Next Article in Journal
Asymptotically Coupled Coincidence Points and Asymptotically Coupled Fixed Points in Fuzzy Semi-Metric Spaces
Next Article in Special Issue
Parameterized Quantum Fractional Integral Inequalities Defined by Using n-Polynomial Convex Functions
Previous Article in Journal
On a Surface Associated to the Catalan Triangle
Previous Article in Special Issue
An Application of Rabotnov Functions on Certain Subclasses of Bi-Univalent Functions
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Some Properties of Bazilevič Functions Involving Srivastava–Tomovski Operator

by
Daniel Breaz
1,*,†,
Kadhavoor R. Karthikeyan
2,†,
Elangho Umadevi
3,† and
Alagiriswamy Senguttuvan
2,†
1
Department of Mathematics, “1 Decembrie 1918” University of Alba Iulia, 510009 Alba Iulia, Romania
2
Department of Applied Mathematics and Science, National University of Science & Technology, Muscat P.O. Box 620, Oman
3
Department of Mathematics and Statistics, College of Natural and Health Sciences, Zayed University, Abu Dhabi P.O. Box 144534, United Arab Emirates
*
Author to whom correspondence should be addressed.
Authors dedicate this article to Professor Hari M. Srivastava on the occasion of his 82nd Birthday.
Axioms 2022, 11(12), 687; https://doi.org/10.3390/axioms11120687
Submission received: 26 October 2022 / Revised: 25 November 2022 / Accepted: 28 November 2022 / Published: 30 November 2022

Abstract

:
We introduce a new class of Bazilevič functions involving the Srivastava–Tomovski generalization of the Mittag-Leffler function. The family of functions introduced here is superordinated by a conic domain, which is impacted by the Janowski function. We obtain coefficient estimates and subordination conditions for starlikeness and Fekete–Szegö functional for functions belonging to the class.

1. Introduction

Researchers have successfully applied the Mittag-Leffler function and its multi-parameter extensions to several problems in physics, engineering and other applied sciences. However, the real importance of this function arose from the role it plays in Fractional Calculus [1]. The familiar Mittag-Leffler function E α ( z ) and its two-parameter version E α , β ( z ) are defined, respectively, by
E α ( z ) = n = 0 z n Γ α n + 1 and E α , β ( z ) = n = 0 z n Γ α n + β ( z , α , β , C , R e ( α ) > 0 ) ,
where z Π = { z : z < 1 } , C denotes the sets of complex numbers and ( x ) n denotes the Pochhammer symbol defined by
( x ) n = Γ ( x + n ) Γ ( x ) = 1 i f n = 0 x ( x + 1 ) ( x + 2 ) ( x + n 1 ) i f n N .
The Mittag-Leffler function E α ( z ) and its two-parameter version E α , β ( z ) were first considered by Gösta Mittag-Leffler in 1903 and A. Wiman in 1905. Refer to Ayub et al. [2], Gorenflo [3], Srivastava [4,5,6] and Srivastava et al. [7,8,9,10,11,12,13,14,15,16,17,18] for detailed studies that involve the Mittag-Leffler function.
The Mittag-Leffler function E α , β ( z ) coincides with well-known elementary functions and some special functions. For example,
E 1 , 2 ( z ) = e z 1 z , E 3 , 1 ( z ) = 1 2 e z 1 / 3 + 2 e 1 2 z 1 / 3 cos 3 2 z 1 / 3 .
Srivastava et al. [13] considered the following family of the multi-index Mittag-Leffler functions as a kernel of some fractional-calculus operators
E ( α j , β j ) m γ , k , δ , ϵ ( z ) = n = 0 ( γ ) k n ( δ ) ϵ n j = 1 m Γ α j n + β j z n n ! ,
α j , β j , γ , k , δ , ϵ C ; Re ( α j ) > 0 , ( j = 1 , , m ) ; Re j = 1 m α j > Re ( k + ϵ ) 1 .

Some Higher Transcendental Functions and Related Mittag-Leffler Functions

The well-known Meijer G-function and Fox’s H-function have almost all elementary and special functions as their special cases. Here we will restrict with a brief overview of the Fox–Wright function and Hurwitz–Lerch type zeta functions unification with the Mittag-Leffler function and its multi-parameter extensions.
For η j C ( j = 1 , , r ) and ν j C \ Z 0 = { 0 , 1 , } ( j = 1 , , s ) , the Fox–Wright function  r Ψ s , which is defined by (see ([19], Equation (1.6)), ([20], p. 21) and ([21], p. 19))
r Ψ s ( η 1 , A 1 ) ( η r , A r ) ( ν 1 , B 1 ) ( ν s , B s ) ; z = n = 0 j = 1 r Γ ( η j + A j n ) j = 1 s Γ ( ν j + B j n ) z n n ! .
where Re ( A j ) > 0 , ( j = 1 , , r ) and Re ( B j ) > 0 C ( j = 1 , , s ) with 1 + Re j = 1 s B j j = 1 r A j 0 . Refer to Srivastava ([5], Definition 2) for a detailed discussion on the convergence of the series (2).
Lin and Srivastava [22] introduced and investigated an interesting generalization of the well-known Hurwitz–Lerch zeta function  ϕ ( z , s , a ) in the following form
ϕ η , ν k , ϵ ( z , m , a ) = n = 0 ( η ) k n ( ν ) ϵ n z n ( n + a ) m .
In order to derive a direct relationship with the Fox–Wright function, the function ϕ η , ν k , ϵ ( z , m , a ) was further generalized to (see Srivastava et al. [23])
ϕ η 1 , η r ; ν 1 , , ν s k 1 , , k r ; ϵ 1 , , ϵ s ( z , m , a ) = n = 0 j = 1 r ( η j ) n k j n ! j = 1 s ( ν j ) n ϵ j z n ( n + a ) m ,
where η j C ( j = 1 , , r ) and ν j C \ Z 0 = { 0 , 1 , } ( j = 1 , , s ) . Refer to [24,25,26], for a detailed discussion on the convergence.
When A j = 1 , ( j = 1 , , r ) and B j = 1 , ( j = 1 , , s ) in (2), then
r Ψ s ( η 1 , 1 ) ( η r , 1 ) ( ν 1 , 1 ) ( ν s , 1 ) ; z = r F s η 1 , η r ν 1 , ν s ; z = n = 0 ( η 1 ) n ( η r ) n ( ν 1 ) n ( ν s ) n z n n ! .
The function r F s is the well-known generalized hypergeometric function (see [27,28]).
Similarly, we observe from (1) and (2) that
E ( α j , β j ) m γ , k , δ , ϵ ( z ) = 1 Γ ( γ ) Γ ( δ ) 2 Ψ m ( γ , k ) , ( δ , ϵ ) ( β 1 , α 1 ) ( β m , α m ) ; z .
A special case of the multi-index Mittag-Leffler function defined by (1), when m = 2 corresponding to the Srivastava–Tomovski generalization of the Mittag-Leffler function [29], is given by
E α , β γ , k ( z ) = n = 0 ( γ ) n k z n Γ α n + β n ! , z , α , β , γ , k C , R e ( α ) > 0 , R e ( k ) > 0 ,         = 1 Γ ( γ ) 1 Ψ 1 ( γ , k ) ( β , α ) ; z .
In [29], the authors established that E α , β γ , k ( z ) defined by (3) is an entire function in the complex z-plane. The function E α , β γ , k ( z ) is called the Srivastava–Tomovski generalization of the Mittag-Leffler function. The function E α , β γ , 1 ( z ) is popularly known as Prabhakar function or generalized Mittag-Leffler three-parameter function.
In geometric function theory, several researchers have studied the properties of the Srivastava–Tomovski generalization of the Mittag-Leffler function. The most prominent studies pertaining to the Srivastava–Tomovski generalization were by Aouf and Mostafa [30], Attiya [31], Liu [32] and Tomovski et al. [33].

2. Definitions and Preliminaries

Let H ( d , n ) be the class of analytic functions having a series of the form φ ( z ) = d + d n z n + d n + 1 z n + 1 + .
Let
Λ n = { φ H , φ ( z ) = z + d n + 1 z n + 1 + d n + 2 z n + 2 + }
and let Λ = Λ 1 . For φ Λ , Cang and Liu in [34] introduced an operator using the Srivastava–Tomovski generalization of the Mittag-Leffler function ([29]), which, explicitly for p = 1 , is given by
H α , β γ , k φ ( z ) = z + n = 2 Γ ( γ + n k ) Γ ( α + β ) Γ ( γ + k ) Γ ( α n + β ) n ! d n z n .
Motivated by [35,36], we now define an operator J k m ( α , β , γ ) φ ( z ) : Λ Λ is defined by
J k , λ m ( α , β , γ ) φ ( z ) = z + n = 2 1 λ + λ n m Γ ( γ + n k ) Γ ( α + β ) Γ ( γ + k ) Γ ( α n + β ) n ! d n z n .
Remark 1.
We note that operator J k , λ m ( α , β , γ ) φ ( z ) is closely related to the operators studied by Breaz et al. [37], Cang and Liu [34] and Elhaddad et al. [38]. Now here we list some of the special cases:
1.
J 1 , λ m ( 0 , β , 1 ) φ ( z ) = D m φ ( z ) , where D m φ ( z ) is the Al-Oboudi operator (see [39])
2.
If we let α = 0 , k = γ = 1 and λ = 1 in (5), then J k , λ m ( α , β , γ ) φ ( z ) reduces to the well-known Sălăgean operator.
3.
If we let m = 0 and λ = 1 in (5), then J k , λ m ( α , β , γ ) φ ( z ) reduces to the operator defined and studied by Cang & Liu [34].
Let Υ denote the class of functions having series
r ( z ) = 1 + n = 1 r n z n ( z Π ) ,
which satisfies the condition R e ( r ( z ) ) > 0 . We denote by S * ( η ) , C ( η ) and K ( η , τ ) ( 0 η , τ < 1 ) the familiar subclasses of Λ consisting of functions that are, respectively, starlike of order η , convex of order η and close-to-convex of order η and type τ in Π .
Recently, Breaz et al. [40] defined and studied the following function
Γ ( Q , R ; p ; σ ; Ψ ) = ( 1 + Q ) p + σ ( R Q ) Ψ ( z ) + ( 1 Q ) p σ ( R Q ) ( R + 1 ) Ψ ( z ) + ( 1 R ) ,
where Ψ ( z ) Υ and has a series representation of the form
Ψ ( z ) = 1 + L 1 z + L 2 z 2 + .
A detailed geometric interpretation of Γ ( Q , R ; p ; σ ; Ψ ) was discussed by Karthikeyan et al. in [41]. The function Γ ( Q , R ; p ; σ ; Ψ ) was mainly motivated by the study of Noor and Malik [42] and Srivastava et al. [43,44,45,46,47,48,49].
By making use of the function Γ ( Q , R ; p ; σ ; Ψ ) , we now define the following.
Definition 1.
For 0 δ < , a function φ ( z ) Λ is said to be in B λ m ( α , β , γ ; δ ; Q , R ; Ψ ) if and only if for all J k , λ m ( α , β , γ ) χ S * ( 0 ) it satisfies the condition
z J k , λ m ( α , β , γ ) φ ( z ) [ J k , λ m ( α , β , γ ) φ ( z ) ] 1 δ [ J k , λ m ( α , β , γ ) χ ( z ) ] δ Γ ( Q , R ; 1 ; σ ; Ψ ) , ( z Π )
where J k , λ m ( α , β , γ ) χ ( z ) 0 for all z Π .
If we let m = σ = α = 0 , k = 1 , Q = 1 , R = 1 and χ S * ( 1 + z / 1 z ) , then B λ m ( α , β , γ ; Q , R ; Ψ ) reduces to the class
B ( δ ; Ψ ) = φ Λ : z φ ( z ) [ φ ( z ) ] 1 δ [ χ ( z ) ] δ Ψ ( z ) , χ S * ( 0 ) .
The function B ( δ ; Ψ ) was studied by Goyal and Goswami in [50] but with φ and χ belonging to Λ n .
If we let χ ( z ) = z , σ = 0 , Ψ ( z ) = 1 + z 1 z , Q = 1 2 η and R = 1 we get the class B ( δ , η ) which satisfies the condition Re z 1 δ J k , λ m ( α , β , γ ) φ ( z ) J k , λ m ( α , β , γ ) φ ( z ) 1 δ > η , z Π , where φ Λ . Further, on letting m = σ = α = 0 and k = 1 in B ( δ , η ) , it reduces to the well-known class B ( δ ) (see [51]), which satisfies the condition Re z 1 δ φ ( z ) φ ( z ) 1 δ > 0 , z Π , where φ Λ . For recent developments pertaining to the study of Bazilevič functions, refer to [52,53].
Throughout this paper, we let
( 1 ; Q , R ; σ ; Ψ ; z ) = ( 1 + Q ) + σ ( R Q ) Ψ ( z ) + ( 1 Q ) σ ( R Q ) ( R + 1 ) Ψ ( z ) + ( 1 R ) .
From ([40], Theorem 2), with
w ( z ) = 1 2 ρ 1 z + 1 2 ρ 2 1 2 ρ 1 2 z 2 + 1 2 ρ 3 ρ 1 ρ 2 + 1 4 ρ 1 3 z 3 + , z Π ,
we can get
( 1 ; Q , R ; σ ; w ( z ) ) = 1 + L 1 ρ 1 ( Q R ) ( 1 σ ) 4 z + ( Q R ) ( 1 σ ) L 1 4 ρ 2 ρ 1 2 ( R + 1 ) L 1 + 2 1 L 2 L 1 4 z 2 + .
Now we will state some results, which we will be using to establish the coefficient inequalities.
Lemma 1
([54]). Let ρ ( z ) = 1 + n = 1 ρ 1 z n be analytic in the unit disc satisfying Re ρ ( z ) > 0 . Then, for each complex number ϑ, we have
| ρ 2 ϑ ρ 1 2 | 2 max 1 , | 2 ϑ 1 | ,
the result is sharp for functions given by
ρ ( z ) = 1 + z 2 1 z 2 , ρ ( z ) = 1 + z 1 z .
Lemma 2
([55]). If R ( z ) = z + n = 2 c n z n S * , then | c n | n . Further, for each complex number ϑ we have c 3 ϑ c 2 2 max 1 , 3 4 ϑ and the result is sharp for the Koebe functon
r ( z ) = z ( 1 z ) 2 i f ρ 3 4 1 4
and for
r 1 2 z 2 = z 1 z 2 i f ρ 3 4 1 4 .

3. Fekete–Szegö Inequalities for the Class B λ m ( α , β , γ ; δ ; Q , R ; Ψ )

In this section, we obtain the solution to the Fekete–Szegö problem for functions in class B λ m ( α , β , γ ; δ ; Q , R ; Ψ ) .
Theorem 1.
If φ ( z ) B λ m ( α , β , γ ; δ ; Q , R ; Ψ ) , then we have
d 2 ( Q R ) ( 1 σ ) | L 1 | 2 | M 2 | ( 1 + δ ) + 2 δ ( δ + 1 ) ,
and
d 3 ( Q R ) ( 1 σ ) | L 1 | 2 | M 3 | ( δ + 2 ) max 1 , 2 Γ 1 1 + δ ( δ + 2 ) max 1 , 3 4 Γ 2 + ( Q R ) δ ( 1 σ ) | L 1 M 2 | | M 3 | ( δ + 1 ) ( δ + 2 ) ,
where Γ 1 and Γ 2 are given by
Γ 1 = 1 4 L 1 ( R + 1 ) + 2 1 L 2 L 1 ( Q R ) ( 1 σ ) L 1 ( δ 2 + δ 2 ) 2 ( 1 + δ ) 2 Γ 2 = M 2 2 2 M 3 ( δ + 1 ) + δ ( δ 2 + δ 2 ) ( 1 + δ ) 2 + 2 δ ( δ + 1 ) .
Further, for all ϑ C we have
d 3 ϑ d 2 2 ( Q R ) ( 1 σ ) | L 1 | 2 | M 3 | ( δ + 2 ) max 1 , 2 H 1 1 + 2 ( Q R ) δ ( 1 σ ) | L 1 M 2 | ( δ + 1 ) 1 2 M 3 ( δ + 2 ) ϑ M 2 ( 1 + δ ) + 2 δ ( δ + 2 ) max 1 , | 3 4 H 2 | ,
where H 1 and H 2 are given by
H 1 = 1 4 L 1 ( R + 1 ) + 2 1 L 2 L 1 + ϑ M 3 ( δ + 2 ) M 2 2 ( δ 2 + δ 2 ) 2 ( Q R ) ( 1 σ ) L 1 ( 1 + δ ) 2 H 2 = M 2 2 2 M 3 ( δ + 1 ) 2 ϑ δ ( δ + 2 ) M 3 M 2 2 ( δ + 1 ) 2 + δ ( δ 2 + δ 2 ) ( 1 + δ ) 2 + 2 δ ( δ + 1 ) .
The inequality is sharp for each ϑ C .
Proof. 
By the definition of B λ m ( α , β , γ ; δ ; Q , R ; Ψ ) , we have
z J k , λ m ( α , β , γ ) φ ( z ) [ J k , λ m ( α , β , γ ) φ ( z ) ] 1 δ [ J k , λ m ( α , β , γ ) χ ( z ) ] δ = ( 1 ; Q , R ; σ ; w ( z ) ) ,
where ( 1 ; Q , R ; σ ; w ( z ) ) is defined as in (9). The left-hand side of (14) is given by
z J k , λ m ( α , β , γ ) φ ( z ) [ J k , λ m ( α , β , γ ) φ ( z ) ] 1 δ [ J k , λ m ( α , β , γ ) χ ( z ) ] δ = 1 + d 2 ( 1 + δ ) δ c 2 M 2 z + [ M 3 ( δ + 2 ) d 3 1 2 M 3 ( δ + 2 ) d 2 2 M 2 2 ( δ 2 + δ 2 ) d 2 M 2 2 δ c 2 + M 3 δ c 3 M 2 2 2 M 3 c 2 2 ( δ + 1 ) ] z 2 + .
From (15) and (10), the coefficients of z and z 2 are given by
d 2 = ( Q R ) ( 1 σ ) L 1 ρ 1 4 M 2 ( 1 + δ ) + δ ( δ + 1 ) c 2
and
d 3 = ( Q R ) ( 1 σ ) L 1 4 M 3 ( δ + 2 ) [ ρ 2 ρ 1 2 4 ( L 1 ( R + 1 ) + 2 1 L 2 L 1 ( Q R ) ( 1 σ ) L 1 ( δ 2 + δ 2 ) 2 ( 1 + δ ) 2 ) ] + c 2 ( Q R ) δ ( 1 σ ) L 1 ρ 1 M 2 4 M 3 ( δ + 1 ) ( δ + 2 ) δ ( δ + 2 ) c 3 M 2 2 2 M 3 ( δ + 1 ) + δ ( δ 2 + δ 2 ) ( 1 + δ ) 2 + 2 δ ( δ + 1 ) c 2 2 .
Using | ρ n | 2 ( n 1 ) in (16), we can obtain (11). Using (17) together with Lemma 1, we have
d 3 ( Q R ) ( 1 σ ) | L 1 | 4 | M 3 | ( δ + 2 ) | ρ 2 ρ 1 2 4 ( L 1 ( R + 1 ) + 2 1 L 2 L 1 ( Q R ) ( 1 σ ) L 1 ( δ 2 + δ 2 ) 2 ( 1 + δ ) 2 ) | + δ ( δ + 2 ) c 3 M 2 2 2 M 3 ( δ + 1 ) + δ ( δ 2 + δ 2 ) ( 1 + δ ) 2 + 2 δ ( δ + 1 ) c 2 2 + | c 2 | ( Q R ) δ ( 1 σ ) | L 1 ρ 1 M 2 | 4 | M 3 | ( δ + 1 ) ( δ + 2 ) .
Hence the proof of (1).
To establish (1), we consider
d 3 ϑ d 2 2 = ( Q R ) ( 1 σ ) L 1 4 M 3 ( δ + 2 ) ρ 2 ρ 1 2 4 ( L 1 ( R + 1 ) + 2 1 L 2 L 1 + ϑ M 3 ( δ + 2 ) M 2 2 ( δ 2 + δ 2 ) 2 ( Q R ) ( 1 σ ) L 1 ( 1 + δ ) 2 ) + c 2 ( Q R ) δ ( 1 σ ) L 1 ρ 1 M 2 2 ( δ + 1 ) 1 2 M 3 ( δ + 2 ) ϑ M 2 ( 1 + δ ) δ ( δ + 2 ) c 3 M 2 2 2 M 3 ( δ + 1 ) 2 ϑ δ ( δ + 2 ) M 3 M 2 2 ( δ + 1 ) 2 + δ ( δ 2 + δ 2 ) ( 1 + δ ) 2 + 2 δ ( δ + 1 ) c 2 2 | .
Applying Lemmas 1 and 2 in (18), we can establish inequality (1). □
We denote by S ( η , τ ) ( 0 η < 1 < τ ) (see [56]) the class of functions φ Λ satisfying the inequality
η < Re z φ ( z ) φ ( z ) < τ , z Π .
Corollary 1
([57], Theorem 5). Let 0 η < 1 < τ and let the function φ S ( η , τ ) . Then, for all ϑ C we have
d 3 ϑ d 2 2 τ η π sin π ( 1 η ) τ η · max 1 ; 1 2 + ( 1 2 ϑ ) τ η π i + 1 2 ( 1 2 ϑ ) τ η π i e 2 π i 1 η τ η .
Proof. 
From [56], (19) can be rewritten in the form
z φ ( z ) φ ( z ) 1 + η τ π i log 1 e 2 π i ( 1 η ) / ( η τ ) z 1 z = T ( z ) .
Further, it is known that Re T ( z ) > 0 ( z Π ) and has a series of the form
T ( z ) = 1 + n = 1 L n z n , z Π ,
where L n = η τ n π i 1 e 2 n π i ( 1 η ) / ( η τ ) , n 1 . Substituting the values of m = σ = δ = α = 0 , k = 1 , Q = 1 , R = 1 , L 1 and L 2 in Theorem 1 we obtain assertion of our theorem. □
If we take m = σ = δ = α = 0 , k = 1 , Q = 1 and R = 1 in Theorem 1, then we have the following corollary.
Corollary 2
([58]). Suppose φ ( z ) = z + d 2 z 2 + d 3 z 3 + S * ( Ψ ) ( z Π ) . Then
d 3 ϑ d 2 2 L 1 2 max 1 ; L 1 + L 2 L 1 2 ϑ L 1 ( ϑ C ) .
Equality is attained if
φ ( z ) = z exp 0 z Ψ ( t ) 1 1 t d t , i f L 1 + L 2 L 1 2 ϑ L 1 1 z exp 0 z Ψ ( t 2 ) 1 1 t d t , i f L 1 + L 2 L 1 2 ϑ L 1 1 .

4. Subordination Results

In general, we note that Γ ( Q , R ; 1 ; σ ; Ψ ) need not be convex univalent in Π . However, the function Γ ( Q , R ; 1 ; σ ; Ψ ) is convex depending on the choice of Ψ ( z ) (see [41,59]).
Lemma 3.
Let ℓ be convex in Π, with ( 0 ) = d , ν 0 and R e ν 0 . If r H ( d , n ) and
r ( z ) + z r ( z ) ν ( z ) ,
then
r ( z ) q ( z ) ( z ) ,
where
q ( z ) = ν n z ν / n 0 z t ( ν / n ) 1 ( t ) d t .
The function q is convex and is the best ( d , n ) -dominant.
Theorem 2.
Let φ , χ Λ with φ ( z ) , φ ( z ) and χ ( z ) 0 for all z Π \ { 0 } . Further, let Γ ( Q , R ; 1 ; σ ; Ψ ) be convex univalent in Π with Γ ( Q , R ; 1 ; σ ; Ψ ) z = 0 = 1 and Re Γ ( Q , R ; 1 ; σ ; Ψ ) > 0 . Further, suppose that χ S * ( 0 ) and
z J k , λ m ( α , β , γ ) φ ( z ) [ J k , λ m ( α , β , γ ) φ ( z ) ] 1 δ [ J k , λ m ( α , β , γ ) χ ( z ) ] δ 2 [ 3 + 2 { z J k , λ m ( α , β , γ ) φ ( z ) J k , λ m ( α , β , γ ) φ ( z ) ( 1 δ ) z J k , λ m ( α , β , γ ) φ ( z ) J k , λ m ( α , β , γ ) φ ( z ) δ z J k , λ m ( α , β , γ ) χ ( z ) J k , λ m ( α , β , γ ) χ ( z ) } ] Γ ( Q , R ; 1 ; σ ; Ψ ) .
Then
z J k , λ m ( α , β , γ ) φ ( z ) [ J k , λ m ( α , β , γ ) φ ( z ) ] 1 δ [ J k , λ m ( α , β , γ ) χ ( z ) ] δ Ω ( z )
where
Ω ( z ) = 1 z 0 z Γ ( Q , R ; 1 ; σ ; Ψ ) d t
and K is convex and is the best dominant.
Proof. 
Let
r ( z ) = z J k , λ m ( α , β , γ ) φ ( z ) [ J k , λ m ( α , β , γ ) φ ( z ) ] 1 δ [ J k , λ m ( α , β , γ ) χ ( z ) ] δ ( z Π ; δ 0 ) ,
then r ( z ) H ( 1 , 1 ) with r ( z ) 0 .
By assumption, Γ ( Q , R ; 1 ; σ ; Ψ ) is convex univalent in Π , which, in turn, implies Ω is convex and univalent in Π . Suppose T ( z ) = r 2 ( z ) , then T ( z ) H with T ( z ) 0 in Π .
Using logarithmic differentiation, we have
z T ( z ) T ( z ) = 2 1 + z ( J k , λ m ( α , β , γ ) φ ( z ) ) ( J k , λ m ( α , β , γ ) φ ( z ) ) ( 1 δ ) z J k , λ m ( α , β , γ ) φ ( z ) J k , λ m ( α , β , γ ) φ ( z ) δ z J k , λ m ( α , β , γ ) χ ( z ) J k , λ m ( α , β , γ ) χ ( z ) .
Thus by (2), we have
T ( z ) + z T ( z ) ( z ) ( z Π ) .
Now, by Lemma 3, we deduce that
T ( z ) Ω ( z ) ( z ) .
Since R e ( z ) > 0 and Ω ( z ) ( z ) , we also have R e Ω ( z ) > 0 . Ω ( z ) is univalent by virtue of Ω being univalent and r 2 ( z ) Ω ( z ) implies that r ( z ) Ω ( z ) , which establishes the assertion. □
Corollary 3.
Let φ , χ Λ with φ ( z ) , φ ( z ) and χ ( z ) 0 for all z Π \ { 0 } . If χ S * ( 0 ) and
Re z J k , λ m ( α , β , γ ) φ ( z ) [ J k , λ m ( α , β , γ ) φ ( z ) ] 1 δ [ J k , λ m ( α , β , γ ) χ ( z ) ] δ 2 [ 2 { z J k , λ m ( α , β , γ ) φ ( z ) D λ , s m , q ( α 1 , β 1 ) φ ( z ) ( 1 δ ) z J k , λ m ( α , β , γ ) φ ( z ) J k , λ m ( α , β , γ ) φ ( z ) δ z J k , λ m ( α , β , γ ) χ ( z ) J k , λ m ( α , β , γ ) χ ( z ) } + 3 ] > ξ
then
R e z J k , λ m ( α , β , γ ) φ ( z ) [ J k , λ m ( α , β , γ ) φ ( z ) ] 1 δ [ J k , λ m ( α , β , γ ) χ ( z ) ] δ > ω ( ξ ) ,
where ω ( ξ ) = 2 ( 1 ξ ) · log 2 + ( 2 ξ 1 ) , ( 0 ξ < 1 ) . The inequality is sharp.
Proof. 
Let σ = 0 , Q = 1 , R = 1 and Ψ ( z ) = 1 + ( 2 ξ 1 ) z 1 + z , 0 ξ < 1 in Theorem 2, we can easily get the desired result. □
If we let m = δ = α = 0 and k = 1 in Corollary 3, then we have the following
Corollary 4.
Let φ Λ with φ ( z ) and φ ( z ) 0 for all z Π \ { 0 } . If
R e z φ ( z ) φ ( z ) 2 3 + 2 z φ ( z ) φ ( z ) 2 z φ ( z ) φ ( z ) > ξ ,
then
R e z φ ( z ) φ ( z ) > ω ( ξ ) ,
where ω ( ξ ) = 2 ( 1 ξ ) · log 2 + ( 2 ξ 1 ) , ( 0 ξ < 1 ) . This inequality is sharp.
If we let δ = 1 , m = α = 0 and k = 1 in Corollary 3, then we have the following
Corollary 5.
If φ , χ Λ satisfies
R e z φ ( z ) χ ( z ) 2 3 + 2 z φ ( z ) φ ( z ) 2 z χ ( z ) χ ( z ) > ξ ,
with χ S * ( 0 ) and χ ( z ) 0 for all z Π \ { 0 } , then
R e z φ ( z ) χ ( z ) > ω ( ξ ) ,
where ω ( ξ ) = 2 ( 1 ξ ) · log 2 + ( 2 ξ 1 ) , ( 0 ξ < 1 ) . The inequality is sharp.

5. Conclusions

The main purpose of this present study is to obtain the coefficient inequality for the class of Bazilevič functions, which is computationally cumbersome. To add more versatility to our study, we have studied a class of Bazilevič functions involving the Mittag-Leffler functions. Coefficient inequality, solutions to the Fekete–Szegö problem and sufficient conditions for starlikeness are the primary results of this paper. We have pointed out appropriate connections that we investigated here, together with those in several interconnected earlier works.
We note that this study can be extended by taking a trigonometric function, exponential function, Legendre polynomial, Chebyshev polynomial, Fibonacci sequence or q-Hermite polynomial instead of considering ψ ( z ) as in (7).

Author Contributions

Conceptualization, D.B., K.R.K., E.U. and A.S.; methodology, D.B., K.R.K., E.U. and A.S.; software, D.B., K.R.K., E.U. and A.S.; validation, D.B., K.R.K., E.U. and A.S.; formal analysis, D.B., K.R.K., E.U. and A.S.; investigation, D.B., K.R.K., E.U. and A.S.; resources, D.B., K.R.K., E.U. and A.S.; data curation, D.B., K.R.K., E.U. and A.S.; writing—original draft preparation, D.B., K.R.K., E.U. and A.S.; writing—review and editing, D.B., K.R.K., E.U. and A.S.; visualization, D.B., K.R.K., E.U. and A.S.; supervision, D.B., K.R.K., E.U. and A.S.; project administration, D.B., K.R.K., E.U. and A.S. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Acknowledgments

The authors would like to thank all the reviewers for their helpful comments and suggestions, which helped us remove the mistakes and also led to improvement in the presentation of the results.

Conflicts of Interest

The authors declare that they have no conflict of interest.

References

  1. Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; North-Holland Mathematics Studies, 204; Elsevier Science B.V.: Amsterdam, The Netherlands, 2006. [Google Scholar]
  2. Ayub, U.; Mubeen, S.; Abdeljawad, T.; Rahman, G.; Nisar, K.S. The new Mittag-Leffler function and its applications. J. Math. 2020, 2020, 2463782. [Google Scholar] [CrossRef]
  3. Gorenflo, R.; Kilbas, A.A.; Rogosin, S.V. On the generalized Mittag-Leffler type functions. Integral Transform. Spec. Funct. 1998, 7, 215–224. [Google Scholar]
  4. Srivastava, H.M. A survey of some recent developments on higher transcendental functions of analytic number theory and applied mathematics. Symmetry 2021, 13, 2294. [Google Scholar] [CrossRef]
  5. Srivastava, H.M. An introductory overview of fractional-calculus operators based upon the Fox-Wright and related higher transcendental functions. J. Adv. Engrg. Comput. 2021, 5, 135–166. [Google Scholar] [CrossRef]
  6. Srivastava, H.M. Some parametric and argument variations of the operators of fractional calculus and related special functions and integral transformations. J. Nonlinear Convex Anal. 2021, 22, 1501–1520. [Google Scholar]
  7. Srivastava, H.M.; Kumar, A.; Das, S.; Mehrez, K. Geometric properties of a certain class of Mittag–Leffler-type functions. Fractal Fract. 2022, 6, 54. [Google Scholar] [CrossRef]
  8. Srivastava, H.M.; Alomari, A.-K.N.; Saad, K.M.; Hamanah, W.M. Some Dynamical models involving fractional-order derivatives with the Mittag-Leffler type kernels and their applications based upon the Legendre spectral collocation method. Fractal Fract. 2021, 5, 131. [Google Scholar] [CrossRef]
  9. Srivastava, H.M.; El-Deeb, S.M. Fuzzy differential subordinations based upon the Mittag-Leffler type Borel distribution. Symmetry 2021, 13, 1023. [Google Scholar] [CrossRef]
  10. Srivastava, H.M.; Kashuri, A.; Mohammed, P.O.; Alsharif, A.M.; Guirao, J.L.G. New Chebyshev type inequalities via a general family of fractional integral operators with a modified Mittag-Leffler kernel. AIMS Math. 2021, 6, 11167–11186. [Google Scholar] [CrossRef]
  11. Srivastava, H.M.; Murugusundaramoorthy, G.; El-Deeb, S.M. Faber polynomial coefficient estimates of bi-close-to-convex functions connected with the Borel distribution of the Mittag-Leffler type. J. Nonlinear Var. Anal. 2021, 5, 103–118. [Google Scholar]
  12. Srivastava, H.M.; Fernandez, A.; Baleanu, D. Some new fractional-calculus connections between Mittag–Leffler functions. Mathematics 2019, 7, 485. [Google Scholar] [CrossRef] [Green Version]
  13. Srivastava, H.M.; Bansal, M.; Harjule, P. A study of fractional integral operators involving a certain generalized multi-index Mittag-Leffler function. Math. Methods Appl. Sci. 2018, 41, 6108–6121. [Google Scholar] [CrossRef]
  14. Srivastava, H.M.; Kilicman, A.; Zainab, A.E.; Ibrahim, A.E. Generalized convolution properties based on the modified Mittag-Leffler function. J. Nonlinear Sci. Appl. 2017, 10, 4284–4294. [Google Scholar] [CrossRef]
  15. Srivastava, H.M.; Aliev, N.A.; Mammadova, G.H.; Aliev, F. A Some remarks on the paper, entitled “Fractional and operational calculus with generalized fractional derivative operators and Mittag-Leffler type functions. TWMS J. Pure Appl. Math. 2017, 8, 112–114. [Google Scholar]
  16. Srivastava, H.M.; Frasin, B.A.; Pescar, V. Univalence of integral operators involving Mittag-Leffler functions. Appl. Math. Inf. Sci. 2017, 11, 635–641. [Google Scholar] [CrossRef]
  17. Srivastava, H.M. Some families of Mittag-Leffler type functions and associated operators of fractional calculus (survey). TWMS J. Pure Appl. Math. 2016, 7, 123–145. [Google Scholar]
  18. Srivastava, H.M. On an extension of the Mittag-Leffler function. Yokohama Math. J. 1968, 16, 77–88. [Google Scholar]
  19. Srivastava, H.M. Some Fox-Wright generalized hypergeometric functions and associated families of convolution operators. Appl. Anal. Discret. Math. 2007, 1, 56–71. [Google Scholar]
  20. Srivastava, H.M.; Karlsson, P.W. Multiple Gaussian Hypergeometric Series; Ellis Horwood Series: Mathematics and its Applications; Ellis Horwood Ltd.: Chichester, UK, 1985. [Google Scholar]
  21. Srivastava, H.M.; Gupta, K.C.; Goyal, S.P. The H-Functions of One and Two Variables; South Asian Publishers Pvt. Ltd.: New Delhi, India, 1982. [Google Scholar]
  22. Lin, S.-D.; Srivastava, H.M. Some families of the Hurwitz-Lerch Zeta functions and associated fractional derivative and other integral representations. Appl. Math. Comput. 2004, 154, 725–733. [Google Scholar] [CrossRef]
  23. Srivastava, H.M.; Saxena, R.K.; Pogány, T.K.; Saxena, R. Integral and computational representations of the extended Hurwitz-Lerch zeta function. Integral Transform. Spec. Funct. 2011, 22, 487–506. [Google Scholar] [CrossRef]
  24. Srivastava, H.M. Generating relations and other results associated with some families of the extended Hurwitz-Lerch Zeta functions. SpringerPlus 2013, 2, 67. [Google Scholar]
  25. Srivastava, H.M.; Jankov, D.; Pogány, T.K.; Saxena, R.K. Two-sided inequalities for the extended Hurwitz-Lerch zeta function. Comput. Math. Appl. 2011, 62, 516–522. [Google Scholar] [CrossRef] [Green Version]
  26. Răducanu, D.; Srivastava, H.M. A new class of analytic functions defined by means of a convolution operator involving the Hurwitz-Lerch zeta function. Integral Transform. Spec. Funct. 2007, 18, 933–943. [Google Scholar] [CrossRef]
  27. Dziok, J.; Srivastava, H.M. Classes of analytic functions associated with the generalized hypergeometric function. Appl. Math. Comput. 1999, 103, 1–13. [Google Scholar] [CrossRef]
  28. Dziok, J.; Srivastava, H.M. Certain subclasses of analytic functions associated with the generalized hypergeometric function. Integral Transform. Spec. Funct. 2003, 14, 7–18. [Google Scholar]
  29. Srivastava, H.M.; Tomovski, Ž. Fractional calculus with an integral operator containing a generalized Mittag-Leffler function in the kernel. Appl. Math. Comput. 2009, 211, 198–210. [Google Scholar] [CrossRef]
  30. Aouf, M.K.; Mostafa, A.O. Certain inequalities of meromorphic univalent functions associated with the Mittag-Leffler function. J. Appl. Anal. 2019, 25, 173–178. [Google Scholar] [CrossRef]
  31. Attiya, A.A. Some applications of Mittag-Leffler function in the unit disk. Filomat 2016, 30, 2075–2081. [Google Scholar] [CrossRef] [Green Version]
  32. Liu, J.-L. New applications of the Srivastava–Tomovski generalization of the Mittag-Leffler function. Iran. J. Sci. Technol. Trans. A Sci. 2019, 43, 519–524. [Google Scholar] [CrossRef]
  33. Tomovski, Ž.; Hilfer, R.; Srivastava, H.M. Fractional and operational calculus with generalized fractional derivative operators and Mittag-Leffler type functions. Integral Transform. Spec. Funct. 2010, 21, 797–814. [Google Scholar] [CrossRef]
  34. Cang, Y.-L.; Liu, J.-L. A family of multivalent analytic functions associated with Srivastava–Tomovski generalization of the Mittag-Leffler function. Filomat 2018, 32, 4619–4625. [Google Scholar] [CrossRef]
  35. Karthikeyan, K.R.; Reddy, K.A.; Murugusundaramoorthy, G. On classes of Janowski functions associated with a conic domain. Ital. J. Pure Appl. Math. 2022, 47, 684–698. [Google Scholar]
  36. Reddy, K.A.; Karthikeyan, K.R.; Murugusundaramoorthy, G. Inequalities for the Taylor coefficients of spiralike functions involving q-differential operator. Eur. J. Pure Appl. Math. 2019, 12, 846–856. [Google Scholar] [CrossRef]
  37. Breaz, D.; Karthikeyan, K.R.; Umadevi, E. Subclasses of Multivalent Meromorphic functions with a pole of order p at the origin. Mathematics 2022, 10, 600. [Google Scholar] [CrossRef]
  38. Elhaddad, S.; Aldweby, H.; Darus, M. On certain subclasses of analytic functions involving differential operator. Jnãnãbha 2018, 48, 55–64. [Google Scholar]
  39. Al-Oboudi, F.M. On univalent functions defined by a generalized Sălăgean operator. Int. J. Math. Math. Sci. 2004, 27, 1429–1436. [Google Scholar] [CrossRef] [Green Version]
  40. Breaz, D.; Karthikeyan, K.R.; Senguttuvan, A. Multivalent prestarlike functions with respect to symmetric points. Symmetry 2022, 14, 20. [Google Scholar] [CrossRef]
  41. Karthikeyan, K.R.; Lakshmi, S.; Varadharajan, S.; Mohankumar, D.; Umadevi, E. Starlike functions of complex order with respect to symmetric points defined using higher order derivatives. Fractal Fract. 2022, 6, 116. [Google Scholar] [CrossRef]
  42. Noor, K.I.; Malik, S.N. On coefficient inequalities of functions associated with conic domains. Comput. Math. Appl. 2011, 62, 2209–2217. [Google Scholar] [CrossRef] [Green Version]
  43. Srivastava, H.M.; Ahmad, Q.Z.; Khan, N.; Khan, N.; Khan, B. Hankel and Toeplitz determinants for a subclass of q-starlike functions associated with a general conic Ddmain. Mathematics 2019, 7, 181. [Google Scholar] [CrossRef] [Green Version]
  44. Srivastava, H.M.; Khan, B.; Khan, N.; Ahmad, Q.Z. Coefficient inequalities for q-starlike functions associated with the Janowski functions. Hokkaido Math. J. 2019, 48, 407–425. [Google Scholar] [CrossRef]
  45. Srivastava, H.M.; Khan, B.; Khan, N.; Ahmad, Q.Z.; Tahir, M. A generalized conic domain and its applications to certain subclasses of analytic functions. Rocky Mt. J. Math. 2019, 49, 2325–2346. [Google Scholar] [CrossRef]
  46. Srivastava, H.M.; Khan, N.; Darus, M.; Rahim, M.T.; Ahmad, Q.Z.; Zeb, Y. Properties of spiral-like close-to-convex functions associated with conic domains. Mathematics 2019, 7, 706. [Google Scholar] [CrossRef] [Green Version]
  47. Srivastava, H.M.; Raza, N.; AbuJarad, E.S.A.; Srivastava, G.; AbuJarad, M.H. Fekete-Szegö inequality for classes of (p, q)-starlike and (p, q)-convex functions. Rev. Real Acad. Cienc. Exactas Fís. Natur. Ser. A Mat. (RACSAM) 2019, 113, 3563–3584. [Google Scholar] [CrossRef]
  48. Srivastava, H.M.; Tahir, M.; Khan, B.; Ahmad, Q.Z.; Khan, N. Some general classes of q-Starlike functions associated with the Janowski functions. Symmetry 2019, 11, 292. [Google Scholar] [CrossRef] [Green Version]
  49. Srivastava, H.M.; Tahir, M.; Khan, B.; Ahmad, Q.Z.; Khan, N. Some general families of q-starlike functions associated with the Janowski functions. Filomat 2019, 33, 2613–2626. [Google Scholar] [CrossRef]
  50. Goyal, S.P.; Goswami, P. On sufficient conditions for analytic functions to be Bazilevič. Complex Var. Elliptic Equ. 2009, 54, 485–492. [Google Scholar] [CrossRef]
  51. Bazilevič, I.E. On a case of integrability in quadratures of the Loewner-Kufarev equation. Mat. Sb. 1955, 37, 471–476. [Google Scholar]
  52. Srivastava, H.M.; Wanas, A.K.; Güney, H.Ö. New families of bi-univalent functions associated with the Bazilevič functions and the λ-pseudo-starlike functions. Iran. J. Sci. Technol. Trans. A Sci. 2021, 45, 1799–1804. [Google Scholar] [CrossRef]
  53. Wanas, A.K.; Srivastava, H.M. Differential sandwich theorems for Bazilevič function defined by convolution structure. Turk. J. Ineq. 2020, 4, 10–21. [Google Scholar]
  54. Ma, W.C.; Minda, D. A unified treatment of some special classes of univalent functions. In Conf. Proc. Lecture Notes Anal., Proceedings of the Conference on Complex Analysis, Tianjin, China, 19–23 June 1992; International Press: Cambridge, MA, USA, 1992; pp. 157–169. [Google Scholar]
  55. Koepf, W. On the Fekete-Szegö problem for close-to-convex functions. Proc. Am. Math. Soc. 1987, 101, 89–95. [Google Scholar]
  56. Kuroki, K.; Owa, S. Notes on new class for certain analytic functions. RIMS Kokyuroku 2011, 1772, 21–25. [Google Scholar]
  57. Sim, Y.J.; Kwon, O.S. Notes on analytic functions with a bounded positive real part. J. Inequal. Appl. 2013, 2013, 370. [Google Scholar] [CrossRef] [Green Version]
  58. Tu, Z.; Xiong, L. Unified solution of Fekete-Szegö problem for subclasses of starlike mappings in several complex variables . Math. Slovaca 2019, 69, 843–856. [Google Scholar] [CrossRef]
  59. Breaz, D.; Karthikeyan, K.R.; Murugusundaramoorthy, G. Bazilevič functions of complex order with respect to symmetric points. Fractal Fract. 2022, 6, 316. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Breaz, D.; Karthikeyan, K.R.; Umadevi, E.; Senguttuvan, A. Some Properties of Bazilevič Functions Involving Srivastava–Tomovski Operator. Axioms 2022, 11, 687. https://doi.org/10.3390/axioms11120687

AMA Style

Breaz D, Karthikeyan KR, Umadevi E, Senguttuvan A. Some Properties of Bazilevič Functions Involving Srivastava–Tomovski Operator. Axioms. 2022; 11(12):687. https://doi.org/10.3390/axioms11120687

Chicago/Turabian Style

Breaz, Daniel, Kadhavoor R. Karthikeyan, Elangho Umadevi, and Alagiriswamy Senguttuvan. 2022. "Some Properties of Bazilevič Functions Involving Srivastava–Tomovski Operator" Axioms 11, no. 12: 687. https://doi.org/10.3390/axioms11120687

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop