Next Article in Journal
On Classes of Non-Carathéodory Functions Associated with a Family of Functions Starlike in the Direction of the Real Axis
Next Article in Special Issue
Fixed Point Theorems for Generalized Classes of Operators
Previous Article in Journal
How Micelles Influence the Optical Limiting Properties of Zinc Porphyrins and J-Aggregates for Picosecond Pulse Trains
Previous Article in Special Issue
Statistical Convergence via q-Calculus and a Korovkin’s Type Approximation Theorem
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

New Classes of Degenerate Unified Polynomials

by
Daniel Bedoya
1,†,
Clemente Cesarano
2,*,†,
Stiven Díaz
3,† and
William Ramírez
3,*,†
1
Departamento de Ciencias Básicas, Universidad Metropolitana, Barranquilla 00928-1345, Colombia
2
Section of Mathematics, Universitá Telematica Internazionale Uninettuno, 00186 Rome, Italy
3
Departamento de Ciencias Naturales y Exactas, Universidad de la Costa, Barranquilla 00928-1345, Colombia
*
Authors to whom correspondence should be addressed.
These authors contributed equally to this work.
Axioms 2023, 12(1), 21; https://doi.org/10.3390/axioms12010021
Submission received: 26 November 2022 / Revised: 14 December 2022 / Accepted: 19 December 2022 / Published: 25 December 2022
(This article belongs to the Special Issue Advanced Approximation Techniques and Their Applications)

Abstract

:
In this paper, we introduce a class of new classes of degenerate unified polynomials and we show some algebraic and differential properties. This class includes the Appell-type classical polynomials and their most relevant generalizations. Most of the results are proved by using generating function methods and we illustrate our results with some examples.

1. Introduction

The classical three polynomials, Bernoulli polynomials (BP), B n ( x ) , Euler polynomials (EP), E n ( x ) , and Genocchi polynomials (GP), G n ( x ) , were introduced some centuries ago, and they have been used in different mathematical problems. Mainly in the calculus of finite differences and number theory, e.g., [1,2,3]. We recall that have the following exponential-generating functions
t e x t e t 1 = n = 0 B n ( x ) t n n ! , | t | < 2 π , 2 e x t e t + 1 = n = 0 E n ( x ) t n n ! , | t | < π ,
and
2 t e x t e t + 1 = n = 0 G n ( x ) t n n ! , | t | < π .
As a consequence of its importance many extensions for these polynomials and others with similar structures have been studied, achieving certain enthralling results [4,5,6,7]. For example, generalized Bernoulli, B n ( α ) ( x ) , Euler, E n ( α ) ( x ) , and Genocchi, G n ( α ) ( x ) , polynomials of order α are given by
t e t 1 α e x t = n = 0 B n α ( x ) t n n ! , | t | < 2 π , 2 e t + 1 α e x t = n = 0 E n α ( x ) t n n ! , | t | < π ,
and
2 t e t + 1 α e x t = n = 0 G n α ( x ) t n n ! , | t | < π ,
respectively, see [8,9]. On other hand, Apostol [10] defined and infrastructures the extended form of achieving Bernoulli polynomials and numbers, which are known as the Apostol–Bernoulli polynomials (ABP), B n ( x ; λ ) , defined using the following generating function:
t e x t λ e t 1 = n = 0 B n ( x ; λ ) t n n ! ,
where | t | < 2 π when λ = 1 and | t | < | log λ | when λ 1 . Motivated by this result, Srivastava and Luo in [11] (p. 292, Equation (9)), [12] (p. 917, Equation (1)) and [13] (p. 395, Equation (1.18)) introduced the Apostol–Bernoulli polynomials, B n ( α ) ( x ; λ ) , the Apostol–Euler polynomials (AEP), E n ( α ) ( x ; λ ) , and the Apostol–Genocchi (APG), G n α ( x ; λ ) , polynomials of order α . We recall that
t λ e t 1 α e x t = n = 0 B n ( α ) ( x ; λ ) t n n ! , 2 λ e t + 1 α e x t = n = 0 E n ( α ) ( x ; λ ) t n n !
and
2 t λ e t + 1 α e x t = n = 0 G n ( α ) ( x ; λ ) t n n ! ,
holds for given particular values of the variable t. Recently, in [14] introduced and studied properties of a class of polynomials, U n ( x ; λ ; μ ) , called unified Bernoulli–Euler polynomials of Apostol type (UBEPA) and defined by the following power series.
2 μ + μ 2 t λ e t + ( 1 μ ) e x t = n = 0 U n ( x ; λ ; μ ) t n n ! ,
where
ln λ 1 μ + t < π , 0 μ < 1
and
ln λ μ 1 + t < 2 π , otherwise .
Note that for particular values in the parameters μ and λ , we can obtain in (1), the polynomials of Bernoulli, Euler, Apostol–Bernoulli, and Apostol–Euler. However, they do not unify the polynomials of order α , nor consider the polynomials called Frobenius–Euler (FEP), H n ( x ; u ) , that it is are defined through the generating function:
1 u e t u e x t = n = 0 H n ( x ; u ) t n n ! , | t | < log 1 u .
For detail about Frobenius–Euler polynomials, see [15] and [16] (p. 2, Def. 1).
In the last decade, so-called degenerate polynomials have received great attention from several researchers due to their multiple properties and applications in science and engineering, as well as in mathematics (see [17,18,19,20]). This type of polynomials was initiated by L. Carlitz when introduced (see [21]) the degenerate Bernoulli polynomials (DBP), B n ( x ; a ) , using the following generating function
t ( 1 + a t ) 1 a 1 ( 1 + a t ) x a = n = 0 B n ( x ; a ) t n n ! .
In a similar way, the degenerate Euler polynomials (DEP), E n ( x ; a ) , the degenerate Genocchi polynomials (DGP), G n ( x ; a ) , and the degenerate Frobenius–Euler polynomials (DFEP), H n ( x ; a ) , are given by means of the corresponding generating functions;
2 ( 1 + a t ) 1 a + 1 ( 1 + a t ) x a = n = 0 E n ( x ; a ) t n n ! ,
2 t ( 1 + a t ) 1 a + 1 ( 1 + a t ) x a = n = 0 G n ( x ; a ) t n n !
and
1 u ( 1 + a t ) 1 a u ( 1 + a t ) x a = n = 0 H n ( x ; a ; u ) t n n ! .
See [22,23]. The authors of [20] (p. 3, Equation (2.1)) introduces a unified class of the degenerate Apostol-type polynomials
2 ν t v γ ( 1 + a t ) 1 a + 1 α ( 1 + a t ) x a = n = 0 P n ( α ) ( x ; a ; γ , ν , v ) t n n ! .
Observe that, for particular parameters, v , γ , α , and ν , we obtain the polynomials (2), (3), and (4). However, it is not possible to obtain (5), immediately.
Motivated by (1) and (6), we introduce a new version of unified degenerate polynomials and numbers, that relates to all of the above polynomials mentioned. Several important recurrence relations and explicit representations for these polynomials are derived.

2. Preliminaries

Let R be the set of the non-zero real numbers and R + positive real numbers. For complex sequences ( a n ) n 0 and ( b n ) n 0 , we recall the following identity
n = 0 a n n = 0 b n = n = 0 k = 0 n a n k b k .
See [24] (p. 18, Equation 0.36) and [25] (p. 463, Def. 9.4.6). Further, recursive formula for binomial coefficient (see [26] (p. 13, Equation (5))) is given by
r k = r 1 k 1 + r 1 k , r C , k Z .
For any natural number n, the forward difference Δ is given by
Δ u ( n ) = u ( n + 1 ) u ( n ) .
On other hand, the Taylor series for the natural logarithm (see [24] (p. 53, Equation 1.511)) is given by
ln ( 1 + x ) = n = 1 ( 1 ) n + 1 n x n , 1 < x 1 .
For a R , we recall that
( 1 + a t ) x a = n = 0 ( x | a ) n t n n ! ,
where
( x | a ) 0 = 1 , ( x | a ) n = x ( x a ) ( x ( n 1 ) a ) , ( n 1 )
and
lim a 0 ( 1 + a t ) x a = e x t , n 0 .
For more detail see [27].

3. New Classes of Degenerate Unified Polynomials

Given the results mentioned in Section 1, we focus our attention on new unified presentations of generalized polynomials of type Generalized Apostle type. More specifically, we define degenerate unified polynomials and study their properties using power series.
Definition 1.
Let a R , θ C , α Z , λ R + { 0 } and μ , ρ R + { 1 } . We define the degenerate unifies given polynomials U n ( α ) ( x ; a ; λ ; μ ; θ ; ρ ) by the following power series:
2 μ + μ 2 t θ λ ( 1 + a t ) 1 a + ( 1 ρ ) α ( 1 + a t ) x a = n = 0 U n ( α ) ( x ; a ; λ ; μ ; θ ; ρ ) t n n ! .
Furthermore, the degenerate unified numbers, denoted
U n ( α ) ( a ; λ ; μ ; θ ; ρ ) ,
are given by
U n ( α ) ( 0 , a ; λ ; μ ; θ ; ρ ) : = U n ( α ) ( a ; λ ; μ ; θ ; ρ ) .
In case μ = ρ and θ = 1 , we denote simply by U n ( α ) ( x ; a ; λ ; μ ) .
Remark 1.
The radius of convergence of (12) is given as:
ln λ 1 ρ + t < π , 0 ρ < 1
and
ln λ ρ 1 + t < 2 π , otherwise .
Remark 2.
By (11), we have that the degenerate unified polynomials (12) converge to unified Bernoulli–Euler polynomials of Apostol type (1) when α = θ = 1 , μ = ρ and a 0 .
lim a 0 n = 0 U n ( α ) ( x ; a ; λ ; μ ; θ ; ρ ) t n n ! = lim a 0 2 μ + μ 2 t θ λ ( 1 + a t ) 1 a + ( 1 ρ ) α ( 1 + a t ) x a = 2 μ + μ 2 t λ e t + ( 1 μ ) e x t = n = 0 U n ( x ; λ ; μ ) t n n ! .
Remark 3.
From the Definition 1, the degenerate unified numbers U n ( α ) ( a ; λ ; μ ; θ ; ρ ) is given by the following series:
2 μ + μ 2 t θ λ ( 1 + a t ) 1 a + ( 1 ρ ) α = n = 0 U n ( α ) ( a ; λ ; μ ; θ ; ρ ) t n n ! .
The tables below (Table 1, Table 2, Table 3 and Table 4) summarize the standard notation for several sub-classes degenerate unified polynomials U n ( α ) ( x ; a ; λ ; μ ; θ ; ρ ) .
For specific parameters, we calculate the firsts degenerate unified polynomials in the followings two examples (Figure 1 and Figure 2).
Example 1.
For λ = θ = a = 1 , α = 2 , and μ = ρ = 3 the first few degenerate unified polynomials are given as:
U 0 ( 2 ) ( x ; 1 ; 1 ; 3 ; 1 ; 3 ) = 1 , U 1 ( 2 ) ( x ; 1 ; 1 ; 3 ; 1 ; 3 ) = x 1 , U 2 ( 2 ) ( x ; 1 ; 1 ; 3 ; 1 ; 3 ) = x 2 3 x 3 2 , U 3 ( 2 ) ( x ; 1 ; 1 ; 3 ; 1 ; 3 ) = x 3 6 x 2 + x 2 3 , U 4 ( 2 ) ( x ; 1 ; 1 ; 3 ; 1 ; 3 ) = x 4 10 x 3 + 14 x 2 17 x 6 , U 5 ( 2 ) ( x ; 1 ; 1 ; 3 ; 1 ; 3 ) = x 5 15 x 4 + 50 x 3 90 x 2 + 24 x .
Example 2.
For λ = 1 , θ = 1 , a = 2 , α = 1 , and μ = ρ = 4 the first few degenerate unified polynomials are given as:
U 0 ( 1 ) ( x ; 2 ; 1 ; 4 ; 1 ; 4 ) = 1 2 , U 1 ( 1 ) ( x ; 2 ; 1 ; 4 ; 1 ; 4 ) = x 2 5 8 , U 2 ( 1 ) ( x ; 2 ; 1 ; 4 ; 1 ; 4 ) = x 2 2 9 x 4 + 7 16 ,
U 3 ( 1 ) ( x ; 2 ; 1 ; 4 ; 1 ; 4 ) = x 3 2 39 x 2 8 + 145 x 16 75 64 , U 4 ( 1 ) ( x ; 2 ; 1 ; 4 ; 1 ; 4 ) = x 4 2 17 x 3 2 + 317 x 2 8 863 x 16 + 357 64 , U 5 ( 1 ) ( x ; 2 ; 1 ; 4 ; 1 ; 4 ) = x 5 2 105 x 4 8 + 895 x 3 8 12,015 x 2 32 + 27,413 x 64 9735 256 .

4. Properties

In this section, we state some properties for the new classes of degenerate unified polynomials using generating function approach. Initially, we can use the generating function to develop a recurrence relation for our polynomials.
Theorem 1.
Let n be non-negative integer. For α , β Z , we have
U n ( α + β ) ( x + y ; a ; λ ; μ ; θ ; ρ ) = k = 0 n n k U n k ( α ) ( x ; a ; λ ; μ ; θ ; ρ ) U k ( β ) ( y ; a ; λ ; μ ; θ ; ρ ) .
Proof. 
Observe that
n = 0 U n ( α + β ) ( x + y ; a ; λ ; μ ; θ ; ρ ) t n n ! = n = 0 U n ( α ) ( x ; a ; λ ; μ ; θ ; ρ ) t n n ! k = 0 U k ( β ) ( y ; a ; λ ; μ ; θ ; ρ ) t k k ! = n = 0 k = 0 n U n k ( α ) ( x ; a ; λ ; μ ; θ ; ρ ) U k ( β ) ( y ; a ; λ ; μ ; θ ; ρ ) t n ( n k ) ! k ! = n = 0 k = 0 n n k U n k ( α ) ( x ; a ; λ ; μ ; θ ; ρ ) U k ( β ) ( y ; a ; λ ; μ ; θ ; ρ ) t n n ! ,
where we used (7). Then,
n = 0 U n ( α + β ) ( x + y ; a ; λ ; μ ; θ ; ρ ) t n n ! = n = 0 k = 0 n n k U n k ( α ) ( x ; a ; λ ; μ ; θ ; ρ ) U k ( β ) ( y ; a ; λ ; μ ; θ ; ρ ) t n n ! .
Hence, comparing the coefficients, we obtain the result. □
Corollary 1.
Let n be non-negative integer, we have
U n ( α ) ( x + y ; a ; λ ; μ ; θ ; ρ ) = k = 0 n n k U n k ( α ) ( x ; a ; λ ; μ ; θ ; ρ ) ( y | a ) k .
In particular, for x : = 0 and y : = x , the above relation becomes
U n ( α ) ( x ; a ; λ ; μ ; θ ; ρ ) = k = 0 n n k U n k ( α ) ( a ; λ ; μ ; θ ; ρ ) ( x | a ) k .
Proof. 
By (10) and (7), we have
n = 0 U n ( α ) ( x + y ; a ; λ ; μ ; θ ; ρ ) t n n ! = 2 μ + μ 2 t θ λ ( 1 + a t ) 1 a + ( 1 ρ ) α ( 1 + a t ) x + y a = n = 0 U n ( α ) ( x ; a ; λ ; μ ; θ ; ρ ) t n n ! ( 1 + a t ) y a = n = 0 U n ( α ) ( x ; a ; λ ; μ ; θ ; ρ ) t n n ! k = 0 ( y | a ) k t k k ! = n = 0 k = 0 n U n k ( α ) ( x ; a ; λ ; μ ; θ ; ρ ) t n ( n k ) ! ( y | a ) k 1 k ! = n = 0 k = 0 n n k U n k ( α ) ( x ; a ; λ ; μ ; θ ; ρ ) t n n ! ( y | a ) k .
Comparing the coefficients, we obtain (13). □
Corollary 2.
The following statements hold:
Δ U n ( α ) ( x ; a ; λ ; μ ; θ ; ρ ) = U n + 1 ( α ) ( a ; λ ; μ ; θ ; ρ ) k = 1 n n k U n + 1 k ( α ) ( a ; λ ; μ ; θ ; ρ ) ( x | a ) k .
Proof. 
By (14) and (8),
Δ U n ( α ) ( x ; a ; λ ; μ ; θ ; ρ ) = k = 0 n + 1 n + 1 k U n + 1 k ( α ) ( a ; λ ; μ ; θ ; ρ ) ( x | a ) k k = 0 n n k U n k ( α ) ( a ; λ ; μ ; θ ; ρ ) ( x | a ) k = k = 0 n n k U n + 1 k ( α ) ( a ; λ ; μ ; θ ; ρ ) ( x | a ) k = U n + 1 ( α ) ( a ; λ ; μ ; θ ; ρ ) k = 1 n n k U n + 1 k ( α ) ( a ; λ ; μ ; θ ; ρ ) ( x | a ) k .
For the following proposition, we recall that U n ( α ) ( x ; a ; λ ; μ ; θ ; μ ) : = U n ( α ) ( x ; a ; λ ; μ ; θ ) .
Proposition 1.
The following identities hold:
(a) 
U n ( 1 ) ( x ; a ; λ ; μ ; 1 ) = 1 2 2 μ ( 2 μ ) P n ( 1 ) x ; a ; λ 1 μ ; 1 ; 0 + n μ 2 P n 1 ( 1 ) x ; a ; λ 1 μ ; 1 ; 0 .
(b) 
U n ( 1 ) ( x ; a ; λ ; μ ; θ ) = 1 1 μ ( 1 μ 2 ) P n ( 1 ) x ; a ; λ 1 μ ; 1 ; 0 + μ 2 P n ( 1 ) x ; a ; λ 1 μ ; 0 ; θ .
Proof. 
We have
2 μ + μ 2 t λ ( 1 + a t ) 1 a + ( 1 μ ) = 2 μ + μ 2 t 2 ( 1 μ ) 2 1 + λ ( 1 + a t ) 1 / a 1 μ .
Then,
n = 0 U n ( 1 ) ( x ; a ; λ ; μ ; 1 ) t n n ! = 2 μ + μ 2 t 2 ( 1 μ ) n = 0 P n ( 1 ) x ; a ; λ 1 μ t n n ! = 1 2 ( 1 μ ) ( 2 μ ) n = 0 P n ( 1 ) x ; a ; λ 1 μ t n n ! + μ 2 n = 0 P n ( 1 ) x ; a ; λ 1 μ t n + 1 n ! = 1 2 ( 1 μ ) n = 0 ( 2 μ ) P n ( 1 ) x ; a ; λ 1 μ + n μ 2 P n 1 ( 1 ) x ; a ; λ 1 μ t n n ! ,
where we used (6). Thus, we obtain item (a). On other hand, observe that
2 μ + μ 2 t θ λ ( 1 + a t ) 1 a + ( 1 μ ) = 1 1 μ 1 μ 2 2 λ 1 μ ( 1 + a t ) 1 a + 1 μ 2 t θ λ μ 1 ( 1 + a t ) 1 a 1 .
From the above, it follows (b). □
Proposition 2.
The following statements hold:
x U n ( α ) ( x ; a ; λ ; μ ; θ ; ρ ) = k = 0 n 1 n 1 k ( 1 ) k U n 1 k ( α ) ( x ; a ; λ ; μ ; θ ; ρ ) n k ! a k k + 1 .
Proof. 
By (7) and (9), we have
x U n ( α ) ( x ; a ; λ ; μ ; θ ; ρ ) = 2 μ + μ 2 t θ λ ( 1 + a t ) 1 a + ( 1 ρ ) α x ( 1 + a t ) x a = 1 a 2 μ + μ 2 t θ λ ( 1 + a t ) 1 a + ( 1 ρ ) α ( 1 + a t ) x a ln ( 1 + a t ) = 1 a n = 0 U n ( α ) ( x ; a ; λ ; μ ; θ ; ρ ) t n n ! n = 0 ( 1 ) n n + 1 ( a t ) n + 1 = n = 0 k = 0 n U n k ( α ) ( x ; a ; λ ; μ ; θ ; ρ ) t n + 1 ( n k ) ! ( 1 ) k k + 1 a k = n = 0 k = 0 n n k U n k ( α ) ( x ; a ; λ ; μ ; θ ; ρ ) t n + 1 n ! ( 1 ) k k + 1 a k k ! = n = 0 k = 0 n 1 n 1 k U n 1 k ( α ) ( x ; a ; λ ; μ ; θ ; ρ ) n k ! a k ( 1 ) k k + 1 t n n ! .
Comparing the coefficients, we obtain the expected result. □
Proposition 3.
The degenerate unified polynomials U n ( α ) ( x ; a ; λ ; μ ; θ ; ρ ) , satisfy the following relation:
λ U n ( α ) ( x + 1 ; a ; λ ; μ ; θ ; ρ ) + U n ( α ) ( x ; a ; λ ; μ ; θ ; ρ ) = 2 k = 0 n U n ( α ) ( x ; a ; λ ; μ ; θ ; ρ ) U n ( 1 ) ( a ; λ ; 0 ; θ ; 0 ) .
Proof. 
Using (12), we have
n = 0 λ U n ( α ) ( x + 1 ; a ; λ ; μ ) + U n ( α ) ( x ; a ; λ ; μ ) t n n ! = λ 2 μ + μ 2 t λ ( 1 + a t ) 1 a + ( 1 μ ) α ( 1 + a t ) x + 1 a + 2 μ + μ 2 t λ ( 1 + a t ) 1 a + ( 1 μ ) α ( 1 + a t ) x a = 2 μ + μ 2 t λ ( 1 + a t ) 1 a + ( 1 μ ) α ( 1 + a t ) x a 1 + λ ( 1 + a t ) 1 a = 2 n = 0 k = 0 n n k U n ( α ) ( x ; a ; λ ; μ ; θ ; ρ ) U n ( 1 ) ( a ; λ ; 0 ; θ ; 0 ) t n n ! .
Comparing the coefficients of t n n ! on the both sides of the above equation, we obtain the identity (15) at once. □

Author Contributions

D.B., C.C., S.D. and W.R. developed the theory and performed the computations. All authors discussed the results, read and approved the final manuscript. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Data Availability Statement

Not applicable.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Abramowitz, M.; Stegun, I. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables; US Government Printing Office: Washington, DC, USA, 1964; Volume 55.
  2. Apostol, T.M. Introduction to Analytic Number Theory; Springer Science & Business Media: Berlin, Germany, 1998. [Google Scholar]
  3. Graham, R.L.; Knuth, D.E.; Patashnik, O.; Liu, S. Concrete mathematics: A foundation for computer science. Comput. Phys. 1989, 3, 106–107. [Google Scholar] [CrossRef]
  4. Hernández-Llanos, P.; Quintana, Y.; Urieles, A. About Extensions Of Generalized Apostol-type polynomials. Results Math. 2015, 68, 203–225. [Google Scholar] [CrossRef]
  5. Kurt, B. A further generalization of the Bernoulli polynomials and on the 2D–Bernoulli polynomials B n 2 ( x , y ) . Appl. Math. Sci. 2010, 47, 2315–2322. [Google Scholar]
  6. Ramírez, W.; Cesarano, C.; Díaz, S. New results for degenerated generalized Apostol-Bernoulli, Apostol-Euler and Apostol-Genocchi polynomials. WSEAS Trans. Math. 2022, 21, 604–608. [Google Scholar] [CrossRef]
  7. Ramírez, W.; Castilla, L.; Urieles, A. An extended generalized-extensions for the Apostol Type polynomial. Abstr. Appl. Anal. 2018, 2018, 2937950. [Google Scholar]
  8. Guo-Dong, L.; Srivastava, H.M. Explicit formulas for the Norlund polynomials Bn(x) and bn(x). Comput. Math. Appl. 2006, 51, 1377–1384. [Google Scholar]
  9. Horadam, A.F. Negative order Genocchi polynomials. Fibonacci Quart. 1992, 30, 21–34. [Google Scholar]
  10. Apostol, T.M. On the Lerch zeta function. Pac. J. Math. 1951, 1, 161–167. [Google Scholar] [CrossRef] [Green Version]
  11. Luo, Q.-M.; Srivastava, H.M. Some generalizations of the Apostol–Bernoulli and Apostol–Euler polynomials. J. Math. Anal. Appl. 2005, 308, 290–302. [Google Scholar] [CrossRef]
  12. Luo, Q.-M. Apostol-Euler polynomials of higher order and Gaussian hypergeometric functions. Taiwan. J. Math. 2006, 10, 917–925. [Google Scholar] [CrossRef]
  13. Srivastava, H.M. Some generalizations and basic (or q-) extensions of the Bernoulli, Euler and Genocchi polynomials. Appl. Math. Inf. Sci. 2011, 5, 390–444. [Google Scholar]
  14. Belbachir, H.; Djemmada, Y.; Hadj-Brahim, S. Unified Bernoulli-Euler polynomials of Apostol type. Indian J. Pure Appl. Math. 2022, 1–8. [Google Scholar] [CrossRef]
  15. Bedoya, D.; Ortega, M.; Ramírez, W.; Urieles, A. New results parametric Apostol-type Frobenius-Euler polynomials and their matrix approach. Kragujev. J. Math. 2025, 49, 411–429. [Google Scholar]
  16. Araci, S.; Acikgoz, M. Construction of fourier expansion of Apostol Frobenius-Euler polynomials and its applications. Adv. Differ. Equ. 2018, 2018, 1–14. [Google Scholar] [CrossRef] [Green Version]
  17. Andrews, L.C. Special Functions of Mathematics for Engineers; SPIE Press: Bellingham, WA, USA, 1998; Volume 49. [Google Scholar]
  18. Cesarano, C.; Ramírez, W.; Khan, S. A new class of degenerate Apostol–type Hermite polynomials and applications. Dolomites Res. Notes Approx. 2022, 15, 1–10. [Google Scholar]
  19. Hwang, K.W.; Ryoo, C.S. Some identities involving two-variable partially degenerate Hermite polynomials induced from differential equations and structure of their roots. Mathematics 2020, 8, 632. [Google Scholar] [CrossRef] [Green Version]
  20. Khan, S.; Nahid, T.; Riyasat, M. On degenerate Apostol-type polynomials and applications. Bol. Soc. Matemática Mex. 2019, 25, 509–528. [Google Scholar] [CrossRef]
  21. Carlitz, L. A degenerate Staudt–Clausen theorem. Arch. Math. 1956, 7, 28–33. [Google Scholar] [CrossRef]
  22. Kim, T.; Kim, D.S. Identities involving degenerate Euler numbers and polynomials arising from nonlinear differential equations. J. Nonlinear Sci. Appl. 2016, 9, 2086–2098. [Google Scholar] [CrossRef]
  23. Lim, D. Some identities of degenerate Genocchi polynomials. Bull. Korean Math. Soc. 2016, 53, 569–579. [Google Scholar] [CrossRef]
  24. Gradshteyn, I.S.; Ryzhik, I.M. Table of Integrals, Series, and Products, 7th ed.; Academic Press, Inc.: San Diego, CA, USA, 2007. [Google Scholar]
  25. Bloch, E.D. The Real Numbers and Real Analysis; Springer: New York, NY, USA; Dordrecht, The Netherlands; Heidelberg, Geremnay; London, UK, 2011. [Google Scholar]
  26. Aigner, M. Diskrete Mathematik, 6th ed.; Friedr. Vieweg & Sohn: Berlin, Germany, 2006. [Google Scholar]
  27. Kim, T. A note on degenerate Stirling polynomials of the second kind. Proc. Jangjeon Math. Soc. 2017, 20, 319–331. [Google Scholar]
Figure 1. Polynomials of the Example 1.
Figure 1. Polynomials of the Example 1.
Axioms 12 00021 g001
Figure 2. Polynomials of the Example 2.
Figure 2. Polynomials of the Example 2.
Axioms 12 00021 g002
Table 1. Parameters for the degenerate polynomials.
Table 1. Parameters for the degenerate polynomials.
ParametersGenerating FunctionsPolynomials
μ = ρ = 2 ,     α = 1 , λ = 1 , θ = 1 t ( 1 + a t ) x a ( 1 + a t ) 1 a 1 = n = 0 B n ( x ; a ) t n n ! The DBP
μ = ρ = 0 ,     α = λ = 1 2 ( 1 + a t ) x a ( 1 + a t ) 1 a + 1 = n = 0 E n ( x ; a ) t n n ! The DEP
μ = 2 , α = θ = 1 , λ = ρ = 1 2 2 t ( 1 + a t ) x a ( 1 + a t ) 1 a + 1 = n = 0 G ( x ; a ) t n n ! the DGP
μ = 4 h , α = 1 , λ = 2 , θ = 0 , ρ = 1 + 2 h ( 1 h ) ( 1 + a t ) x a ( 1 + a t ) 1 a h = n = 0 H n ( x ; a ; h ) t n n ! The DFEP
Table 2. Parameters for the Apostol type polynomials of order α .
Table 2. Parameters for the Apostol type polynomials of order α .
ParametersGenerating FunctionsPolynomials
μ = ρ = 2 , θ = 1 and a 0 t λ e t 1 α e x t = n = 0 B n ( α ) ( x ; λ ) t n n ! The ABP of order α
μ = ρ = 0 and a 0 2 λ e t + 1 α e x t = n = 0 E n ( α ) ( x ; λ ) t n n ! The AEP of order α
μ = 2 , ρ = 1 2 , λ = h 2 , θ = 1 and a 0 2 t h e t + 1 α e x t = n = 0 G n ( α ) ( x ; h ) t n n ! The AGP of order α
Table 3. Parameters for the classical polynomials.
Table 3. Parameters for the classical polynomials.
ParametersGenerating FunctionsPolynomials
α = θ = 1 , μ = ρ = 2 , λ = 1 and a 0 t e x t e t 1 = n = 0 B n ( x ) t n n ! The BP
α = 1 , μ = ρ = 0 , λ = 1 and a 0 2 e x t e t + 1 = n = 0 E n ( x ) t n n ! The EP
α = θ = 1 , λ = 1 2 μ = 2 , ρ = 1 2 and a 0 2 t e x t e t + 1 = n = 0 G n ( x ) t n n ! The GP
Table 4. Parameters for the Frobenius–Euler polynomials.
Table 4. Parameters for the Frobenius–Euler polynomials.
ParametersGenerating FunctionsPolynomials
μ = 4 h , α = 1 , θ = 0 , ρ = 1 + 2 h , λ = 2 and a 0 1 h e t h e x t = n = 0 H n ( x ; h ) t n n ! The FEP
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Bedoya, D.; Cesarano, C.; Díaz, S.; Ramírez, W. New Classes of Degenerate Unified Polynomials. Axioms 2023, 12, 21. https://doi.org/10.3390/axioms12010021

AMA Style

Bedoya D, Cesarano C, Díaz S, Ramírez W. New Classes of Degenerate Unified Polynomials. Axioms. 2023; 12(1):21. https://doi.org/10.3390/axioms12010021

Chicago/Turabian Style

Bedoya, Daniel, Clemente Cesarano, Stiven Díaz, and William Ramírez. 2023. "New Classes of Degenerate Unified Polynomials" Axioms 12, no. 1: 21. https://doi.org/10.3390/axioms12010021

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop