody, B.; Szolovits, P.; Anthony Celi, L.; Mark, R.G. MIMIC-III, a Freely Accessible Critical Care Database. Sci. Data
**2016**, 3, 160035. [Google Scholar] [CrossRef][Green Version] - Pollreisz, D.; TaheriNejad, N. Detection and Removal of Motion Artifacts in PPG Signals. Mob. Netw. Appl.
**2022**, 27, 728–738. [Google Scholar] [CrossRef][Green Version] - Polak, A.G.; Klich, B.; Saganowski, S.; Prucnal, M.A.; Kazienko, P. Processing Photoplethysmograms Recorded by Smartwatches to Improve the Quality of Derived Pulse Rate Variability. Sensors
**2022**, 22, 7047. [Google Scholar] [CrossRef] - Jiang, H.; Zou, L.; Huang, D.; Feng, Q. Continuous Blood Pressure Estimation Based on Multi-Scale Feature Extraction by the Neural Network With Multi-Task Learning. Front. Neurosci.
**2022**, 16, 883693. [Google Scholar] [CrossRef] - Fuadah, Y.N.; Pramudito, M.A.; Lim, K.M. An Optimal Approach for Heart Sound Classification Using Grid Search in Hyperparameter Optimization of Machine Learning. Bioengineering
**2022**, 10, 45. [Google Scholar] [CrossRef] - Athaya, T.; Choi, S. An Estimation Method of Continuous Non-Invasive Arterial Blood Pressure Waveform Using Photoplethysmography: A u-Net Architecture-Based Approach. Sensors
**2021**, 21, 1867. [Google Scholar] [CrossRef] - Ghosal, P.; Himavathi, S.; Srinivasan, E. PPG Motion Artifact Reduction Using Neural network and Spline Interpolation. In Proceedings of the IEEE 7th International Conference on Smart Structures and Systems ICSSS, Chennai, India, 23–24 July 2020; ISBN 9781728172231. [Google Scholar]
- Chobanian, A.V.; Bakris, G.L.; Black, H.R.; Cushman, W.C.; Green, L.A.; Izzo, J.L.; Jones, D.W.; Materson, B.J.; Oparil, S.; Wright, J.T.; et al. Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. Hypertension
**2003**, 42, 1206–1252. [Google Scholar] - Jiang, X.; Xu, C. Deep Learning and Machine Learning with Grid Search to Predict Later Occurrence of Breast Cancer Metastasis Using Clinical Data. J. Clin. Med.
**2022**, 11, 5772. [Google Scholar] [CrossRef] - Ali, Y.A.; Awwad, E.M.; Al-Razgan, M.; Maarouf, A. Hyperparameter Search for Machine Learning Algorithms for Optimizing the Computational Complexity. Processes
**2023**, 11, 349. [Google Scholar] [CrossRef] - Sun, S.; Cao, Z.; Zhu, H.; Zhao, J. A Survey of Optimization Methods from a Machine Learning Perspective. IEEE Trans. Cybern.
**2019**, 50, 3668–3681. [Google Scholar] [CrossRef][Green Version] - Uddin, M.J.; Li, Y.; Sattar, M.A.; Nasrin, Z.M.; Lu, C. Effects of Learning Rates and Optimization Algorithms on Forecasting Accuracy of Hourly Typhoon Rainfall: Experiments with Convolutional Neural Network. Earth Space Sci.
**2022**, 9, e2021EA002168. [Google Scholar] [CrossRef] - Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. Commun. ACM
**2017**, 60, 84–90. [Google Scholar] [CrossRef][Green Version] - He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; IEEE Computer Society: Columbia, DC, USA, 2016; pp. 770–778. [Google Scholar]
- Usmani, I.A.; Qadri, M.T.; Zia, R.; Alrayes, F.S.; Saidani, O.; Dashtipour, K. Interactive Effect of Learning Rate and Batch Size to Implement Transfer Learning for Brain Tumor Classification. Electronics
**2023**, 12, 964. [Google Scholar] [CrossRef] - Hassan, E.; Shams, M.Y.; Hikal, N.A.; Elmougy, S. The Effect of Choosing Optimizer Algorithms to Improve Computer Vision Tasks: A Comparative Study. Multimedia Tools Appl.
**2022**, 82, 16591–16633. [Google Scholar] [CrossRef] - Wang, Y.; Liu, J.; Misic, J.; Misic, V.B.; Lv, S.; Chang, X. Assessing Optimizer Impact on DNN Model Sensitivity to Adversarial Examples. IEEE Access
**2019**, 7, 152766–152776. [Google Scholar] [CrossRef] - Vysotskaya, N.; Will, C.; Servadei, L.; Maul, N.; Mandl, C.; Nau, M.; Harnisch, J.; Maier, A. Continuous Non-Invasive Blood Pressure Measurement Using 60 GHz-Radar—A Feasibility Study. Sensors
**2023**, 23, 4111. [Google Scholar] [CrossRef] - Dogo, E.M.; Afolabi, O.J.; Twala, B. On the Relative Impact of Optimizers on Convolutional Neural Networks with Varying Depth and Width for Image Classification. Appl. Sci.
**2022**, 12, 11976. [Google Scholar] [CrossRef] - Liu, M.; Yao, D.; Liu, Z.; Guo, J.; Chen, J. An Improved Adam Optimization Algorithm Combining Adaptive Coefficients and Composite Gradients Based on Randomized Block Coordinate Descent. Comput. Intell. Neurosci.
**2023**, 2023, 4765891. [Google Scholar] [CrossRef] - Priyadarshini, I.; Cotton, C. A Novel LSTM–CNN–Grid Search-Based Deep Neural Network for Sentiment Analysis. J. Supercomput.
**2021**, 77, 13911–13932. [Google Scholar] [CrossRef] - Glorot, X.; Bengio, Y. Understanding the Difficulty of Training Deep Feedforward Neural Networks. In Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, AISTATS 2010, Chia Laguna Resort, Sardinia, Italy, 13–15 May 2010. [Google Scholar]
- IEEE Standard Association. IEEE Standard for Wearable, Cuffless Blood Pressure Measuring Devices; IEEE Standards Committee: New York, NY, USA, 2014. [Google Scholar]
- O’brien, E.; Petrie, J.; Littler, W.; de Swiet, M.; Padfield, P.L.; Altmanu, D.G.; Blandg, M.; Coats, A.; Atkins, N. The British Hypertension Society Protocol for the Evaluation of Blood Pressure Measuring Devices. J. Hypertens.
**1993**, 11, S43–S62. [Google Scholar] - White, W.B.; Berson, A.S.; Robbins, C.; Jamieson, M.J.; Prisant, L.M.; Roccella, E.; Sheps, S.G. Special Article National Standard for Measurement of Resting and Ambulatory Blood Pressures with Automated Sphygmomanometers. Hypertension
**1993**, 21, 504–509. [Google Scholar] [CrossRef][Green Version] - Qin, C.; Wang, X.; Xu, G.; Ma, X. Advances in Cuffless Continuous Blood Pressure Monitoring Technology Based on PPG Signals. Biomed. Res. Int.
**2022**, 2022, 8094351. [Google Scholar] [CrossRef] - Liu, M.; Po, L.-M.; Fu, H. Cuffless Blood Pressure Estimation Based on Photoplethysmography Signal and Its Second Derivative. Int. J. Comput. Theory Eng.
**2017**, 9, 202–206. [Google Scholar] [CrossRef][Green Version] - Shimazaki, S.; Kawanaka, H.; Ishikawa, H.; Inoue, K.; Oguri, K. Cuffless Blood Pressure Estimation from Only the Waveform of Photoplethysmography Using CNN. In Proceedings of the 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany, 23–27 July 2019; ISBN 9781538613115. [Google Scholar]
- Hochreiter, S.; Urgen Schmidhuber, J. Long Short-Term Memory. Neural Comput.
**1997**, 9, 1735–1780. [Google Scholar]

**Figure 3.**One-dimensional wavelet decomposition. The PPG signals are passed into the LPF to produce an approximation component and are passed into HPF to produce the detail component. In one-dimensional wavelet decomposition, eight-level decomposition generated nine sub-bands, which consisted of one approximation component and eight detail component sub-bands.

**Figure 8.**Bland–Altman plots of the proposed LSTM model: (

**a**) systolic blood pressure and (

**b**) diastolic blood pressure. Error histogram predicted systolic blood pressure (

**c**) and diastolic blood pressure (

**d**).

**Figure 9.**Bland–Altman plots of the proposed LSTM–autoencoder model (

**a**) systolic blood pressure and (

**b**) diastolic blood pressure. Error histogram predicted systolic blood pressure (

**c**) and diastolic blood pressure (

**d**).

**Figure 10.**Bland–Altman plots of the proposed CNN–LSTM model (

**a**) systolic blood pressure and (

**b**) diastolic blood pressure. Error histogram predicted systolic blood pressure (

**c**) and diastolic blood pressure (

**d**).

**Table 1.**Performance requirements based on evaluations of three standards: the IEEE standard, the BHS standard, and the AAMI standard. MAE: mean absolute difference, CP: cumulative percentage, ME: mean error, SD: standard deviation.

BHS | Grade | CP$\mathbf{5}mmHg$ | CP$\mathbf{10}mmHg$ | CP$\mathbf{15}mmHg$ | IEEE | Grade | MAD (mmHg) | AAMI | Grade | ME (mmHg) | SD (mmHg) |

A | 60% | 85% | 95% | A | ≤5 | Pass | ≤5 | ≤8 | |||

B | 50% | 75% | 90% | B | 5–6 | ||||||

C | 40% | 65% | 85% | C | 6–7 | ||||||

D | Lower than C | D | Lower than C |

**Table 2.**Evaluation of the performances of the proposed method with the prior studies in estimating systolic blood pressure (SBP) and diastolic blood pressure (DBP) using mean absolute error (MAE) and standard evaluation (SD).

Author | Method | Input | Dataset | SBP | DBP | ||
---|---|---|---|---|---|---|---|

MAE | SD | MAE | SD | ||||

Proposed work | LSTM | PPG | MIMIC III | 14.2 | 20.7 | 7.53 | 10.01 |

Proposed work | LSTM– Autoencoder | PPG | MIMIC III | 13.45 | 19.01 | 5.71 | 7.67 |

Proposed work | CNN + LSTM | PPG | MIMIC III | 3.64 | 7.04 | 2.39 | 3.79 |

[44] | SVR | PPG | MIMIC II | 8.54 | - | 4.34 | - |

[7] | SVM | PPG | Queensland | 11.6 | 8.2 | 7.6 | 6.7 |

[10] | Spectro-temporal ResNet | PPG | MIMIC III | 9.43 | - | 6.88 | - |

[13] | ANN | PPG | MIMIC II | 9.74 | 12.40 | 4.65 | 6.29 |

[12] | RNN | PPG | MIMIC III | 12.08 | 15.67 | 5.56 | 7.32 |

[11] | U-Net | PPG | MIMIC III | 5.73 | - | 3.45 | - |

[45] | CNN | PPG | Private dataset | - | 14.03 | - | - |

[8] | AdaBoost | PPG | MIMIC II | 8.22 | 10.38 | 4.17 | 4.22 |

[16] | CNN–BiLSTM | PPG | UCI (MIMIC II) | 7.85 | 8.41 | 4.42 | 4.80 |

**Table 3.**Performance evaluation of the proposed model for the estimation of systolic blood pressure (SBP) and diastolic blood pressure (DBP) by using three evaluation standards: the IEEE standard, the BHS standard, and the AAMI standard. MAE: mean absolute error, MAPD: mean absolute percentage differences, CP: cumulative percentages, ME: mean differences, SD: standard deviations.

Assessment Evaluation | IEEE Standard | AAMI Standard | BHS Standards | ||||||
---|---|---|---|---|---|---|---|---|---|

MAD (≤4 mmHg) | MAPD (%) | Grade | ME (<5 mmHg) | SD (<8 mmHg) | CP_{5} (>60%) | CP_{10} (>85%) | CP_{15} (>95%) | Grade | |

LSTM proposed model | |||||||||

SBP | 14.281 | 0.12 | D | −0.49 | 20.7 | 30.92 | 53.07 | 67.37 | D |

DBP | 7.53 | 0.133 | C | −0.21 | 10.01 | 45.14 | 72.02 | 86 | C |

LSTM–autoencoder proposed model | |||||||||

SBP | 26.94 | 0.11 | D | −0.93 | 19.01 | 27 | 52.5 | 68.70 | D |

DBP | 5.71 | 0.01 | B | −0.56 | 7.67 | 56.67 | 83.8 | 92.98 | B |

CNN–LSTM proposed model | |||||||||

SBP | 5.34 | 0.04 | B | 0.13 | 7.04 | 63.4 | 85.9 | 92.78 | B |

DBP | 2.89 | 0.05 | A | 0.48 | 3.79 | 81.70 | 98.28 | 100 | A |

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Mahardika T, N.Q.; Fuadah, Y.N.; Jeong, D.U.; Lim, K.M.
PPG Signals-Based Blood-Pressure Estimation Using Grid Search in Hyperparameter Optimization of CNN–LSTM. *Diagnostics* **2023**, *13*, 2566.
https://doi.org/10.3390/diagnostics13152566

**AMA Style**

Mahardika T NQ, Fuadah YN, Jeong DU, Lim KM.
PPG Signals-Based Blood-Pressure Estimation Using Grid Search in Hyperparameter Optimization of CNN–LSTM. *Diagnostics*. 2023; 13(15):2566.
https://doi.org/10.3390/diagnostics13152566

**Chicago/Turabian Style**

Mahardika T, Nurul Qashri, Yunendah Nur Fuadah, Da Un Jeong, and Ki Moo Lim.
2023. "PPG Signals-Based Blood-Pressure Estimation Using Grid Search in Hyperparameter Optimization of CNN–LSTM" *Diagnostics* 13, no. 15: 2566.
https://doi.org/10.3390/diagnostics13152566