Next Article in Journal
Dynamical Analysis and Generalized Synchronization of a Novel Fractional-Order Hyperchaotic System with Hidden Attractor
Next Article in Special Issue
Automatic Sleep Staging Based on Single-Channel EEG Signal Using Null Space Pursuit Decomposition Algorithm
Previous Article in Journal
An Approach for the Assessment of Multi-National Companies Using a Multi-Attribute Decision Making Process Based on Interval Valued Spherical Fuzzy Maclaurin Symmetric Mean Operators
Previous Article in Special Issue
Construction of Eigenfunctions to One Nonlocal Second-Order Differential Operator with Double Involution
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Approximation Properties of the Blending-Type Bernstein–Durrmeyer Operators

1
School of Mathematics and Physics, Anqing Normal University, Anqing 246133, China
2
School of Mathematical Sciences and LPMC, Nankai University, Tianjin 300071, China
*
Author to whom correspondence should be addressed.
Submission received: 6 November 2022 / Revised: 17 December 2022 / Accepted: 17 December 2022 / Published: 21 December 2022

Abstract

:
We construct the blending-type modified Bernstein–Durrmeyer operators and investigate their approximation properties. First, we derive the Voronovskaya-type asymptotic theorem for this type of operator. Then, the local and global approximation theorems are obtained by using the classical modulus of continuity and K-functional. Finally, we derive the rate of convergence for functions with a derivative of bounded variation. The results show that the new operators have good approximation properties.

1. Introduction

In [1], S. N. Bernstein constructed positive and linear operators (named after him) as Bernstein operators to prove the famous Weierstrass approximation theorem. The Bernstein operators attached to : C S (the space of continuous functions on S endowed with the max-norm = max χ S ( χ ) ) C S with S : = [ 0 , 1 ] were defined by
B λ ( ; χ ) = ν = 0 λ b λ , ν ( χ ) ν λ , χ S , λ N + : = { 1 , 2 , } ,
where b λ , ν ( χ ) = λ ν χ ν ( 1 χ ) λ ν , ν = 0 , 1 , , λ , C S . Later, many generalizations and modifications of these kinds of operators (1) have been constructed and considered, we refer the readers to these papers (see λ -Bernstein operators [2], generalized Bernstein operators [3,4], blending-type Bernstein operators [5,6,7], Durrmeyer-type Bernstein operators [8], genuine-type Bernstein operators [9,10], and so on).
In [11], F. Usta constructed a new modification of Bernstein operators attached to : C S C S by means of the second-order central moments of the Bernstein operators (1) as:
B λ * ( ; χ ) = ν = 0 λ p λ , ν ( χ ) ν λ , χ S , λ N +
where
p λ , ν ( χ ) = λ χ ( 1 χ ) λ 1 , ν = 0 , ( 1 λ χ ) 2 ( 1 χ ) λ 2 , ν = 1 , 1 λ ( ν λ χ ) 2 λ ν χ ν 1 ( 1 χ ) λ ν 1 , 1 < ν < λ 1 , ( ν λ χ ) 2 χ λ 2 , ν = λ 1 , λ ( 1 χ ) χ λ 1 , ν = λ .
In [12], Y. S. Wu et al. defined q-generalization of operators (2). In [13], Q. B. Cai et al. developed a Beta-type modification of operators (2). Recently, many generalizations and modifications of operators (2) were introduced and studied, we refer the readers to the articles [14,15]. Motivated by the above works, for C S , we present the blending-type modified Bernstein–Durrmeyer operators involving a strictly positive function θ ( χ ) C S and γ > 0 as follows:
H λ , γ θ ( ; χ ) = ν = 0 λ p λ , ν ( χ ) 0 1 s ν γ + θ ( χ ) 1 ( 1 s ) ( λ ν ) γ + θ ( χ ) 1 B ( ν γ + θ ( χ ) , ( λ ν ) γ + θ ( χ ) ) ( s ) d s ,
where χ S , λ N + and Beta function B ( u , v ) = 0 1 s u 1 ( 1 s ) v 1 d s , u , v > 0 .
If we take γ = θ ( χ ) = 1 , then we obtain the operators defined in [13]. If we take θ ( χ ) = 1 , then we obtain the operators defined in [14].
In the rest part of the paper, we investigate the approximation properties of the operators H λ , γ θ . In Section 2, we yield the calculation formulas for the moment and central moment related to the operators H λ , γ θ . In Section 3, we yield an asymptotic formula for operators (3). In Section 4 and Section 5, we establish the local and global approximation theorems by using the classical modulus of continuity and K–functional. In Section 6, we derive the rate of convergence for functions with a derivative of bounded variation. In Section 7, we make the concluding remarks on our works. We show the advantage of the operators H λ , γ θ by some numerical experiments.

2. Auxiliary Lemmas

In this section, we establish several lemmas to prove our main approximation properties for operators (3). Let e j ( s ) = s j , j N : = { 0 , 1 , 2 , } be the test functions, which play a key role in the study of the approximation properties of the positive linear operators.
Lemma 1. 
([12], Lemma 1 and Lemma 2, q = 1) Let θ ( χ ) C S , λ N + , χ S and j N . Then, the following relations hold:
B λ ( e 0 ; χ ) = 1 , B λ ( e 1 ; χ ) = χ ; B λ ( e j + 1 ; χ ) = 1 λ B λ ( e j ; χ ) + χ B λ ( e j ; χ ) ; B λ * ( e j + 1 ; χ ) = 1 λ B λ ( e j ; χ ) + B λ ( e j ; χ ) .
By using direct calculation, we obtain the following three lemmas.
Lemma 2. 
Let θ ( χ ) C S , λ N + , χ S and γ > 0 , e j = s j , j = 0 , 4 ¯ . We conclude
H λ , γ θ ( e 0 ; χ ) = 1 ; ε λ , γ θ ( χ ) : = H λ , γ θ ( e 1 ; χ ) = ( λ 2 ) γ λ γ + 2 θ ( χ ) χ + γ + θ ( χ ) λ γ + 2 θ ( χ ) ; H λ , γ θ ( e 2 ; χ ) = ( λ 2 7 λ + 6 ) γ 2 ( λ γ + 2 θ ( χ ) ) ( λ γ + 2 θ ( χ ) + 1 ) χ 2 + ( 5 λ 6 ) γ 2 + ( λ 2 ) ( 2 θ ( χ ) + 1 ) γ ( λ γ + 2 θ ( χ ) ) ( λ γ + 2 θ ( χ ) + 1 ) χ + ( γ + θ ( χ ) ) ( γ + θ ( χ ) + 1 ) ( λ γ + 2 θ ( χ ) ) ( λ γ + 2 θ ( χ ) + 1 ) ; H λ , γ θ ( e 3 ; χ ) = λ γ 3 ( λ 2 15 λ + 38 ) ( λ γ + 2 θ ( χ ) ) ( λ γ + 2 θ ( χ ) + 1 ) ( λ γ + 2 θ ( χ ) + 2 ) χ 3 + 3 λ γ 2 ( λ ( 4 γ + θ ( χ ) + 1 ) ( 16 γ + 7 θ ( χ ) + 7 ) ) ( λ γ + 2 θ ( t ) ) ( λ γ + 2 θ ( t ) + 1 ) ( λ γ + 2 θ ( χ ) + 2 ) χ 2 + λ γ ( 13 γ 2 + 15 γ θ ( χ ) + 15 γ + 3 θ 2 ( χ ) + 6 θ ( χ ) + 2 ) ( λ γ + 2 θ ( χ ) ) ( λ γ + 2 θ ( χ ) + 1 ) ( λ γ + 2 θ ( χ ) + 2 ) χ + o 1 λ 2 ; H λ , γ θ ( e 4 ; χ ) = λ 2 γ 4 ( λ 2 26 λ + 131 ) ( λ γ + 2 θ ( χ ) ) ( λ γ + 2 θ ( χ ) + 1 ) ( λ γ + 2 θ ( χ ) + 2 ) ( λ γ + 2 θ ( χ ) + 3 ) χ 4 + λ 2 γ 3 ( 2 γ ( 11 λ 93 ) + 2 ( λ 15 ) ( 2 θ ( χ ) + 3 ) ) ( λ γ + 2 θ ( χ ) ) ( λ γ + 2 θ ( χ ) + 1 ) ( λ γ + 2 θ ( χ ) + 2 ) ( λ γ + 2 θ ( χ ) + 3 ) χ 3 + λ 2 γ 2 ( 61 γ 2 + 24 γ ( 2 θ ( χ ) + 3 ) + 6 θ 2 ( χ ) + 18 θ ( χ ) + 11 ) ( λ γ + 2 θ ( χ ) ) ( λ γ + 2 θ ( χ ) + 1 ) ( λ γ + 2 θ ( χ ) + 2 ) ( λ γ + 2 θ ( χ ) + 3 ) χ 2 + o 1 λ 2 .
Lemma 3. 
Let θ ( χ ) C S , λ N + , χ S and γ > 0 . We conclude
A λ , γ θ ( χ ) : = H λ , γ θ ( e 1 χ ; χ ) = ( γ + θ ( χ ) ) ( 1 2 χ ) λ γ + 2 θ ( χ ) ; B λ , γ θ ( χ ) : = H λ , γ θ ( ( e 1 χ ) 2 ; χ ) = γ ( 3 λ γ + λ 6 γ 4 ) 2 θ ( χ ) ( 4 γ + 2 θ ( χ ) + 1 ) ( λ γ + 2 θ ( χ ) ) ( λ γ + 2 θ ( χ ) + 1 ) χ ( 1 χ ) + ( γ + θ ( χ ) ) ( γ + θ ( χ ) + 1 ) ( λ γ + 2 θ ( χ ) ) ( λ γ + 2 θ ( χ ) + 1 ) .
Lemma 4. 
For χ S and γ > 0 , we conclude
lim λ λ H λ , γ θ ( e 1 χ ; χ ) = ( γ + θ ( χ ) ) ( 1 2 χ ) γ ; lim λ λ H λ , γ θ ( ( e 1 χ ) 2 ; χ ) = 3 γ + 1 γ χ ( 1 χ ) ; lim λ λ 2 H λ , γ θ ( ( e 1 χ ) 4 ; χ ) = 3 χ 2 ( 1 χ ) 2 ( 5 γ 2 + 6 γ + 1 ) γ 2 .
Lemma 5. 
Let C S , θ ( χ ) C S and fix γ > 0 . Then, lim λ H λ , γ θ ( ; χ ) = ( χ ) holds uniformly on S.
Proof. 
Note that H λ , γ θ ( e 0 ; χ ) = 1 , H λ , γ θ ( e 1 ; χ ) χ , H λ , γ θ ( e 2 ; χ ) χ 2 as λ hold uniformly on S. Applying the classic Korovkin Theorem in [16], it follows that lim λ H λ , γ θ ( ; χ ) = ( χ ) holds uniformly on S.   □
Lemma 6. 
Let C S , θ ( χ ) C S , λ N + and fix γ > 0 . Then, we have H λ , γ θ ( ) .
Proof. 
Using the definition of the operators H λ , γ θ and taking Lemma 2 into account, it follows
H λ , γ θ ( ; χ ) H λ , γ θ ( e 0 ; χ ) = .

3. Voronovskaya-Type Asymptotic Theorem

In this section, we establish the following Voronovskaya-type asymptotic theorem for the operators H λ , γ θ .
Theorem 1. 
Let C S , θ ( χ ) C S and γ > 0 . If exists at a point χ S , then the following relation holds:
lim λ λ ( H λ , γ θ ( ; χ ) ( χ ) ) = ( γ + θ ( χ ) ) ( 1 2 χ ) γ ( χ ) + 3 γ + 1 2 γ χ ( 1 χ ) ( χ ) .
Proof. 
By using Taylor’s expansion formula for the function , we get
( s ) = ( χ ) + ( χ ) ( s χ ) + 1 2 ( χ ) ( s χ ) 2 + η ( s ; χ ) ( s χ ) 2 ,
where
η ( s ; χ ) = ( s ) ( χ ) ( χ ) ( s χ ) 1 2 ( χ ) ( s χ ) 2 ( s χ ) 2 , s χ ; 0 , s = χ .
Using L’Hospital’s Rule, we have
lim s χ η ( s ; χ ) = 1 2 lim s χ ( s ) ( χ ) s χ 1 2 ( χ ) = 0 .
Thus, η ( s ; χ ) C S . Then, we obtain the following equality by applying the new operators H λ , γ θ to both sides of (4),
H λ , γ θ ( ; χ ) ( χ ) = ( χ ) H λ , γ θ ( s χ ; χ ) + ( χ ) 2 H λ , γ θ ( ( s χ ) 2 ; χ ) + H λ , γ θ ( η ( s ; χ ) ( s χ ) 2 ; χ ) .
Multiplying (5) by λ and taking the limit as λ , we obtain
lim λ λ ( H λ , γ θ ( ; χ ) ( χ ) ) = lim λ λ ( χ ) H λ , γ θ ( s χ ; χ ) + lim λ λ ( χ ) 2 H λ , γ θ ( ( s χ ) 2 ; χ ) + lim λ λ H λ , γ θ ( η ( s ; χ ) ( s χ ) 2 ; χ ) .
By Lemma 4, we write
lim λ λ ( H λ , γ θ ( ; χ ) ( χ ) ) = ( γ + θ ( χ ) ) ( 1 2 χ ) γ ( χ ) + 3 γ + 1 2 γ χ ( 1 χ ) ( χ ) + lim λ λ H λ , γ θ ( η ( s ; χ ) ( s χ ) 2 ; χ ) .
Applying the Cauchy–Buniakowsky–Schwarz inequality to the last term of (6), we have
λ H λ , γ θ ( η ( s ; χ ) ( s χ ) 2 ; χ ) H λ , γ θ ( η 2 ( s ; χ ) ; χ ) λ 2 H λ , γ θ ( ( s χ ) 4 ; χ ) .
Meanwhile, it is known from Lemma 4 that the term λ 2 H λ , γ θ ( ( s χ ) 4 ; χ ) is bounded as λ . On the other hand, η 2 ( . ; χ ) is continuous at s S and lim s χ η 2 ( s ; χ ) = 0 . Hence, by Lemma 5, we can deduce that
lim λ H λ , γ θ ( η 2 ( s ; χ ) ; χ ) = η 2 ( χ ; χ ) = 0 .
Therefore, from (7) and (8), we have
lim λ λ H λ , γ θ ( η ( s ; χ ) ( s χ ) 2 ; χ ) = 0 .
Combining (6) with (9), we get the desired result.   □

4. Local Approximation

In this section, we study the local approximation properties for the newly defined operators H λ , γ θ ( ; χ ) in terms of the modulus of continuity, Peetre’s K-functional, the Steklov mean function and the elements of Lipschitz function class. For C S , the classical modulus ω 1 and the second-order modulus ω 2 of are defined respectively by:
ω 1 ( ; σ ) = sup 0 < s σ sup χ , χ + s S | ( χ + s ) ( χ ) | , ω 2 ( ; σ ) = sup 0 < s σ sup χ , χ + 2 s S | ( χ + 2 s ) 2 ( χ + s ) + ( χ ) | .
The Peetre’s K-functional is given by
K 2 ( ; σ ) = inf η , η C S { η + σ η : η W 2 } , C S , σ > 0 .
It is known from [16] that
K 2 ( ; σ ) M ω 2 ( ; σ ) ,
where M > 0 is a constant depending only on .
For C S and σ S , the Steklov mean function is defined by
σ ( χ ) = 4 σ 2 0 σ 2 0 σ 2 ( 2 ( χ + x + y ) ( χ + 2 ( x + y ) ) ) d x d y .
From direct calculation, we have (i) σ ω 2 ( ; σ ) .
(ii) σ , σ C S and σ 5 σ ω ( ; σ ) , σ 9 σ 2 ω 2 ( ; σ ) .
In [17], Lenze introduced the following Lipschitz-type maximal function of order ϱ for a function C S as
ω ϱ ( ; χ ) = sup s χ , s S | ( s ) ( χ ) | | s χ | ϱ , χ S and ϱ ( 0 , 1 ] .
In [18], M. A. Özarslan and H. Aktuğlu defined the following Lipschitz-type space involving two parameters κ 1 , κ 2 [ 0 , ) as
Lip M κ 1 , κ 2 ( ϱ ) = C B : | ( s ) ( χ ) | M 2 | s χ | ϱ ( s + κ 1 χ 2 + κ 2 χ ) ; s S , χ ( 0 , 1 ] ,
where ϱ ( 0 , 1 ] and M 2 is a positive constant depending at most on , κ 1 , κ 2 and ϱ .
Now, we prove the following theorems on the local approximation properties of operators (3).
Theorem 2. 
Let C S , θ ( χ ) C S , λ N + , γ > 0 and χ S . We have
| H λ , γ θ ( ; χ ) ( χ ) | 2 ω 1 ; B λ , γ θ ( χ ) .
Proof. 
By using the property of ω 1 , we derive
| ( s ) ( χ ) | ω 1 ( ; σ ) ( s χ ) 2 σ 2 + 1 .
Combining the linearity and the monotonicity of operators (3), we have
H λ , γ θ ( ; χ ) ( χ ) H λ , γ θ | ( s ) ( χ ) | ; χ ω 1 ( ; σ ) 1 + 1 σ 2 H λ , γ θ ( s χ ) 2 ; χ .
Choosing σ = B λ , γ θ ( χ ) , we get the desired result.   □
Theorem 3. 
Let C S , θ ( χ ) C S , λ N + , γ > 0 and χ S . We have
| H λ , γ θ ( ; χ ) ( χ ) | | A λ , γ θ ( χ ) | | ( χ ) | + 2 B λ , γ θ ( χ ) ω 1 ( ; B λ , γ θ ( χ ) ) .
Proof. 
For any s , χ S , we have
( s ) ( χ ) = ( χ ) ( s χ ) + χ s ( ( x ) ( χ ) ) d x .
Applying the operators H λ , γ θ ( . ; χ ) on both sides of the above equality, we can write
H λ , γ θ ( ( s ) ( χ ) ; χ ) = ( χ ) H λ , γ θ ( s χ ; χ ) + H λ , γ θ χ s ( ( x ) ( χ ) ) d x ; χ .
By using the property of ω 1 , we derive
| ( s ) ( χ | ω 1 ( ; σ ) | s χ | σ + 1 , σ > 0 .
Then, we have
χ s ( ( x ) ( χ ) ) d x ω 1 ( ; σ ) ( s χ ) 2 σ + | s χ | .
It follows that
H λ , γ θ ( ; χ ) ( χ ) | ( χ ) | | H λ , γ θ ( s χ ; χ ) | + ω 1 ( ; σ ) 1 σ H λ , γ θ ( ( s χ ) 2 ; χ ) + H λ , γ θ ( | s χ | ; χ ) .
Hence, by using the Cauchy–Buniakowsky–Schwarz inequality, we have
| H λ , γ θ ( ; χ ) ( χ ) | | ( χ ) | | H λ , γ θ ( s χ ; χ ) | + ω 1 ( ; σ ) 1 σ H λ , γ θ ( ( s χ ) 2 ; χ ) + 1 H λ , γ θ ( ( s χ ) 2 ; χ ) .
Now, choosing σ = B λ , γ θ ( χ ) , we get the desired inequality.   □
Theorem 4. 
Let C S , θ ( χ ) C S , λ N + , γ > 0 and χ S . Then, there exists a constant M 1 = 4 M such that for any χ S
| H λ , γ θ ( ; χ ) ( χ ) | M 1 ω 2 ; 1 2 δ λ , γ θ ( χ ) , + ω 1 ; | A λ , γ θ ( χ ) | ,
where δ λ , γ θ ( χ ) = B λ , γ θ ( χ ) + ( A λ , γ θ ( χ ) ) 2 .
Proof. 
For any λ N + , γ > 0 and χ S , we construct the auxiliary operators as follows:
Ω λ , γ θ ( ; χ ) = H λ , γ θ ( ; χ ) + ( χ ) ( ε λ , γ θ ( χ ) ) .
Then, we can easily check that
Ω λ , γ θ ( e 0 ; χ ) = H λ , γ θ ( e 0 ; χ ) = 1 , Ω λ , γ θ ( e 1 ; χ ) = H λ , γ θ ( e 1 ; χ ) + χ ε λ , γ θ ( χ ) = χ .
For any π C S and s , χ S , by using Taylor’s expansion formula, we have
π ( s ) π ( χ ) = π ( χ ) ( s χ ) + χ s ( s x ) π ( x ) d x .
Applying the operators Ω λ , γ θ on both sides of the above equality, we can write
Ω λ , γ θ ( π ; χ ) = π ( χ ) + Ω λ , γ θ χ s ( s x ) π ( x ) d x ; χ .
Therefore, we have
Ω λ , γ θ ( π ; χ ) = π ( χ ) + H λ , γ θ χ s ( s x ) π ( x ) d x ; χ χ ε λ , γ θ ( χ ) ( ε λ , γ θ ( χ ) x ) π ( x ) d x .
On the other hand,
| χ s ( s x ) π ( x ) d x | ( s χ ) 2 π .
This means that
| Ω λ , γ θ ( π ; χ ) π ( χ ) | H λ , γ θ ( χ s ( s x ) π ( x ) d x ; χ ) + | χ ε λ , γ θ ( χ ) ( ε λ , γ θ ( χ ) x ) π ( x ) d x | H λ , γ θ ( ( s χ ) 2 ; χ ) π + ( ε λ , γ θ ( χ ) χ ) 2 π ( B λ , γ θ ( χ ) + ( A λ , γ θ ( χ ) ) 2 ) π .
In view of (12) and Lemma 6, we obtain
| Ω λ , γ θ ( ; χ ) | | H λ , γ θ ( ; χ ) | + | ( χ ) | + | ( ε λ , γ θ ( χ ) ) | 3 .
Furthermore, using the definition (12) of the operators Ω λ , γ θ and (13), we obtain that
| H λ , γ θ ( ; χ ) ( χ ) | = | Ω λ , γ θ ( ; χ ) ( χ ) + ( ε λ , γ θ ( χ ) ) ( χ ) | | Ω λ , γ θ ( π ; χ ) | + | Ω λ , γ θ ( π ; χ ) π ( χ ) | + | π ( χ ) ( χ ) | + | ( ε λ , γ θ ( χ ) ) ( χ ) | 4 π + ( ε λ , γ θ ( χ ) ) 2 π + ω 1 ( ; | A λ , γ θ ( χ ) | ) .
Taking the infimum on the right-hand side over all π C S and combining inequality (10), we have
| H λ , γ θ ( ; χ ) ( χ ) | 4 K 2 ; 1 4 ( ε λ , γ θ ( χ ) ) 2 + ω 1 ( ; | A λ , γ θ ( χ ) | ) M 1 ω 2 ; 1 2 ε λ , γ θ ( χ ) + ω 1 ( ; | A λ , γ θ ( χ ) | ) .
Then, the proof of Theorem 4 is completed.   □
Theorem 5. 
Let C S , θ ( χ ) C S , λ N + , γ > 0 and χ S . Then, we have
| H λ , γ θ ( ; χ ) ( χ ) | 5 λ A λ , γ θ ( t ) ω 1 ; 1 λ + 9 2 λ B λ , γ θ ( χ ) + 2 ω 2 ; 1 λ .
Proof. 
For χ , σ , χ + σ S , using the definition of the Steklov mean, we obtain
| H λ , γ θ ( ; χ ) ( χ ) | H λ , γ θ ( | σ | ; χ ) + | H λ , γ θ ( σ σ ( χ ) ; χ ) | + | σ ( χ ) ( χ ) | .
Using property (i) of the Steklov mean and Lemma 6, we obtain
| H λ , γ θ ( | σ | ; χ ) H λ , γ θ ( | σ | ) | σ ω 2 ( ; σ ) .
It follows from Taylor’s expansion formula that
σ ( s ) = σ ( χ ) + σ ( χ ) ( s χ ) + χ s ( s x ) σ ( x ) d x .
Again using property (i) of the Steklov mean and Lemma 6, we get
| H λ , γ θ ( σ ; χ ) σ ( χ ) | | H λ , γ θ ( σ ( χ ) ( s χ ) ; χ ) | + H λ , γ θ ( χ s ( s x ) σ ( x ) d x ; χ ) σ | H λ , γ θ ( ( s χ ) ; χ ) | + σ H λ , γ θ ( χ s ( s x ) d x ; χ ) σ | A λ , γ θ ( χ ) | + 1 2 σ | B λ , γ θ ( χ ) | 5 σ A λ , γ θ ( χ ) ω 1 ( ; σ ) + 9 2 σ 2 B λ , γ θ ( χ ) ω 2 ( ; σ ) .
Hence, we have
| H λ , γ θ ( σ ; χ ) σ ( χ ) | 5 σ | A λ , γ θ ( χ ) | ω 1 ( ; σ ) + 9 2 σ 2 | B λ , γ θ ( χ ) | + 2 ω 2 ( ; σ ) .
Choosing σ = 1 λ , the proof of Theorem 5 is completed.   □
Theorem 6. 
Let ϱ ( 0 , 1 ] . If Lip M κ 1 , κ 2 ( ϱ ) , then we have
| H λ , γ θ ( ; χ ) ( χ ) | M 2 B λ , γ θ ( χ ) κ 1 χ 2 + κ 2 χ ϱ 2 .
Proof. 
We first deal with the case ϱ = 1 . We obtain
| H λ , γ θ ( ; χ ) ( χ ) | ν = 0 λ p λ , ν ( χ ) 0 1 | ( s ) ( χ ) | s ν γ + θ ( χ ) 1 ( 1 s ) ( λ ν ) γ + θ ( χ ) 1 B ( ν γ + θ , ( λ ν ) γ + θ ( χ ) ) d s M 2 ν = 0 λ p λ , ν ( χ ) 0 1 | s χ | s + κ 1 χ 2 + κ 2 χ s ν γ + θ ( χ ) 1 ( 1 s ) ( λ ν ) γ + θ ( χ ) 1 B ( ν γ + θ , ( λ ν ) γ + θ ( χ ) ) d s .
Using the fact that 1 s + κ 1 χ 2 + κ 2 χ < 1 κ 1 χ 2 + κ 2 χ and the Cauchy–Buniakowsky–Schwarz inequality, we have
| H λ , γ θ ( ; χ ) ( χ ) | M 2 κ 1 χ 2 + κ 2 χ ν = 0 λ p λ , ν ( χ ) 0 1 | s χ | s ν γ + θ ( χ ) 1 ( 1 s ) ( λ ν ) γ + θ ( χ ) 1 B ( ν γ + θ , ( λ ν ) γ + θ ( χ ) ) d s = M 2 κ 1 χ 2 + κ 2 χ H λ , γ θ ( | s χ | , χ ) M 2 B λ , γ θ ( χ ) κ 1 χ 2 + κ 2 χ 1 2 .
Thus, the inequality is obtained for ϱ = 1 . Next, we prove the inequality for the case 0 < ϱ < 1 . Applying the Hölder’s inequality with p = 2 ϱ and q = 2 2 ϱ , we get
| H λ , γ θ ( ; χ ) ( χ ) | ν = 0 λ p λ , ν ( χ ) 0 1 | ( s ) ( χ ) | s ν γ + θ ( χ ) 1 ( 1 s ) ( λ ν ) γ + θ ( χ ) 1 B ( ν γ + θ , ( λ ν ) γ + θ ( χ ) ) d s ν = 0 λ p λ , ν ( χ ) 0 1 | ( s ) ( χ ) | 2 ϱ s ν γ + θ ( χ ) 1 ( 1 s ) ( λ ν ) γ + θ ( χ ) 1 B ( ν γ + θ ( χ ) , ( λ ν ) γ + θ ( χ ) ) d s ϱ 2 ν = 0 λ p λ , ν ( χ ) 0 1 | ( s ) ( χ ) | 2 ϱ s ν γ + θ ( χ ) 1 ( 1 s ) ( λ ν ) γ + θ ( ϱ ) 1 B ( ν γ + θ , ( λ ν ) γ + θ ( ϱ ) ) d s ϱ 2 × ν = 0 λ p λ , ν ( χ ) 0 1 s ν γ + θ ( χ ) 1 ( 1 s ) ( λ ν ) γ + θ ( χ ) 1 B ( ν γ + θ , ( λ ν ) γ + θ ( χ ) ) d s 2 ϱ 2 = ν = 0 λ p λ , ν ( χ ) 0 1 | ( s ) ( χ ) | 2 ϱ s ν γ + θ ( χ ) 1 ( 1 s ) ( λ ν ) γ + θ ( χ ) 1 B ( ν γ + θ , ( λ ν ) γ + θ ( χ ) ) d s ϱ 2 M 2 ν = 0 λ p λ , ν ( χ ) 0 1 ( s χ ) 2 ( s + κ 1 υ 2 + κ 2 χ ) s ν γ + θ ( χ ) 1 ( 1 s ) ( λ ν ) γ + θ ( χ ) 1 B ( ν γ + θ , ( λ ν ) γ + θ ( χ ) ) d s ϱ 2 M 2 ( κ 1 χ 2 + κ 2 χ ) χ 2 ν = 0 λ p λ , ν ( χ ) 0 1 ( s χ ) 2 s ν γ + θ ( χ ) 1 ( 1 s ) ( λ ν ) γ + θ ( χ ) 1 B ( ν γ + θ , ( λ ν ) γ + θ ( χ ) ) d s ϱ 2 = M 2 ( κ 1 χ 2 + κ 2 χ ) ϱ 2 ( H λ , γ θ ( ( s χ ) 2 ; χ ) ) ϱ 2 = M 2 B λ , γ θ ( χ ) ( κ 1 χ 2 + κ 2 χ ) ϱ 2 .
Hence, the desired result is obtained.   □
Theorem 7. 
Let C S and 0 < ϱ 1 . Then, for all χ S , we have
| H λ , γ θ ( ; χ ) ( χ ) | ω ϱ ( ; χ ) ( B λ , γ θ ( χ ) ) ϱ 2 .
Proof. 
By (11), we have
| H λ , γ θ ( ; χ ) ( χ ) | ω ϱ ( ; χ ) H λ , γ θ ( | s χ | ϱ ; χ ) .
Applying the Hölder’s inequality with p = 2 ϱ and q = 2 2 ϱ , we obtain
| H λ , γ θ ( ; χ ) ( χ ) | ω ϱ ( ; χ ) ( H λ , γ θ ( | s χ | 2 ; χ ) ) ρ 2 ω ϱ ( ; χ ) ( B λ , γ θ ( χ ) ) ϱ 2 .

5. Global Approximation

In this section, we yield a theorem on the global approximation properties of operators (3) by using the weighted first- and second-order modulus of smoothness. Let us define the space of functions W 2 ( ψ ) = { π C S : π AC l o c [ 0 , 1 ] , ψ 2 π C S } , where π AC l o c [ 0 , 1 ] means that π is differentiable and π is absolutely continuous on every closed interval [ c , d ] ( 0 , 1 ) . Let C S and σ > 0 . The weighted K-functional is defined by
K 2 ψ ( ; σ ) = inf { π + σ ψ 2 π + σ 2 π : π W 2 ( ψ ) } .
The weighted first- and second-order modulus of smoothness are defined by
ω 1 ( ; σ ) = sup 0 < s σ sup χ , χ + s ( χ ) S | ( χ + s ( χ ) ) ( χ ) | ,
and
ω 2 ψ ( ; σ ) = sup 0 < s σ sup χ , χ + s ψ ( χ ) S | ( χ + s ψ ( χ ) ) 2 ( χ ) + ( χ s ψ ( χ ) ) | ,
where ψ and above are admissible step-weight functions defined on S. By [19], there exists a constant M > 0 , such that
K 2 ψ ( ; σ ) M ω 2 ψ ( ; σ ) .
Our next result is the following theorem.
Theorem 8. 
Let C S , θ ( χ ) C S , λ N + , γ > 0 and χ S . Then
| H λ , γ θ ( ; χ ) ( χ ) | M 3 ω 2 ψ ; 1 λ γ + ω 1 ; 1 λ γ ,
where ψ ( χ ) = χ ( 1 χ ) , ( χ ) = ( γ + θ ( χ ) ) | 1 2 χ | , χ S and M 3 > 0 is a constant.
Proof. 
Again, considering the auxiliary operators defined at (12) and for π W 2 ( ψ ) , applying the operators H λ , γ θ on both sides of the inequality mentioned above, we have
| Ω λ , γ θ ( π ; χ ) π ( χ ) | H λ , γ θ χ s | s μ | | π ( μ ) | d μ ; χ + χ ε λ , γ θ ( χ ) | ε λ , γ θ ( χ ) μ | | π ( μ ) | d μ .
Since Λ λ ( χ ) = φ 2 ( χ ) + 1 λ γ is concave function on S, taking μ = ε χ + ( 1 ε ) s , with ε [ 0 , 1 ] and s < μ < χ , we have
| s μ | Λ λ ( μ ) = ε | s χ | Λ λ ( ε χ + ( 1 ε ) s ) ε | s χ | ε Λ λ ( χ ) + ( 1 ε ) Λ λ ( s ) | s χ | Λ λ ( χ ) .
On the other hand, we observe that
| χ s | s μ | π ( μ ) d μ | = χ s | s μ | Λ λ ( μ ) π ( μ ) Λ λ ( μ ) d μ Λ λ π Λ λ ( χ ) ( s χ ) 2 .
Combining (16)–(18), we have
| Ω λ , γ θ ( π ; χ ) π ( χ ) | 1 Λ λ ( χ ) H λ , γ θ ( ( x χ ) 2 ; χ ) Λ λ π + 1 Λ λ ( χ ) ( γ + θ ( χ ) ) ( 1 2 χ ) λ γ + 2 θ ( χ ) 2 Λ λ π ( γ + θ ( χ ) ) 2 λ γ Λ λ π .
Applying the definition of K 2 ψ ( ; σ ) in this section, we find
| Ω λ , γ θ ( ; χ ) ( χ ) | ( γ + θ ( χ ) ) 2 λ γ ψ 2 + 1 λ γ .
Further, for C S , since the operators Ω λ , γ θ ( ; χ ) are uniformly bounded, using the above inequality, we have
| H λ , γ θ ( ; χ ) ( χ ) | | Ω λ , γ θ ( π ; χ ) | + | Ω λ , γ θ ( π ; χ ) π ( χ ) | + | ( χ ) π ( χ ) | + | ( λ 2 ) γ χ + γ + θ ( χ ) λ γ + 2 θ ( χ ) ( χ ) | 4 ( γ + θ ( χ ) ) 2 π + 1 λ γ ψ 2 + 1 λ 2 γ 2 + ( λ 2 ) γ χ + γ + θ ( χ ) λ γ + 2 θ ( χ ) ( χ ) .
Taking infimum over all π W 2 ( ψ ) , we get
| H λ , γ θ ( ; χ ) ( χ ) | M 3 K 2 ψ ; 1 λ γ + ( λ 2 ) γ χ + γ + θ ( χ ) λ γ + 2 θ ( χ ) ( χ ) .
As for the last part above, we find
( λ 2 ) γ χ + γ + θ ( χ ) λ γ + 2 θ ( χ ) ( χ ) = χ + ( χ ) ( r + θ ( χ ) ) ( 1 2 χ ) ( χ ) ( λ γ + 2 θ ( χ ) ) ( χ ) sup x S x + ( x ) ( r + θ ( χ ) ) ( 1 2 χ ) ( χ ) ( λ γ + 2 θ ( χ ) ) ( x ) ω 1 ; ( r + θ ( χ ) ) ( 1 2 χ ) ( χ ) ( λ γ + 2 θ ( χ ) ) ω 1 ; 1 λ γ + 2 θ ( χ ) ω 1 ; 1 λ γ .
Combining (19) with the above results, we complete the proof of Theorem 8.   □

6. Rate of Convergence

The goal of this section is to study the convergence rate of H λ , γ θ ( ; χ ) for functions with a derivative of bounded variation on S. Let D V B [ 0 , 1 ] denote the class of absolutely continuous functions defined on [ 0 , 1 ] , whose derivatives have bounded variation on [ 0 , 1 ] . It is well known that the functions D V B [ 0 , 1 ] possess a representation:
( χ ) = 0 χ π ( s ) d s + ( 0 ) ,
where π is a function with bounded variation on [ 0 , 1 ] . An integral representation of the operators H λ , γ θ can be given as follows:
H λ , γ θ ( ; χ ) = 0 1 R λ , γ θ ( χ ; s ) ( s ) d s , χ S ,
where the kernel R λ , γ θ ( χ ; s ) = ν = 0 λ p λ , ν ( χ ) s ν γ + θ ( χ ) 1 ( 1 s ) ( λ ν ) γ + θ ( χ ) 1 β ( ν γ + θ ( χ ) , ( λ ν ) γ + θ ( χ ) ) .
Lemma 7. 
For a sufficiently large λ and a fixed χ ( 0 , 1 ) , we have
(a) 
ϖ λ ( χ ; y ) = 0 y R λ , γ θ ( χ ; s ) d s B λ , γ θ ( χ ) ( χ y ) 2 , 0 y < χ ,
(b) 
1 ϖ λ ( χ ; z ) = z 1 R λ , γ θ ( χ ; s ) d s B λ , γ θ ( χ ) ( z χ ) 2 , χ < z < 1 .
Proof. 
We prove (a) as follows.
By Lemma 3, we have
ϖ λ ( χ ; y ) = 0 y R λ , γ θ ( χ ; s ) d s 0 y χ s χ y 2 R λ , γ θ ( χ ; s ) d s = H λ , γ θ ( ( s χ ) 2 ; χ ) ( χ y ) 2 = B λ , γ θ ( χ ) ( χ y ) 2 .
The proof of (b) is similar to that of (a). We omit the details.   □
Theorem 9. 
Let D B V [ 0 , 1 ] . Then, for every χ ( 0 , 1 ) and sufficiently large λ, the following inequality
| H λ , γ θ ( ; χ ) ( χ ) | 1 2 | ( χ + ) + ( χ ) | | A λ , γ θ ( χ ) | + 1 2 | ( χ + ) ( χ ) | B λ , γ θ ( χ ) + B λ , γ θ ( χ ) χ 1 j = 1 [ λ ] χ χ / j χ ( χ ) + χ λ χ χ / λ χ ( χ ) + B λ , γ θ ( χ ) 1 χ j = 1 [ λ ] χ χ + ( 1 χ ) / j ( χ ) + ( 1 χ ) λ χ χ + ( 1 χ ) / λ ( χ )
holds, where a b ( χ ) is the total variation of χ on [ a , b ] and χ is defined by
χ ( s ) = ( s ) ( χ ) , 0 s < χ , 0 , s = χ , ( s ) ( χ + ) , χ < s < 1 .
Proof. 
Since H λ , γ θ ( e 0 ; χ ) = 1 , by (20), for each χ ( 0 , 1 ) , we get
H λ , γ θ ( ; χ ) ( χ ) = 0 1 R λ , γ θ ( χ ; s ) ( ( s ) ( χ ) ) d s = 0 1 R λ , γ θ ( χ ; s ) χ s ( u ) d u d s .
On the other hand, for any D B V [ 0 , 1 ] , by (21), we decompose ( u ) as follows
( u ) = χ ( u ) + 1 2 ( ( χ + ) + ( χ ) ) + 1 2 ( ( χ + ) ( χ ) ) sgn ( u χ ) + δ χ ( u ) ( u ) 1 2 ( ( χ + ) + ( χ ) ) ,
where
δ χ ( u ) = 1 , u = χ , 0 , u χ .
Therefore, we have
0 1 χ s ( u ) 1 2 ( ( χ + ) + ( χ ) ) δ χ ( u ) d u R λ , γ θ ( χ ; s ) d s = 0 .
From (20), we have
0 1 χ s 1 2 ( χ + ) + ( χ ) d u R λ , γ θ ( χ ; s ) d s = 1 2 ( ( χ + ) + ( χ ) ) H λ , γ θ ( s χ ) ; s ,
meanwhile, we have
0 1 R λ , γ θ ( χ ; s ) χ s 1 2 ( ( χ + ) ( χ ) ) sgn ( u χ ) d u d s 1 2 | ( χ + ) ( χ ) | 0 1 | s χ | R λ , γ θ ( χ ; s ) d s 1 2 | ( χ + ) ( χ ) | H λ , γ θ ( | s χ | ; χ ) 1 2 | f ( χ + ) ( χ ) | H λ , γ θ ( s χ ) 2 ; χ 1 2 .
Using Lemma 3 and considering (22)–(25), we obtain
| H λ , γ θ ( ; χ ) ( χ ) | 1 2 | ( χ + ) + ( χ ) | | A λ , γ θ ( χ ) | + 1 2 | ( χ + ) ( χ ) | B λ , γ θ ( χ ) + 0 χ χ s χ ( u ) d u R λ , γ θ ( χ ; s ) d s + χ 1 χ s χ ( u ) d u R λ , γ θ ( χ ; s ) d s .
Now, let
E λ , γ θ ( χ ; χ ) = 0 χ χ s χ ( u ) d u R λ , γ θ ( χ ; s ) d s ,
F λ , γ θ ( χ ; χ ) = χ 1 χ s χ ( u ) d u R λ , γ θ ( χ ; s ) d s .
Thus, our task is to estimate the terms E λ , γ θ ( χ ; χ ) and F λ , γ θ ( χ ; χ ) .
From the definition of ϖ λ ( χ ; s ) , we write
| E λ , γ θ ( χ ; χ ) | = 0 χ χ s χ ( u ) d u d s ϖ λ ( χ ; s ) = 0 χ ϖ λ ( χ ; s ) χ ( s ) d s .
Since the inequality a b d s ϖ λ ( χ ; s ) 1 holds for any [ a , b ] [ 0 , 1 ] , applying the integration by parts with putting y = χ ( χ / λ ) , we obtain
| E λ , γ θ ( χ ; χ ) | ( 0 y + y χ ) | ϖ λ ( χ ; s ) | | χ ( s ) | d s B λ , γ θ ( χ ) 0 y s χ ( χ ) ( χ s ) 2 d s + y χ s χ ( χ ) d s B λ , γ θ ( χ ) 0 χ ( χ / λ ) s χ ( χ ) ( χ s ) 2 d s + χ λ χ ( χ / λ ) χ ( χ ) .
By considering u = χ / ( χ s ) , we yield
B λ , γ θ ( χ ) 0 χ ( χ λ ) ( χ s ) 2 s χ ( χ ) d s = B λ , γ θ ( χ ) χ 1 1 λ χ ( χ / u ) χ ( χ ) d u B λ , γ θ ( χ ) χ 1 j = 1 [ λ ] j j + 1 χ ( χ / j ) χ ( χ ) d u B λ , γ θ ( χ ) χ 1 j = 1 [ λ ] χ ( χ / j ) χ ( χ ) .
Therefore,
| E λ , γ θ ( χ ; χ ) | B λ , γ θ ( χ ) χ 1 j = 1 [ λ ] χ ( χ / j ) χ ( χ ) + χ λ χ ( χ / λ ) χ ( χ ) .
Again, applying integration by parts to F λ , γ θ ( χ ; χ ) , together with Lemma 7, we have
| F λ , γ θ ( χ ; χ ) | = χ 1 ( χ s χ ( u ) d u ) R λ , γ θ ( χ ; s ) d s χ z χ s χ ( u ) d u d s ( 1 ϖ λ ( χ ; s ) ) + z 1 χ s χ ( u ) d u d s ( 1 ϖ λ ( χ ; s ) ) = χ s χ ( u ) ( 1 ϖ λ ( χ ; s ) ) d u χ z χ z χ ( s ) ( 1 ϖ λ ( χ ; s ) ) d s + z 1 χ s χ ( u ) d u d s ( 1 ϖ λ ( χ ; s ) ) = χ z χ ( u ) d u ( 1 ϖ λ ( χ ; z ) ) χ z χ ( s ) ( 1 ϖ λ ( χ ; s ) ) d s + χ s χ ( u ) d u ( 1 ϖ λ ( χ ; s ) ) z 1 z 1 χ ( s ) ( 1 ϖ λ ( χ ; s ) ) d s = χ z χ ( s ) ( 1 ϖ λ ( χ ; s ) ) d s + z 1 χ ( s ) ( 1 ϖ λ ( χ ; s ) ) d s B λ , γ θ ( χ ) z 1 χ s ( χ ) ( s χ ) 2 d s + χ z χ s ( χ ) d s = B λ , γ θ ( χ ) χ + ( ( 1 χ ) / λ ) 1 χ s ( χ ) ( s χ ) 2 d s + ( 1 χ ) λ χ χ + ( ( 1 χ ) / λ ) ( χ ) .
By the substitution of the values u = ( 1 χ ) / ( s χ ) , we get
| F λ , γ θ ( χ ; χ ) | B λ , γ θ ( χ ) 1 λ χ χ + ( ( 1 χ ) / u ) ( χ ) ( 1 χ ) 1 d u + ( 1 χ ) λ χ χ + ( ( 1 χ ) / λ ) ( χ ) B λ , γ θ ( χ ) ( 1 χ ) j = 1 [ λ ] j j + 1 χ χ + ( ( 1 χ ) / u ) ( χ ) d u + ( 1 χ ) λ χ χ + ( ( 1 χ ) / λ ) ( χ ) = B λ , γ θ ( χ ) ( 1 χ ) j = 1 [ λ ] χ χ + ( ( 1 χ ) / j ) ( χ ) + ( 1 χ ) λ χ χ + ( ( 1 χ ) / λ ) ( χ ) .
Collecting the estimates (26)–(28), we get the desired results. Hence, the proof of Theorem 9 is completed.   □

7. Conclusions

In our paper, we construct the blending-type modified Bernstein–Durrmeyer operators involving the strictly positive function θ ( χ ) and the positive parameter γ . We derive many approximation properties of this type of operator. We first establish a Voronovskaya-type asymptotic theorem of them. Then, we establish the local and global approximation theorems by using the classical modulus of continuity and K-functional. Finally, we derive the convergence rate of the approximation for functions with a derivative of bounded variation.
We remark that our results are rather general. For instance, one can get the error estimates from our results for different existing Bernstein–Durrmeyer–type operators, such as operators given in [14,15], by selecting different parameters θ ( χ ) and γ . Moreover, we can obtain the new operators, which provide better approximations for different target functions. In general, different target functions need different parameters. The choices of the parameters show the flexibility of the operators H λ , γ θ . In fact, for a given target function , we can choose appropriate parameters to obtain a smaller error of the approximation by H λ , γ θ ( ; χ ) . This feature will be of great interest to practical applications. We illustrate this feature by some numerical experiments.
Example 1. 
Let ( χ ) = χ 2 + χ + 1 , χ [ 0 , 1 ] , γ = 5 , θ ( χ ) = χ 2 sin ( π 2 χ 3 ) and λ { 10 , 20 , 50 , 100 } .
Figure 1 shows the convergence of the operators H λ , γ θ ( ; χ ) to the target function ( χ ) while we choose different parameters λ . The larger the λ , the smaller of the error of the approximation by H λ , γ θ ; χ . Combining with Figure 2, when χ [ 0 , 0.65 ] , the error of the approximation | H λ , γ θ ; χ ( χ ) | becomes smaller and smaller with the increase of variable χ . When χ [ 0.65 , 1 ] , contrary to what happens.
It is known that if we take θ ( χ ) = 1 in operators (3), then we get the modified Bernstein–Durrmeyer-type operators H λ , γ 1 ( ; χ ) , which is defined in [14]. In the following example, we show that operators (3) with some different parameters provide better approximations than the operators H λ , γ 1 ( ; χ ) .
Example 2. 
Let ( χ ) = χ 2 + χ + 1 , χ [ 0 , 1 ] , γ = 10 , θ ( χ ) = ( χ + 3 ) 2 and λ = 50 .
From Figure 3, we can see that, for the target function ( χ ) (green), the operator H λ , γ θ ( ; χ ) (red) gives a better approximation to ( χ ) than the modified Bernstein–Durrmeyer type operator H λ , γ 1 ( ; χ ) (blue).

Author Contributions

Writing–original draft, Y.-J.L., W.-T.C., W.-H.Z., P.-X.Y. All authors have read and agreed to the published version of the manuscript.

Funding

This research is supported by the National Natural Science Foundation of China (Grant No. 11626031), the Key Natural Science Research Project in Universities of Anhui Province (Grant No. KJ2021A0648 and KJ2019A0572), the Philosophy and Social Sciences General Planning Project of Anhui Province of China (Grant No. AHSKYG2017D153), and the Natural Science Foundation of Anhui Province of China (Grant No. 1908085QA29).

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Acknowledgments

The authors would like to thank the referees and the editor for their useful suggestions, which helped us improve the paper.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Bernstein, S.N. Proof of the theorem of Weierstrass based on the calculus of probabilities. Commun. Soc. Math. Kharkow 1913, 2, 1–2. [Google Scholar]
  2. Cai, Q.B.; Lian, B.Y.; Zhou, G.R. Approximation properties of λ-Bernstein operators. J. Inequal. Appl. 2018, 2018, 61. [Google Scholar] [CrossRef] [PubMed]
  3. Chen, X.Y.; Tan, J.Q.; Liu, Z.; Xie, J. Approximation of functions by a new family of generalized Bernstein operators. J. Math. Anal. Appl. 2017, 450, 244–261. [Google Scholar] [CrossRef]
  4. Kajla, A.; Mursaleen, M.; Acar, T. Durrmeyer-type generalization of parametric Bernstein operators. Symmetry 2020, 12, 1141. [Google Scholar] [CrossRef]
  5. Acu, A.M.; Kajla, A. Blending type approximation by modified Bernstein operators. Adv. Oper. Theory 2022, 7, 9. [Google Scholar] [CrossRef]
  6. Baxhaku, B.; Kajla, A. Blending type approximation by bivariate generalized Bernstein type operators. Quaest. Math. 2020, 43, 1449–1465. [Google Scholar] [CrossRef]
  7. Kajla, A.; Mohiuddine, S.A.; Alotaibi, A. Blending-type approximation by Lupaş–Durrmeyer-type operators involving Pólya distribution. Math. Methods Appl. Sci. 2021, 44, 9407–9418. [Google Scholar] [CrossRef]
  8. Kajla, A.; Mohiuddine, S.A.; Alotaibi, A. Durrmeyer-type generalization of μ-Bernstein operators. Filomat 2022, 36, 349–360. [Google Scholar] [CrossRef]
  9. Acat, T.; Acu, A.M.; Manav, N. Approximation of functions by genuine Bernstein-Durrmeyer type operators. J. Math. Inequal. 2018, 12, 975–987. [Google Scholar] [CrossRef]
  10. Cai, Q.B.; Ülkü, D.K.; Çekim, B. Approxiamtion properties for the genuine modified Bernstein-Durrmeyer-Stancu operators. Appl. Math. J. Chin. Univ. 2020, 35, 468–478. [Google Scholar] [CrossRef]
  11. Usta, F. On new modification of Bernstein operators: Theory and applications. Iran. J. Sci. Technol. Trans. A Sci. 2020, 44, 1119–1124. [Google Scholar] [CrossRef]
  12. Wu, Y.S.; Cheng, W.T.; Chen, F.L.; Zhou, Y.H. Approximation theorem for new modification of q-Bernstein operators on (0, 1). J. Funct. Spaces 2020, 2020, 6694032. [Google Scholar] [CrossRef]
  13. Cai, Q.B.; Sofalıoǧlu, M.; Kanat, K.; Çekim, B. Some approximation results for the new modification of Bernstein-Beta operators. AIMS Math. 2022, 7, 1831–1844. [Google Scholar] [CrossRef]
  14. Kajla, A.; Miclǎuş, D. Modified Bernstein-Durrmeyer type operators. Mathematics 2022, 10, 1876. [Google Scholar] [CrossRef]
  15. Sofalıoǧlu, M.; Kanat, K.; Çekim, B. Parametric generalization of the modified Bernstein operators. Filomat 2022, 63, 1699–1709. [Google Scholar] [CrossRef]
  16. DeVore, R.A.; Lorentz, G.G. Constructive Approximation; Springer: Berlin/Heidelberg, Germany, 1993. [Google Scholar]
  17. Lenze, B. On Lipschitz type maximal functions and their smoothness spaces. Indag. Math. (Proc.) 1988, 90, 53–63. [Google Scholar] [CrossRef] [Green Version]
  18. Özarslan, M.A.; Aktuğlu, H. Local approximation for certain King-type operator. Filomat 2013, 27, 173–181. [Google Scholar] [CrossRef]
  19. Ditzion, D.; Totik, V. Moduli of Smoothness; Springer: New York, NY, USA, 1987. [Google Scholar]
Figure 1. The operators H λ , γ θ ( ; χ ) and the target function ( χ ) .
Figure 1. The operators H λ , γ θ ( ; χ ) and the target function ( χ ) .
Axioms 12 00005 g001
Figure 2. Error of approximation | H λ , γ θ ; χ ( χ ) | .
Figure 2. Error of approximation | H λ , γ θ ; χ ( χ ) | .
Axioms 12 00005 g002
Figure 3. The target function ( χ ) (green), the operator H λ , γ θ ( ; χ ) (red), the modified Bernstein–Durrmeyer type operator H λ , γ 1 ( ; χ ) (blue).
Figure 3. The target function ( χ ) (green), the operator H λ , γ θ ( ; χ ) (red), the modified Bernstein–Durrmeyer type operator H λ , γ 1 ( ; χ ) (blue).
Axioms 12 00005 g003
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Liu, Y.-J.; Cheng, W.-T.; Zhang, W.-H.; Ye, P.-X. Approximation Properties of the Blending-Type Bernstein–Durrmeyer Operators. Axioms 2023, 12, 5. https://doi.org/10.3390/axioms12010005

AMA Style

Liu Y-J, Cheng W-T, Zhang W-H, Ye P-X. Approximation Properties of the Blending-Type Bernstein–Durrmeyer Operators. Axioms. 2023; 12(1):5. https://doi.org/10.3390/axioms12010005

Chicago/Turabian Style

Liu, Yu-Jie, Wen-Tao Cheng, Wen-Hui Zhang, and Pei-Xin Ye. 2023. "Approximation Properties of the Blending-Type Bernstein–Durrmeyer Operators" Axioms 12, no. 1: 5. https://doi.org/10.3390/axioms12010005

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop