# Optimizing Controls to Track Moving Targets in an Intelligent Electro-Optical Detection System

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Coordinate System for Targeting

## 3. Design of Targeting Control

#### 3.1. Adaptive nKF Kalman Filtering Prediction

#### 3.2. Weighted Fusion Inequality Model

#### 3.3. Targeting Error Interpolating Recursive

## 4. Verification

## 5. Conclusions

## Author Contributions

## Funding

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Lee, J.; Park, S. Technology opportunity analysis based on machine learning. Axioms
**2023**, 11, 708. [Google Scholar] [CrossRef] - Hu, Q.R.; Shen, X.Y.; Qian, X.M.; Huang, G.Y.; Yuan, M.Q. The personal protective equipment (PPE) based on individual combat: A systematic review and trend analysis. Def. Technol.
**2022**, 124, 2443–2449. [Google Scholar] [CrossRef] - Huang, Q.H.; Jin, G.W.; Xiong, X.; Ye, H.; Xie, Y.Z. Monitoring urban change in conflict from the perspective of optical and SAR satellites: The case of Mariupol, a city in the conflict between RUS and UKR. Remote Sens.
**2023**, 15, 3096. [Google Scholar] [CrossRef] - Musa, S.A.; Abdullah, R.S.A.R.; Sali, A.; Ismail, A.; Rashid, N.E.A. Low-slow-small (LSS) target detection based on micro Doppler analysis in forward scattering radar geometry. Sensors
**2019**, 19, 3332. [Google Scholar] [CrossRef] - Li, D.; Wu, Y.M. Tracing and implementation of IMM Kalman filtering feed-forward compensation technology based on neural network. Optik
**2020**, 202, 163574. [Google Scholar] - Shen, C.; Wen, Z.J.; Zhu, W.L.; Fan, D.P.; Chen, Y.K.; Zhang, Z. Prediction and control of small deviation in the time-delay of the image tracker in an intelligent electro-optical detection system. Actuators
**2023**, 12, 296. [Google Scholar] [CrossRef] - Rasol, J.; Xu, Y.L.; Zhang, Z.X.; Zhang, F.; Feng, W.J.; Dong, L.H.; Hui, T.; Tao, C.Y. An adaptive adversarial patch-generating algorithm for defending against the intelligent low, slow, and small target. Remote Sens.
**2023**, 15, 1439. [Google Scholar] [CrossRef] - Shen, C.; Fan, S.X.; Chen, Y.K.; Zhu, W.L.; Zhang, L.C.; Fan, D.P. Research on line of sight motion modeling and fire control correction of ballistic calculation system. IET Conf. Proc.
**2022**, 7, 1415–1421. [Google Scholar] - Chang, Y.L.; Li, D.; Gao, Y.L.; Su, Y.; Jia, X.Q. An improved YOLO model for UAV fuzzy small target image detection. Appl. Sci.
**2023**, 13, 5409. [Google Scholar] [CrossRef] - Arena, P.; Fortuna, L.; Occhipinti, L.; Xibilia, M.G. Neural networks for quaternion valued function approximation. IEEE Int. Symp. Circuits Syst.
**1994**, 6, 307–310. [Google Scholar] - Nie, J.; Hao, L.C.; Lu, X.; Wang, H.X.; Sheng, C.Y. Global fixed-time sliding mode trajectory tracking control design for the saturated uncertain rigid manipulator. Axioms
**2023**, 12, 883. [Google Scholar] [CrossRef] - Fan, S.X.; Li, M.X. Quantized control for local synchronization of fractional-order neural networks with actuator saturation. Axioms
**2023**, 12, 815. [Google Scholar] [CrossRef] - Liu, X.Y.; Shu, L.P.; Lin, Z.W.; Wu, Y.; Zhu, B.F.; Tang, X. Hit solving method of antiaircraft gun C-RAM based on variable step size Runge-Kutta method. J. Ordnance Equip. Eng.
**2022**, 43, 297–304. [Google Scholar] - Zhang, X.J.; Wang, J. Solving water gun hit problem based on jet differential equation. Fire Control Command Control
**2019**, 44, 49–54. [Google Scholar] - Yao, Z.; Chen, C.Q.; Wang, R.; Xu, B.C. Firing data algorithm for shipboard gun based on GSA. J. Proj. Rocket. Missiles Guid.
**2020**, 40, 94–97. [Google Scholar] - Liu, H.; Fan, D.P.; Li, S.P.; Zhou, Q.K. Design and analysis of a novel electric firing mechanism for sniper rifles. Acta Armamentarii
**2017**, 37, 1111–1116. [Google Scholar] - Geng, Q.; Liu, H.; Fan, D.P. Deviation measurement of sniper’s line of sight and electric firing control. J. Appl. Opt.
**2018**, 38, 606–612. [Google Scholar] - Wu, W.; Wu, L.; Lu, F.X. Maximum hitting probability based fire control calculation for new shipboard gun against sea target. Electron. Opt. Control
**2019**, 26, 44–48. [Google Scholar] - Zhang, Z.Y.; Wang, T.T.; Guo, H.; Wang, Y.F. Antiaircraft firing strategy of electromagnetic railgun with adjustable muzzle velocity of projectile. Acta Armamentarii
**2021**, 42, 430–437. [Google Scholar] - Qiu, X.B.; Dou, L.H.; Shan, D.S. Solution of hit problem of firing on the move on target under maneuvering. Acta Armamentarii
**2010**, 31, 1–6. [Google Scholar] - Li, R.; Zhang, L.; Lu, Y.X.; Wang, Y. Research on dynamic gunnery problem solution based on exterior ballistic. J. Phys. Conf. Ser.
**2023**, 2460, 012005. [Google Scholar] [CrossRef] - Lyu, M.M.; Liu, R.Z.; Hou, Y.L.; Gao, Q.; Wang, L. A target motion filtering method for on-axis control of electro-optical tracking platform. Acta Armamentarii
**2019**, 40, 548–554. [Google Scholar] - Lyu, M.M.; Wang, L.; Hou, Y.L.; Gao, Q.; Hou, R.M. Mean Shift Tracker with Grey Prediction for Visual Object Tracking. Can. J. Electr. Comput. Eng.
**2018**, 41, 172–178. [Google Scholar] - Lyu, M.M.; Hou, R.M.; Ke, Y.F.; Hou, Y.L. Compensation method for miss distance time-delay of electro-optical tracking platform. J. Xi’an Jiaotong Univ.
**2019**, 53, 141–147. [Google Scholar] - Lyu, M.M.; Hou, Y.L.; Gao, Q.; Liu, R.Z.; Hou, R.M. Fast Template Matching Based on Grey Prediction for Real-Time Object Tracking. Proc. SPIE-Int. Soc. Opt. Eng.
**2017**, 10225, 7–13. [Google Scholar]

**Figure 8.**Simulink algorithm for targeting control. (

**a**) Moving target trajectory input and debugging testing. (

**b**) Adaptive Kalman filtering prediction. (

**c**) Line-of-sight compensator and targeting control. (

**d**) Overall mathematical control model.

No. | Index | Parameter |
---|---|---|

1 | S3 measured error δ1 | 0.32 mrad |

2 | Traditional KF method error δ2 | 0.19 mrad (↑40.6%) |

3 | Traditional nKF method error δ3 | 0.16 mrad (↑50%) |

4 | Optimized nKF-Gyro method error δ4 | 0.12 mrad (↑62.5%) |

5 | Traditional KF method error ratio λ1 = 1 − δ2/δ1 | ↑40.6% |

6 | Traditional nKF method error ratio λ2 = 1 − δ3/δ1 | ↑50% |

7 | Optimized nKF-Gyro method error ratio λ3 = 1 − δ4/δ1 | ↑62.5% |

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Shen, C.; Wen, Z.; Zhu, W.; Fan, D.; Ling, M.
Optimizing Controls to Track Moving Targets in an Intelligent Electro-Optical Detection System. *Axioms* **2024**, *13*, 113.
https://doi.org/10.3390/axioms13020113

**AMA Style**

Shen C, Wen Z, Zhu W, Fan D, Ling M.
Optimizing Controls to Track Moving Targets in an Intelligent Electro-Optical Detection System. *Axioms*. 2024; 13(2):113.
https://doi.org/10.3390/axioms13020113

**Chicago/Turabian Style**

Shen, Cheng, Zhijie Wen, Wenliang Zhu, Dapeng Fan, and Mingyuan Ling.
2024. "Optimizing Controls to Track Moving Targets in an Intelligent Electro-Optical Detection System" *Axioms* 13, no. 2: 113.
https://doi.org/10.3390/axioms13020113