Next Article in Journal
Sharp Bounds for the Second Hankel Determinant of Logarithmic Coefficients for Strongly Starlike and Strongly Convex Functions
Next Article in Special Issue
Univariate and Multivariate Ostrowski-Type Inequalities Using Atangana–Baleanu Caputo Fractional Derivative
Previous Article in Journal
How to Incorporate Preference Information in a Weight-Restricted DEA Model: A Straightforward Solution Applied in the Field of Economics, Based on Simos’ Revised Method
Previous Article in Special Issue
New Diamond-α Steffensen-Type Inequalities for Convex Functions over General Time Scale Measure Spaces
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Interval Fejér-Type Inequalities for Left and Right-λ-Preinvex Functions in Interval-Valued Settings

by
Tareq Saeed
1,
Muhammad Bilal Khan
2,*,
Savin Treanțǎ
3,4,5,*,
Hamed H. Alsulami
1 and
Mohammed Sh. Alhodaly
1
1
Nonlinear Analysis and Applied Mathematics (NAAM)-Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
2
Department of Mathematics, COMSATS University Islamabad, Islamabad 44000, Pakistan
3
Department of Applied Mathematics, University Politehnica of Bucharest, 060042 Bucharest, Romania
4
Academy of Romanian Scientists, 54 Splaiul Independentei, 050094 Bucharest, Romania
5
Fundamental Sciences Applied in Engineering-Research Center (SFAI), University Politehnica of Bucharest, 060042 Bucharest, Romania
*
Authors to whom correspondence should be addressed.
Axioms 2022, 11(8), 368; https://doi.org/10.3390/axioms11080368
Submission received: 9 July 2022 / Revised: 25 July 2022 / Accepted: 26 July 2022 / Published: 27 July 2022
(This article belongs to the Special Issue Current Research on Mathematical Inequalities)

Abstract

:
For left and right λ-preinvex interval-valued functions (left and right λ-preinvex IVFs) in interval-valued Riemann operator settings, we create Hermite–Hadamard (H-H) type inequalities in the current study. Additionally, we create Hermite–Hadamard–Fejér (H-H-Fejér)-type inequalities for preinvex functions of the left and right interval-valued type under some mild conditions. Moreover, some exceptional new and classical cases are also obtained. Some useful examples are also presented to prove the validity of the results.

1. Introduction

One of the most well-known inequalities in the theory of convex functions with a geometrical meaning and a wide range of applications is the traditional Hermite–Hadamard inequality. This disparity might be seen as a more sophisticated use of convexity. Recent years have seen resurgence in interest in the Hermite–Hadamard inequality for convex functions, leading to the study of several noteworthy improvements and extensions [1,2].
It is generally recognized how important set-valued analysis research is both theoretically and in terms of practical applications. Control theory and dynamical games have been the driving forces behind several developments in set-valued analysis. Since the beginning of the 1960s, mathematical programming and optimal control theory have been the driving forces behind these fields. A specific example is interval analysis, which was developed in an effort to address the interval uncertainty that frequently emerges in mathematical or computer models of some deterministic real-world processes, see [3,4,5,6,7]. In recent years, certain important inequalities for interval valued functions, including Hermite–Hadamard- and Ostrowski-type inequalities, have also been developed. By utilizing Hukuhara derivatives for interval valued functions, Chalco-Cano et al. developed Ostrowski-type inequalities for interval valued functions in [8,9]. The inequalities of Minkowski and Beckenbach for interval valued functions were established by Roman-Flores et al. in [10]. We direct readers to [11,12,13,14,15,16] for further results that are related to generalization of convex and interval-valued convex functions
As additional references, Zhao et al. [17] introduced the idea of interval-valued coordinated convex functions; An et al. [18] introduced interval (h1, h2) convex functions; Nwaeze et al. [19] proved H-H inequality for n-polynomial convex interval-valued functions; and Tariboon et al. [20], Kalsoom et al. [21] and Ali et al. [22] refined this idea using quantum calculus. Recently, this concept was also generalized to convex fuzzy interval-valued functions by Khan et al. [23]. Interval-valued analysis has also been used in optimization in fuzzy environments [24,25,26,27,28,29,30].
We construct some new mappings in relation to Hermite–Hadamard-type inequalities and show new Hermite–Hadamard–Fejér-type inequalities that do actually give refinement inequalities in order to be motivated by the investigations undertaken in [14,15,16,28]. Some special cases which can be vied as applications of our main results are also discussed. Some non-trivial examples are also presented to discuss the validity of our main findings.

2. Preliminaries

We begin by recalling the basic notations and definitions. We define interval as [ B * ,   B * ] = { 𝒾 : B * 𝒾   B *   and   B * , B *   } , where B *   B * .
We write len [ B * ,   B * ] = B * B * . If len [ B * ,   B * ] = 0 , then [ B * ,   B * ] is named as degenerate. In this article, all intervals will be non-degenerate intervals. The collection of all closed and bounded intervals of is denoted and defined as K C = { [ B * ,   B * ] : B * ,   B *   and   B *   B * } . If B * 0 , then [ B * ,   B * ] is named as a positive interval. The set of all positive intervals is denoted by K C + and defined as K C + = { [ B * ,   B * ] : [ B * ,   B * ] K C   and   B * 0 } .
We will now look at some of the properties of intervals using arithmetic operations. Let [ B * ,   B * ] ,   [ G * ,   G * ] K C and ρ ; then, we have
[ B * ,   B * ] + [ G * ,   G * ] = [ B * + G * ,   B * + G * ] ,
[ B * ,   B * ] × [ G * ,   G * ] = [ min { B * G * ,   B * G * ,   B * G * ,   B * G * } ,   max { B * G * ,   B * G * ,   B * G * ,   B * G * } ] ,  
ρ . [ B * ,   B * ] = { [ ρ B * ,   ρ B * ]   if   ρ > 0   { 0 }                           if   ρ = 0 [ ρ B * , ρ B * ]   if   ρ < 0 .  
For [ B * ,   B * ] ,   [ G * ,   G * ] K C , the inclusion is defined by
[ B * ,   B * ] [ G * ,   G * ]   if   and   only   if   G * B * ,   B * G * .
Remark 1.
The relation p defined on K C by
[ B * ,   B * ] p [ G * ,   G * ]   if   and   only   if   B * G * ,   B * G * ,
for all [ B * ,   B * ] ,   [ G * ,   G * ] K C , it is an order relation. This relation is also known as left and right relation, see [27].
Moore [5] initially proposed the concept of Riemann integral for IVF, which is defined as follows:
Theorem 1.
([5]). If U : [ 𝓸 , ς ] K C is an IVF on such that U ( 𝒾 ) = [ U * ( 𝒾 ) ,   U * ( 𝒾 ) ] . Then U is Riemann integrable (IR) over [ 𝓸 , ς ] if and only if, U * and U * both are Riemann integrable over [ 𝓸 , ς ] such that
( I R ) 𝓸 ς U ( 𝒾 ) d 𝒾 = [ ( R ) 𝓸 ς U * ( 𝒾 ) d 𝒾 ,   ( R ) 𝓸 ς U * ( 𝒾 ) d 𝒾 ] .
The collection of all Riemann-integrable interval-valued functions is denoted by ( [ 𝓸 ,   ς ) ] ) .
Definition 1.
([29]). Let K be an invex set and λ : [ 0 ,   1 ] such that λ ( 𝒾 ) > 0 . Then IVF U : K K C + is said to be left and right λ -preinvex on   K with respect to ϖ if
U ( 𝒾 + ( 1 σ ) ϖ ( 𝒿 , 𝒾 ) ) p λ ( σ ) U ( 𝒾 ) + λ ( 1 σ ) U ( 𝒿 ) ,  
for all 𝒾 ,   𝒿 K ,   σ [ 0 ,   1 ] , where U ( 𝒾 ) p 0 ,   ϖ : K × K . U is named as left and right λ -preconcave on K with respect to ϖ if inequality (7) is reversed.   U is named as affine left and right λ -preinvex on   K with respect to ϖ if
U ( 𝒾 + ( 1 σ ) ϖ ( 𝒿 , 𝒾 )   ) = λ ( σ ) U ( 𝒾 ) + λ ( 1 σ ) U ( 𝒿 ) ,  
for all 𝒾 , 𝒿 K ,   σ [ 0 ,   1 ] , where U ( 𝒾 ) p 0 ,   ϖ : K × K .
Remark 2.
The left and right λ -preinvex IVFs have some very nice properties similar to preinvex IVF:
If U is left and right λ -preinvex IVF, then Υ is also left and right λ -preinvex for Υ 0 .
If U and ψ both are left and right λ -preinvex IVFs, then m a x ( U ( 𝒾 ) , ψ ( 𝒾 ) ) is also left and right λ -preinvex IVF.
Now we discuss some new special cases of λ -preinvex IVFs:
(i) 
If λ ( σ ) = σ s , then left and right λ -preinvex IVF becomes left and right s -preinvex IVF, that is
U ( 𝒾 + ( 1 σ ) ϖ ( 𝒿 , 𝒾 ) ) p σ s U ( 𝒾 ) + ( 1 σ ) s U ( 𝒿 ) ,     𝒾 ,   𝒿 K ,   σ [ 0 ,   1 ] .
If ϖ ( 𝒿 , 𝒾 ) = 𝒿 𝒾 , then U is named as left and right s -convex IVF.
(ii) 
If λ ( σ ) = σ , then left and right λ -preinvex IVF becomes left and right preinvex IVF, that is
U ( 𝒾 + ( 1 σ ) ϖ ( 𝒿 , 𝒾 ) ) p σ U ( 𝒾 ) + ( 1 σ ) U ( 𝒿 ) ,     𝒾 ,   𝒿 K ,   σ [ 0 ,   1 ] .
If ϖ ( 𝒿 , 𝒾 ) = 𝒿 𝒾 , then U is named as left and right convex IVF.
(iii) 
If λ ( σ ) 1 , then left and right λ -preinvex IVF becomes left and right P IVF, that is
U ( 𝒾 + ( 1 σ ) ϖ ( 𝒿 , 𝒾 ) ) p U ( 𝒾 ) + U ( 𝒿 ) ,     𝒾 ,   𝒿 K ,   σ [ 0 ,   1 ] .
If ϖ ( 𝒿 , 𝒾 ) = 𝒿 𝒾 , then U is named as left and right P IVF.
Theorem 2.
([29]). Let K be an invex set and λ : [ 0 ,   1 ] K + such that λ > 0 , and let U : K K C + be a IVF with U ( 𝒾 ) p 0 such that
U ( 𝒾 ) = [ U * ( 𝒾 ) ,   U * ( 𝒾 ) ] ,     𝒾 K .
for all 𝒾 K . Then U is left and right λ -preinvex IVF on K if and only if U * ( 𝒾 ) and U * ( 𝒾 ) both are λ -preinvex functions.
Example 1.
We consider λ ( σ ) = σ ,   for σ [ 0 ,   1 ] and the IVF U : + K C + defined by U ( 𝒾 ) = [ ( e 𝒾 , 2 e 𝒾   ] . Since U * ( 𝒾 ) , U * ( 𝒾 ) are λ -preinvex functions ϖ ( 𝒿 , 𝒾 ) = 𝒿 𝒾 . Hence, U ( 𝒾 ) is left and right λ -preinvex IVF.

3. Main Results

We use the crucial assumption about bifunction ϖ : K × K that has been provided to demonstrate the main conclusions of this study.
Condition C 1
(see [14]). Let K be an invex set with respect to ϖ . For any 𝓸 ,   σ K and σ [ 0 ,   1 ] ,
{ ϖ ( ς ,   𝓸 + σ ϖ ( ς ,   𝓸 ) ) = ( 1 σ ) ϖ ( ς ,   𝓸 ) ϖ ( 𝓸 , 𝓸 + σ ϖ ( ς ,   𝓸 ) ) = σ ϖ ( ς ,   𝓸 ) ,
Clearly, for σ = 0, we have ϖ ( ς , 𝓸 ) = 0 if and only if   ς = 𝓸 , for all 𝓸 ,   ς K . For the applications of Condition C, see [14,15,16].
Theorem 3.
Let U : [ 𝓸 ,   𝓸 + ϖ ( ς ,   𝓸 ) ] K C + be a left and right λ -preinvex IVF with λ : [ 0 ,   1 ] + and λ ( 1 2 ) 0 such that U ( 𝒾 ) = [ U * ( 𝒾 ) ,   U * ( 𝒾 ) ] for all 𝒾 [ 𝓸 ,   𝓸 + ϖ ( ς ,   𝓸 ) ] . If U ( [ 𝓸 ,   𝓸 + ϖ ( ς ,   𝓸 ) ] ) , then
1 2 λ ( 1 2 )   U ( 2 𝓸 + ϖ ( ς ,   𝓸 ) 2 ) p 1 ϖ ( ς ,   𝓸 )   ( I R ) 𝓸 𝓸 + ϖ ( ς ,   𝓸 ) U ( 𝒾 ) d 𝒾 p [ U ( 𝓸 ) + U ( ς ) ] 0 1 λ ( σ ) d σ .
If U is left and right λ -preconcave IVF, then (14) is reversed such that
1 2 λ ( 1 2 )   U ( 2 𝓸 + ϖ ( ς , 𝓸 ) 2 ) p 1 ϖ ( ς , 𝓸 )   ( I R ) 𝓸 𝓸 + ϖ ( ς , 𝓸 ) U ( 𝒾 ) d 𝒾 p [ U ( 𝓸 ) + U ( ς ) ] 0 1 λ ( σ ) d σ .
Proof. 
Let U : [ 𝓸 ,   𝓸 + ϖ ( ς , 𝓸 ) ] K C + be a left and right λ -preinvex IVF. Then, by hypothesis, we have
1 λ ( 1 2 ) U ( 2 𝓸 + ϖ ( ς , 𝓸 ) 2 ) p U ( 𝓸 + ( 1 σ ) ϖ ( ς , 𝓸 ) ) + U ( 𝓸 + σ ϖ ( ς , 𝓸 ) ) .
Therefore, we have
1 λ ( 1 2 ) U * ( 2 𝓸 + ϖ ( ς , 𝓸 ) 2 ) U * ( 𝓸 + ( 1 σ ) ϖ ( ς , 𝓸 ) ) + U * ( 𝓸 + σ ϖ ( ς , 𝓸 ) ) , 1 λ ( 1 2 ) U * ( 2 𝓸 + ϖ ( ς , 𝓸 ) 2 ) U * ( 𝓸 + ( 1 σ ) ϖ ( ς , 𝓸 ) ) + U * ( 𝓸 + σ ϖ ( ς , 𝓸 ) ) .
Then
1 λ ( 1 2 ) 0 1 U * ( 2 𝓸 + ϖ ( ς , 𝓸 ) 2 ) d σ 0 1 U * ( 𝓸 + ( 1 σ ) ϖ ( ς , 𝓸 ) ) d σ + 0 1 U * ( 𝓸 + σ ϖ ( ς , 𝓸 ) ) d σ , 1 λ ( 1 2 ) 0 1 U * ( 2 𝓸 + ϖ ( ς , 𝓸 ) 2 ) d σ 0 1 U * ( 𝓸 + ( 1 σ ) ϖ ( ς , 𝓸 ) ) d σ + 0 1 U * ( 𝓸 + σ ϖ ( ς , 𝓸 ) ) d σ .
It follows that
1 λ ( 1 2 ) U * ( 2 𝓸 + ϖ ( ς , 𝓸 ) 2 ) 2 ϖ ( ς , 𝓸 )   𝓸 𝓸 + ϖ ( ς , 𝓸 ) U * ( 𝒾 ) d 𝒾 , 1 λ ( 1 2 ) U * ( 2 𝓸 + ϖ ( ς , 𝓸 ) 2 ) 2 ϖ ( ς , 𝓸 )   𝓸 𝓸 + ϖ ( ς , 𝓸 ) U * ( 𝒾 ) d 𝒾 .
That is,
1 λ ( 1 2 ) [ U * ( 2 𝓸 + ϖ ( ς , 𝓸 ) 2 ) ,   U * ( 2 𝓸 + ϖ ( ς , 𝓸 ) 2 ) ] p 2 ϖ ( ς ,   𝓸 ) [ 𝓸 𝓸 + ϖ ( ς , 𝓸 ) U * ( 𝒾 ) d 𝒾 ,   𝓸 𝓸 + ϖ ( ς , 𝓸 ) U * ( 𝒾 ) d 𝒾 ] .
Thus,
1 2 λ ( 1 2 )   U ( 2 𝓸 + ϖ ( ς , 𝓸 ) 2 ) p 1 ϖ ( ς , 𝓸 )   ( I R ) 𝓸 𝓸 + ϖ ( ς , 𝓸 ) U ( 𝒾 ) d 𝒾 .
In a similar way as above, we have
1 ϖ ( ς , 𝓸 )   ( I R ) 𝓸 𝓸 + ϖ ( ς , 𝓸 ) U ( 𝒾 ) d 𝒾 p [ U ( 𝓸 ) + U ( ς ) ] 0 1 λ ( σ ) d σ .
Combining (16) and (17), we have
1 2 λ ( 1 2 )   U ( 2 𝓸 + ϖ ( ς , 𝓸 ) 2 ) p 1 ϖ ( ς ,   𝓸 )   ( I R ) 𝓸 𝓸 + ϖ ( ς , 𝓸 ) U ( 𝒾 ) d 𝒾 p [ U ( 𝓸 ) + U ( ς ) ] 0 1 λ ( σ ) d σ ,
which complete the proof. □
Note that, inequality (14) is known as fuzzy-interval H-H inequality for left and right λ -preinvex IVF.
Remark 3.
If one takes λ ( σ ) = σ s , then from (14), one can obtain the result for left and right s -preinvex IVF:
2 s 1   U ( 2 𝓸 + ϖ ( ς , 𝓸 ) 2 ) p 1 ϖ ( ς , 𝓸 )   ( I R ) 𝓸 𝓸 + ϖ ( ς , 𝓸 ) U ( 𝒾 ) d 𝒾 p 1 s + 1 [ U ( 𝓸 ) + U ( ς ) ] .
If one takes λ ( σ ) = σ , then from (14), one can obtain the result for left and right preinvex IVF:
U ( 2 𝓸 + ϖ ( ς , 𝓸 ) 2 ) p 1 ϖ ( ς , 𝓸 )   ( I R ) 𝓸 𝓸 + ϖ ( ς , 𝓸 ) U ( 𝒾 ) d 𝒾 p U ( 𝓸 ) + U ( ς ) 2 .
If one takes λ ( σ ) 1 , then from (14), one can obtain the result for left and right P IVF:
1 2 U ( 2 𝓸 + ϖ ( ς , 𝓸 ) 2 ) p 1 ϖ ( ς , 𝓸 )   ( I R ) 𝓸 𝓸 + ϖ ( ς , 𝓸 ) U ( 𝒾 ) d 𝒾 p U ( 𝓸 ) + U ( ς ) .
If one takes U * ( 𝒾 ) = U * ( 𝒾 ) , then from (14), one can acqu𝐼𝑅e the result for λ -preinvex function, see [16]:
1 2 λ ( 1 2 )   U ( 2 𝓸 + ϖ ( ς , 𝓸 ) 2 ) 1 ϖ ( ς , 𝓸 )   ( R ) 𝓸 𝓸 + ϖ ( ς , 𝓸 ) U ( 𝒾 ) d 𝒾 [ U ( 𝓸 ) + U ( ς ) ] 0 1 λ ( σ ) d σ .
Note that, if ϖ ( ς , 𝓸 ) = ς 𝓸 , then integral Inequalities (18)–(21) reduce to classical ones.
Example 2.
We consider λ ( σ ) = σ   for σ [ 0 ,   1 ] and the IVF U : [ 𝓸 ,   𝓸 + ϖ ( ς , 𝓸 ) ] = [ 0 ,   ϖ ( 2 ,   0 ) ] K C + , defined by U ( 𝒾 ) = [ 2 𝒾 2 , 4 𝒾 2 ] . Since U * ( 𝒾 ) = 2 𝒾 2 , U * ( 𝒾 ) = 4 𝒾 2 are λ -preinvex functions with respect to ϖ ( ς , 𝓸 ) = ς 𝓸 . Hence, U ( 𝒾 ) is left and right λ -preinvex IVF with respect to ϖ ( ς , 𝓸 ) = ς 𝓸 . Since U * ( 𝒾 ) = 2 𝒾 2 and U * ( 𝒾 ) = 4 𝒾 2 then, we compute the following
1 2 λ ( 1 2 )   U * ( 2 𝓸 + ϖ ( ς , 𝓸 ) 2 ) 1 ϖ ( ς , 𝓸 )   𝓸 𝓸 + ϖ ( ς , 𝓸 ) U * ( 𝒾 ) d 𝒾 [ U * ( 𝓸 ) + U * ( ς ) ] 0 1 λ ( σ ) d σ .
1 2 λ ( 1 2 )   U * ( 2 𝓸 + ϖ ( ς , 𝓸 ) 2 ) = U * ( 1 ) = 2 ,
1 ϖ ( ς , 𝓸 )   𝓸 𝓸 + ϖ ( ς , 𝓸 ) U * ( 𝒾 ) d 𝒾 = 1 2   0 2 2 𝒾 2 d 𝒾 = 8 3 ,
[ U * ( 𝓸 ) + U * ( ς ) ] 0 1 λ ( σ ) d σ = 4 ,
That means
2 8 3 4 .
Similarly, it can be easily shown that
1 2 λ ( 1 2 )   U * ( 2 𝓸 + ϖ ( ς , 𝓸 ) 2 ) 1 ϖ ( ς , 𝓸 )   𝓸 𝓸 + ϖ ( ς , 𝓸 ) U * ( 𝒾 ) d 𝒾 [ U * ( 𝓸 ) + U * ( ς ) ] 0 1 λ ( σ ) d σ .
such that
1 2 λ ( 1 2 )   U * ( 2 𝓸 + ϖ ( ς , 𝓸 ) 2 ) = U * ( 1 ) = 4 ,
1 ϖ ( ς , 𝓸 )   𝓸 𝓸 + ϖ ( ς , 𝓸 ) U * ( 𝒾 ) d 𝒾 = 1 2   0 2 4 𝒾 2 d 𝒾 = 16 3 ,
[ U * ( 𝓸 ) + U * ( ς ) ] 0 1 λ ( σ ) d σ = 8 .
From which it follows that
4 16 3 8 ,
That is,
[ 2 ,   4 ] p [ 8 3 ,   16 3 ] p [ 4 ,   8 ] .  
Hence,
1 2 λ ( 1 2 )   U ( 2 𝓸 + ϖ ( ς , 𝓸 ) 2 ) p 1 ϖ ( ς , 𝓸 )   ( I R ) 𝓸 𝓸 + ϖ ( ς , 𝓸 ) U ( 𝒾 ) d 𝒾 p [ U ( 𝓸 ) + U ( ς ) ] 0 1 λ ( σ ) d σ ,
and Theorem 3 is verified.
Theorem 4.
Let U , ψ   : [ 𝓸 ,   𝓸 + ϖ ( ς , 𝓸 ) ] K C + be two left and right λ 1 - and left and right λ 2 -preinvex IVFs with λ 1 ,   λ 2 : [ 0 ,   1 ] + such that U ( 𝒾 ) = [ U * ( 𝒾 ) ,   U * ( 𝒾 ) ] and ψ ( 𝒾 ) = [ ψ * ( 𝒾 ) ,   ψ * ( 𝒾 ) ] for all 𝓸 [ 𝓸 ,   𝓸 + ϖ ( ς , 𝓸 ) ] . If U × ψ ( [ 𝓸 ,   𝓸 + ϖ ( ς , 𝓸 ) ] ) , then
1 ϖ ( ς , 𝓸 )   ( I R ) 𝓸 𝓸 + ϖ ( ς , 𝓸 ) U ( 𝒾 ) × ψ ( 𝒾 ) d 𝒾 p S ( 𝓸 , ς ) 0 1 λ 1 ( σ ) λ 2 ( σ ) d σ + Q ( 𝓸 , ς ) 0 1 λ 1 ( σ ) λ 2 ( 1 σ ) d σ ,
where S ( 𝓸 , ς ) = U ( 𝓸 ) × ψ ( 𝓸 ) + U ( ς ) × ψ ( ς ) ,   Q ( 𝓸 , ς ) = U ( 𝓸 ) × ψ ( ς ) + U ( ς ) × ψ ( 𝓸 ) with S ( 𝓸 , ς ) = [ S * ( ( 𝓸 , ς ) ) ,   S * ( ( 𝓸 , ς ) ) ] and Q ( 𝓸 , ς ) = [ Q * ( ( 𝓸 , ς ) ) ,   Q * ( ( 𝓸 , ς ) ) ] .
Example 3.
We consider λ 1 ( σ ) = σ ,   λ 2 ( σ ) 1 , for   σ [ 0 ,   1 ] , and the IVFs U ,   ψ : [ 𝓸 ,   𝓸 + ϖ ( ς , 𝓸 ) ] = [ 0 ,   ϖ ( 1 ,   0 ) ] K C + defined by U ( 𝒾 ) = [ 2 𝒾 2 , 4 𝒾 2 ] and ψ ( 𝒾 ) = [ 𝒾 , 2 𝒾 ] . Since U * ( 𝒾 ) = 2 𝒾 2 and U * ( 𝒾 ) = 4 𝒾 2 are both λ 1 -preinvex functions and ψ * ( 𝒾 ) = 𝒾 , and ψ * ( 𝒾 ) = 2 𝒾 are also both λ 2 -preinvex functions with respect to the same ϖ ( ς , 𝓸 ) = ς 𝓸 , U and ψ both are left and right λ 1 - and left and right λ 2 -preinvex IVFs, respectively. Since U * ( 𝒾 ) = 2 𝒾 2 and U * ( 𝒾 ) = 4 𝒾 2 , and ψ * ( 𝒾 ) = 𝒾 , and ψ * ( 𝒾 ) = 2 𝒾 , then
1 ϖ ( ς , 𝓸 )   𝓸 𝓸 + ϖ ( ς , 𝓸 ) U * ( 𝒾 ) × ψ * ( 𝒾 ) d 𝒾 = 0 1 ( 2 𝒾 2 ) ( 𝒾 ) d 𝒾 = 1 2 ,   1 ϖ ( ς , 𝓸 )   𝓸 𝓸 + ϖ ( ς ,   𝓸 ) U * ( 𝒾 ) × ψ * ( 𝒾 ) d 𝒾 = 0 1 ( 4 ψ 2 ) ( 2 ψ ) d 𝒾 = 2 ,
S * ( ( 𝓸 , ς ) ) 0 1 λ 1 ( σ ) λ 2 ( σ ) d σ = 1 ,   S * ( ( 𝓸 , ς ) ) 0 1 λ 1 ( σ ) λ 2 ( σ ) d σ = 4 ,
Q * ( ( 𝓸 , ς ) ) 0 1 λ 1 ( σ ) λ 2 ( 1 σ ) d σ = 0   Q * ( ( 𝓸 , ς ) ) 0 1 λ 1 ( σ ) λ 2 ( 1 σ ) d σ = 0 ,
That means
1 2 1 + 0 = 1 ,   2 4 + 0 = 4 ,
Hence, Theorem 4 is verified.
Theorem 5.
Let U , ψ   : [ 𝓸 ,   𝓸 + ϖ ( ς ,   𝓸 ) ] K C + be two left and right λ 1 - and left and right λ 2 -preinvex IVFs with λ 1 ,   λ 2 : [ 0 ,   1 ] + given by U ( 𝒾 ) = [ U * ( 𝒾 ) ,   U * ( 𝒾 ) ] and ψ ( 𝒾 ) = [ ψ * ( 𝒾 ) ,   ψ * ( 𝒾 ) ] for all 𝒾 [ 𝓸 ,   𝓸 + ϖ ( ς ,   𝓸 ) ] . If U × ψ ( [ 𝓸 ,   𝓸 + ϖ ( ς ,   𝓸 ) ] ) and condition C hold for ϖ , then
1 2 λ 1 ( 1 2 ) λ 2 ( 1 2 )   U ( 2 𝓸 + ϖ ( ς , 𝓸 ) 2 ) × ψ ( 2 𝓸 + ϖ ( ς , 𝓸 ) 2 ) p 1 ϖ ( ς , 𝓸 )   ( I R ) 𝓸 𝓸 + ϖ ( ς , 𝓸 ) U ( 𝒾 ) × ψ ( 𝒾 ) d 𝒾   + ( 𝓸 , ς ) 0 1 λ 1 ( σ ) λ 2 ( 1 σ ) d σ + Q ( 𝓸 , ς ) 0 1 λ 1 ( σ ) λ 2 ( σ ) d σ ,
where S ( 𝓸 , ς ) = U ( 𝓸 ) × ψ ( 𝓸 ) + U ( ς ) × ψ ( ς ) , Q ( 𝓸 , ς ) = U ( 𝓸 ) × ψ ( ς ) + U ( ς ) × ψ ( 𝓸 ) , and S ( 𝓸 , ς ) = [ S * ( ( 𝓸 , ς ) ) ,   S * ( ( 𝓸 , ς ) ) ] and Q ( 𝓸 , ς ) = [ Q * ( ( 𝓸 , ς ) ) ,   Q * ( ( 𝓸 , ς ) ) ] .
Proof. 
Using condition C, we can write
𝓸 + 1 2 ϖ ( ς , 𝓸 ) = 𝓸 + σ ϖ ( ς , 𝓸 ) + 1 2 ϖ ( 𝓸 + ( 1 σ ) ϖ ( ς , 𝓸 ) ,   𝓸 + σ ϖ ( ς , 𝓸 ) ) .
By hypothesis, we have
U * ( 2 𝓸 + ϖ ( ς , 𝓸 ) 2 ) × ψ * ( 2 𝓸 + ϖ ( ς , 𝓸 ) 2 ) U * ( 2 𝓸 + ϖ ( ς , 𝓸 ) 2 ) × ψ * ( 2 𝓸 + ϖ ( ς , 𝓸 ) 2 ) = U * ( 𝓸 + σ ϖ ( ς , 𝓸 ) + 1 2 ϖ ( 𝓸 + ( 1 σ ) ϖ ( ς , 𝓸 ) ,   𝓸 + σ ϖ ( ς , 𝓸 ) ) ) × ψ * ( 𝓸 + σ ϖ ( ς , 𝓸 ) + 1 2 ϖ ( 𝓸 + ( 1 σ ) ϖ ( ς , 𝓸 ) ,   𝓸 + σ ϖ ( ς , 𝓸 ) ) ) ,   = U * ( 𝓸 + σ ϖ ( ς ,   𝓸 ) + 1 2 ϖ ( 𝓸 + ( 1 σ ) ϖ ( ς ,   𝓸 ) ,   𝓸 + σ ϖ ( ς ,   𝓸 ) ) ) × ψ * ( 𝓸 + σ ϖ ( ς ,   𝓸 ) + 1 2 ϖ ( 𝓸 + ( 1 σ ) ϖ ( ς ,   𝓸 ) ,   𝓸 + σ ϖ ( ς , 𝓸 ) ) ) ,   λ 1 ( 1 2 ) λ 2 ( 1 2 ) [ U * ( 𝓸 + ( 1 σ ) ϖ ( ς , 𝓸 ) ) × ψ * ( 𝓸 + ( 1 σ ) ϖ ( ς , 𝓸 ) ) + U * ( 𝓸 + ( 1 σ ) ϖ ( ς , 𝓸 ) ) × ψ * ( 𝓸 + σ ϖ ( ς , 𝓸 ) ) ]       + λ 1 ( 1 2 ) λ 2 ( 1 2 ) [ U * ( 𝓸 + σ ϖ ( ς , 𝓸 ) ) × ψ * ( 𝓸 + ( 1 σ ) ϖ ( ς , 𝓸 ) ) U * ( 𝓸 + σ ϖ ( ς , 𝓸 ) ) × ψ * ( 𝓸 + σ ϖ ( ς , 𝓸 ) ) ] ,   λ 1 ( 1 2 ) λ 2 ( 1 2 ) [ U * ( 𝓸 + ( 1 σ ) ϖ ( ς , 𝓸 ) ) × ψ * ( 𝓸 + ( 1 σ ) ϖ ( ς , 𝓸 ) ) + U * ( 𝓸 + ( 1 σ ) ϖ ( ς , 𝓸 ) ) × ψ * ( 𝓸 + σ ϖ ( ς , 𝓸 ) ) ]       + λ 1 ( 1 2 ) λ 2 ( 1 2 ) [ U * ( 𝓸 + σ ϖ ( ς , 𝓸 ) ) × ψ * ( 𝓸 + ( 1 σ ) ϖ ( ς , 𝓸 ) ) U * ( 𝓸 + σ ϖ ( ς , 𝓸 ) ) × ψ * ( 𝓸 + σ ϖ ( ς , 𝓸 ) ) ] ,   λ 1 ( 1 2 ) λ 2 ( 1 2 ) [ U * ( 𝓸 + ( 1 σ ) ϖ ( ς , 𝓸 ) ) × ψ * ( 𝓸 + ( 1 σ ) ϖ ( ς , 𝓸 ) ) + U * ( 𝓸 + σ ϖ ( ς , 𝓸 ) ) × ψ * ( 𝓸 + σ ϖ ( ς , 𝓸 ) ) ]         + λ 1 ( 1 2 ) λ 2 ( 1 2 ) [ ( λ 1 ( σ ) U * ( 𝓸 ) + λ 1 ( 1 σ ) U * ( ς ) ) × ( λ 2 ( 1 σ ) ψ * ( 𝓸 ) + λ 2 ( σ ) ψ * ( ς ) ) + ( λ 1 ( 1 σ ) U * ( 𝓸 ) + λ 1 ( σ ) U * ( ς ) ) × ( λ 2 ( σ ) ψ * ( 𝓸 ) + λ 2 ( 1 σ ) ψ * ( ς ) ) ] ,   λ 1 ( 1 2 ) λ 2 ( 1 2 ) [ U * ( 𝓸 + ( 1 σ ) ϖ ( ς , 𝓸 ) ) × ψ * ( 𝓸 + ( 1 σ ) ϖ ( ς , 𝓸 ) ) + U * ( 𝓸 + σ ϖ ( ς , 𝓸 ) ) × ψ * ( 𝓸 + σ ϖ ( ς , 𝓸 ) ) ]         + λ 1 ( 1 2 ) λ 2 ( 1 2 ) [ ( λ 1 ( σ ) U * ( 𝓸 ) + λ 1 ( 1 σ ) U * ( ς ) ) × ( λ 2 ( 1 σ ) ψ * ( 𝓸 ) + λ 2 ( σ ) ψ * ( ς ) ) + ( λ 1 ( 1 σ ) U * ( 𝓸 ) + λ 1 ( σ ) U * ( ς ) ) × ( λ 2 ( σ ) ψ * ( 𝓸 ) + λ 2 ( 1 σ ) ψ * ( ς ) ) ] , = λ 1 ( 1 2 ) λ 2 ( 1 2 ) [ U * ( 𝓸 + ( 1 σ ) ϖ ( ς , 𝓸 ) ) × ψ * ( 𝓸 + ( 1 σ ) ϖ ( ς , 𝓸 ) ) + U * ( 𝓸 + σ ϖ ( ς , 𝓸 ) ) × ψ * ( 𝓸 + σ ϖ ( ς , 𝓸 ) ) ] + 2 λ 1 ( 1 2 ) λ 2 ( 1 2 ) [ { λ 1 ( σ ) λ 2 ( σ ) + λ 1 ( 1 σ ) λ 2 ( 1 σ ) } Q * ( ( 𝓸 , ς ) ) + { λ 1 ( σ ) λ 2 ( 1 σ ) + λ 1 ( 1 σ ) λ 2 ( σ ) } S * ( ( 𝓸 , ς ) ) ] , = λ 1 ( 1 2 ) λ 2 ( 1 2 ) [ U * ( 𝓸 + ( 1 σ ) ϖ ( ς , 𝓸 ) ) × ψ * ( 𝓸 + ( 1 σ ) ϖ ( ς , 𝓸 ) ) + U * ( 𝓸 + σ ϖ ( ς , 𝓸 ) ) × ψ * ( 𝓸 + σ ϖ ( ς , 𝓸 ) ) ] + 2 λ 1 ( 1 2 ) λ 2 ( 1 2 ) [ { λ 1 ( σ ) λ 2 ( σ ) + λ 1 ( 1 σ ) λ 2 ( 1 σ ) } Q * ( ( 𝓸 , ς ) ) + { λ 1 ( σ ) λ 2 ( 1 σ ) + λ 1 ( 1 σ ) λ 2 ( σ ) } S * ( ( 𝓸 , ς ) ) ] ,
Integrating over [ 0 ,   1 ] , we have
1 2 λ 1 ( 1 2 ) λ 2 ( 1 2 ) U * ( 2 𝓸 + ϖ ( ς , 𝓸 ) 2 ) × ψ * ( 2 𝓸 + ϖ ( ς ,   𝓸 ) 2 )                   1 ϖ ( ς , 𝓸 ) 𝓸 𝓸 + ϖ ( ς ,   𝓸 ) U * ( 𝓸 ) × ψ * ( 𝒾 ) d 𝒾                   + S * ( ( 𝓸 ς ) ) 0 1 λ 1 ( σ ) λ 2 ( 1 σ ) d σ + Q * ( ( 𝓸 , ς ) ) 0 1 λ 1 ( σ ) λ 2 ( λ ) d σ , 1 2 λ 1 ( 1 2 ) λ 2 ( 1 2 ) U * ( 2 𝓸 + ϖ ( ς ,   𝓸 ) 2 ) × ψ * ( 2 𝓸 + ϖ ( ς ,   𝓸 ) 2 )                   1 ϖ ( ς , 𝓸 ) 𝓸 𝓸 + ϖ ( ς ,   𝓸 ) U * ( 𝒾 ) × ψ * ( 𝒾 ) d 𝒾                   + S * ( ( 𝓸 , ς ) ) 0 1 λ 1 ( σ ) λ 2 ( 1 σ ) d σ + Q * ( ( 𝓸 , ς ) ) 0 1 λ 1 ( σ ) λ 2 ( σ ) d σ ,
from which we have
1 2 λ 1 ( 1 2 ) λ 2 ( 1 2 ) [ U * ( 2 𝓸 + ϖ ( ς , 𝓸 ) 2 ) × ψ * ( 2 𝓸 + ϖ ( ς , 𝓸 ) 2 ) ,   U * ( 2 𝓸 + ϖ ( ς , 𝓸 ) 2 ) × ψ * ( 2 𝓸 + ϖ ( ς , 𝓸 ) 2 ) ] p 1 ϖ ( ς , 𝓸 ) [ 𝓸 𝓸 + ϖ ( ς ,   𝓸 ) U * ( 𝒾 ) × ψ * ( 𝒾 ) d 𝒾   ,   𝓸 𝓸 + ϖ ( ς ,   𝓸 ) U * ( 𝒾 ) × ψ * ( 𝒾 ) d 𝒾 ] + 0 1 λ 1 ( σ ) λ 2 ( 1   val valued   functions σ ) d σ [ S * ( ( 𝓸 , ς ) ) ,   S * ( ( 𝓸 , ς ) ) ] + [ Q * ( ( 𝓸 , ς ) ) ,   Q * ( ( 𝓸 , ς ) ) ] 0 1 λ 1 ( σ ) λ 2 ( σ ) d σ ,
that is,
1 2 λ 1 ( 1 2 ) λ 2 ( 1 2 )   U ( 2 𝓸 + ϖ ( ς ,   𝓸 ) 2 ) × ψ ( 2 𝓸 + ϖ ( ς ,   𝓸 ) 2 ) p 1 ϖ ( ς ,   𝓸 )   ( I R ) 𝓸 𝓸 + ϖ ( ς ,   𝓸 ) U ( 𝒾 ) × ψ ( 𝒾 ) d 𝒾   + S ( 𝓸 , ς ) 0 1 λ 1 ( σ ) λ 2 ( 1 σ ) d σ + Q ( 𝓸 , ς ) 0 1 λ 1 ( σ ) λ 2 ( σ ) d σ ,
This completes the result. □
Example 4.
We consider λ 1 ( σ ) = σ ,   λ 2 ( σ ) 1 σ , for σ [ 0 ,   1 ] and the IVFs U ,   ψ : [ 𝓸 ,   𝓸 + ϖ ( ς ,   𝓸 ) ] = [ 0 ,   ϖ ( 1 ,   0 ) ] K C + defined by U ( 𝒾 ) = [ 2 𝒾 2 , 4 𝒾 2 ] and ψ ( 𝒾 ) = [ 𝒾 , 2 𝒾 ] , as in Example 3, and U ( 𝒾 ) ,   ψ ( 𝒾 ) both are left and right λ 1 - and left and right λ 2 -preinvex IVFs with respect to ϖ ( ς ,   𝓸 ) = ς 𝓸 , respectively. Since U * ( 𝒾 ) = 2 𝒾 2 ,   U * ( 𝒾 ) = 4 𝒾 2 and ψ * ( 𝒾 ) = 𝒾 , ψ * ( 𝒾 ) = 2 𝒾 , we have
1 2 λ 1 ( 1 2 ) λ 2 ( 1 2 )   U * ( 2 𝓸 + ϖ ( ς ,   𝓸 ) 2 ) × ψ * ( 2 𝓸 + ϖ ( ς ,   𝓸 ) 2 ) = 1 2 ,   1 2 λ 1 ( 1 2 ) λ 2 ( 1 2 )   U * ( 2 𝓸 + ϖ ( ς ,   𝓸 ) 2 ) × ψ * ( 2 𝓸 + ϖ ( ς ,   𝓸 ) 2 ) = 2 ,
1 ϖ ( ς ,   𝓸 )   𝓸 𝓸 + ϖ ( ς ,   𝓸 ) U * ( 𝒾 ) × ψ * ( 𝒾 ) d 𝒾 = 1 2   1 ϖ ( ς ,   𝓸 )   𝓸 𝓸 + ϖ ( ς ,   𝓸 ) U * ( 𝒾 ) × ψ * ( 𝒾 ) d 𝒾 = 2 ,
S * ( ( 𝓸 , ς ) ) 0 1 λ 1 ( σ ) λ 2 ( 1 σ ) d σ = 1 3 ,   S * ( ( 𝓸 , ς ) ) 0 1 λ 1 ( σ ) λ 2 ( 1 σ ) d σ = 4 3 ,
Q * ( ( 𝓸 , ς ) ) 0 1 λ 1 ( σ ) λ 2 ( σ ) d σ = 0 ,   Q * ( ( 𝓸 , ς ) ) 0 1 λ 1 ( σ ) λ 2 ( σ ) d σ = 0 ,
That means
1 2 1 2 + 0 + 1 3 = 5 6 ,   2 2 + 0 + 4 3 = 10 3 ,
Hence, Theorem 5 is demonstrated.
Using Condition C, we will present weighted extensions of Theorems 3 for left and right λ -preinvex IVF in the following findings.
Theorem 6.
Let U : [ 𝓸 ,   𝓸 + ϖ ( ς ,   𝓸 ) ] K C + be a left and right λ -preinvex IVF with 𝓸 < 𝓸 + ϖ ( ς ,   𝓸 ) and λ : [ 0 ,   1 ] + given by U ( 𝒾 ) = [ U * ( 𝒾 ) ,   U * ( 𝒾 ) ] for all 𝒾 [ 𝓸 ,   𝓸 + ϖ ( ς ,   𝓸 ) ] . If U ( [ 𝓸 ,   𝓸 + ϖ ( ς ,   𝓸 ) ] ) and X : [ 𝓸 ,   𝓸 + ϖ ( ς ,   𝓸 ) ] ,   X ( 𝒾 ) 0 , symmetric with respect to 𝓸 + 1 2 ϖ ( ς ,   𝓸 ) , then
1 ϖ ( ς ,   𝓸 )   ( I R ) 𝓸 𝓸 + ϖ ( ς , 𝓸 ) U ( 𝒾 ) X ( 𝒾 ) d 𝒾 p [ U ( 𝓸 ) + U ( ς ) ] 0 1 λ ( σ ) X ( 𝓸 + σ ϖ ( ς , 𝓸 ) ) d σ .
Proof. 
Let U be a left and right λ -preinvex IVF. Then, we have
U * ( 𝓸 + ( 1 σ ) ϖ ( ς , 𝓸 ) ) X ( 𝓸 + ( 1 σ ) ϖ ( ς , 𝓸 ) ) ( λ ( σ ) U * ( 𝓸 ) + λ ( 1 σ ) U * ( σ ) ) X ( + ( 1 σ ϖ ( ς , 𝓸 ) ) , U * ( 𝓸 + ( 1 σ ) ϖ ( ς , 𝓸 ) ) X ( 𝓸 + ( 1 σ ) ϖ ( ς , 𝓸 ) ) ( λ ( σ ) U * ( 𝓸 ) + λ ( 1 σ ) U * ( σ ) ) X ( + ( 1 σ ϖ ( ς , 𝓸 ) ) ,
And
U * ( 𝓸 + σ ϖ ( ς , 𝓸 ) ) X ( 𝓸 + σ ϖ ( ς , 𝓸 ) ) ( λ ( 1 σ ) U * ( 𝓸 ) + λ ( σ ) U * ( σ ) ) X ( 𝓸 + σ ϖ ( ς , 𝓸 ) ) , U * ( 𝓸 + σ ϖ ( ς , 𝓸 ) ) X ( 𝓸 + σ ϖ ( ς , 𝓸 ) ) ( λ ( 1 σ ) U * ( 𝓸 ) + λ ( σ ) U * ( σ ) ) X ( 𝓸 + σ ϖ ( ς , 𝓸 ) ) .
After adding (23) and (24), and integrating over [ 0 ,   1 ] , we get
0 1 U * ( 𝓸 + ( 1 σ ) ϖ ( ς , 𝓸 ) ) X ( 𝓸 + ( 1 σ ) ϖ ( ς , 𝓸 ) ) d σ + 0 1 U * ( 𝓸 + σ ϖ ( ς , 𝓸 ) ) X ( 𝓸 + σ ϖ ( ς , 𝓸 ) ) d σ           0 1 [ U * ( 𝓸 ) { λ ( σ ) X ( 𝓸 + ( 1 σ ) ϖ ( ς , 𝓸 ) ) + λ ( 1 σ ) X ( 𝓸 + σ ϖ ( ς , 𝓸 ) ) } + U * ( ς ) { λ ( 1 σ ) X ( 𝓸 + ( 1 σ ) ϖ ( ς , 𝓸 ) ) + λ ( 1 σ ) X ( 𝓸 + σ ϖ ( ς , 𝓸 ) ) } ] d σ , 0 1 U * ( 𝓸 + σ ϖ ( ς , 𝓸 ) ) X ( 𝓸 + σ ϖ ( ς , 𝓸 ) ) d σ + 0 1 U * ( 𝓸 + ( 1 σ ) ϖ ( ς , 𝓸 ) ) X ( 𝓸 + ( 1 σ ) ϖ ( ς , 𝓸 ) ) d σ           0 1 [ U * ( 𝓸 ) { λ ( σ ) X ( 𝓸 + ( 1 σ ) ϖ ( ς , 𝓸 ) ) + λ ( 1 σ ) X ( 𝓸 + σ ϖ ( ς , 𝓸 ) ) } + U * ( ς ) { λ ( 1 σ ) X ( 𝓸 + ( 1 σ ) ϖ ( ς , 𝓸 ) ) + λ ( 1 σ ) X ( 𝓸 + σ ϖ ( ς , 𝓸 ) ) } ] d σ , = 2 U * ( 𝓸 ) 0 1 λ ( σ ) X ( 𝓸 + ( 1 σ ) ϖ ( ς ,   𝓸 ) ) d σ + 2 U * ( ς ) 0 1 λ ( σ ) X ( 𝓸 + σ ϖ ( ς ,   𝓸 ) ) d σ , = 2 U * ( 𝓸 ) 0 1 λ ( σ ) X ( 𝓸 + ( 1 σ ) ϖ ( ς ,   𝓸 ) ) d σ + 2 U * ( ς ) 0 1 λ ( σ ) X ( 𝓸 + σ ϖ ( ς ,   𝓸 ) ) d σ .
Since X is symmetric, then
  = 2 [ U * ( 𝓸 ) + U * ( ς ) ] 0 1 λ ( σ ) X ( 𝓸 + σ ϖ ( ς ,   𝓸 ) ) d σ , = 2 [ U * ( 𝓸 ) + U * ( ς ) ] 0 1 λ ( σ ) X ( 𝓸 + σ ϖ ( ς ,   𝓸 ) ) d σ .
Since
0 1 U * ( 𝓸 + ( 1 σ ) ϖ ( ς , 𝓸 ) ) X ( 𝓸 + ( 1 σ ) ϖ ( ς , 𝓸 ) ) d σ = 0 1 U * ( 𝓸 + σ ϖ ( ς , 𝓸 ) ) X ( 𝓸 + σ ϖ ( ς , 𝓸 ) ) d σ = 1 ϖ ( ς , 𝓸 ) 𝓸 𝓸 + ϖ ( ς , 𝓸 ) U * ( 𝒾 ) X ( 𝒾 ) d 𝒾 0 1 U * ( 𝓸 + σ ϖ ) ς , 𝓸 ) ) X ( 𝓸 + σ ϖ ( ς , 𝓸 ) ) d σ = 0 1 U * ( 𝓸 + ( 1 σ ) ϖ ( ς , 𝓸 ) ) X ( 𝓸 + ( 1 σ ) ϖ ( ς , 𝓸 ) ) d σ = 1 ϖ ( ς , 𝓸 ) 𝓸 𝓸 + ϖ ( ς , 𝓸 ) U * ( 𝒾 ) X ( 𝒾 ) d 𝒾
From (25) and (26), we have
  1 ϖ ( ς ,   𝓸 )   𝓸 𝓸 + ϖ ( ς ,   𝓸 ) U * ( 𝒾 ) X ( 𝒾 ) d 𝒾 [ U * ( 𝓸 ) + U * ( ς ) ] 0 1 λ ( σ ) X ( 𝓸 + σ ϖ ( ς ,   𝓸 ) ) d σ ,     1 ϖ ( ς ,   𝓸 )   𝓸 𝓸 + ϖ ( ς ,   𝓸 ) U * ( 𝒾 ) X ( 𝒾 ) d 𝒾   [ U * ( 𝓸 ) + U * ( ς ) ] 0 1 λ ( σ ) X ( 𝓸 + σ ϖ ( ς ,   𝓸 ) ) d σ ,
That is,
[ 1 ϖ ( ς ,   𝓸 )   𝓸 𝓸 + ϖ ( ς ,   𝓸 ) U * ( 𝒾 ) X ( 𝒾 ) d 𝒾 ,   1 ϖ ( ς ,   𝓸 )   𝓸 𝓸 + ϖ ( ς ,   𝓸 ) U * ( 𝒾 ) X ( 𝒾 ) d 𝒾 ] p [ U * ( 𝓸 ) + U * ( ς ) ,   U * ( 𝓸 ) + U * ( ς ) ] 0 1 λ ( σ ) X ( 𝓸 + σ ϖ ( ς ,   𝓸 ) ) d σ ,
Hence,
1 ϖ ( ς ,   𝓸 )   ( I R ) 𝓸 𝓸 + ϖ ( ς ,   𝓸 ) U ( 𝒾 ) X ( 𝒾 ) d 𝒾 p [ U ( 𝓸 ) + U ( ς ) ] 0 1 λ ( σ ) X ( 𝓸 + σ ϖ ( ς ,   𝓸 ) ) d σ .
This completes the proof. □
Theorem 7.
Let U : [ 𝓸 ,   𝓸 + ϖ ( ς ,   𝓸 ) ] K C + be a left and right λ -preinvex IVF with 𝓸 < 𝓸 + ϖ ( ς ,   𝓸 ) and λ : [ 0 ,   1 ] + , such that U ( 𝒾 ) = [ U * ( 𝒾 ) ,   U * ( 𝒾 ) ] for all 𝒾 [ 𝓸 ,   𝓸 + ϖ ( ς ,   𝓸 ) ] . If U ( [ 𝓸 ,   𝓸 + ϖ ( ς ,   𝓸 ) ] ) and X : [ 𝓸 ,   𝓸 + ϖ ( ς ,   𝓸 ) ] ,   X ( 𝒾 ) 0 , symmetric with respect to 𝓸 + 1 2 ϖ ( ς ,   𝓸 ) , and 𝓸 𝓸 + ϖ ( ς ,   𝓸 ) X ( 𝒾 ) d 𝒾 > 0 , and Condition C for ϖ , then
U ( 𝓸 + 1 2 ϖ ( ς , 𝓸 ) ) p 2 λ ( 1 2 ) 𝓸 𝓸 + ϖ ( ς , 𝓸 ) X ( 𝒾 ) d 𝒾   ( I R ) 𝓸 𝓸 + ϖ ( ς ,   𝓸 ) U ( 𝒾 ) X ( 𝒾 ) d 𝒾 .
Proof. 
Using Condition C, we can write
𝓸 + 1 2 ϖ ( ς , 𝓸 ) = 𝓸 + σ ϖ ( ς , 𝓸 ) + 1 2 ϖ ( 𝓸 + ( 1 σ ) ϖ ( ς , 𝓸 ) ,   𝓸 + σ ϖ ( ς , 𝓸 ) ) .
Since U is a left and right λ -preinvex, we have
  U * ( 𝓸 + 1 2 ϖ ( ς , 𝓸 ) ) = U * ( 𝓸 + σ ϖ ( ς , 𝓸 ) + 1 2 ϖ ( 𝓸 + ( 1 σ ) ϖ ( ς , 𝓸 ) , 𝓸 + σ ϖ ( ς , 𝓸 ) ) ) ,   λ ( 1 2 ) ( U * ( 𝓸 + ( 1 σ ) ϖ ( ς ,   𝓸 ) ) + U * ( 𝓸 + σ ϖ ( ς ,   𝓸 ) ) ) , U * ( 𝓸 + 1 2 ϖ ( ς , 𝓸 ) ) = U * ( 𝓸 + σ ϖ ( ς , 𝓸 ) + 1 2 ϖ ( 𝓸 + ( 1 σ ) ϖ ( ς , 𝓸 ) ,   𝓸 + σ ϖ ( ς , 𝓸 ) ) ) ,   λ ( 1 2 ) ( U * ( 𝓸 + ( 1 σ ) ϖ ( ς , 𝓸 ) ) + U * ( 𝓸 + σ ϖ ( ς , 𝓸 ) ) ) ,
By multiplying (28) by X ( 𝓸 + ( 1 σ ) ϖ ( ς , 𝓸 ) ) = X ( 𝓸 + σ ϖ ( ς , 𝓸 ) ) and integrate it by σ over [ 0 ,   1 ] , we obtain
U * ( 𝓸 + 1 2 ϖ ( ς , 𝓸 ) ) 0 1 X ( 𝓸 + σ ϖ ( ς , 𝓸 ) ) d σ λ ( 1 2 ) ( 0 1 U * 𝓸 + ( 1 σ ) ϖ ( ς , 𝓸 ) X 𝓸 + ( 1 σ ) ϖ ( ς , 𝓸 ) d σ + 0 1 U * ( 𝓸 + σ ϖ ( ς , 𝓸 ) ) X ( 𝓸 + σ ϖ ( ς , 𝓸 ) ) d σ ) , U * ( 𝓸 + 1 2 ϖ ( ς , 𝓸 ) ) 0 1 X ( 𝓸 + σ ϖ ( ς , 𝓸 ) ) d σ λ ( 1 2 ) ( 0 1 U * 𝓸 + ( 1 σ ) ϖ ( ς , 𝓸 ) X 𝓸 + ( 1 σ ) ϖ ( ς , 𝓸 ) d σ + 0 1 U * ( 𝓸 + σ ϖ ( ς , 𝓸 ) ) X ( 𝓸 + σ ϖ ( ς , 𝓸 ) ) d σ ) .
Since
0 1 U * 𝓸 + ( 1 σ ) ϖ ( ς , 𝓸 ) X 𝓸 + ( 1 σ ) ϖ ( ς , 𝓸 ) d σ = 0 1 U * ( 𝓸 + σ ϖ ( ς , 𝓸 ) ) X ( 𝓸 + σ ϖ ( ς , 𝓸 ) ) d σ , = 1 ϖ ( ς , 𝓸 ) 𝓸 𝓸 + ϖ ( ς , 𝓸 ) U * ( 𝒾 ) X ( 𝒾 ) d 𝒾 0 1 U * 𝓸 + σ ϖ ( ς , 𝓸 ) X 𝓸 + σ ϖ ( ς , 𝓸 ) d σ = 0 1 U * ( 𝓸 + ( 1 σ ) ϖ ( ς , 𝓸 ) ) X ( 𝓸 + ( 1 σ ) ϖ ( ς , 𝓸 ) ) d σ , = 1 ϖ ( ς , 𝓸 ) 𝓸 𝓸 + ϖ ( ς , 𝓸 ) U * ( 𝒾 ) X ( 𝒾 ) d 𝒾 ,
From (29) and (30), we have
  U * ( 𝓸 + 1 2 ϖ ( ς ,   𝓸 ) )   2 λ ( 1 2 ) 𝓸 𝓸 + ϖ ( ς ,   𝓸 ) X ( 𝒾 ) d 𝒾   𝓸 𝓸 + ϖ ( ς ,   𝓸 ) U * ( 𝒾 ) X ( 𝒾 ) d 𝒾 ,   U * ( 𝓸 + 1 2 ϖ ( ς ,   𝓸 ) )   2 λ ( 1 2 ) 𝓸 𝓸 + ϖ ( ς ,   𝓸 ) X ( 𝒾 ) d 𝒾   𝓸 𝓸 + ϖ ( ς ,   𝓸 ) U * ( 𝒾 ) X ( 𝒾 ) d 𝒾 .  
From which, we have
[ U * ( 𝓸 + 1 2 ϖ ( ς ,   𝓸 ) ) , U * ( 𝓸 + 1 2 ϖ ( ς ,   𝓸 ) ) ] p 2 λ ( 1 2 ) 𝓸 𝓸 + ϖ ( ς ,   𝓸 ) X ( 𝒾 ) d 𝒾 [ 𝓸 𝓸 + ϖ ( ς ,   𝓸 ) U * ( 𝒾 ) X ( 𝒾 ) d 𝒾 ,   𝓸 𝓸 + ϖ ( ς ,   𝓸 ) U * ( 𝒾 ) X ( 𝒾 ) d 𝒾 ]
That is,
U ( 𝓸 + 1 2 ϖ ( ς ,   𝓸 ) ) p 2 λ ( 1 2 ) 𝓸 𝓸 + ϖ ( ς ,   𝓸 ) X ( 𝒾 ) d 𝒾   ( I R ) 𝓸 𝓸 + ϖ ( ς ,   𝓸 ) U ( 𝒾 ) X ( 𝒾 ) d 𝒾 ,
Then we complete the proof. □
Remark 4.
If one takes λ ( σ ) = σ , then (22) and (27) reduce to the result for left and right preinvex IVFs.
If one takes U * ( 𝒾 ) = U * ( 𝒾 ) , then (22) and (27) reduce to the classical first and secondH-HFejér inequality for𝜆-preinvex function, see [28].
If one takes U * ( 𝒾 ) = U * ( 𝒾 )   ϖ ( ς ,   𝓸 ) = ς 𝓸 , then (22) and (27) reduce to the classical secondH-HFejér inequality for𝜆-convex function, see [28].
Example 5.
We consider λ ( σ ) = σ ,   for σ [ 0 ,   1 ] and the IVF U : [ 1 ,   1 + ( 4 ,   1 ) ] K C + defined by U ( 𝒾 ) = [ 1 , 4   ] e 𝒾 . Since U * ( 𝒾 ) and U * ( 𝒾 ) are λ -preinvex functions ϖ ( 𝒿 , 𝒾 ) = 𝒿 𝒾 , then U ( 𝒾 ) is left and right λ -preinvex IVF. If
X ( 𝒾 ) = { 𝒾 1 ,   B [ 1 , 5 2 ] 4 𝒾 ,   B ( 5 2 ,   4 ] ,  
Then, we have
1 ϖ ( 4 , 1 ) 1 1 + ϖ ( 4 , 1 ) U * ( 𝒾 ) X ( 𝒾 ) d ( 𝒾 ) = 1 3 1 4 U * ( 𝒾 ) X ( 𝒾 ) d ( 𝒾 ) = 1 3 1 2 5 U * ( 𝒾 ) X ( 𝒾 ) d ( 𝒾 ) + 1 3 5 2 4 U * ( 𝒾 ) X ( 𝒾 ) d ( 𝒾 ) , 1 ϖ ( 4 , 1 ) 1 1 + ϖ ( 4 , 1 ) U * ( 𝒾 ) X ( 𝒾 ) d ( 𝒾 ) = 1 3 1 4 U * ( 𝒾 ) X ( 𝒾 ) d ( 𝒾 ) = 1 3 1 2 5 U * ( 𝒾 ) X ( 𝒾 ) d ( 𝒾 ) + 1 3 5 2 4 U * ( 𝒾 ) X ( 𝒾 ) d ( 𝒾 ) , = 1 3 1 5 2 e 𝒾 ( 𝒾 1 ) d 𝒾 + 1 3 5 2 4 e 𝒾 ( 4 𝒾 ) d 𝒾 11 ,   = 4 3 1 5 2 e 𝒾 ( 𝒾 1 ) d 𝒾 + 2 3 5 2 4 e 𝒾 ( 4 𝒾 ) d 𝒾 42 ,
and
    [ U * ( 𝓸 ) + U * ( ς ) ] 0 1 λ ( σ ) X ( 𝓸 + σ ϖ ( ς ,   𝓸 ) ) d σ       [ U * ( 𝓸 ) + U * ( ς ) ] 0 1 λ ( σ ) X ( 𝓸 + σ ϖ ( ς ,   𝓸 ) ) d σ
= [ e + e 4 ]   [ 0 1 2 3 σ 2 d 𝒾 + 1 2 1 σ ( 3 3 σ ) d σ ] 21.5     = 4 [ e + e 4 ] [ 0 1 2 3 σ 2 d 𝒾 + 1 2 1 σ ( 3 3 σ ) d σ ] 96 .
From (31) and (32), we have
[ 11 ,   42 ]   p [ 21.5 ,   96 ] .
Hence, Theorem 6 is verified.
For Theorem 7, we have
U * ( 𝓸 + 1 2 ϖ ( ς , 𝓸 ) ) 12.8   ,   U * ( 𝓸 + 1 2 ϖ ( ς ,   𝓸 ) ) 49   ,  
𝓸 𝓸 + ϖ ( ς ,   𝓸 ) X ( 𝒾 ) d 𝒾 = 1 5 2 ( 𝒾 1 ) d 𝒾 + 𝓸 𝓸 + ϖ ( ς ,   𝓸 ) ( 4 𝒾 ) d 𝒾 9 4 ,
  2 λ ( 1 2 ) 𝓸 𝓸 + ϖ ( ς ,   𝓸 ) X ( 𝒾 ) d 𝒾   𝓸 𝓸 + ϖ ( ς ,   𝓸 ) U * ( 𝒾 ) X ( 𝒾 ) d 𝒾 14.6   2 λ ( 1 2 ) 𝓸 𝓸 + ϖ ( ς ,   𝓸 ) X ( 𝒾 ) d 𝒾   𝓸 𝓸 + ϖ ( ς ,   𝓸 ) U * ( 𝒾 ) X ( 𝒾 ) d 𝒾 58.5  
From (33) and (34), we have
[ 12.8 ,   49 ]   p [ 14.6 ,   58.5 ] .
Hence, Theorem 7 is verified.

4. Conclusions

Over the past three decades, there has been an increase in interest in the field of convex mathematical inequalities. Novel findings are being added to the theory of inequalities as a result of the researchers’ search for new generalizations of convex functions. A number of conclusions that hold for convex functions have been generalized in the current study using left and right λ -preinvex IVF. In this work, we developed several new mappings in order to obtain the innovative results. In addition to obtaining further modifications of the Hermite–Hadamard- and Fejér-type inequalities previously established for left and right λ -preinvex IVF, we have highlighted several intriguing characteristics of these mappings. The findings of this study, in our opinion, may serve as a source of motivation for mathematicians working in this area and for future researchers considering a career in this exciting area of mathematics.

Author Contributions

Conceptualization, M.B.K.; methodology, M.B.K.; validation, T.S. and H.H.A.; formal analysis, T.S.; investigation, M.B.K.; resources, T.S.; data curation, H.H.A. and S.T.; writing—original draft preparation, M.B.K. and H.H.A.; writing—review and editing, M.B.K., M.S.A. and T.S.; visualization, H.H.A. and S.T.; supervision, M.B.K.; project administration, M.B.K.; funding acquisition, M.S.A., T.S. and H.H.A. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Data Availability Statement

Not applicable.

Acknowledgments

This research work was funded by Institutional Fund Projects under grant no (IFPRC-131-130-2020). Therefore, authors gratefully acknowledge technical and financial support from the Ministry of Education and King Abdulaziz University, Jeddah, Saudi Arabia.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Fu, H.L.; Saleem, M.S.; Nazeer, W.; Ghafoor, M.; Li, P.G. On Hermite-Hadamard type inequalities for n-polynomial convex stochastic processes. AIMS Math. 2021, 6, 6322–6339. [Google Scholar] [CrossRef]
  2. Lv, Y.P.; Farid, G.; Yasmeen, H.; Nazeer, W.; Jung, C.Y. Generalization of some fractional versions of Hadamard inequalities via exponentially (α, h − m)-convex functions. AIMS Math. 2021, 6, 8978–8999. [Google Scholar] [CrossRef]
  3. Moore, R.E. Methods and Applications of Interval Analysis; SIAM: Philadelphia, PA, USA, 1979. [Google Scholar]
  4. Piatek, B. On the Riemann integral of set-valued functions. Zesz. Naukowe. Mat. Stosow./Politech. Slaska. 2012, 2, 5–18. [Google Scholar]
  5. Moore, R.E.; Kearfott, R.B.; Cloud, M.J. Introduction to Interval Analysis; SIAM: Philadelphia, PA, USA, 2009. [Google Scholar]
  6. Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; North-Holland Mathematics Studies; Elsevier: Amsterdam, The Netherlands, 2006; Volume 204. [Google Scholar]
  7. Lupulescu, V. Fractional calculus for interval-valued functions. Fuzzy Sets Syst. 2015, 265, 63–85. [Google Scholar] [CrossRef]
  8. Chalco-Cano, Y.; Flores-Franulic, A.; Roman-Flores, H. Ostrowski type inequalities for interval-Valued functions using generalized Hukuhara derivative. Comput. Appl. Math. 2012, 31, 457–472. [Google Scholar]
  9. Chalco-Cano, Y.; Lodwick, W.A.; Condori-Equice, W. Ostrowski type inequalities and applications in numerical integration for interval-valued functions. Soft Comput. 2015, 19, 3293–3300. [Google Scholar] [CrossRef]
  10. Roman-Flores, H.; Chalco-Cano, Y.; Lodwick, W.A. Some integral inequalities for interval-valued functions. Comput. Appl. Math. 2018, 37, 1306–1318. [Google Scholar] [CrossRef]
  11. Barani, A.; Ghazanfari, A.G.; Dragomir, S.S. Hermite-Hadamard inequality for functions whose derivatives absolute values are preinvex. J. Inequal. Appl. 2012, 2012, 247. [Google Scholar] [CrossRef] [Green Version]
  12. Budak, H.; Tuna, T.; Sarikaya, M.Z. Fractional Hermite-Hadamard-type inequalities for interval valued functions. Proc. Amer. Math. Soc. 2020, 148, 705–718. [Google Scholar] [CrossRef] [Green Version]
  13. Weir, T.; Mond, B. Pre-invex functions in multiple objective optimization. J. Math. Anal. Appl. 1988, 136, 29–38. [Google Scholar] [CrossRef] [Green Version]
  14. Mohan, S.R.; Neogy, S.K. On invex sets and preinvex functions. J. Math. Anal. Appl. 1995, 189, 901–908. [Google Scholar] [CrossRef] [Green Version]
  15. Sharma, N.; Singh, S.K.; Mishra, S.K.; Hamdi, A. Hermite-Hadamard-type inequalities for interval valued preinvex functions via Riemann-Liouville fractional integrals. J. Inequal. Appl. 2021, 2021, 98. [Google Scholar] [CrossRef]
  16. Noor, M.A. Hermite-Hadamard integral inequalities for log-preinvex functions. J. Math. Anal. Approx. Theory 2007, 2, 126–131. [Google Scholar]
  17. Zhao, D.; Ali, M.A.; Murtaza, G.; Zhang, Z. On the Hermite–Hadamard inequalities for interval-valued coordinated convex functions. Adv. Difer. Equ. 2020, 2020, 570. [Google Scholar] [CrossRef]
  18. An, Y.; Ye, G.; Zhao, D.; Liu, W. Hermite–Hadamard type inequalities for interval (h1, h2)-convex functions. Mathematics 2019, 5, 436. [Google Scholar] [CrossRef] [Green Version]
  19. Nwaeze, E.R.; Khan, M.A.; Chu, Y.M. Fractional inclusions of the Hermite–Hadamard type for m-polynomial convex interval valued functions. Adv. Difer. Equ. 2020, 2020, 507. [Google Scholar] [CrossRef]
  20. Tariboon, J.; Ali, M.A.; Budak, H.; Ntouyas, S.K. Hermite–Hadamard inclusions for co-ordinated interval-valued functions via post-quantum calculus. Symmetry 2021, 13, 1216. [Google Scholar] [CrossRef]
  21. Kalsoom, H.; Ali, M.A.; Idrees, M.; Agarwal, P.; Arif, M. New post quantum analogues of Hermite–Hadamard type inequalities for interval-valued convex functions. Math. Prob. Eng. 2021, 2021, 5529650. [Google Scholar] [CrossRef]
  22. Ali, M.A.; Budak, H.; Murtaza, G.; Chu, Y.M. Post-quantum Hermite–Hadamard type inequalities for interval-valued convex functions. J. Inequal. Appl. 2021, 2021, 84. [Google Scholar] [CrossRef]
  23. Khan, M.B.; Noor, M.A.; Noor, K.I.; Chu, Y.M. New Hermite-Hadamard type inequalities for-convex fuzzy-interval-valued functions. Adv. Difer. Equ. 2021, 2021, 149. [Google Scholar] [CrossRef]
  24. Khan, M.B.; Noor, M.A.; Abdeljawad, T.; Abdalla, B. Althobaiti. A. Some fuzzy-interval integral inequalities for harmonically convex fuzzy-interval-valued functions. AIMS Math. 2022, 7, 349–370. [Google Scholar] [CrossRef]
  25. Khan, M.B.; Cătaș, A.; Saeed, T. Generalized Fractional Integral Inequalities for p-Convex Fuzzy Interval-Valued Mappings. Fractal Fract. 2022, 6, 324. [Google Scholar] [CrossRef]
  26. Khan, M.B.; Mohammed, P.O.; Noor, M.A.; Hamed, Y.S. New Hermite–Hadamard Inequalities in Fuzzy-Interval Fractional Calculus and Related Inequalities. Symmetry 2021, 13, 673. [Google Scholar] [CrossRef]
  27. Zhang, D.; Guo, C.; Chen, D.; Wang, G. Jensen’s inequalities for set-valued and fuzzy set-valued functions. Fuzzy Sets Syst. 2021, 404, 178–204. [Google Scholar] [CrossRef]
  28. Matłoka, M. Inequalities for h-preinvex functions. Appl. Math. Comput. 2014, 234, 52–57. [Google Scholar] [CrossRef]
  29. Khan, M.B.; Noor, M.A.; Shah, N.A.; Abualnaja, K.M.; Botmart, T. Some New Versions of Hermite–Hadamard Integral Inequalities in Fuzzy Fractional Calculus for Generalized Pre-Invex Functions via Fuzzy-Interval-Valued Settings. Fractal Fract. 2022, 6, 83. [Google Scholar] [CrossRef]
  30. Guessab, A.; Moncayo, M.; Schmeisser, G. A class of nonlinear four-point subdivision schemes. Adv. Comput. Math. 2012, 37, 151–190. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Saeed, T.; Khan, M.B.; Treanțǎ, S.; Alsulami, H.H.; Alhodaly, M.S. Interval Fejér-Type Inequalities for Left and Right-λ-Preinvex Functions in Interval-Valued Settings. Axioms 2022, 11, 368. https://doi.org/10.3390/axioms11080368

AMA Style

Saeed T, Khan MB, Treanțǎ S, Alsulami HH, Alhodaly MS. Interval Fejér-Type Inequalities for Left and Right-λ-Preinvex Functions in Interval-Valued Settings. Axioms. 2022; 11(8):368. https://doi.org/10.3390/axioms11080368

Chicago/Turabian Style

Saeed, Tareq, Muhammad Bilal Khan, Savin Treanțǎ, Hamed H. Alsulami, and Mohammed Sh. Alhodaly. 2022. "Interval Fejér-Type Inequalities for Left and Right-λ-Preinvex Functions in Interval-Valued Settings" Axioms 11, no. 8: 368. https://doi.org/10.3390/axioms11080368

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop