Next Article in Journal
Ramsey Chains in Linear Forests
Next Article in Special Issue
Initial Coefficient Bounds for Certain New Subclasses of bi-Bazilevič Functions and Exponentially bi-Convex Functions with Bounded Boundary Rotation
Previous Article in Journal
A New Framework for Sustainable Supplier Selection Based on a Plant Growth Simulation Algorithm
Previous Article in Special Issue
Second Hankel Determinant for a New Subclass of Bi-Univalent Functions Related to the Hohlov Operator
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Coefficient Bounds and Fekete–Szegö Inequalities for a Two Families of Bi-Univalent Functions Related to Gegenbauer Polynomials

by
Yahya Almalki
1,†,
Abbas Kareem Wanas
2,*,†,
Timilehin Gideon Shaba
3,†,
Alina Alb Lupaş
4,† and
Mohamed Abdalla
5,†
1
Department of Mathematics, College of Science, King Khalid University, Abha 61413, Saudi Arabia
2
Department of Mathematics, College of Science, University of Al-Qadisiyah, Al Diwaniyah 58001, Iraq
3
Department of Physical Sciences, Landmark University, Omu-Aran 251103, Nigeria
4
Department of Mathematics and Computer Science, University of Oradea, Str. Universitatii nr. 1, 410087 Oradea, Romania
5
Department of Mathematics, Faculty of Science, South Valley University, Qena 83523, Egypt
*
Author to whom correspondence should be addressed.
These authors contributed equally to this work.
Axioms 2023, 12(11), 1018; https://doi.org/10.3390/axioms12111018
Submission received: 7 September 2023 / Revised: 19 October 2023 / Accepted: 27 October 2023 / Published: 29 October 2023

Abstract

:
The purpose of this article is to introduce and study certain families of normalized certain functions with symmetric points connected to Gegenbauer polynomials. Moreover, we determine the upper bounds for the initial Taylor–Maclaurin coefficients | a 2 | and | a 3 | and resolve the Fekete–Szegöproblem for these functions. In addition, we establish links to a few of the earlier discovered outcomes.

1. Introduction

In [1], Legendre studied orthogonal polynomials comprehensively. These polynomials are recognized to be crucial in solving approximation theory problems. They occur in the theory of differential and integral equations as well as in mathematical statistics, automatic control and axially symmetric potential theory and are known from [2,3] and other articles. In a practical sense, the Gegenbauer polynomials are special cases of orthogonal polynomials. They are representatively related with typically real functions, T R as discovered in [4]. Because of the relation T R = c o ¯ S R and its function of estimating coefficient bounds, real functions typically play a significant role in geometric function theory. Here, S R stands for the family of univalent functions in the unit disk with real coefficients, and c o ¯ S R stands for the closed convex hull of S R .
On this subject in geometric function theory, the so-called Fekete–Szegö-type inequalities (or problems) study the estimate for a 3 μ a 2 2 for holomorphic univalent functions (cf. [5]).
Assume that A refers to the collection of functions f, which are holomorphic in the open unit disk U = η C : η < 1 that have the type
f η = η + n = 2 a n η n .
Further, the subfamily of A in U is symbolized by S.
From [6], we have
f 1 f η = η , η U
and
f f 1 ξ = ξ , ξ < r 0 f , r 0 f 1 4 ,
where
g ξ = f 1 ξ = ξ a 2 ξ 2 + 2 a 2 2 a 3 ξ 3 5 a 2 3 5 a 2 a 3 + a 4 ξ 4 +
and f 1 is an inverse of f S .
A function f A is named bi-univalent in U if both f and its inverse f 1 are univalent in U. Suppose Σ indicates the collection of bi-univalent functions in U given by (1). From Srivastava et al.’s [7] pioneering work on the topic, a large number of works connected with this topic have been discussed (see, for example, [4,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47]). The family Σ is not empty, as can be shown. Several examples of functions from the collection Σ are
η 1 η , 1 2 log 1 + η 1 η and log 1 η
and their inverses are
ξ 1 + ξ , e 2 ξ 1 e 2 ξ + 1 and e ξ 1 e ξ ,
respectively. As other examples without Σ , we have
η η 2 2 and η 1 η 2 .
Until now, the study of the estimates problem for functions f Σ associated with the following Taylor–Maclaurin coefficients a n , n = 3 , 4 , is still open.
In [48], the authors investigated the family S s c * of starlike functions under the following condition:
Re 2 η f η f η f η ¯ ¯ > 0 , η U .
The family C s c represents all convex functions if
Re 2 η f η f η f η ¯ ¯ > 0 , η U .
Let f and g be holomorphic functions in U. We say that the function f is named subordinate to g if there exists a Schwarz function ξ holomorphic in U with ξ ( 0 ) = 0 and ξ η < 1 ( η U ) such that f ( η ) = g ( ξ ( η ) ) . This subordination is indicated by f g or f ( η ) g η ( η U ) . It is well known that (see [49]) if g is a univalent function in U, then f g if and only if f ( 0 ) = g ( 0 ) and f ( U ) g ( U ) .
The Gegenbauer polynomial H δ η , τ is defined by [50,51] (also, see [52])
H δ η , τ = 1 1 2 τ η + η 2 δ τ 1 , 1 , η U ,
where δ is a nonzero real constant. For fixed τ , the analytic function H δ , depending on η , has the following expansion involving Gegenbauer polynomials G n δ τ as coefficients:
H δ η , τ = 1 1 2 τ η + η 2 δ = n = 0 G n δ τ η n ,
When δ = 0 , then we obtain the generating function of the Gegenbauer polynomial in the form
H 0 η , τ = 1 log 1 2 τ η + η 2 = n = 0 G n 0 τ η n .
When δ is more than 1 2 [3,53], the recurrence relations of Gegenbauer polynomials are given as
G n δ τ = 1 2 2 τ n + δ 1 τ n + 2 δ 2 τ G n 1 δ ,
with the initial values
G 2 δ τ = 2 δ δ + 1 τ 2 δ G 1 δ τ = 2 δ t and G 0 δ τ = 1 .
Remark 1.
Some special cases of G n δ τ are the following:
(1) Taking δ = 1 , we obtain the Chebyshev polynomials.
(2) When δ = 1 2 , we obtain the Legendre polynomials.

2. Main Results

To start, we define the families M Σ sc α , τ , δ and N Σ sc α , τ , δ as follows.
Definition 1.
For 0 α 1 , τ 1 2 , 1 and δ 0 , a function f Σ is said to be in the family M Σ s c α , τ , δ if it fulfills the following subordinations:
2 η f η f η f η ¯ ¯ + 2 η f η f η f η ¯ ¯ 2 α η 2 f η + 2 η f η α η f η f η ¯ ¯ + 1 α f η f η ¯ ¯
H δ η , τ = 1 1 2 τ η + η 2 δ
and
2 ξ g ξ g ξ g ξ ¯ ¯ + 2 ξ g ξ g ξ g ξ ¯ ¯ 2 α ξ 2 g ξ + 2 ξ g ξ α ξ g ξ g ξ ¯ ¯ + 1 α g ξ g ξ ¯ ¯
H δ ξ , τ = 1 1 2 τ ξ + ξ 2 δ ,
where the function g = f 1 is defined by (2).
Taking δ = 1 in Definition 1, the family M Σ sc α , t , δ reduces to the result of Wanas and Majeed (see [54]).
Definition 2.
For 0 α 1 , τ 1 2 , 1 and δ 0 , a function f Σ is said to be in the family N Σ s c α , τ , δ if it fulfills the following subordinations:
2 α η 3 f η + α + 1 η 2 f η + η f η α η 2 f η f η ¯ ¯ + f η f η ¯ ¯ + 1 α η f η f η ¯ ¯
H δ η , τ = 1 1 2 τ η + η 2 δ
and
2 α ξ 3 g ξ + α + 1 ξ 2 g ξ + ξ g ξ α ξ 2 g ξ g ξ ¯ ¯ + g ξ g ξ ¯ ¯ + 1 α ξ g ξ g ξ ¯ ¯
H δ ξ , τ = 1 1 2 τ ξ + ξ 2 δ ,
where the function g = f 1 is given by (2).
As special case, δ = 1 in Definition 2 gives the family S Σ c α , τ (cf. [55]).
Theorem 1.
For t ( 1 2 , 1 ] , 0 α 1 and δ 0 , let f A be in the family M Σ s c α , τ , δ . Then,
a 2 τ 2 δ τ δ δ 2 α 2 2 δ δ + 1 2 α 2 δ 2 3 2 α τ 2
and
a 3 δ 2 τ 2 2 α 2 + δ τ 3 2 α .
Proof. 
Let f M Σ sc α , τ , δ . Then, u , v : U U can be given by
u η = u 1 η + u 2 η 2 + u 3 η 3 + ( η U )
and
v ξ = v 1 ξ + v 2 ξ 2 + v 3 ξ 3 + ξ U ,
with u 0 = v 0 = 0 , u ( η ) < 1 , v ( ξ ) < 1 , η , ξ U such that
2 η f η f η f η ¯ ¯ + 2 η f η f η f η ¯ ¯ 2 α η 2 f η + 2 η f η α η f z f η ¯ ¯ + 1 α f η f η ¯ ¯ = 1 + G 1 δ τ u η + G 2 δ τ u 2 η +
and
2 ξ g ξ g ξ g ξ ¯ ¯ + 2 ξ g ξ g ξ g ξ ¯ ¯ 2 α ξ 2 g ξ + 2 ξ g ξ α ξ g ξ g ξ ¯ ¯ + 1 α g ξ g ξ ¯ ¯ = 1 + G 1 δ τ v ξ + G 2 δ t v 2 ξ + .
Combining (4)–(7), we deduce that
2 η f η f η f η ¯ ¯ + 2 η f η f η f η ¯ ¯ 2 α η 2 f η + 2 η f η α η f η f η ¯ ¯ + 1 α f η f η ¯ ¯ = 1 + G 1 δ τ u 1 η + G 1 δ τ u 2 + G 2 δ τ u 1 2 η 2 +
and
2 ξ g ξ g ξ g w ¯ ¯ + 2 w g ξ g ξ g ξ ¯ ¯ 2 α ξ 2 g ξ + 2 ξ g ξ α ξ g ξ g ξ ¯ ¯ + 1 α g ξ g ξ ¯ ¯ = 1 + G 1 δ τ v 1 ξ + G 1 δ τ v 2 + G 2 δ τ v 1 2 ξ 2 + .
It is known that if u ( z ) < 1 and v ( ξ ) < 1 , η , ξ U , then
u i 1 and v i 1 for each i N .
Comparing the corresponding coefficients in (8) and (9), we deduce that
2 2 α a 2 = G 1 δ τ u 1 ,
2 3 2 α a 3 = G 1 δ τ u 2 + G 2 δ t u 1 2 ,
2 2 α a 2 = G 1 δ τ v 1
and
2 3 2 α ( 2 a 2 2 a 3 ) = G 1 δ τ v 2 + G 2 δ t v 1 2 .
From (11) and (13), we have
u 1 = v 1
and
8 2 α 2 a 2 2 = G 1 δ τ 2 u 1 2 + v 1 2 .
Adding (12) to (14) yields
4 3 2 α a 2 2 = G 1 δ τ u 2 + v 2 + G 2 δ τ u 1 2 + v 1 2 .
Substituting the value of u 1 2 + v 1 2 from (16) in (17), we have
4 3 2 α 8 G 2 δ τ G 1 δ τ 2 2 α 2 a 2 2 = G 1 δ τ u 2 + v 2 .
Through further calculations using (3), (10) and (18), we conclude that
a 2 δ τ 2 δ τ δ 2 α 2 2 δ δ + 1 2 α 2 δ 2 3 2 α τ 2 .
Subtracting (14) by (12), we observe that
4 3 2 α a 3 a 2 2 = G 1 δ τ u 2 v 2 + G 2 δ τ u 1 2 v 1 2 .
In view of (15) and (16), we obtain from (19) that
a 3 = G 1 δ τ 2 8 2 α 2 u 1 2 + v 1 2 + G 1 δ τ 4 3 2 α u 2 v 2 .
Thus, applying (3), we obtain
a 3 δ 2 τ 2 2 α 2 + δ τ 3 2 α .
When δ = 1 , we have the result in [54].
Corollary 1
([54]). For 0 α 1 and τ 1 2 , 1 , let f A be in the family F Σ sc α , τ . Then,
a 2 τ 2 τ 2 α 2 2 2 α 2 6 α + 5 τ 2
and
a 3 τ 2 2 α 2 + τ 3 2 α .
Theorem 2.
For τ 1 2 , 1 , 0 α 1 and δ 0 , let f A be in the family N Σ sc α , τ , δ . Then,
a 2 δ τ 2 δ τ δ α + 2 2 2 δ δ + 1 α + 2 2 δ 2 4 α + 3 τ 2
and
a 3 δ 2 τ 2 α + 2 2 + δ τ 4 α + 3 .
Proof. 
Let f N Σ sc α , τ , δ . Then u , v : U U
2 α η 3 f η + α + 1 η 2 f η + η f η α η 2 f η f η ¯ ¯ + f η f η ¯ ¯ + 1 α η f η f η ¯ ¯ = 1 + G 1 δ τ u η + G 2 δ τ u 2 η +
and
2 α ξ 3 g ξ + α + 1 ξ 2 g ξ + ξ g ξ α ξ 2 g ξ g ξ ¯ ¯ + g ξ g ξ ¯ ¯ + 1 α ξ g ξ g ξ ¯ ¯ = 1 + G 1 δ τ v ξ + G 2 δ τ v 2 ξ + ,
where u and v are defined as in (4) and (5), respectively. Combining (20) and (21) yields
2 α η 3 f η + α + 1 η 2 f η + η f η α η 2 f η f η ¯ ¯ + f η f η ¯ ¯ + 1 α η f z η f η ¯ ¯ = 1 + G 1 δ τ u 1 z + G 1 δ τ u 2 + G 2 δ τ u 1 2 η 2 +
and
2 α ξ 3 g ξ + α + 1 ξ 2 g ξ + ξ g ξ α ξ 2 g ξ g ξ ¯ ¯ + g ξ g ξ ¯ ¯ + 1 α ξ g ξ g ξ ¯ ¯ = 1 + G 1 δ τ v 1 ξ + G 1 δ τ v 2 + G 2 δ τ v 1 2 ξ 2 + .
Comparing the corresponding coefficients in (22) and (23), we observe that
2 α + 2 a 2 = G 1 δ τ u 1 ,
2 4 α + 3 a 3 = G 1 δ τ u 2 + G 2 δ t u 1 2 ,
2 α + 2 a 2 = G 1 δ τ v 1
and
2 4 α + 3 ( 2 a 2 2 a 3 ) = G 1 δ τ v 2 + G 2 δ τ v 1 2 .
In view of (24) and (26), we have
u 1 = v 1
and
8 α + 2 2 a 2 2 = G 1 δ τ 2 u 1 2 + v 1 2 .
If we add (25) to (27), we conclude that
4 4 α + 3 a 2 2 = G 1 δ τ u 2 + v 2 + G 2 δ τ u 1 2 + v 1 2 .
Substituting the value of u 1 2 + v 1 2 from (29) into (30), we arrive at
4 4 α + 3 8 G 2 δ τ G 1 δ τ 2 α + 2 2 a 2 2 = G 1 δ τ u 2 + v 2 ,
or, equivalently,
a 2 2 = G 1 δ τ 3 u 2 + v 2 4 4 α + 3 G 1 δ τ 2 8 α + 2 2 G 2 δ τ ,
Through further calculations using (3), (10) and (31), we find that
a 2 τ 2 δ τ δ δ α + 2 2 2 δ δ + 1 α + 2 2 δ 2 4 α + 3 τ 2 .
Next, if we subtract (27) from (25), we deduce that
4 4 α + 3 a 3 a 2 2 = G 1 δ τ u 2 v 2 + G 2 δ τ u 1 2 v 1 2 .
In light of (28) and (29), we obtain from (32) that
a 3 = G 1 δ τ 2 8 α + 2 2 u 1 2 + v 1 2 + G 1 δ τ 4 4 α + 3 u 2 v 2 .
Thus, applying (3), we obtain
a 3 δ 2 τ 2 α + 2 2 + δ τ 4 α + 3 .
Taking δ = 1 in Theorem 2, we reduce to the results by Wanas and Yalçin [55] as follows.
Corollary 2
([55]). For 0 α 1 and t 1 2 , 1 , let f A be in the family S Σ c α , τ . Then,
a 2 τ 2 t α + 2 2 2 2 α 2 + 4 α + 5 τ 2
and
a 3 τ 2 α + 2 2 + τ 4 α + 3 .
Following, we give the “Fekete-Szegö problem” for the families M Σ sc α , τ , δ and N Σ sc α , t , δ .
Theorem 3.
For 0 α 1 , τ 1 2 , 1 , μ R and δ is a nonzero real constant. Let f A be in the family M Σ sc α , τ , δ . Then,
a 3 μ a 2 2 τ δ 3 2 α ; for μ 1 1 2 3 2 α 2 α 2 δ τ 2 2 δ + 1 δ 2 α 2 3 2 α , 2 τ 3 δ 3 μ 1 δ 2 α 2 2 δ δ + 1 2 α 2 δ 2 3 2 α t 2 ; for μ 1 1 2 3 2 α 2 α 2 δ τ 2 2 δ + 1 δ 2 α 2 3 2 α .
Proof. 
From (18) and (19), we obtain
a 3 μ a 2 2 = 1 μ G 1 δ τ 3 u 2 + v 2 4 3 2 α G 1 δ τ 2 8 2 α 2 G 2 δ τ + G 1 δ τ u 2 v 2 4 3 2 α
= G 1 δ τ ψ μ + 1 4 3 2 α u 2 + ψ μ 1 4 3 2 α v 2 ,
where
ψ μ = G 1 δ τ 2 1 μ 4 3 2 α G 1 δ t 2 2 2 α 2 G 2 δ τ .
According to (3), we deduce that
a 3 μ a 2 2 τ δ 3 2 α , 0 ψ μ 1 4 3 2 α 4 τ δ ψ μ , ψ μ 1 4 3 2 α .
After some computations, we obtain
a 3 μ a 2 2 τ δ 3 2 α ; for μ 1 1 2 3 2 α 2 α 2 δ t 2 2 δ + 1 δ 2 α 2 3 2 α , 2 τ 3 δ 3 μ 1 δ 2 α 2 2 δ δ + 1 2 α 2 δ 2 3 2 α t 2 ; for μ 1 1 2 3 2 α 2 α 2 δ τ 2 2 δ + 1 δ 2 α 2 3 2 α .
For δ = 1 , Theorem 3 yields the family F Σ sc α , τ , defined by Wanas and Majeed [54].
Corollary 3
([54]). For 0 α 1 , τ 1 2 , 1 and μ R , let f A be in the family F Σ sc α , τ . Then,
a 3 μ a 2 2 τ 3 2 α ; for μ 1 1 2 3 2 α 2 α 2 τ 2 2 2 α 2 6 α + 5 2 τ 3 μ 1 2 3 2 α τ 2 2 α 2 4 τ 2 1 ; for μ 1 1 2 3 2 α 2 α 2 τ 2 2 2 α 2 6 α + 5 .
For μ = 1 , Theorem 3 gives the next corollary:
Corollary 4.
For 0 α 1 , τ 1 2 , 1 and δ 0 , let f A be in the family M Σ sc α , τ , δ . Then,
a 3 a 2 2 τ δ 3 2 α .
Theorem 4.
For 0 α 1 , τ 1 2 , 1 , μ R and δ 0 , let f A be in the family N Σ sc α , τ , δ . Then,
a 3 μ a 2 2 τ δ 4 α + 3 ; for μ 1 1 2 4 α + 3 α + 2 2 δ τ 2 2 δ + 1 δ α + 2 2 4 α + 3 2 t 3 δ 3 μ 1 δ α + 2 2 2 δ δ + 1 α + 2 2 δ 2 4 α + 3 τ 2 for μ 1 1 2 4 α + 3 α + 2 2 δ τ 2 2 δ + 1 δ α + 2 2 4 α + 3 .
Proof. 
From (31) and (32), we find that
a 3 μ a 2 2 = 1 μ G 1 δ τ 3 u 2 + v 2 4 4 α + 3 G 1 δ τ 2 8 α + 2 2 G 2 δ τ + G 1 δ τ u 2 v 2 4 4 α + 3
= G 1 δ t φ μ + 1 4 4 α + 3 u 2 + φ μ 1 4 4 α + 3 v 2 ,
where
φ μ = G 1 δ τ 2 1 μ 4 4 α + 3 G 1 δ τ 2 2 α + 2 2 G 2 δ τ .
According to (3), we deduce that
a 3 μ a 2 2 τ δ 4 α + 3 , 0 φ μ 1 4 4 α + 3 4 τ δ φ μ , φ μ 1 4 4 α + 3 .
After some computations, we obtain
a 3 μ a 2 2 τ δ 4 α + 3 ; for μ 1 1 2 4 α + 3 α + 2 2 δ τ 2 2 δ + 1 δ α + 2 2 4 α + 3 2 τ 3 δ 3 μ 1 δ α + 2 2 2 δ δ + 1 α + 2 2 δ 2 4 α + 3 τ 2 for μ 1 1 2 4 α + 3 α + 2 2 δ τ 2 2 δ + 1 δ α + 2 2 4 α + 3 .
When δ = 1 in Theorem 4, we obtain the results in [55] for the family S Σ c α , t .
Corollary 5
([55]). For 0 α 1 , τ 1 2 , 1 and μ R , let f A be in the family S Σ c α , τ . Then,
a 3 μ a 2 2 τ 4 α + 3 ; for μ 1 1 2 4 α + 3 α + 2 2 τ 2 2 2 α 2 + 4 α + 5 2 τ 3 μ 1 2 4 α + 3 τ 2 α + 2 2 4 τ 2 1 ; for μ 1 1 2 4 α + 3 α + 2 2 τ 2 2 2 α 2 + 4 α + 5 .
Theorem 4 turns into the following corollary at μ = 1 :
Corollary 6.
For 0 α 1 , τ 1 2 , 1 and δ 0 , let f A be in the family N Σ sc α , τ , δ . Then,
a 3 a 2 2 τ δ 4 α + 3 .

3. Conclusions

The primary goal was to define new families M Σ sc α , τ , δ and N Σ sc α , τ , δ of holomorphic and bi-univalent functions with respect to symmetric points, which are defined by Gegenbauer polynomials. We investigated the Taylor–Maclaurin coefficient inequalities of functions in these new families and viewed the famous Fekete–Szegö inequalities. Further, by specifying the parameters, the consequences of these families have been mentioned.

Author Contributions

Conceptualization, A.K.W., T.G.S. and M.A.; methodology, A.K.W., T.G.S. and M.A.; software, Y.A., A.K.W. and A.A.L.; funding acquisition, Y.A. All authors have read and agreed to the published version of the manuscript.

Funding

Grant number RGP2/366/44 King Khalid University, Abha, Saudi Arabia.

Data Availability Statement

Our manuscript has no associated data.

Acknowledgments

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through the Large Group Research Project under grant number RGP2/366/44.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Legendre, A. Recherches sur la Attraction Sphéroides Homogénes; Mémoires Présentes par Divers Savants a la Académie des Sciences de la Institut de France: France, Paris, 1785; Volume 10. [Google Scholar]
  2. Bateman, H. Higher Transcendental Functions; McGraw-Hill: New York, NY, USA, 1953. [Google Scholar]
  3. Doman, B.G.S. The Classical Orthogonal Polynomials; World Scientific: Singapore, 2015. [Google Scholar]
  4. Kiepiela, K.; Naraniecka, I.; Szynal, J. The Gegenbauer polynomials and typically real functions. J. Comput. Appl. Math. 2003, 153, 273–282. [Google Scholar] [CrossRef]
  5. Fekete, M.; Szegö, G. Eine Bemerkung über ungerade schlichte Funktionen. J. Lond. Math. Soc. 1933, 2, 85–89. [Google Scholar] [CrossRef]
  6. Duren, P.L. Univalent Functions; Grundlehren der Mathematischen Wissenschaften, Band 259; Springer: Berlin/Heidelberg, Germany, 1983. [Google Scholar]
  7. Srivastava, H.M.; Mishra, A.K.; Gochhayat, P. Certain subclasses of analytic and bi-univalent functions. Appl. Math. Lett. 2010, 23, 1188–1192. [Google Scholar] [CrossRef]
  8. Adegani, E.A.; Bulut, S.; Zireh, A.A. Coefficient estimates for a subclass of analytic bi-univalent functions. Bull. Korean Math. Soc. 2018, 55, 405–413. [Google Scholar]
  9. Alamoush, A.G. On subclass of analytic bi-close-to-convex functions. Int. J. Open Probl. Complex Anal. 2021, 13, 10–18. [Google Scholar]
  10. Alamoush, A. Coefficient estimates for a new subclasses of lambda-pseudo bi-univalent functions with respect to symmetrical points associated with the Horadam Polynomials. Turk. J. Math. 2019, 43, 2865–2875. [Google Scholar] [CrossRef]
  11. Alazman, I.; Alkahtani, B.S.T.; Wani, S.A. Certain properties of Δh multi-variate Hermite polynomials. Symmetry 2023, 15, 839. [Google Scholar] [CrossRef]
  12. Ali, R.M.; Lee, S.K.; Ravichandran, V.; Supramaniam, S. Coefficient estimates for bi-univalent Ma-Minda starlike and convex functions. Appl. Math. Lett. 2012, 25, 344–351. [Google Scholar] [CrossRef]
  13. Alkahtani, B.S.T.; Alazman, I.; Wani, S.A. Some families of differential equations associated with multivariate Hermite polynomials. Fractal Fract. 2023, 7, 390. [Google Scholar] [CrossRef]
  14. Altinkaya, S.; Yalçin, S. On a new subclass of bi-univalent functions of Sakaguchi type satisfying subordinate conditions. Malaya J. Math. 2017, 5, 305–309. [Google Scholar] [CrossRef] [PubMed]
  15. Altinkaya, S.; Yalçin, S. On the Chebyshev polynomial coefficient problem of some subclasses of bi-univalent functions. Gulf J. Math. 2017, 5, 34–40. [Google Scholar] [CrossRef]
  16. Amourah, A.; Alsoboh, A.; Ogilat, O.; Gharib, G.M.; Saadeh, R.; Al Soudi, M. A generalization of Gegenbauer polynomials and bi-univalent functions. Axioms 2023, 12, 128. [Google Scholar] [CrossRef]
  17. Aouf, M.K.; Seudy, T. Fekete-Szegö problem for certain subclass of analytic functions with complex order defined by q-analogue of Ruscheweyh operator. Constr. Math. Anal. 2020, 3, 36–44. [Google Scholar]
  18. Aouf, M.K.; Seudy, T. Certain class of bi-Bazilevič functions with bounded boundary rotation involving Salǎgeǎn operator. Constr. Math. Anal. 2020, 3, 139–149. [Google Scholar] [CrossRef]
  19. Badghaish, A.O.; Lashin, A.M.Y.; Bajamal, A.Z.; Alshehri, F.A. A new subclass of analytic and bi-univalent functions associated with Legendre polynomials. AIMS Math. 2023, 8, 23534–23547. [Google Scholar] [CrossRef]
  20. Breaz, D.; Cotîrlǎ, L.-I. The study of the new classes of m-fold symmetric bi-univalent functions. Mathematics 2022, 10, 75. [Google Scholar] [CrossRef]
  21. Breaz, D.; Murugusundaramoorthy, G.; Vijaya, K.; Cotîrlǎ, L.-I. Certain class of bi-univalent functions defined by Sǎlǎgean q-difference operator related with involution numbers. Symmetry 2023, 15, 1302. [Google Scholar] [CrossRef]
  22. Bulut, S. Faber polynomial coefficient estimates for a subclass of analytic bi-univalent functions. Filomat 2016, 30, 1567–1575. [Google Scholar] [CrossRef]
  23. Caglar, M.; Cotirla, L.-I.; Buyankara, M. Fekete-Szegö inequalities for a new subclass of bi-univalent functions associated with Gegenbauer polynomials. Symmetry 2022, 14, 1572. [Google Scholar] [CrossRef]
  24. Cotîrlǎ, L.I. New classes of analytic and bi-univalent functions. AIMS Math. 2021, 6, 10642–10651. [Google Scholar] [CrossRef]
  25. Deniz, E. Certain subclasses of bi-univalent functions satisfying subordinate conditions. J. Class. Anal. 2013, 2, 49–60. [Google Scholar] [CrossRef]
  26. Eker, S.S. Coefficient bounds for subclasses of m-fold symmetric bi-univalent functions. Turk. J. Math. 2016, 40, 641–646. [Google Scholar] [CrossRef]
  27. Frasin, B.A. Coefficient bounds for certain classes of bi-univalent functions. Hacet. J. Math. Stat. 2014, 43, 383–389. [Google Scholar] [CrossRef]
  28. Ghazy, A.; Murugusundaramoorthy, G. Certain subclasses of λ-pseudo bi-univalent functions with respect to symmetric points associated with the Gegenbauer polynomial. Afr. Mat. 2023, 34, 11. [Google Scholar]
  29. Guney, H.O.; Murugusundaramoorthy, G.; Sokol, J. Subclasses of bi-univalent functions related to shell-like curves connected with Fibonacci numbers. Acta Univ. Sapient. Math. 2018, 10, 70–84. [Google Scholar] [CrossRef]
  30. Hamzat, J.O.; Oluwayemi, M.O.; Lupaş, A.A.; Wanas, A.K. Bi-univalent problems involving generalized multiplier transform with respect to symmetric and conjugate points. Fractal Fract. 2022, 6, 483. [Google Scholar] [CrossRef]
  31. Khan, B.; Srivastava, H.M.; Tahir, M.; Darus, M.; Ahmad, Q.Z.; Khan, N. Applications of a certain q-integral operator to the subclasses of analytic and bi-univalent functions. AIMS Math. 2021, 6, 1024–1039. [Google Scholar] [CrossRef]
  32. Magesh, N.; Bulut, S. Chebyshev polynomial coefficient estimates for a class of analytic bi-univalent functions related to pseudo-starlike functions. Afr. Mat. 2018, 29, 203–209. [Google Scholar] [CrossRef]
  33. Murugusundaramoorthy, G.; Bulboacǎ, T. Subclasses of Yamakawa-Type Bi-Starlike Functions Associated with Gegenbauer Polynomials. Axioms 2022, 11, 92. [Google Scholar] [CrossRef]
  34. Murugusundaramoorthy, G.; Guney, H.O.; Vijaya, K. Coefficient bounds for certain suclasses of bi-prestarlike functions associated with the Gegenbauer polynomial. Adv. Stud. Contemp. Math. 2022, 32, 5–15. [Google Scholar]
  35. Orhan, H.; Cotîrlǎ, L.-I. Fekete-Szegö inequalities for some certain subclass of analytic functions defined with Ruscheweyh derivative operator. Axioms 2022, 11, 560. [Google Scholar] [CrossRef]
  36. Orhan, H.; Magesh, N.; Balaji, V.K. Initial coefficient bounds for a general class of bi-univalent functions. Filomat 2015, 29, 1259–1267. [Google Scholar] [CrossRef]
  37. Páll-Szabó, A.O.; Oros, G.I. Coefficient related studies for new classes of bi-univalent functions. Mathematics 2020, 8, 1110. [Google Scholar] [CrossRef]
  38. Páll-Szabó, A.O.; Wanas, A.K. Coefficient estimates for some new classes of bi-Bazilevic functions of Ma-Minda type involving the Salagean integro-differential operator. Quaest. Math. 2021, 44, 495–502. [Google Scholar]
  39. Şeker, B. On a new subclass of bi-univalent functions defined by using Sǎlǎgean operator. Turk. J. Math. 2018, 42, 2891–2896. [Google Scholar] [CrossRef]
  40. Shaba, T.G. On some subclasses of bi-pseudo-starlike functions defined by Sǎlǎgean differential operator. Asia Pac. J. Math. 2021, 8, 1–11. [Google Scholar]
  41. Shehab, N.H.; Juma, A.R.S. Coefficient bounds of m-fold symmetric bi-univalent functions for certain subclasses. Int. J. Nonlinear Anal. Appl. 2021, 12, 71–82. [Google Scholar]
  42. Srivastava, H.M.; Altinkaya, S.; Yalçin, S. Certain subclasses of bi-univalent functions associated with the Horadam polynomials. Iran. J. Sci. Technol. Trans. A Sci. 2019, 43, 1873–1879. [Google Scholar] [CrossRef]
  43. Srivastava, H.M.; Eker, S.S.; Hamidi, S.G.; Jahangiri, J.M. Faber polynomial coefficient estimates for bi-univalent functions defined by the Tremblay fractional derivative operator. Bull. Iran. Math. Soc. 2018, 44, 149–157. [Google Scholar] [CrossRef]
  44. Srivastava, H.M.; Gaboury, S.; Ghanim, F. Coefficient estimates for some general subclasses of analytic and bi-univalent functions. Afr. Mat. 2017, 28, 693–706. [Google Scholar] [CrossRef]
  45. Srivastava, H.M.; Hussain, S.; Raziq, A.; Raza, M. The Fekete-Szegö functional for a subclass of analytic functions associated with quasi-subordination. Carpathian J. Math. 2018, 34, 103–113. [Google Scholar]
  46. Wanas, A.K.; Cotîrlă, L.-I. Applications of (MN)-Lucas polynomials on a certain family of bi-univalent functions. Mathematics 2022, 10, 595. [Google Scholar] [CrossRef]
  47. Yousef, F.; Frasin, B.A.; Al-Hawary, T. Fekete-Szegö inequality for analytic and bi-univalent functions subordinate to Chebyshev polynomials. arXiv 2018, arXiv:1801.09531. [Google Scholar] [CrossRef]
  48. El-Ashwah, R.M.; Thomas, D.K. Some subclasses of close-to-convex functions. J. Ramanujan Math. Soc. 1987, 2, 85–100. [Google Scholar]
  49. Miller, S.S.; Mocanu, P.T. Differential Subordinations: Theory and Applications; Series on Monographs and Textbooks in Pure and Applied Mathematics; Marcel Dekker Inc.: New York, NY, USA; Basel, Switzerland, 2000; Volume 225. [Google Scholar]
  50. Erdélyi, A.; Magnus, W.; Oberhettinger, F.; Tricomi, F. Higher Transcendental Functions; McGraw-Hill: New York, NY, USA, 1953; Volume 2. [Google Scholar]
  51. Stein, E.; Weiss, G. Introduction to Fourier Analysis on Euclidean Spaces; Princeton University Press: Princeton, NJ, USA, 1971. [Google Scholar]
  52. Amourah, A.; Alamoush, A.; Al-Kaseasbeh, M. Gegenbauer polynomials and bi-univalent functions. Palest. J. Math. 2021, 10, 625–632. [Google Scholar]
  53. Reimer, M. Multivariate Polynomial Approximation; Birkhäuser: Basel, Switzerland, 2012. [Google Scholar]
  54. Wanas, A.K.; Majeed, A.H. Chebyshev polynomial bounded for analytic and bi-univalent functions with respect to symmetric conjugate points. Appl. Math. E-Notes 2019, 19, 14–21. [Google Scholar]
  55. Wanas, A.K.; Yalçin, S. Coefficient estimates and Fekete-Szegö inequality for family of bi-univalent functions defined by the second kind Chebyshev polynomial. Int. J. Open Probl. Compt. Math. 2020, 13, 25–33. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Almalki, Y.; Wanas, A.K.; Shaba, T.G.; Alb Lupaş, A.; Abdalla, M. Coefficient Bounds and Fekete–Szegö Inequalities for a Two Families of Bi-Univalent Functions Related to Gegenbauer Polynomials. Axioms 2023, 12, 1018. https://doi.org/10.3390/axioms12111018

AMA Style

Almalki Y, Wanas AK, Shaba TG, Alb Lupaş A, Abdalla M. Coefficient Bounds and Fekete–Szegö Inequalities for a Two Families of Bi-Univalent Functions Related to Gegenbauer Polynomials. Axioms. 2023; 12(11):1018. https://doi.org/10.3390/axioms12111018

Chicago/Turabian Style

Almalki, Yahya, Abbas Kareem Wanas, Timilehin Gideon Shaba, Alina Alb Lupaş, and Mohamed Abdalla. 2023. "Coefficient Bounds and Fekete–Szegö Inequalities for a Two Families of Bi-Univalent Functions Related to Gegenbauer Polynomials" Axioms 12, no. 11: 1018. https://doi.org/10.3390/axioms12111018

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop