Next Article in Journal
A Generalization of Secondary Characteristic Classes on Lie Pseudoalgebras
Previous Article in Journal
The Holohedrization Effect in Ligand Field Models
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Binary Bipolar Soft Points and Topology on Binary Bipolar Soft Sets with Their Symmetric Properties

by
Hind Y. Saleh
1,†,
Areen A. Salih
2,†,
Baravan A. Asaad
3,4,*,† and
Ramadhan A. Mohammed
1,†
1
Department of Mathematics, College of Basic Education, University of Duhok, Duhok 42001, Iraq
2
Department of Mathematics, College of Computer Science and Mathematics, University of Mosul, Mosul 41001, Iraq
3
Department of Computer Science, College of Science, Cihan University-Duhok, Duhok 42001, Iraq
4
Department of Mathematics, Faculty of Science, University of Zakho, Zakho 42002, Iraq
*
Author to whom correspondence should be addressed.
These authors contributed equally to this work.
Symmetry 2024, 16(1), 23; https://doi.org/10.3390/sym16010023
Submission received: 18 November 2023 / Revised: 15 December 2023 / Accepted: 19 December 2023 / Published: 24 December 2023
(This article belongs to the Section Mathematics)

Abstract

:
The aim of this paper is to give an interesting connection between two mathematical approaches to vagueness: binary bipolar soft sets and binary bipolar soft topology. The binary bipolar soft points are defined using binary bipolar soft sets. The binary bipolar soft set will be the binary bipolar soft union of its binary bipolar soft points. Moreover, the notion of binary bipolar soft topological spaces over two universal sets and a parameter set is proposed. Some topological properties of binary bipolar soft sets, such as binary bipolar soft open, binary bipolar soft closed, binary bipolar soft closure, binary bipolar soft interior, and binary bipolar soft boundary, are introduced. Some important properties of these classes of binary bipolar soft sets are investigated. Furthermore, the symmetry relation is compared between binary bipolar soft topology and binary soft topology on a common universe set. Finally, some results and counterexamples are demonstrated to explain this work.

1. Introduction

For formal modeling, reasoning, and computing, most traditional tools are characterized by being crisp, deterministic, and precise. However, many complex problems exist in the domains of economics, engineering, the environment, social science, medical science, and so on. Therefore, traditional methods based on cases may not be suitable for solving or modeling these issues. Based on this, a set of theories has been proposed to tackle these problems. Molodtsov [1] introduced a new concept, namely soft set. In [1,2], Molodtsov successfully applied the soft theory in several directions, such as smoothness of functions, game theory, operations research, Riemann integration, Perron integration, probability, theory of measurement, etc.
In 2013, Shabir and Naz [3] explained that the bipolar soft set structure has clearer and more general results than the soft set structure. They came up with the fuzzy bipolar soft sets and bipolar fuzzy soft sets and established some algebraic structures of these two classes of bipolar soft sets. They presented an application of fuzzy bipolar soft sets in decision-making problems [4]. Based on Dubois and Prada [5], decision making is constructed on two sides, namely positive and negative. Bipolarity is significant for characterization between positive and negative information to differentiate between reasonable and unreasonable events. Shabir and Bakhtawar [6] introduced the concept of bipolar soft topological spaces and studied some of their properties. Fadel and Dzul-Kifli [7] defined the concept of bipolar soft topological spaces via bipolar soft sets and some properties. Öztürk [8,9] presented more properties and operations on bipolar soft sets, and the bipolar soft points are introduced.
Subsequently, a number of definitions, operations, and applications on bipolar soft sets and bipolar soft structures have been investigated. For instance, Dizman and Öztürk [10] introduced fuzzy bipolar soft topological spaces via fuzzy bipolar soft sets. Abdullah et al. [11] proposed a bipolar fuzzy soft set, which is a new idea of bipolar soft set and they introduced some basic operations and an application of bipolar fuzzy soft set into decision-making problems. They gave an algorithm to solve decision-making problems by using a bipolar fuzzy soft set. Al-Shami [12] defined some ordinary points on bipolar soft sets and presented an application of optimal choices by applying the idea of bipolar soft sets. Karaaslan and Karataş [13] redefined the concept of the bipolar soft set and bipolar soft set operations and presented a decision-making method with application. Karaaslana et al. [14] defined normal bipolar soft subgroups. Mahmood [15] defined a novel approach towards bipolar soft sets and discussed an application on decision-making problems. Wang et al. [16], and Rehman and Mahmood [17] combined some generalizations of fuzzy sets and bipolar soft sets. They investigated applications in decision-making problems. Hussain [18] defined and discussed binary soft connected spaces in binary soft topological spaces. He proposed an application of a decision-making problem by using the approach of rough sets. Sathiyaseelan et al. [19] presented symmetric matrices on inverse soft expert sets and investigated their applications.
Yet, studies conducted on the limit point concept were required by mathematicians to bring about more developments in mathematics. Musa and Asaad [20] introduced the concept of the bipolar hypersoft set as a combination of a hypersoft set with a bipolarity setting and investigated some of its basic operations. They also discussed some topological notions in the frame of bipolar hypersoft setting [21]. In 2022, Saleh et al. [22,23] studied bipolar soft generalized topological spaces and defined the basic notions of bipolar soft topological properties with the investigation of a number of their symmetric properties.
Correspondingly, in 2016, the concept of the binary soft set was first defined by Açıkgöz and Taş in [24], where they introduced the binary soft set on two initial universal sets and proposed some of their properties. After that, Benchalli et al. [25] presented some related basic properties, which are defined over two initial universal sets with suitable parameters, and they defined the binary soft topological spaces with some of their properties. Recently, in 2023, Naime and Orhan [26] defined a new concept of bipolar soft sets over two universal sets and a parameter set, namely binary bipolar soft sets, which is an extension of bipolar soft sets and binary soft sets. They presented some operations on binary bipolar soft sets, such as complement, union, intersection, AND, and OR, and they investigated their basic properties.
The following sections in our work are organized in the following manner: Section 2 provides the essential conceptual framework concerning symmetry categories of sets, including soft sets, bipolar soft sets, and binary soft sets, to familiarize the reader with the underlying principles. After that, in Section 3, our main idea is to define the binary bipolar soft points using binary bipolar soft sets and some of their properties. Section 4 introduces the binary bipolar soft topological spaces using binary bipolar soft sets, which is an extension of the bipolar soft topological spaces and binary soft topological spaces, accompanied by an exploration of the associated topological operators binary bipolar soft closure, binary bipolar soft interior and binary bipolar soft boundary. Some results and counterexamples are given to explain this work. Section 5 serves as the concluding section of our presentation.

2. Preliminaries

Throughout this paper, we recall some notions in bipolar soft sets via binary bipolar soft sets, and we will give some preliminary information about binary bipolar soft sets, binary soft topological spaces, and bipolar soft topological spaces.

2.1. Bipolar Soft Sets

This subsection investigates the concepts of bipolar soft set operations. Let ℧ be an initial universe set and be a set of parameters. Let Ψ and P ( ) denote the collection of all subsets of ℧. The set of all bipolar soft sets over ℧ with Ψ will be denoted by BSS ( ) ( Ψ , ¬ Ψ ) . Let Ψ = { ξ 1 , ξ 2 , . . . , ξ n } be a subset of .
Definition 1. 
The Not set of Ψ is denoted by ¬ Ψ = { ¬ ξ 1 , ¬ ξ 2 , . . . , ¬ ξ n } , where ¬ ξ i = Not ξ i for each i.
The following definitions can be found in [3].
Definition 2. 
A triple ( ^ , ˇ , Ψ ) is called a bipolar soft set on ℧, denoted by BSS , where ^ and ˇ are mappings defined by ^ : Ψ 2 Ψ and ˇ : ¬ Ψ 2 Ψ such that ^ ( ξ ) ˇ ( ¬ ξ ) = ϕ for each ξ Ψ and ¬ ξ ¬ Ψ .
Definition 3. 
The BSS   ( ^ , ˇ , Ψ ) is said to be a BS subset of ( ^ , ˇ , Ψ ) if ^ ( ξ ) ^ ( ξ ) and ˇ ( ¬ ξ ) ˇ ( ¬ ξ ) for each ξ Ψ .
Definition 4. 
The complement of a BSS   ( ^ , ˇ , Ψ ) is denoted by ( ^ , ˇ , Ψ ) c   = ( ^ c , ˇ c , Ψ ) where ^ c ( ξ ) = ˇ ( ¬ ξ ) and ˇ ( ¬ ξ ) c = ^ ( ξ ) for each ξ Ψ .
Definition 5. 
A BSS   ( ^ , ˇ , Ψ ) is said to be an absolute BSS denoted by ( ^ , Φ , Ψ ) with the property that for each ξ Ψ , ^ ( ξ ) = and Φ ( ¬ ξ ) = ϕ .
Definition 6. 
A BSS   ( ^ , ˇ , Ψ ) is said to be a null BSS is denoted by ( Φ , ˇ , Ψ ) with the property that for each ξ Ψ , Φ ( ξ ) = ϕ and ˇ ( ¬ ξ ) = .
Definition 7. 
The restricted intersection of two BSS s   ( ^ , ˇ , Ψ 1 ) and ( ^ , ˇ , Ψ 2 ) on the common universe ℧ is the BSS   ( ^ , ˇ , Ψ 1 Ψ 2 ) , denoted by ( ^ , ˇ , Ψ 1 )   ˜ R   ( ^ , ˇ , Ψ 1 ) , where for each ξ Ψ , ^ ( ξ ) = ^ ( ξ ) ^ ( ξ ) and ˇ ( ¬ ξ ) = ˇ ( ¬ ξ ) ˇ ( ¬ ξ ) .
Definition 8. 
The extended intersection of two BSS s   ( ^ , ˇ , Ψ 1 ) and ( ^ , ˇ , Ψ 2 ) on the common universe ℧ is the BSS   ( ^ , ˇ , Ψ 1 Ψ 2 ) , denoted by ( ^ , ˇ , Ψ 1 )   ˜   ( ^ , ˇ , Ψ 1 ) , where
^ ( ξ ) = ^ ( ξ ) , ξ Ψ 1 Ψ 2 , ^ ( ξ ) , ξ Ψ 2 Ψ 1 , ^ ( ξ ) ^ ( ξ ) , ξ Ψ 1 Ψ 2
and
ˇ ( ¬ ξ ) = ˇ ( ¬ ξ ) , ¬ ξ ¬ Ψ 1 ¬ Ψ 2 , ˇ ( ¬ ξ ) , ¬ ξ ¬ Ψ 2 ¬ Ψ 1 , ˇ ( ¬ ξ ) ˇ ( ¬ ξ ) , ¬ ξ ¬ Ψ 1 ¬ Ψ 2 .
Definition 9. 
The restricted union of two BSS s   ( ^ , ˇ , Ψ 1 ) and ( ^ , ˇ , Ψ 2 ) on the common universe ℧ is the BSS   ( ^ , ˇ , Ψ 1 Ψ 2 ) , denoted by ( ^ , ˇ , Ψ 1 )   ˜ R   ( ^ , ˇ , Ψ 1 ) , where for each ξ Ψ , ^ ( ξ ) = ^ ( ξ ) ^ ( ξ ) and ˇ ( ¬ ξ ) = ˇ ( ¬ ξ ) ˇ ( ¬ ξ ) .
Definition 10. 
The extended union of two BSS s   ( ^ , ˇ , Ψ 1 ) and ( ^ , ˇ , Ψ 2 ) on the common universe ℧ is the BSS   ( ^ , ˇ , Ψ 1 Ψ 2 ) , denoted by ( ^ , ˇ , Ψ 1 )   ˜   ( ^ , ˇ , Ψ 2 ) , where [3]
^ ( ξ ) = ^ ( ξ ) , ξ Ψ 1 Ψ 2 , ^ ( ξ ) , ξ Ψ 2 Ψ 1 , ^ ( ξ ) ^ ( ξ ) , ξ Ψ 1 Ψ 2
and
ˇ ( ¬ ξ ) = ˇ ( ¬ ξ ) , ¬ ξ ¬ Ψ 1 ¬ Ψ 2 , ˇ ( ¬ ξ ) , ¬ ξ ¬ Ψ 2 ¬ Ψ 1 , ˇ ( ¬ ξ ) ˇ ( ¬ ξ ) , ¬ ξ ¬ Ψ 1 ¬ Ψ 2 .
Shabir and Naz [3] introduced bipolar soft topological spaces ( BSTS s ) ( , ^ ^ , Ψ , ¬ Ψ ) , where ^ ^ is the collection of BSS s over ℧ containing ( ^ , Φ , Ψ ) and ( Φ , ^ , Ψ ) , the BS union of any member of BSS s in ^ ^ belongs to ^ ^ , and the BS intersection of any two BSS s in ^ ^ belongs to ^ ^ . The members of ^ ^ are said to be BS open sets in ℧. The BSS is said to be BS closed in ℧ if its relative complement ( ^ , ˇ , Ψ ) c belongs to ^ ^ .

2.2. Binary Bipolar Soft Sets

This subsection investigates the concepts of binary soft set operations and binary bipolar soft set operations. In 2016, Açıkgöz and Taş [24] introduced the binary soft set theory and investigated some of its related operations. After that, in 2017, Benchalli et al. [25] defined a topology on B SS , namely binary soft topological space ( B STS ), where ^ Δ is the collection of B SS s over 1 and 2 , which contains a null B SS and an absolute B SS , and it is closed under finite B S intersections and closed under B S unions.
The following definitions can be found in [26]. Let 1 and 2 be two initial universe sets and be a set of parameters. Let P ( 1 ) and P ( 2 ) denote the power set of 1 and 2 , respectively. Let Ψ .
Definition 11. 
A triple ( ^ , ˇ , Ψ ) is called a binary bipolar soft set ( B BSS ) over P ( 1 ) and P ( 2 ) , where ^ and ˇ are mappings defined by ^ : Ψ P ( 1 ) × P ( 2 ) and ˇ : ¬ Ψ P ( 1 ) × P ( 2 ) such that X ^ , X ˇ   1 , Y ^ , Y ˇ   2 and ^ ( ξ ) ˇ ( ¬ ξ ) =   ( X ^ , Y ^ ) ( X ˇ , Y ˇ )   = ϕ for each ξ Ψ .
Definition 12. 
The B BSS   ( ^ , ˇ , Ψ 1 ) is said to be a B BS subset of ( ^ , ˇ , Ψ 2 ) if Ψ 1 Ψ 2 , X ^ 1 X ^ 2 and Y ^ 1 Y ^ 2 such that ^ ( ξ ) ( = ( X ^ 1 , Y ^ 1 ) ) ^ ( ξ ) ( = ( X ^ 2 , Y ^ 2 ) ) and ˇ ( ¬ ξ ) ( = ( X ˇ 2 , Y ˇ 2 ) ) ˇ ( ¬ ξ ) ( = ( X ˇ 1 , Y ˇ 1 ) ) for each ξ Ψ . This relationship is denoted by ( ^ , ˇ , Ψ 1 )   ˜ ˜   ( ^ , ˇ , Ψ 2 ) . Similarly, ( ^ , ˇ , Ψ 1 ) is said to be a B BS superset of ( ^ , ˇ , Ψ 2 ) if ( ^ , ˇ , Ψ 2 ) is a B BS subset of ( ^ , ˇ , Ψ 1 ) and denoted by ( ^ , ˇ , Ψ 1 )   ˜ ˜   ( ^ , ˇ , Ψ 2 ) .
Definition 13. 
Two B BSS s ( ^ , ˇ , Ψ 1 ) and ( ^ , ˇ , Ψ 2 ) over universes 1 and 2 are said to be equal B BSS s if ( ^ , ˇ , Ψ 1 ) is a B BS subset of ( ^ , ˇ , Ψ 2 ) and ( ^ , ˇ , Ψ 2 ) is a B BS subset of ( ^ , ˇ , Ψ 1 ) .
Definition 14. 
The complement of a B BSS   ( ^ , ˇ , Ψ ) is denoted by ( ^ , ˇ , Ψ ) c   = ( ^ c , ˇ c , Ψ ) where ^ c : Ψ P ( 1 ) × P ( 2 ) and ˇ c : ¬ Ψ P ( 1 ) × P ( 2 ) are mapping given by ^ c ( ξ ) = ( 1 X ^ , 2 Y ^ ) = ( X ˇ , Y ˇ ) = ˇ ( ¬ ξ ) and ˇ c ( ¬ ξ ) = ( 1 X ˇ , 2 Y ˇ ) = ( X ^ , Y ^ )   = ^ ( ξ ) for each ξ Ψ .
Definition 15. 
A B BSS   ( ^ , ˇ , Ψ ) is said to be absolute B BSS is denoted by ( ^ ^ , Φ , Ψ ) with the property that for each ξ Ψ , ^ ^ ( ξ ) = ( 1 , 2 ) and Φ ( ¬ ξ ) = ( ϕ , ϕ ) .
Definition 16. 
A B BSS   ( ^ , ˇ , Ψ ) is said to be a null B BSS is denoted by ( Φ , ^ ^ , Ψ ) with the property that for each ξ Ψ , Φ ( ξ ) = ( ϕ , ϕ ) and ^ ^ ( ¬ ξ ) = ( 1 , 2 ) .
Definition 17. 
The difference of two B BSS s ( ^ , ˇ , Ψ ) and ( ^ , ˇ , Ψ ) over universes 1 and 2 is the B BSS   ( ^ , ˇ , Ψ )   = ( ^ , ˇ , Ψ )   ˜ ˜   ( ^ , ˇ , Ψ ) , where ^ ( ξ ) = ( X ^ 1 X ^ 2 , Y ^ 1 Y ^ 2 ) and ˇ ( ¬ ξ ) =   ( X ˇ 1 X ˇ 2 , Y ˇ 1 Y ˇ 2 ) for each ξ Ψ .
Definition 18. 
The restricted intersection of two B BSS s ( ^ , ˇ , Ψ 1 ) and ( ^ , ˇ , Ψ 2 ) over universes 1 and 2 is the B BSS   ( ^ , ˇ , Ψ 1 Ψ 2 ) with Ψ 1 Ψ 2 ϕ , denoted by ( ^ , ˇ , Ψ 1 )   ˜ ˜ R   ( ^ , ˇ , Ψ 2 ) , where for each ξ Ψ 1 Ψ 2 , ^ ( ξ ) = ^ ( ξ ) ^ ( ξ ) and ˇ ( ¬ ξ ) = ˇ ( ¬ ξ ) ˇ ( ¬ ξ ) such that ^ ( ξ ) = ( X ^ 1 , Y ^ 1 ) , ˇ ( ¬ ξ ) = ( X ˇ 1 , Y ˇ 1 ) for each ξ Ψ 1 Ψ 2 and ^ ( ξ ) = ( X ^ 2 , Y ^ 2 ) , ˇ ( ¬ ξ ) = ( X ˇ 2 , Y ˇ 2 ) for each ξ Ψ 1 Ψ 2 .
Definition 19. 
The extended intersection of two B BSS s ( ^ , ˇ , Ψ 1 ) and ( ^ , ˇ , Ψ 2 ) over universes 1 and 2 is the B BSS   ( ^ , ˇ , Ψ 1 Ψ 2 ) , denoted by ( ^ , ˇ , Ψ 1 )   ˜ ˜   ( ^ , ˇ , Ψ 2 ) , where for each ξ Ψ 1 Ψ 2
^ ( ξ ) = ( X ^ 1 , Y ^ 1 ) , ξ Ψ 1 Ψ 2 , ( X ^ 2 , Y ^ 2 ) , ξ Ψ 2 Ψ 1 , ( X ^ 1 , Y ^ 1 ) ( X ^ 2 , Y ^ 2 ) , ξ Ψ 1 Ψ 2
and
ˇ ( ¬ ξ ) = ( X ˇ 1 , Y ˇ 1 ) , ¬ ξ ¬ Ψ 1 ¬ Ψ 2 , ( X ˇ 2 , Y ˇ 2 ) , ¬ ξ ¬ Ψ 2 ¬ Ψ 1 , ( X ˇ 1 , Y ˇ 1 ) ( X ˇ 2 , Y ˇ 2 ) , ¬ ξ ¬ Ψ 1 ¬ Ψ 2 .
Definition 20. 
The restricted union of two B BSS s ( ^ , ˇ , Ψ 1 ) and ( ^ , ˇ , Ψ 2 ) over universes 1 and 2 is the B BSS   ( ^ , ˇ , Ψ 1 Ψ 2 ) with Ψ 1 Ψ 2 ϕ , denoted by ( ^ , ˇ , Ψ 1 )   ˜ ˜ R   ( ^ , ˇ , Ψ 2 ) , where for each ξ Ψ 1 Ψ 2 , ^ ( ξ ) = ^ ( ξ ) ^ ( ξ ) and ˇ ( ¬ ξ ) = ˇ ( ¬ ξ ) ˇ ( ¬ ξ ) such that ^ ( ξ ) = ( X ^ 1 , Y ^ 1 ) , ˇ ( ¬ ξ ) = ( X ˇ 1 , Y ˇ 1 ) for each ξ Ψ 1 Ψ 2 and ^ ( ξ ) = ( X ^ 2 , Y ^ 2 ) , ˇ ( ¬ ξ ) = ( X ˇ 2 , Y ˇ 2 ) for each ξ Ψ 1 Ψ 2 .
Definition 21. 
The extended union of two B BSS s ( ^ , ˇ , Ψ 1 ) and ( ^ , ˇ , Ψ 2 ) on the universes 1 and 2 is the B BSS   ( ^ , ˇ , Ψ 1 Ψ 2 ) , denoted by ( ^ , ˇ , Ψ 1 )   ˜ ˜   ( ^ , ˇ , Ψ 2 ) , where for each ξ Ψ 1 Ψ 2 ,
^ ( ξ ) = ( X ^ 1 , Y ^ 1 ) , ξ Ψ 1 Ψ 2 , ( X ^ 2 , Y ^ 2 ) , ξ Ψ 2 Ψ 1 , ( X ^ 1 , Y ^ 1 ) ( X ^ 2 , Y ^ 2 ) , ξ Ψ 1 Ψ 2
and
ˇ ( ¬ ξ ) = ( X ˇ 1 , Y ˇ 1 ) , ¬ ξ ¬ Ψ 1 ¬ Ψ 2 , ( X ˇ 2 , Y ˇ 2 ) , ¬ ξ ¬ Ψ 2 ¬ Ψ 1 , ( X ˇ 1 , Y ˇ 1 ) ( X ˇ 2 , Y ˇ 2 ) , ¬ ξ ¬ Ψ 1 ¬ Ψ 2 .

3. Binary Bipolar Soft Points

In this section, we present the binary bipolar soft points and some related properties.
Definition 22. 
A B BSS   ( ^ , ˇ , Ψ ) is said to be binary bipolar soft point ( B BSP ) if there exists ( x ^ 1 , y ^ 1 ) , ( x ^ 2 , y ^ 2 )    ( 1 , 2 ) (it possible to ( x ^ 1 , y ^ 1 ) = ( x ^ 2 , y ^ 2 ) ) and ξ Ψ such that
^ ( η ) = { ( x ^ 1 , y ^ 1 ) } , η = ξ , ( ϕ , ϕ ) , η ξ
and
ˇ ( η ) = ( 1 , 2 ) { ( x ^ 1 , y ^ 1 ) , ( x ^ 2 , y ^ 2 ) } , η = ξ , ( 1 , 2 ) , η ξ .
We denote ξ ( X ^ , Y ^ ) by the B BSP   ( ^ , ˇ , Ψ ) , where X ^ = ( x ^ 1 , y ^ 1 ) and Y ^ = ( x ^ 2 , y ^ 2 ) in ( 1 , 2 ) . The collection of B BSP s is denoted by B BSP ( 1 , 2 ) ( Ψ , ¬ Ψ ) .
Definition 23. 
Let ξ ( X ^ , Y ^ ) , ξ ( X ^ , Y ^ )   ˜ ˜   B BSP ( 1 , 2 ) ( Ψ , ¬ Ψ ) . Then, ξ ( X ^ , Y ^ ) and ξ ( X ^ , Y ^ ) are called different B BSP s , denoted by ξ ( X ^ , Y ^ ) ξ ( X ^ , Y ^ ) if X ^ = ( x ^ , y ^ ) ( x ^ , y ^ ) = Y ^ or ξ ξ .
Definition 24. 
Let ( ^ , ˇ , Ψ )   ˜ ˜   B BSS ( 1 , 2 ) ( Ψ , ¬ Ψ ) and ξ ( X ^ , Y ^ )   ˜ ˜   B BSP ( 1 , 2 ) ( Ψ , ¬ Ψ ) . Then, ξ ( X ^ , Y ^ ) is said to be contained in ( ^ , ˇ , Ψ ) if X ^ = ( x ^ 1 , y ^ 1 )   ^ ( ξ ) and Y ^ = ( x ^ 2 , y ^ 2 )   ( 1 , 2 ) ˇ ( ¬ ξ ) . It is denoted by ξ ( X ^ , Y ^ )   ˜ ˜   ( ^ , ˇ , Ψ ) .
Proposition 1. 
Let ( ^ , ˇ , Ψ )   ˜ ˜   B BSS ( 1 , 2 ) ( Ψ , ¬ Ψ ) . Then, ( ^ , ˇ , Ψ ) is the B BS union of its B BSP ( 1 , 2 ) ( Ψ , ¬ Ψ ) . That is,
( ^ , ˇ , Ψ ) = ˜ ˜   { ξ ( X ^ , Y ^ ) : ξ ( X ^ , Y ^ )   ˜ ˜   ( ^ , ˇ , Ψ ) } .
Proof. 
It is sufficient to show the following:
For each ξ Ψ ,
^ ( ξ ) = ˜ ˜ ξ ( X ^ , Y ^ ) ˜ ˜ ( ^ , ˇ , Ψ ) { ( X ^ , Y ^ ) } ,
and for each ¬ ξ ¬ Ψ ,
ˇ ( ¬ ξ ) = ˜ ˜ ξ ( X ^ , Y ^ ) ˜ ˜ ( ^ , ˇ , Ψ ) { ( 1 , 2 ) ( X ^ , Y ^ ) } ,
Since the proof of these two equalities are easy and hence it is completed. □
Example 1. 
Let 1 = { κ 1 , κ 2 , κ 3 } and 2 = { λ 1 , λ 2 } be two universe sets and Ψ = { ξ 1 , ξ 2 } be a set of parameters. The B BSS
( ^ , ˇ , Ψ ) = { ( ξ 1 , ( { κ 1 , κ 3 } , { λ 2 } ) , ( { κ 2 } , { λ 1 } ) ) , ( ξ 2 , ( { κ 2 } , { λ 1 } ) , ( { κ 1 , κ 3 } , { λ 2 } ) ) } .
We can write this B BSS   ( ^ , ˇ , Ψ ) as a B BS union of its B BSP ( 1 , 2 ) ( Ψ , ¬ Ψ ) ,
( ^ , ˇ , Ψ ) = ˜ ˜ { ξ 1 ( κ 1 , λ 2 ) , ( κ 1 , λ 2 ) , ξ 1 ( κ 1 , λ 2 ) , ( κ 3 , λ 2 ) , ξ 1 ( κ 3 , λ 2 ) , ( κ 3 , λ 2 ) , ξ 1 ( κ 3 , λ 2 ) , ( κ 1 , λ 2 ) , ξ 2 ( κ 2 , λ 1 ) , ( κ 2 , λ 1 ) , ξ 2 ( κ 2 , λ 1 ) , ( κ 3 , λ 1 ) , ξ 2 ( κ 3 , λ 1 ) , ( κ 3 , λ 1 ) , ξ 2 ( κ 3 , λ 1 ) , ( κ 2 , λ 1 ) } ,
where ξ 1 ( κ 1 , λ 2 ) , ( κ 1 , λ 2 ) , ξ 1 ( κ 1 , λ 2 ) , ( κ 3 , λ 2 ) , ξ 1 ( κ 3 , λ 2 ) , ( κ 3 , λ 2 ) , ξ 1 ( κ 3 , λ 2 ) , ( κ 1 , λ 2 ) , ξ 2 ( κ 2 , λ 1 ) , ( κ 2 , λ 1 ) , ξ 2 ( κ 2 , λ 1 ) , ( κ 3 , λ 1 ) , ξ 2 ( κ 3 , λ 1 ) , ( κ 3 , λ 1 ) , ξ 2 ( κ 3 , λ 1 ) , ( κ 2 , λ 1 )   ˜ ˜   B BS ( 1 , 2 ) ( Ψ , ¬ Ψ ) and defines as
ξ 1 ( κ 1 , λ 2 ) , ( κ 1 , λ 2 ) = { ( ξ 1 , ( { κ 1 } , { λ 2 } ) , ( { κ 2 , κ 3 } , { λ 1 } ) ) , ( ξ 2 , ( ϕ , ϕ ) , ( 1 , 2 ) ) } , ξ 1 ( κ 1 , λ 2 ) , ( κ 3 , λ 2 ) = { ( ξ 1 , ( { κ 1 } , { λ 2 } ) , ( { κ 2 } , { λ 1 } ) ) , ( ξ 2 , ( ϕ , ϕ ) , ( 1 , 2 ) ) } , ξ 1 ( κ 3 , λ 2 ) , ( κ 3 , λ 2 ) = { ( ξ 1 , ( { κ 3 } , { λ 2 } ) , ( { κ 1 , κ 2 } , { λ 1 } ) ) , ( ξ 2 , ( ϕ , ϕ ) , ( 1 , 2 ) ) } , ξ 1 ( κ 3 , λ 2 ) , ( κ 1 , λ 2 ) = { ( ξ 1 , ( { κ 3 } , { λ 2 } ) , ( { κ 2 } , { λ 1 } ) ) , ( ξ 2 , ( ϕ , ϕ ) , ( 1 , 2 ) ) } , ξ 2 ( κ 2 , λ 1 ) , ( κ 2 , λ 1 ) = { ( ξ 1 , ( ϕ , ϕ ) , ( 1 , 2 ) ) , ( ξ 2 , ( { κ 2 } , { λ 1 } ) , ( { κ 1 , κ 3 } , { λ 2 } ) ) } , ξ 2 ( κ 2 , λ 1 ) , ( κ 3 , λ 1 ) = { ( ξ 1 , ( ϕ , ϕ ) , ( 1 , 2 ) ) , ( ξ 2 , ( { κ 2 } , { λ 1 } ) , ( { κ 1 } , { λ 2 } ) ) } , ξ 2 ( κ 3 , λ 1 ) , ( κ 3 , λ 1 ) = { ( ξ 1 , ( ϕ , ϕ ) , ( 1 , 2 ) ) , ( ξ 2 , ( { κ 3 } , { λ 1 } ) , ( { κ 1 , κ 2 } , { λ 2 } ) ) } , ξ 2 ( κ 3 , λ 1 ) , ( κ 2 , λ 1 ) = { ( ξ 1 , ( ϕ , ϕ ) , ( 1 , 2 ) ) , ( ξ 2 , ( { κ 3 } , { λ 1 } ) , ( { κ 1 } , { λ 2 } ) ) } .
Proposition 2. 
Let { ( ^ i , ˇ i , Ψ ) : i I } be a family of B BSS s . Then,
1. 
ξ X ^ , Y ^   ˜ ˜   ˜ ˜ i I   ( ^ i , ˇ i , Ψ ) if and only if ξ X ^ , Y ^   ˜ ˜   ( ^ i , ˇ i , Ψ ) for each i I . That is, X ^ ^ i ( ξ ) and Y ^ ( 1 , 2 ) ˇ i ( ¬ ξ ) for every i I , ξ Ψ , ¬ ξ ¬ Ψ .
2. 
ξ X ^ , Y ^   ˜ ˜   ˜ ˜ i I ( ^ i , ˇ i , Ψ ) if and only if there exists i I , such that ξ X ^ , Y ^   ˜ ˜   ( ^ i , ˇ i , Ψ ) . That is, there exists i I , such that X ^ ^ i ( ξ ) and Y ^ ( 1 , 2 ) ˇ i ( ¬ ξ ) for every ξ Ψ and ¬ ξ ¬ Ψ .
Proof. 
Straightforward. □
Proposition 3. 
Let ( ^ 1 , ˇ 1 , Ψ ) , ( ^ 2 , ˇ 2 , Ψ )   ˜ ˜   B BSS ( 1 , 2 ) ( Ψ , ¬ Ψ ) . Then, ( ^ 1 , ˇ 1 , Ψ )   ˜ ˜   ( ^ 2 , ˇ 2 , Ψ ) if and only if for each ξ X ^ , Y ^   ˜ ˜   ( ^ 1 , ˇ 1 , Ψ ) implies that ξ X ^ , Y ^   ˜ ˜   ( ^ 2 , ˇ 2 , Ψ ) .
Proof. 
Suppose ξ X ^ , Y ^   ˜ ˜   ( ^ 1 , ˇ 1 , Ψ ) is an arbitrary B BSP and ( ^ 1 , ˇ 1 , Ψ )   ˜ ˜   ( ^ 2 , ˇ 2 , Ψ ) . Then, X ^ ^ 1 ( ξ ) ^ 2 ( ξ ) and Y ^ ( 1 , 2 ) ˇ 1 ( ¬ ξ ) ( 1 , 2 ) ˇ 2 ( ¬ ξ ) for all ξ Ψ and ¬ ξ ¬ Ψ . Therefore, ξ X ^ , Y ^   ˜ ˜   ( ^ 2 , ˇ 2 , Ψ ) . □
Proposition 4. 
Let ( ^ , ˇ , Ψ )   ˜ ˜   B BSS ( 1 , 2 ) ( Ψ , ¬ Ψ ) and ξ X ^ , Y ^   ˜ ˜   B BSP ( 1 , 2 ) ( Ψ , ¬ Ψ ) . If the B BSP   ξ X ^ , Y ^ belongs to B BSS   ( ^ , ˇ , Ψ ) , then the B SP   ξ X ^ also belongs to the B SS   ( ^ , Ψ ) .
Proof. 
Obvious. □

4. Topology on Binary Bipolar Soft Sets

In this section, we introduce the concept of binary bipolar soft topological spaces over two universal sets and a set of parameters. We investigate some topological structures of binary bipolar soft sets such as binary bipolar soft open, binary bipolar soft closed, binary bipolar soft closure, binary bipolar soft interior, and binary bipolar soft boundary.
Definition 25. 
Let ^ ^ be a collection of B BSS s over 1 and 2 , then ^ ^ is said to be a binary bipolar soft topology, denoted by B BST , on 1 and 2 if
Ax.1. 
( ^ ^ , Φ , Ψ ) , ( Φ , ^ ^ , Ψ )   ˜ ˜   ^ ^ .
Ax.2. 
The B BS union of any member of B BSS s in ^ ^ belongs to ^ ^ .
Ax.3. 
The B BS intersection of any two B BSS s in ^ ^ belongs to ^ ^ .
The quintuple ( 1 , 2 , ^ ^ , Ψ , ¬ Ψ ) is called a binary bipolar soft topological space ( B BSTS ) over 1 and 2 .
Example 2. 
Let 1 = { κ 1 , κ 2 , κ 3 } and 2 = { λ 1 , λ 2 } be two universe sets and Ψ = { ξ 1 , ξ 2 } be a set of parameters. Let ^ ^ = { ( Φ , ^ ^ , Ψ ) , ( ^ ^ , Φ , Ψ ) , ( ^ 1 , ˇ 1 , Ψ ) , ( ^ 2 , ˇ 2 , Ψ ) } , where
( ^ 1 , ˇ 1 , Ψ ) = { ( ξ 1 , ( { κ 3 } , { λ 2 } ) , ( { κ 1 , κ 2 } , { λ 1 } ) ) , ( ξ 2 , ( { κ 3 } , { λ 1 } ) , ( { κ 1 , κ 2 } , { λ 2 } ) ) } , ( ^ 2 , ˇ 2 , Ψ ) = { ( ξ 1 , ( { κ 1 , κ 2 } , { λ 1 } ) , ( { κ 3 } , { λ 2 } ) ) , ( ξ 2 , ( { κ 1 , κ 2 } , { λ 2 } ) , ( { κ 3 } , { λ 1 } ) ) } .
Therefore, ( 1 , 2 , ^ ^ , Ψ , ¬ Ψ ) is a B BSTS over 1 and 2 .
Example 3. 
Let 1 = { κ 1 , κ 2 , κ 3 } and 2 = { λ 1 , λ 2 } be two universe sets and Ψ = { ξ 1 , ξ 2 } be a set of parameters. Let ^ ^ = { ( Φ , ^ ^ , Ψ ) , ( ^ ^ , Φ , Ψ ) , ( ^ 1 , ˇ 1 , Ψ ) , ( ^ 2 , ˇ 2 , Ψ ) } , where
( ^ 1 , ˇ 1 , Ψ ) = { ( ξ 1 , ( { κ 3 } , { λ 2 } ) , ( { κ 1 , κ 2 } , { λ 1 } ) ) , ( ξ 2 , ( { κ 3 } , { λ 1 } ) , ( { κ 1 , κ 2 } , { λ 2 } ) } , ( ^ 2 , ˇ 2 , Ψ ) = { ( ξ 1 , ( { κ 2 } , { λ 1 } ) , ( { κ 3 } , { λ 2 } ) ) , ( ξ 2 , ( { κ 1 , κ 2 } , { λ 2 } ) , ( { κ 3 } , { λ 1 } ) } .
Hence, ( 1 , 2 , ^ ^ , Ψ , ¬ Ψ ) is not a B BSTS over 1 and 2 because ( ^ 1 , ˇ 1 , Ψ )   ˜ ˜   ( ^ 2 , ˇ 2 , Ψ )   ˜ ˜   ^ ^ .
Definition 26. 
Let ( 1 , 2 , ^ ^ , Ψ , ¬ Ψ ) be a B BSTS over 1 and 2 , then the members of ^ ^ are said to be B BS open sets in 1 and 2 . The B BSS is said to be B BS closed in 1 and 2 if its relative complement ( ^ , ˇ , Ψ ) c is belong to ^ ^ .
Definition 27. 
Let 1 and 2 be the two initial universe sets and Ψ be a set of parameters. If ^ ^   = { ( ^ ^ , Φ , Ψ ) , ( Φ , ^ ^ , Ψ ) } , then ^ ^ is called the B BS indiscrete space over 1 and 2 . If ^ ^ is the collection of all B BSS s, which can be defined over 1 and 2 , then ^ ^ is called the B BS discrete space over 1 and 2 .
Proposition 5. 
Let ( 1 , 2 , ^ ^ , Ψ , ¬ Ψ ) be a B BSTS over 1 and 2 . Then, the following properties hold:
1. 
( ^ ^ , Φ , Ψ ) and ( Φ , ^ ^ , Ψ ) are B BS closed sets.
2. 
The B BS union of any two B BS closed sets is B BS closed.
3. 
The arbitrary B BS intersection of B BS closed sets is B BS closed.
Proof. 
It is obvious. □
Theorem 1. 
Let ( 1 , 2 , ^ ^ , Ψ , ¬ Ψ ) and ( 1 , 2 , J ^ ^ , Ψ , ¬ Ψ ) be B BSTS s over 1 and 2 , then ( 1 , 2 , ^ ^ ˜ ˜ J ^ ^ , Ψ , ¬ Ψ ) is a B BSTS over 1 and 2 .
Proof. 
Let ( 1 , 2 , ^ ^ , Ψ , ¬ Ψ ) and ( 1 , 2 , J ^ ^ , Ψ , ¬ Ψ ) be a B BSTS s over 1 and 2
Ax.1.
Clearly ( ^ ^ , Φ , Ψ ) , ( Φ , ^ ^ , Ψ )   ˜ ˜   ^ ^ ˜ ˜ J ^ ^ .
Ax.2.
Let { ( ^ i , ˇ i , Ψ ) : i I } be a family of B BSS s in ^ ^ ˜ ˜ J ^ ^ , Then, ( ^ i , ˇ i , Ψ )   ˜ ˜   ^ ^ and ( ^ i , ˇ i , Ψ )   ˜ ˜   J ^ ^ for each i I , so ˜ ˜ i I ( ^ i , ˇ i , Ψ )   ˜ ˜   ^ ^ and ˜ ˜ i I ( ^ i , ˇ i , Ψ )   ˜ ˜   J ^ ^ . Thus, ˜ ˜ i I ( ^ i , ˇ i , Ψ )   ˜ ˜   ^ ^ ˜ ˜ J ^ ^ .
Ax.3.
Let ( ^ , ˇ , Ψ ) and ( ^ , ˇ , Ψ ) be two B BSS s in ^ ^ ˜ ˜ J ^ ^ . Then, ( ^ , ˇ , Ψ ) , ( ^ , ˇ , Ψ )   ˜ ˜   ^ ^ and ( ^ , ˇ , Ψ ) , ( ^ , ˇ , Ψ )   ˜ ˜   J ^ ^ . Since ( ^ , ˇ , Ψ )   ˜ ˜   ( ^ , ˇ , Ψ )   ˜ ˜   ^ ^ and ( ^ , ˇ , Ψ )   ˜ ˜   ( ^ , ˇ , Ψ )   ˜ ˜   J ^ ^ . Therefore, ( ^ , ˇ , Ψ )   ˜ ˜   ( ^ , ˇ , Ψ )   ˜ ˜   ^ ^ ˜ ˜ J ^ ^ . Hence, ( 1 , 2 , ^ ^ ˜ ˜ J ^ ^ , Ψ , ¬ Ψ ) is a B BSTS over 1 and 2 .
Remark 1. 
Let ( 1 , 2 , ^ ^ , Ψ , ¬ Ψ ) and ( 1 , 2 , J ^ ^ , Ψ , ¬ Ψ ) be B BSTS s over 1 and 2 , then ( 1 , 2 , ^ ^ ˜ ˜ J ^ ^ , Ψ , ¬ Ψ ) may not be B BSTS over 1 and 2 in general.
Example 4. 
Let 1 = { κ 1 , κ 2 , κ 3 , κ 4 } and 2 = { λ 1 , λ 2 , λ 3 } be two universe sets and Ψ = { ξ 1 , ξ 2 } be a set of parameters. Let ^ ^   = { ( ^ ^ , Φ , Ψ ) , ( Φ , ^ ^ , Ψ ) , ( ^ 1 , ˇ 1 , Ψ ) } and J ^ ^   = { ( ^ ^ , Φ , Ψ ) , ( Φ , ^ ^ , Ψ ) , ( ^ 2 , ˇ 2 , Ψ ) } where ( ^ 1 , ˇ 1 , Ψ ) and ( ^ 2 , ˇ 2 , Ψ ) are B BSS s over 1 and 2 defined as
( ^ 1 , ˇ 1 , Ψ ) = { ξ 1 , ( { κ 1 , κ 3 } , { λ 2 } ) , ( { κ 2 , κ 4 } , { λ 1 , λ 3 } ) , ( ξ 2 , ( { κ 2 , κ 3 } , { λ 1 } ) , ( { κ 1 } , { λ 2 } ) } , ( ^ 2 , ˇ 2 , Ψ ) = { ξ 1 , ( { κ 1 , κ 2 } , { λ 1 , λ 2 } ) , ( { κ 4 } , { λ 3 } ) , ( ξ 2 , ( { κ 1 } , { λ 2 } ) , ( { κ 2 , κ 3 } , { λ 1 , λ 3 } ) } .
Then, ^ ^ and J ^ ^ are B BSTS s over 1 and 2 . Now, ^ ^   ˜ ˜   J ^ ^   = { ( ^ ^ , Φ , Ψ ) , ( Φ , ^ ^ , Ψ ) , ( ^ 1 , ˇ 1 , Ψ ) , ( ^ 2 , ˇ 2 , Ψ ) } is not B BSTS because ( ^ 1 , ˇ 1 , Ψ )   ˜ ˜   ( ^ 2 , ˇ 2 , Ψ )   = { ( ξ 1 , ( { κ 1 } , { λ 2 } ) , ( { κ 2 , κ 4 } , { λ 1 , λ 3 } ) ) , ( ξ 2 , ( ϕ , ϕ ) ) , ( { κ 1 , κ 2 , κ 3 } , 2 ) ) }   ˜ ˜   ( 1 , 2 , ^ ^   ˜ ˜   J ^ ^ , Ψ , ¬ Ψ ) .
Theorem 2. 
Let ( 1 , 2 , ^ ^ , Ψ , ¬ Ψ ) be a B BSTS over 1 and 2 , then ^ ( ξ )   = { ( ^ , Ψ ) :   ( ^ , ˇ , Ψ )   ˜ ˜   ^ ^ } is B STS over 1 and 2 .
Proof. 
Suppose that ( 1 , 2 , ^ ^ , Ψ , ¬ Ψ ) is a B BSTS over 1 and 2 . Then,
Ax.1.
( Φ , ^ ^ , Ψ )   ˜ ˜   ^ ^ implies that ( Φ , Ψ )   ˜   ^ ( ξ ) , also ( ^ ^ , Φ , Ψ )   ˜ ˜   ^ ^ implies that ( ^ ^ , Ψ )   ˜   ^ ( ξ ) .
Ax.2.
Let { ( ^ i , Ψ )   : i I } belong to ˜   ^ ( ξ ) . Since ( ^ i , ˇ i , Ψ )   ˜ ˜   ^ ^ for all i I , then ˜ ˜ i I ( ^ i , ˇ i , Ψ )   ˜ ˜   ^ ^ . Thus, ˜ i I ( ^ i , Ψ )   ˜   ^ ( ξ ) .
Ax.3.
Let ( ^ 1 , Ψ ) , ( ^ 2 , Ψ )   ˜   ^ ( ξ ) . Since ( ^ 1 , ˇ 1 , Ψ ) , ( ^ 2 , ˇ 2 , Ψ )   ˜   ^ ^ , ( ^ 1 , ˇ 1 , Ψ )   ˜ ˜   ( ^ 2 , ˇ 2 , Ψ )   ˜   ^ ^ . Therefore, ( ^ 1 , Ψ )   ˜   ( ^ 2 , Ψ )   ˜   ^ ( ξ )
Hence, ^ ( ξ ) defines a B STS over 1 and 2 . □
Theorem 3. 
Let ( 1 , 2 , ^ ^ , Ψ , ¬ Ψ ) be a B BSTS over 1 and 2 , then ^ ( ¬ ξ )   = { ( ˇ , Ψ ) :   ( ^ , ˇ , Ψ )   ˜ ˜   ^ ^ } is B STS over 1 and 2 .
Proof. 
Similar to Theorem 2. □
Remark 2. 
The following example shows that the converse of Theorems 2 and 3 are not true.
Example 5. 
Let 1 = { κ 1 , κ 2 , κ 3 , κ 4 } , 2 = { λ 1 , λ 2 , λ 3 } and Ψ = { ξ 1 , ξ 2 } . Suppose that
^ ^   = { ( Φ , Ψ ) , ( ^ ^ , Ψ ) , ( ^ 1 , Ψ ) , ( ^ 2 , Ψ ) , ( ^ 3 , Ψ ) } and ¬ ^ ^ = { ( ^ ^ , ¬ Ψ ) , ( Φ , ¬ Ψ ) , ( ˇ 1 , ¬ Ψ ) , ( ˇ 2 , ¬ Ψ ) , ( ˇ 3 , ¬ Ψ ) } ,
are two B STS s defined on 1 and 2 , where
( ^ 1 , Ψ ) = { ( ξ 1 , ( { κ 2 } , { λ 2 } ) ) , ( ξ 2 , ( { κ 1 } , { λ 1 } ) ) } , ( ^ 2 , Ψ ) = { ( ξ 1 , ( { κ 1 } , { λ 1 } ) ) , ( ξ 2 , ( { κ 3 } , { λ 3 } ) ) } , ( ^ 3 , Ψ ) = { ( ξ 1 , ( { κ 1 , κ 2 } , { λ 1 , λ 2 } ) ) , ( ξ 2 , ( { κ 1 , κ 3 } , { λ 1 , λ 3 } ) ) } ,
and
( ˇ 1 , ¬ Ψ ) = { ( ¬ ξ 1 , ( { κ 3 } , { ˇ 3 } ) ) , ( ¬ ξ 2 , ( { κ 2 } , { ˇ 2 } ) ) } , ( ˇ 2 , ¬ Ψ ) = { ( ¬ ξ 1 , ( { κ 4 } , { ˇ 3 } ) ) , ( ¬ ξ 2 , ( { κ 4 } ) , { ˇ 2 } ) } , ( ˇ 3 , ¬ Ψ ) = { ( ¬ ξ 1 , ( { κ 3 , κ 4 } , { ˇ 3 } ) ) , ( ¬ ξ 2 , ( { κ 2 , κ 4 } , { ˇ 2 } ) ) } .
Thus, ^ ^   = { ( Φ , ^ ^ , Ψ ) , ( ^ ^ , Φ , Ψ ) , ( ^ 1 , ˇ 1 , Ψ ) , ( ^ 2 , ˇ 2 , Ψ ) , ( ^ 3 , ˇ 3 , Ψ ) } , where ( ^ 1 , ˇ 1 , Ψ ) , ( ^ 2 , ˇ 2 , Ψ ) and ( ^ 3 , ˇ 3 , Ψ ) defined as follows:
( ^ 1 , ˇ 1 , Ψ ) = { ( ξ 1 , ( { κ 2 } , { λ 2 } ) , ( { κ 3 } , { λ 3 } ) ) , ( ξ 2 , ( { κ 1 } , { λ 1 } ) , ( { κ 2 } , { λ 2 } ) ) } , ( ^ 2 , ˇ 2 , Ψ ) = { ( ξ 1 , ( { κ 1 } , { λ 1 } ) , ( { κ 4 } , { λ 3 } ) ) , ( ξ 2 , ( { κ 3 } , { λ 3 } ) , ( { κ 4 } , { λ 2 } ) ) } , ( ^ 3 , ˇ 3 , Ψ ) = { ( ξ 1 , ( { κ 1 , κ 2 } , { λ 1 , λ 2 } ) , ( { κ 3 , κ 4 } , { λ 3 } ) ) , ( ξ 2 , ( { κ 1 , κ 3 } , { λ 1 , λ 3 } ) , ( { κ 2 , κ 4 } , { λ 2 } ) ) } .
Hence, ( ^ 1 , ˇ 1 , Ψ )   ˜ ˜   ( ^ 2 , ˇ 2 , Ψ )   = { ( ξ 1 , ( { κ 1 , κ 2 } , { λ 1 , λ 2 } ) , ( ϕ , { λ 3 } ) ) , ( ξ 2 , ( { κ 1 , κ 3 } , { λ 1 , λ 3 } ) ,   ( ϕ , { λ 2 } ) ) }   ˜ ˜   ^ ^ . Therefore, ^ ^ is not B BSTS over 1 and 2 .
However, the following theorem shows that the converse of Theorem 2 is true under some conditions.
Theorem 4. 
Let ( , ^ , Ψ ) be a B STS over 1 and 2 . Then, the collection ^ ^ consisting of B BSS s ( ^ , ˇ , Ψ ) such that ( ^ , Ψ )   ˜   ^ ( ξ ) and ˇ ( ¬ ξ )   = ( X ˇ , Y ˇ )   = ( 1 , 2 ) ^ ( ξ ) = ( 1 , 2 ) ( X ^ , Y ^ ) = ( 1 X ^ , 2 Y ^ ) for all ¬ ξ ¬ Ψ defines a B BSS topology on 1 and 2 .
Proof. 
Ax.1.
Since ( Φ , Ψ ) , ( ^ ^ , Ψ )   ˜   ^ ( ξ ) , then ( ¬ ξ ) = ( 1 , 2 ) Φ ( ξ ) = ( 1 , 2 ) ( ϕ , ϕ ) = ( 1 , 2 ) and hence ( Φ , ^ ^ , Ψ )   ˜ ˜   ^ ^ . Also, ( ¬ ξ ) = ( 1 , 2 ) A ^ ^ ( ξ ) = ( ϕ , ϕ ) , thus ( ˜ ˜ , Φ , Ψ )   ˜ ˜   ^ ^ .
Ax.2.
Let { ( ^ i , ˇ i , Ψ ) : i I }   ˜ ˜   ^ ^ . Then, { ( ^ i , Ψ ) : i I }   ˜   ^ ( ξ ) and ˇ i ( ¬ ξ ) = ( 1 , 2 ) ^ i ( ξ )   = ( 1 X ^ , 2 Y ^ ) . Now, since ^ ( ξ ) is a B S topology, then ˜ i I ( ^ i , Ψ )   ˜   ^ ( ξ ) . Let ( ^ , Ψ ) = ˜ i I ( ^ i , Ψ )   ˜   ^ ( ξ ) , thus ˇ ( ¬ ξ )   = ( X ˇ , Y ˇ )   = ( 1 , 2 ) ( i I ^ i ( ξ ) )   = ( 1 i I X ^ i , 2 i I Y ^ i )   = ( i I X ˇ i , i I Y ˇ i )   = i I ( X ˇ i , Y ˇ i )   = i I ˇ i ( ¬ ξ ) . Therefore, ˜ ˜ i I ( ^ i , ˇ i , Ψ )   ˜ ˜   ^ ^ .
Ax.3.
Let ( ^ 1 , ˇ 1 , Ψ ) , ( ^ 2 , ˇ 2 , Ψ )   ˜ ˜   ^ ^ . Then, ( ^ 1 , Ψ ) , ( ^ 2 , Ψ )   ˜   ^ ( ξ ) and ˇ 1 ( ¬ ξ ) = ( 1 , 2 ) ^ 1 ( ξ )   = ( 1 X ^ 1 , 2 Y ^ 1 ) so ˇ 2 ( ¬ ξ ) = ( 1 , 2 ) ^ 2 ( ξ )   = ( 1 X ^ 2 , 2 Y ^ 2 ) . Now, since ^ ( ξ ) is a B S topology, ( ^ 1 , Ψ )   ˜   ( ^ 2 , Ψ )   ˜   ^ ( ξ ) . Let ( ^ , Ψ ) =   ( F 1 ^ , Ψ )   ˜   ( ^ 2 , Ψ )   ˜   ^ ( ξ ) , hence ˇ ( ¬ ξ )   = ( X ˇ , Y ˇ )   = ( 1 , 2 ) ^ ( ξ )   = ( 1 ( X ^ 1 X ^ 2 ) , 2 ( Y ^ 1 Y ^ 2 ) )   = ( X ˇ 1 Y ˇ 1 , X ^ 2 Y ^ 2 )   = ˇ 1 ( ¬ ξ ) ˇ 2 ( ¬ ξ ) . Therefore, ( ^ 1 , ˇ 1 , Ψ )   ˜ ˜   ( ^ 2 , ˇ 2 , Ψ )   ˜ ˜   ^ ^ . The proof is completed.
Theorem 5. 
If ( 1 , 2 , ^ ^ , Ψ , ¬ Ψ ) is a B BSTS over 1 and 2 , then ( 1 , ^ ^ 1 , Ψ , ¬ Ψ ) and ( 2 , ^ ^ 2 , Ψ , ¬ Ψ ) are BSTS s over 1 and 2 , respectively.
Proof. 
Let ( 1 , 2 , ^ ^ , Ψ , ¬ Ψ ) be a B BSTS over 1 and 2 and by Definition 4, we have ( Φ , ^ ^ , Ψ ) , ( ^ ^ , Φ , Ψ ) in ^ ^ with = ( 1 , 2 ) , then ( Φ , ^ ^ 1 , Ψ ) , ( ^ ^ 1 , Φ , Ψ ) in ^ ^ 1 and ( Φ , ^ ^ 2 , Ψ ) , ( ^ ^ 2 , Φ , Ψ ) in ^ ^ 2 . So, let { ( X ^ i , X ˇ i , Ψ ) : i I }   ˜ ˜   ^ ^ 1 and { ( Y ^ i , Y ˇ i , Ψ ) : i I }   ˜ ˜   ^ ^ 2 , where ( ^ i , ˇ i , Ψ )   = ( ( X ^ i , Y ^ i ) , ( X ˇ i , Y ˇ i ) , Ψ ) then { ( ^ i , ˇ i , Ψ ) : i I }   ˜ ˜   ^ ^ , from ^ ^ is a B BSTS over 1 and 2 , thus ˜ ˜ i I ( ^ i , ˇ i , Ψ )   ˜ ˜   ^ ^ . Therefore, ˜ ˜ i I ( X ^ i , X ˇ i , Ψ )   ˜ ˜   ^ ^ 1 and ˜ ˜ i I ( Y ^ i , Y ˇ i , Ψ )   ˜ ˜   ^ ^ 2 . Now, let ( ^ 1 , ˇ 1 , Ψ ) , ( ^ 2 , ˇ 2 , Ψ )   ˜ ˜   ^ ^ . Then, ( ^ 1 , ˇ 1 , Ψ )   ˜ ˜   ( ^ 2 , ˇ 2 , Ψ )   ˜ ˜   ^ ^ 1 , thus ( X ^ 1 , X ˇ 1 , Ψ )   ˜ ˜   ( X ^ 2 , X ˇ 2 , Ψ )   ˜ ˜   ^ ^ 1 and ( Y ^ 1 , Y ˇ 1 , Ψ )   ˜ ˜   ( Y ^ 2 , Y ˇ 2 , Ψ )   ˜ ˜   ^ ^ 2 . Hence, ( 1 , ^ ^ 1 , Ψ , ¬ Ψ ) and ( 2 , ^ ^ 2 , Ψ , ¬ Ψ ) are BSTS s over 1 and 2 , respectively. □
Definition 28. 
Let ( 1 , 2 , ^ ^ , Ψ , ¬ Ψ ) be a B BSTS over and ( ^ , ˇ , Ψ ) be a B BSS over universe sets 1 and 2 . Then, the B BS closure of ( ^ , ˇ , Ψ ) , denoted by ^ ^ - c l ( ^ , ˇ , Ψ ) , is the intersection of all B BS closed sets, which contains ( ^ , ˇ , Ψ ) . Thus, ^ ^ - c l ( ^ , ˇ , Ψ ) is the smallest B BS closed set over 1 and 2 , which contains ( ^ , ˇ , Ψ ) .
Theorem 6. 
Let ( 1 , 2 , ^ ^ , Ψ , ¬ Ψ ) be a B BSTS over 1 and 2 , ( ^ , ˇ , Ψ ) and ( ^ , ˇ , Ψ ) be B BSS s over universe sets 1 and 2 . Then
1. 
^ ^ - c l ( Φ , ^ ^ , Ψ )   = ( Φ , ^ ^ , Ψ ) and ^ ^ - c l ( ^ ^ , Φ , Ψ )   = ( ^ ^ , Φ , Ψ ) .
2. 
( ^ , ˇ , Ψ )   ˜ ˜   ^ ^ - c l ( ^ , ˇ , Ψ ) implies ^ ^ - c l ( ^ , ˇ , Ψ ) is a B BS closed set and contains ( ^ , ˇ , Ψ ) .
3. 
( ^ , ˇ , Ψ ) is a B BS closed set if and only if ( ^ , ˇ , Ψ ) = ^ ^ - c l ( ^ , ˇ , Ψ ) .
4. 
^ ^ - c l ( ^ ^ - c l ( ^ , ˇ , Ψ ) ) = ^ ^ - c l ( ^ , ˇ , Ψ ) .
5. 
( ^ , ˇ , Ψ )   ˜ ˜   ( ^ , ˇ , Ψ ) implies ^ ^ - c l ( ^ , ˇ , Ψ )   ˜ ˜   ^ ^ - c l ( ^ , ˇ , Ψ ) .
6. 
^ ^ - c l ( ( ^ , ˇ , Ψ )   ˜ ˜   ( ^ , ˇ , Ψ ) ) = ^ ^ - c l ( ^ , ˇ , Ψ )   ˜ ˜   ^ ^ - c l ( ^ , ˇ , Ψ ) .
7. 
^ ^ - c l ( ( ^ , ˇ , Ψ )   ˜ ˜   ( ^ , ˇ , Ψ ) )   ˜ ˜   ^ ^ - c l ( ^ , ˇ , Ψ )   ˜ ˜   ^ ^ - c l ( ^ , ˇ , Ψ ) .
Proof. 
  • Follows directly from Definitions 26 and 28.
  • Let { ( ^ i , ˇ i , Ψ ) : i I } be a family of B BS closed sets containing ^ ^ - c l ( ^ , ˇ , Ψ ) . Then, from Definition 28,
    ^ ^ - c l ( ^ , ˇ , Ψ ) = ˜ ˜ i I ( ^ i , ˇ i , Ψ ) ( i )
    Since { ( ^ i , ˇ i , Ψ ) : i I } is a B BS closed set for each i I , it implies that ˜ ˜ i I ( ^ i , ˇ i , Ψ ) is also B BS closed set by Proposition 5. Thus, ^ ^ - c l ( ^ , ˇ , Ψ ) is a B BS closed set by (i). Now, to prove that ( ^ , ˇ , Ψ )   ˜ ˜   ^ ^ - c l ( ^ , ˇ , Ψ ) , we have for each i I , ( ^ , ˇ , Ψ )   ˜ ˜   { ( ^ i , ˇ i , Ψ ) : i I } , implying ( ^ , ˇ , Ψ )   ˜ ˜   ˜ ˜ i I ( ^ i , ˇ i , Ψ ) , using (i) to obtain ^ ^ - c l ( ^ , ˇ , Ψ )   ˜ ˜   ( ^ , ˇ , Ψ ) . Therefore, ^ ^ - c l ( ^ , ˇ , Ψ ) contains ( ^ , ˇ , Ψ ) . Hence, ^ ^ - c l ( ^ , ˇ , Ψ ) is a B BS closed set and contains ( ^ , ˇ , Ψ ) .
  • Let ( ^ , ˇ , Ψ ) be a B BS closed set, to prove ( ^ , ˇ , Ψ ) = ^ ^ - c l ( ^ , ˇ , Ψ ) . Since ( ^ , ˇ , Ψ ) a B BS closed and from Part (2), ( ^ , ˇ , Ψ )   ˜ ˜   ^ ^ - c l ( ^ , ˇ , Ψ ) . Thus, ( ^ , ˇ , Ψ ) is a B BS closed set containing ( ^ , ˇ , Ψ ) , and ( ^ , ˇ , Ψ ) is the smallest B BS closed set containing ( ^ , ˇ , Ψ ) . Therefore, ^ ^ - c l ( ^ , ˇ , Ψ ) is smaller than ( ^ , ˇ , Ψ ) that is ^ ^ - c l ( ^ , ˇ , Ψ )   ˜ ˜   ( ^ , ˇ , Ψ ) . Conversely, if ( ^ , ˇ , Ψ ) is B BS closed, then ^ ^ - c l ( ^ , ˇ , Ψ ) = ( ^ , ˇ , Ψ ) .
  • Since ^ ^ - c l ( ^ , ˇ , Ψ ) is a B BS closed set, by Part (3), it implies that ^ ^ - c l ( ^ ^ - c l ( ^ , ˇ , Ψ ) ) = ^ ^ - c l ( ^ , ˇ , Ψ ) .
  • Suppose ( ^ , ˇ , Ψ )   ˜ ˜   ( ^ , ˇ , Ψ ) , then ( ^ , ˇ , Ψ )   ˜ ˜   ^ ^ - c l ( ^ , ˇ , Ψ ) and ( ^ , ˇ , Ψ )   ˜ ˜   ^ ^ - c l ( ^ , ˇ , Ψ ) , Since ^ ^ - c l ( ^ , ˇ , Ψ ) is a B BS closed set containing ( ^ , ˇ , Ψ ) . But, ^ ^ - c l ( ^ , ˇ , Ψ ) is the smallest B BS closed containing ( ^ , ˇ , Ψ ) . Therefore, ^ ^ - c l ( ^ , ˇ , Ψ ) is smaller than ^ ^ - c l ( ^ , ˇ , Ψ ) . Hence, ^ ^ - c l ( ^ , ˇ , Ψ )   ˜ ˜   ^ ^ - c l ( ^ , ˇ , Ψ ) .
  • Since ( ^ , ˇ , Ψ )   ˜ ˜   ( ^ , ˇ , Ψ )   ˜ ˜   ( ^ , ˇ , Ψ ) and ( ^ , ˇ , Ψ )   ˜ ˜   ( ^ , ˇ , Ψ )   ˜ ˜   ( ^ , ˇ , Ψ ) .
    Then, ^ ^ - c l ( ^ , ˇ , Ψ )   ˜ ˜   ^ ^ - c l ( ( ^ , ˇ , Ψ )   ˜ ˜   ( ^ , ˇ , Ψ ) ) and
    ^ ^ - c l ( ^ , ˇ , Ψ )   ˜ ˜   ^ ^ - c l ( ( ^ , ˇ , Ψ )   ˜ ˜   ( ^ , ˇ , Ψ ) ) , by Part (5). Therefore,
    ^ ^ - c l ( ^ , ˇ , Ψ )   ˜ ˜   ^ ^ - c l ( ^ , ˇ , Ψ )   ˜ ˜   ^ ^ - c l ( ( ^ , ˇ , Ψ )   ˜ ˜   ( ^ , ˇ , Ψ ) ) .
    Also, from the B BS closure property, we obtain ( ^ , ˇ , Ψ )   ˜ ˜   ( ^ , ˇ , Ψ )   ˜ ˜   ^ ^ - c l ( ^ , ˇ , Ψ )   ˜ ˜   ^ ^ - c l ( ^ , ˇ , Ψ ) . But, ^ ^ - c l ( ( ^ , ˇ , Ψ )   ˜ ˜   ( ^ , ˇ , Ψ ) ) is the smallest B BS closed set containing ( ^ , ˇ , Ψ )   ˜ ˜   ( ^ , ˇ , Ψ ) . Thus, ^ ^ - c l ( ( ^ , ˇ , Ψ )   ˜ ˜   ( ^ , ˇ , Ψ ) ) is the smallest than ^ ^ - c l ( ^ , ˇ , Ψ )   ˜ ˜   ^ ^ - c l ( ^ , ˇ , Ψ ) . Hence, ^ ^ - c l ( ( ^ , ˇ , Ψ )   ˜ ˜   ( ^ , ˇ , Ψ ) ) = ^ ^ - c l ( ^ , ˇ , Ψ )   ˜ ˜   ^ ^ - c l ( ^ , ˇ , Ψ ) .
  • Since ( ^ , ˇ , Ψ )   ˜ ˜   ( ^ , ˇ , Ψ )   ˜ ˜   ( ^ , ˇ , Ψ ) and ( ^ , ˇ , Ψ )   ˜ ˜   ( ^ , ˇ , Ψ )   ˜ ˜   ( ^ , ˇ , Ψ ) , by Part (5) ^ ^ - c l ( ( ^ , ˇ , Ψ )   ˜ ˜   ( ^ , ˇ , Ψ ) )   ˜ ˜   ^ ^ - c l ( ^ , ˇ , Ψ ) and ^ ^ - c l ( ( ^ , ˇ , Ψ )   ˜ ˜   ( ^ , ˇ , Ψ ) )   ˜ ˜   ^ ^ - c l ( ^ , ˇ , Ψ ) . Hence, ^ ^ - c l ( ( ^ , ˇ , Ψ )   ˜ ˜   ( ^ , ˇ , Ψ ) )   ˜ ˜   ^ ^ - c l ( ^ , ˇ , Ψ )   ˜ ˜   ^ ^ - c l ( ^ , ˇ , Ψ ) .
Remark 3. 
The next example shows that the equality of Part (7) in Theorem 6 does not hold in general.
Example 6. 
Let ^ ^ be defined as in Example 2. If ( ^ 1 , ˇ 1 , Ψ ) and ( ^ 2 , ˇ 2 , Ψ ) are two B BSS s defined as
( ^ 1 , ˇ 1 , Ψ ) = { ( ξ 1 , ( { κ 2 } , { λ 1 } ) , ( { κ 1 , κ 3 } , { λ 2 } ) ) } , ( ^ 2 , ˇ 2 , Ψ ) = { ( ξ 2 , ( { κ 1 , κ 2 } , { λ 1 } ) , ( { κ 3 } , { λ 2 } ) } .
Thus, ^ ^ - c l ( ^ 1 , ˇ 1 , Ψ ) = ^ ^ - c l ( ^ 2 , ˇ 2 , Ψ ) = ( ^ ^ , Φ , Ψ ) , while ^ ^ - c l ( ( ^ 1 , ˇ 1 , Ψ )   ˜ ˜   ( ^ 2 , ˇ 2 , Ψ ) )   = ( Φ , ^ ^ , Ψ ) . Hence, ^ ^ - c l ( ^ , ˇ , Ψ )   ˜ ˜   ^ ^ - c l ( ^ , ˇ , Ψ )  Symmetry 16 00023 i001  ^ ^ - c l ( ( ^ , ˇ , Ψ )   ˜ ˜   ( ^ , ˇ , Ψ ) )
Definition 29. 
Let ( ^ , ˇ , Ψ ) be a B BSS of a B BSTS   ( 1 , 2 , ^ ^ , Ψ , ¬ Ψ ) over 1 and 2 . Then, we associate pointwise the B BS closure of ( ^ , ˇ , Ψ ) over 1 and 2 is denoted by ^ ^ - ( c l ( ^ , ˇ ) , Ψ ) and defined as ^ ^ - ( c l ( ^ , ˇ ) , Ψ ) ξ   = ^ ^ - c l ( ^ , ˇ , Ψ ) ξ , where ^ ^ - c l ( ^ , ˇ , Ψ ) ξ is the B BS closure of ( ^ , ˇ , Ψ ) ξ in ( 1 , 2 , ^ ^ , Ψ , ¬ Ψ ) for each ξ Ψ .
Theorem 7. 
Let ( 1 , 2 , ^ ^ ( ξ ) , Ψ , ¬ Ψ ) be a B BSTS over 1 and 2 , ( ^ , ˇ , Ψ ) be a B BSS over universe sets on 1 and 2 , then ^ ^ ( ξ ) - ( c l ( ^ , ˇ ) , Ψ )   ˜ ˜   ^ ^ ( ξ ) - c l ( ^ , ˇ , Ψ )
Proof. 
For any parameter ξ Ψ , ^ ^ ( ξ ) - c l ( ^ , ˇ , Ψ ) ξ is the smallest B BS closed set in ( 1 , 2 , ^ ^ ( ξ ) , Ψ , ¬ Ψ ) , which contains ( ^ , ˇ , Ψ ) ξ . Then, if ^ ^ ( ξ ) - ( c l ( ^ , ˇ ) , Ψ ) ξ   = ( ^ , ˇ , Ψ ) , ( ^ , ˇ , Ψ ) is a B BS closed set in ( 1 , 2 , ^ ^ ( ξ ) , Ψ , ¬ Ψ ) containing ( ^ , ˇ , Ψ ) ξ . This implies that ^ ^ ( ξ ) - ( c l ( ^ , ˇ ) , Ψ ) ξ   = ^ ^ ( ξ ) - c l ( ^ , ˇ , Ψ ) ξ   ˜ ˜   ( ^ , ˇ , Ψ ) . Therefore, ^ ^ ( ξ ) - ( c l ( ^ , ˇ ) , Ψ )   ˜ ˜   ^ ^ ( ξ ) - c l ( ^ , ˇ , Ψ ) . □
Theorem 8. 
Let ( 1 , 2 , ^ ^ , Ψ , ¬ Ψ ) be a B BSTS and ( ^ , ˇ , Ψ ) be a B BSS over 1 and 2 , then ^ ^ - ( c l ( ^ , ˇ ) , Ψ )   ˜ ˜   ^ ^ - c l ( ^ , ˇ , Ψ ) .
Proof. 
Let ( 1 , 2 , ^ ^ , Ψ , ¬ Ψ ) be a B BSTS over 1 and 2 , if ^ ^ - ( c l ( ^ , ˇ ) , Ψ )   ˜ ˜   ^ ^ - c l ( ^ , ˇ , Ψ ) , then ^ ^ - ( c l ( ^ , ˇ ) , Ψ ) is a B BS closed set, thus ^ ^ - ( c l ( ^ , ˇ ) , Ψ ) c   ˜ ˜   ^ ^ . Conversely, if ^ ^ - ( c l ( ^ , ˇ ) , Ψ ) c   ˜ ˜   ^ ^ , then ^ ^ - ( c l ( ^ , ˇ ) , Ψ ) is a B BS closed set containing ( ^ , ˇ , Ψ ) . By Theorem 7, and from the definition of B BS closure of ( ^ , ˇ , Ψ ) , any B BS closed set, which contains ( ^ , ˇ , Ψ ) will contains ^ ^ - c l ( ^ , ˇ , Ψ ) . Thus, ^ ^ - c l ( ^ , ˇ , Ψ )   ˜ ˜   ^ ^ - ( c l ( ^ , ˇ ) , Ψ ) . Hence, ^ ^ - c l ( ^ , ˇ , Ψ ) = ^ ^ - ( c l ( ^ , ˇ ) , Ψ ) . □
Definition 30. 
Let ( 1 , 2 , ^ ^ , Ψ , ¬ Ψ ) be a B BSTS over 1 and 2 . Let ξ X ^ , Y ^   ˜ ˜   B BSP ( 1 , 2 ) ( Ψ , ¬ Ψ ) , the B BSS   ( ^ , ˇ , Ψ ) is said to be binary bipolar soft neighborhood set of ξ X ^ , Y ^ , denoted by the B BS neighborhood of B BSP   ξ X ^ , Y ^ if there exists a B BS open set ( ^ , ˇ , Ψ )   ˜ ˜   ^ ^ such that
ξ X ^ , Y ^   ˜ ˜   ( ^ , ˇ , Ψ )   ˜ ˜   ( ^ , ˇ , Ψ ) .
That is X ^    ^ ( ξ )    ^ ( ξ ) and Y ^    ( 1 , 2 ) ˇ ( ¬ ξ )    ( 1 , 2 ) ˇ ( ¬ ξ ) , for each ξ Ψ and ¬ ξ ¬ Ψ .
Theorem 9. 
Let ( 1 , 2 , ^ ^ , Ψ , ¬ Ψ ) be a B BSTS over 1 and 2 . Then
1. 
Each ξ X ^ , Y ^   ˜ ˜   B BSP ( 1 , 2 ) ( Ψ , ¬ Ψ ) has a B BS neighborhood set.
2. 
The intersection of two B BS neighborhood sets of B BSP   ξ X ^ , Y ^ is a B BS neighborhood.
3. 
Every B BS superset of a B BS neighborhood set of ξ X ^ , Y ^ is a B BS neighborhood of ξ X ^ , Y ^ .
Proof. 
  • Clearly from ξ X ^ , Y ^   ˜ ˜   ( ^ ^ , Φ , Ψ )   ^ ˜   ( ^ ^ , Φ , Ψ ) .
  • Let ξ X ^ , Y ^   ˜ ˜   B BSP ( 1 , 2 ) ( Ψ , ¬ Ψ ) , if ( ^ 1 , ˇ 1 , Ψ ) and ( ^ 2 , ˇ 2 , Ψ ) are B BS neighborhood sets of ξ X ^ , Y ^ . Then, there exist two B BS open sets ( ^ 1 , ˇ 1 , Ψ ) , ( ^ 2 , ˇ 2 , Ψ )   ˜ ˜   ^ ^ such that ξ X ^ , Y ^   ˜ ˜   ( ^ 1 , ˇ 1 , Ψ )   ˜ ˜   ( ^ 1 , ˇ 1 , Ψ ) and ξ X ^ , Y ^   ˜ ˜   ( ^ 2 , ˇ 2 , Ψ )   ˜ ˜   ( ^ 2 , ˇ 2 , Ψ ) . Since ( ^ 1 , ˇ 1 , Ψ )   ˜ ˜   ( ^ 2 , ˇ 2 , Ψ )   ˜ ˜   ^ ^ . Therefore, ξ X ^ , Y ^   ˜ ˜   ( ^ 1 , ˇ 1 , Ψ )   ˜ ˜   ( ^ 2 , ˇ 2 , Ψ )   ˜ ˜   ( ^ 1 , ˇ 1 , Ψ )   ˜ ˜   ( ^ 2 , ˇ 2 , Ψ ) . Hence, ( ^ 1 , ˇ 1 , Ψ )   ˜ ˜   ( ^ 2 , ˇ 2 , Ψ ) is a B BS neighborhood of ξ X ^ , Y ^ .
  • Let ξ X ^ , Y ^   ˜ ˜   B BSP ( 1 , 2 ) ( Ψ , ¬ Ψ ) and ( ^ , ˇ , Ψ )   ˜ ˜   ( ^ , ˇ , Ψ ) . Since ( ^ , ˇ , Ψ ) is B BS neighborhood of ξ X ^ , Y ^ , then ξ X ^ , Y ^   ˜ ˜   ( ^ , ˇ , Ψ )   ˜ ˜   ( ^ , ˇ , Ψ ) with ( ^ , ˇ , Ψ )   ˜ ˜   ^ ^ . Therefore, ξ X ^ , Y ^   ˜ ˜   ( ^ , ˇ , Ψ )   ˜ ˜   ( ^ , ˇ , Ψ ) . Hence, ( ^ , ˇ , Ψ ) is a B BS neighborhood of ξ X ^ , Y ^ .
Definition 31. 
Let ( 1 , 2 , ^ ^ , Ψ , ¬ Ψ ) be a B BSTS over 1 and 2 . A B BSP   ξ X ^ , Y ^ is said to be binary bipolar soft interior point of ( ^ , ˇ , Ψ ) , denoted by the B BS interior point if there exists a B BS open set ( ^ , ˇ , Ψ )   ˜ ˜   ^ ^ such that ξ X ^ , Y ^   ˜ ˜   ( ^ , ˇ , Ψ )   ˜ ˜   ( ^ , ˇ , Ψ ) for each ξ Ψ and ¬ ξ ¬ Ψ .
The B BS interior set of ( ^ , ˇ , Ψ ) , denoted by ^ ^ - i n t ( ^ , ˇ , Ψ ) , is the union of all B BS open sets contained in ( ^ , ˇ , Ψ ) .
Theorem 10. 
Let ( 1 , 2 , ^ ^ , Ψ , ¬ Ψ ) be a B BSTS over 1 and 2 , and ( ^ , ˇ , Ψ ) be B BSS . Then, the following properties hold:
1. 
^ ^ - i n t ( ^ , ˇ , Ψ ) is a B BS open set contained in ( ^ , ˇ , Ψ ) .
2. 
^ ^ - i n t ( ^ , ˇ , Ψ ) is the largest B BS open set over 1 and 2 , which contained in ( ^ , ˇ , Ψ ) .
3. 
( ^ , ˇ , Ψ ) is B BS open if and only if ( ^ , ˇ , Ψ )   = ^ ^ - i n t ( ^ , ˇ , Ψ ) .
Proof. 
  • Obvious from Definition 31.
  • From Part (1) and Definition 31.
  • Suppose that ( ^ , ˇ , Ψ ) is B BS open. Then, ( ^ , ˇ , Ψ ) is a B BS open set contained in ( ^ , ˇ , Ψ ) but from Part (2), ^ ^ - i n t ( ^ , ˇ , Ψ ) is the largest B BS open set contained in ( ^ , ˇ , Ψ ) . Therefore, ( ^ , ˇ , Ψ )   = ^ ^ - i n t ( ^ , ˇ , Ψ ) . Conversely, if ( ^ , ˇ , Ψ )   = ^ ^ - i n t ( ^ , ˇ , Ψ ) , then ( ^ , ˇ , Ψ ) is a B BS open set from Part (1).
Theorem 11. 
Let ( 1 , 2 , ^ ^ , Ψ , ¬ Ψ ) be a B BSTS over 1 and 2 , and ( ^ , ˇ , Ψ ) and ( ^ , ˇ , Ψ ) be B BSS s . Then, the following properties hold:
1. 
^ ^ - i n t ( Φ , ^ ^ , Ψ )   = ( Φ , ^ ^ , Ψ ) and ^ ^ - i n t ( ^ ^ , Φ , Ψ )   = ( ^ ^ , Φ , Ψ )
2. 
^ ^ - i n t ( ^ ^ - i n t ( ^ , ˇ , Ψ ) ) = ^ ^ - i n t ( ^ , ˇ , Ψ ) .
3. 
( ^ , ˇ , Ψ )   ˜ ˜   ( ^ , ˇ , Ψ ) implies ^ ^ - i n t ( ^ , ˇ , Ψ )   ˜ ˜   ^ ^ - i n t ( ^ , ˇ , Ψ ) .
4. 
^ ^ - i n t ( ( ^ , ˇ , Ψ )   ˜ ˜   ( ^ , ˇ , Ψ ) ) = ^ ^ - i n t ( ^ , ˇ , Ψ )   ˜ ˜   ^ ^ - i n t ( ^ , ˇ , Ψ ) .
5. 
^ ^ - i n t ( ^ , ˇ , Ψ )   ˜ ˜   ^ ^ - i n t ( ^ , ˇ , Ψ )   ˜ ˜   ^ ^ - i n t ( ( ^ , ˇ , Ψ )   ˜ ˜   ( ^ , ˇ , Ψ ) ) .
Proof. 
  • Obvious.
  • Since ^ ^ - i n t ( ^ , ˇ , Ψ ) is a B BS open set. Then, by Theorem 10 (3), ^ ^ - i n t ( ^ ^ - i n t ( ^ , ˇ , Ψ ) ) = ^ ^ - i n t ( ^ , ˇ , Ψ ) .
  • Suppose ( ^ , ˇ , Ψ )   ˜ ˜   ( ^ , ˇ , Ψ ) , then ^ ^ - i n t ( ^ , ˇ , Ψ )   ˜ ˜   ( ^ , ˇ , Ψ ) , thus ^ ^ - i n t ( ^ , ˇ , Ψ )   ˜ ˜   ( ^ , ˇ , Ψ ) and from ^ ^ - i n t ( ^ , ˇ , Ψ ) is the largest B BS open contained in ( ^ , ˇ , Ψ ) . Hence, ^ ^ - i n t ( ^ , ˇ , Ψ )   ˜ ˜   ^ ^ - i n t ( ^ , ˇ , Ψ ) .
  • Since ( ^ , ˇ , Ψ )   ˜ ˜   ( ^ , ˇ , Ψ )   ˜ ˜   ( ^ , ˇ , Ψ ) and ( ^ , ˇ , Ψ )   ˜ ˜   ( ^ , ˇ , Ψ )   ˜ ˜   ( ^ , ˇ , Ψ ) . From (3), ^ ^ - i n t ( ( ^ , ˇ , Ψ )   ˜ ˜   ( ^ , ˇ , Ψ ) )   ˜ ˜   ^ ^ - i n t ( ^ , ˇ , Ψ ) and ^ ^ - i n t ( ( ^ , ˇ , Ψ )   ˜ ˜   ( ^ , ˇ , Ψ ) )   ˜ ˜   ^ ^ - i n t ( ^ , ˇ , Ψ ) . Implies ^ ^ - i n t ( ( ^ , ˇ , Ψ )   ˜ ˜   ( ^ , ˇ , Ψ ) )   ˜ ˜   ^ ^ - i n t ( ^ , ˇ , Ψ )   ˜ ˜   ^ ^ - i n t ( ^ , ˇ , Ψ ) . Also, from ^ ^ - i n t ( ^ , ˇ , Ψ )   ˜ ˜   ( ^ , ˇ , Ψ ) and ^ ^ - i n t ( ^ , ˇ , Ψ )   ˜ ˜   ( ^ , ˇ , Ψ ) , then ^ ^ - i n t ( ^ , ˇ , Ψ )   ˜ ˜   ^ ^ - i n t ( ^ , ˇ , Ψ )   ˜ ˜   ( ^ , ˇ , Ψ )   ˜ ˜   ( ^ , ˇ , Ψ ) , which implies
    ^ ^ - i n t ( ^ , ˇ , Ψ )   ˜ ˜   ^ ^ - i n t ( ^ , ˇ , Ψ ) is a B BS open set contained in ( ^ , ˇ , Ψ )   ˜ ˜   ( ^ , ˇ , Ψ ) . But ^ ^ - i n t ( ^ , ˇ , Ψ )   ˜ ˜   ^ ^ - i n t ( ^ , ˇ , Ψ ) is the largest B BS open set contained in ( ^ , ˇ , Ψ )   ˜ ˜   ( ^ , ˇ , Ψ ) . Therefore, ^ ^ - i n t ( ^ , ˇ , Ψ )   ˜ ˜   ^ ^ - i n t ( ^ , ˇ , Ψ )   ˜ ˜   ^ ^ - i n t ( ( ^ , ˇ , Ψ )   ˜ ˜   ( ^ , ˇ , Ψ ) ) . Hence, ^ ^ - i n t ( ( ^ , ˇ , Ψ )   ˜ ˜   ( ^ , ˇ , Ψ ) ) = ^ ^ - i n t ( ^ , ˇ , Ψ )   ˜ ˜   ^ ^ - i n t ( ^ , ˇ , Ψ ) .
  • Since ( ^ , ˇ , Ψ )   ˜ ˜   ( ^ , ˇ , Ψ )   ˜ ˜   ( ^ , ˇ , Ψ ) and ( ^ , ˇ , Ψ )   ˜ ˜   ( ^ , ˇ , Ψ )   ˜ ˜   ( ^ , ˇ , Ψ ) . Then, by (3), ^ ^ - i n t ( ^ , ˇ , Ψ )   ˜ ˜   ^ ^ - i n t ( ( ^ , ˇ , Ψ )   ˜ ˜   ( ^ , ˇ , Ψ ) ) and ^ ^ - i n t ( ^ , ˇ , Ψ )   ˜ ˜   ^ ^ - i n t ( ( ^ , ˇ , Ψ )   ˜ ˜   ( ^ , ˇ , Ψ ) ) . Hence, ^ ^ - i n t ( ^ , ˇ , Ψ )   ˜ ˜   ^ ^ - i n t ( ^ , ˇ , Ψ )   ˜ ˜   ^ ^ - i n t ( ( ^ , ˇ , Ψ )   ˜ ˜   ( ^ , ˇ , Ψ ) ) .
Remark 4. 
The following example shows the equality of Theorem 11 (5) does not hold in general.
Example 7. 
Let ^ ^ be defined as in Example 2. If ( ^ 1 , ˇ 1 , Ψ ) and ( ^ 2 , ˇ 2 , Ψ ) are B BSS s defined as
( ^ 1 , ˇ 1 , Ψ ) = { ( ξ 1 , ( 1 , 2 ) , ( ϕ , ϕ ) ) } , ( ^ 2 , ˇ 2 , Ψ ) = { ( ξ 2 , ( 1 , 2 ) , ( ϕ , ϕ ) ) } .
Therefore, ^ ^ - i n t ( ^ 1 , ˇ 1 , Ψ ) = ^ ^ - i n t ( ^ 2 , ˇ 2 , Ψ ) = ( Φ , ^ ^ , Ψ ) , while ^ ^ - i n t ( ( ^ 1 , ˇ 1 , Ψ )   ˜ ˜   ( ^ 2 , ˇ 2 , Ψ ) )   = ( ^ ^ , Φ , Ψ ) . Hence, ^ ^ - i n t ( ^ , ˇ , Ψ )   ˜ ˜   ^ ^ - i n t ( ^ , ˇ , Ψ )   Symmetry 16 00023 i002   ^ ^ - i n t ( ( ^ , ˇ , Ψ )   ˜ ˜   ( ^ , ˇ , Ψ ) ) .
Theorem 12. 
Let ( 1 , 2 , ^ ^ , Ψ , ¬ Ψ ) be a B BSTS and ( ^ , ˇ , Ψ ) be a B BSS over 1 and 2 . Then
1. 
( ^ ^ - c l ( ^ , ˇ , Ψ ) ) c = ^ ^ - i n t ( ^ , ˇ , Ψ ) c .
2. 
^ ^ - c l ( ^ , ˇ , Ψ ) c = ( ^ ^ - i n t ( ^ , ˇ , Ψ ) ) c .
Proof. 
  • Let Σ = { ( ^ , ˇ , Ψ ) : ( ^ , ˇ , Ψ )   ˜ ˜   ( ^ i , ˇ i , Ψ ) , ( ^ i , ˇ i , Ψ ) c   ˜ ˜   ^ ^ , i I } , then
    ( ^ ^ c l ( ^ , ˇ , Ψ ) ) c = ˜ ˜ i I ( ^ i , ˇ i , Ψ ) c = ˜ ˜ i I ( ^ i , ˇ i , Ψ ) c = ^ ^ i n t ( ^ , ˇ , Ψ ) c .
  • Similar to Part (1).
Definition 32. 
Let ( 1 , 2 , ^ ^ , Ψ , ¬ Ψ ) be a B BSTS over 1 and 2 . A binary bipolar soft boundary set of ( ^ , ˇ , Ψ ) , denoted by B BS boundary and defined as ^ ^ - b d ( ^ , ˇ , Ψ ) = ^ ^ - c l ( ^ , ˇ , Ψ )   ˜ ˜   ^ ^ - c l ( ^ , ˇ , Ψ ) c .
Remark 5. 
Let ( 1 , 2 , ^ ^ , Ψ , ¬ Ψ ) be a B BSTS over 1 and 2 . For any B BSS   ( ^ , ˇ , Ψ ) , we have
1. 
^ ^ - b d ( ^ , ˇ , Ψ ) c = ^ ^ - b d ( ^ , ˇ , Ψ ) .
2. 
^ ^ - i n t ( ^ , ˇ , Ψ )   ˜ ˜   ( ^ , ˇ , Ψ )   ˜ ˜   ^ ^ - c l ( ^ , ˇ , Ψ ) .
Theorem 13. 
Let ( 1 , 2 , ^ ^ , Ψ , ¬ Ψ ) be a B BSTS over 1 and 2 . For any B BSS   ( ^ , ˇ , Ψ ) , we have
1. 
^ ^ - b d ( ^ , ˇ , Ψ ) = ^ ^ - c l ( ^ , ˇ , Ψ )   ˜ ˜   ^ ^ - i n t ( ^ , ˇ , Ψ ) .
2. 
^ ^ - i n t ( ^ , ˇ , Ψ )   ˜ ˜   ( ^ , ˇ , Ψ )   ˜ ˜   ^ ^ - b d ( ^ , ˇ , Ψ ) .
Proof. 
  • We start the proof by using Definition 32
    ^ ^ b d ( ^ , ˇ , Ψ ) = ^ ^ c l ( ^ , ˇ , Ψ ) ˜ ˜ ^ ^ c l ( ^ , ˇ , Ψ ) c = ^ ^ c l ( ^ , ˇ , Ψ ) ˜ ˜ ( ^ ^ i n t ( ^ , ˇ , Ψ ) ) c = ^ ^ c l ( ^ , ˇ , Ψ ) ˜ ˜ ^ ^ i n t ( ^ , ˇ , Ψ )
  • By using Remark 5, we have
    ( ^ , ˇ , Ψ ) ˜ ˜ ^ ^ b d ( ^ , ˇ , Ψ ) = ( ^ , ˇ , Ψ ) ˜ ˜ ( ^ ^ b d ( ^ , ˇ , Ψ ) ) c = ( ^ , ˇ , Ψ ) ˜ ˜ ^ ^ i n t ( ^ , ˇ , Ψ ) ˜ ˜ ^ ^ i n t ( ^ , ˇ , Ψ ) c = ^ ^ i n t ( ^ , ˇ , Ψ ) ˜ ˜ ( Φ , ˇ , Ψ ) ˜ ˜ ^ ^ i n t ( ^ , ˇ , Ψ ) .
Remark 6. 
Let ( 1 , 2 , ^ ^ , Ψ , ¬ Ψ ) be a B BSTS over 1 and 2 . Then, in general
1. 
^ ^ - i n t ( ^ , ˇ , Ψ ) ( ^ , ˇ , Ψ )   ˜ ˜   ^ ^ - b d ( ^ , ˇ , Ψ ) .
2. 
( ^ ^ , Φ , Ψ ) ^ ^ - i n t ( ^ , ˇ , Ψ )   ˜ ˜   ^ ^ - i n t ( ^ , ˇ , Ψ ) c   ˜ ˜   ^ ^ - b d ( ^ , ˇ , Ψ ) .
Example 8. 
Let 1 = { κ 1 , κ 2 , κ 3 } and 2 = { λ 1 , λ 2 } be two universe sets and Ψ = { ξ 1 , ξ 2 } be a set of parameters. Let τ ^ ^ = { ( Φ , ^ ^ , Ψ ) , ( ^ ^ , Φ , Ψ ) , ( ^ 1 , ˇ 1 , Ψ ) , ( ^ 2 , ˇ 2 , Ψ ) , ( ^ 3 , ˇ 3 , Ψ ) } , where
( ^ 1 , ˇ 1 , Ψ ) = { ( ξ 1 , ( { κ 3 } , { λ 2 } ) , ( { κ 1 } , { λ 1 } ) ) , ( ξ 2 , ( { κ 3 } , { λ 2 } ) , ( { κ 1 , κ 2 } , { λ 1 } ) ) } , ( ^ 2 , ˇ 2 , Ψ ) = { ( ξ 1 , ( ϕ , { λ 1 } ) , ( { κ 2 , κ 3 } , { λ 2 } ) ) , ( ξ 2 , ( { κ 1 } , { λ 1 } ) , ( { κ 3 } , { λ 2 } ) ) } , ( ^ 3 , ˇ 3 , Ψ ) = { ( ξ 1 , ( { κ 3 } , 2 ) , ( ϕ , ϕ ) ) , ( ξ 2 , ( { κ 1 , κ 3 } , 2 ) , ( ϕ , ϕ ) ) }
If we take a B BSS s   ( ^ , ˇ , Ψ ) as
( ^ , ˇ , Ψ ) = { ( ξ 1 , ( { κ 1 } , { λ 1 } ) , ( { κ 3 } , { λ 2 } ) ) , ( ξ 2 , ( ϕ , ϕ ) , ( 1 , 2 ) ) } .
Then, ^ ^ - i n t ( ^ , ˇ , Ψ ) =   ( Φ , ^ ^ , Ψ ) and ^ ^ - i n t ( ^ , ˇ , Ψ ) c   = ( ^ 1 , ˇ 1 , Ψ ) c , so ^ ^ - c l ( ^ , ˇ , Ψ )   = ( ^ 1 , ˇ 1 , Ψ ) c and ^ ^ - c l ( ^ , ˇ , Ψ ) c   = ( ^ ^ , Φ , Ψ ) , then ^ ^ - b d ( ^ , ˇ , Ψ ) c   = ( ^ 1 , ˇ 1 , Ψ ) c . Therefore, ^ ^ - i n t ( ^ , ˇ , Ψ )   = ( Φ , ^ ^ , Ψ )   { ( ξ 1 , ( ϕ , ϕ ) , ( { κ 1 , κ 3 } , 2 ) ) , ( ξ 2 , ( ϕ , ϕ ) , ( 1 , 2 ) ) } = ( ^ , ˇ , Ψ )   ˜ ˜   ^ ^ - b d ( ^ , ˇ , Ψ ) . Also, ( ^ ^ , Φ , Ψ ) { ( ξ 1 , ( { κ 1 , κ 3 } , 2 ) , ( ϕ , ϕ ) ) , ( ξ 2 , ( 1 , 2 ) , ( ϕ , ϕ ) ) }   = ^ ^ - i n t ( ^ , ˇ , Ψ )   ˜ ˜   ^ ^ - i n t ( ^ , ˇ , Ψ ) c   ˜ ˜   ^ ^ - b d ( ^ , ˇ , Ψ ) .
Theorem 14. 
Let ( 1 , 2 , ^ ^ , Ψ , ¬ Ψ ) be a B BSTS over 1 and 2 . If ( ^ , ˇ , Ψ ) is a B BS open set, then ( ^ , ˇ , Ψ ) and ^ ^ - b d ( ^ , ˇ , Ψ ) are disjoint B BSS .
Proof. 
Suppose that ( ^ , ˇ , Ψ ) is a B BS open set. By Theorem 13 (2), ^ ^ - i n t ( ^ , ˇ , Ψ )   ˜ ˜   ( ^ ^ - b d ( ^ , ˇ , Ψ ) ) c and ^ ^ - i n t ( ^ , ˇ , Ψ )   = ( ^ , ˇ , Ψ ) . Therefore, ( ^ , ˇ , Ψ )   ˜ ˜   ( ^ ^ - b d ( ^ , ˇ , Ψ ) ) c . Hence, ( ^ , ˇ , Ψ ) and ^ ^ - b d ( ^ , ˇ , Ψ ) are disjoint B BSS . □
Theorem 15. 
Let ( 1 , 2 , ^ ^ , Ψ , ¬ Ψ ) be a B BSTS over 1 and 2 . If ( ^ , ˇ , Ψ ) is a B BS closed set, then ^ ^ - b d ( ^ , ˇ , Ψ )   ˜ ˜   ( ^ , ˇ , Ψ ) .
Proof. 
Suppose that ( ^ , ˇ , Ψ ) is a B BS closed set. Then, ^ ^ - b d ( ^ , ˇ , Ψ )   ˜ ˜   ^ ^ - c l ( ^ , ˇ , Ψ ) and ^ ^ - c l ( ^ , ˇ , Ψ )   = ( ^ , ˇ , Ψ ) . Therefore, ^ ^ - b d ( ^ , ˇ , Ψ )   ˜ ˜   ( ^ , ˇ , Ψ ) . □
Theorem 16. 
Let ( 1 , 2 , ^ ^ , Ψ , ¬ Ψ ) be a B BSTS over 1 and 2 , and ( ^ , ˇ , Ψ ) is a B BSS . If ( ^ , ˇ , Ψ ) is both a B BS open and B BS closed set, then ^ ^ - b d ( ^ , ˇ , Ψ )   = ( Φ , ˇ , Ψ ) .
Proof. 
Suppose that ( ^ , ˇ , Ψ ) is a B BS open set. By Theorem 14, ( ^ , ˇ , Ψ ) and ^ ^ - b d ( ^ , ˇ , Ψ ) are disjoint B BSS . So, ( ^ , ˇ , Ψ )   ˜ ˜   ^ ^ - b d ( ^ , ˇ , Ψ )   = ( Φ , ˇ , Ψ ) . Now, ( ^ , ˇ , Ψ ) is a B BS closed set. By Theorem 14, ^ ^ - b d ( ^ , ˇ , Ψ )   ˜ ˜   ( ^ , ˇ , Ψ ) . Therefore, ( ^ , ˇ , Ψ )   ˜ ˜   ^ ^ - b d ( ^ , ˇ , Ψ ) = ^ ^ - b d ( ^ , ˇ , Ψ ) . Hence, ^ ^ - b d ( ^ , ˇ , Ψ )   = ( Φ , ˇ , Ψ ) . □
Remark 7. 
The converse of Theorems 14–16 in general is not hold.
Example 9. 
Consider ^ ^ and ( ^ , ˇ , Ψ ) in Example 8. Clearly, ^ ^ - b d ( ^ , ˇ , Ψ ) and ( ^ , ˇ , Ψ ) are disjoint B BSS , but ( ^ , ˇ , Ψ ) is not B BS open.
If we take ( ^ , ˇ , Ψ )   = { ( ξ 1 , ( { κ 1 } , { λ 1 } ) , ( { κ 3 } , { λ 2 } ) ) , ( ξ 2 , ( { κ 2 } , { λ 1 } ) , ( { κ 3 } , { λ 2 } ) ) } , then ^ ^ - b d ( ^ , ˇ , Ψ )   = ( ^ 1 , ˇ 1 , Ψ ) c   ˜ ˜   ( ^ , ˇ , Ψ ) but ( ^ , ˇ , Ψ ) is not B BS closed.
Again, if we take ( ^ , ˇ , Ψ )   = { ( ξ 1 , ( ϕ , { λ 1 } ) , ( { κ 3 } , { λ 2 } ) ) , ( ξ 2 , ( { κ 1 } , { λ 1 } ) , ( { κ 3 } , { λ 2 } ) ) } , then ^ ^ - b d ( ^ , ˇ , Ψ )   = ( Φ , ˇ , Ψ ) , but ( ^ , ˇ , Ψ ) is neither B BS closed nor B BS open.
Theorem 17. 
Let ( 1 , 2 , ^ ^ , Ψ , ¬ Ψ ) be a B BSTS over 1 and 2 , and ( ^ , ˇ , Ψ ) be a B BSS . Then,
1. 
^ ^ - i n t ( ^ , ˇ , Ψ )   ˜ ˜   ^ ^ - b d ( ^ , ˇ , Ψ )   = ( Φ , ˇ , Ψ ) .
2. 
^ ^ - i n t ( ^ , ˇ , Ψ ) c   ˜ ˜   ^ ^ - b d ( ^ , ˇ , Ψ )   = ( Φ , ˇ , Ψ ) .
Proof. 
  • We start the proof by using Definition 32
    ^ ^ i n t ( ^ , ˇ , Ψ ) ˜ ˜ ^ ^ b d ( ^ , ˇ , Ψ ) = ^ ^ i n t ( ^ , ˇ , Ψ ) ˜ ˜ ^ ^ c l ( ^ , ˇ , Ψ ) ˜ ˜ ^ ^ c l ( ^ , ˇ , Ψ ) c = ^ ^ i n t ( ^ , ˇ , Ψ ) ˜ ˜ ^ ^ c l ( ^ , ˇ , Ψ ) ˜ ˜ ( ^ ^ i n t ( ^ , ˇ , Ψ ) ) c = ( Φ , ˇ , Ψ ) .
  • Similar to Part (1).

5. Conclusions and Future Research

In this work, binary bipolar soft points using binary bipolar soft sets have been defined, and their properties have been given. The binary bipolar soft set is the binary bipolar soft union of its binary bipolar soft points. In addition, we continue studying the essential ideas in the frame bipolar soft topological spaces over two initial universal sets 1 and 2 with a set of parameters Ψ , namely binary bipolar soft topological spaces, which are related to binary bipolar soft sets. Some topological concepts such as B BS open (closed), B BS closure, B BS interior and B BS boundary have been discussed. The comparison among binary bipolar soft topological space, binary soft topological space, and bipolar soft topological space have been presented, and the converse holds under special conditions. According to the obtained results, many classical properties of these concepts are still valid for B BSTS structures. In forthcoming works, we will add some other concepts of binary bipolar soft topological properties such as binary bipolar soft continuous mappings, binary bipolar soft compactness, binary bipolar soft connectedness, and binary bipolar soft separation axioms in terms of binary bipolar soft open sets and binary bipolar soft points. We extend this work to define some types of symmetrical soft sets such as N-soft sets [27,28,29], N-hypersoft sets [30], N-bipolar soft sets [31], and fuzzy N-soft sets [17,32,33,34]. Furthermore, we can introduce the concepts as defined in [35,36,37,38] by using the binary bipolar soft sets.

Author Contributions

Conceptualization, H.Y.S., A.A.S., and B.A.A.; methodology, H.Y.S., A.A.S., B.A.A., and R.A.M.; formal analysis, H.Y.S., A.A.S., B.A.A., and R.A.M.; investigation, H.Y.S., A.A.S., B.A.A., and R.A.M.; writing—original draft preparation, H.Y.S., A.A.S. and B.A.A.; writing—review and editing, B.A.A. and R.A.M.; funding acquisition, A.A.S., B.A.A., and R.A.M. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Data are contained within the article.

Conflicts of Interest

The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:
B BS binary bipolar soft
B BSS binary bipolar soft set
B BSP binary bipolar soft point
B STS binary soft topological space
BSTS bipolar soft topological space
B BSTS binary bipolar soft topological space

References

  1. Molodtsov, D. Soft set theory-first results. Comput. Math. Appl. 1999, 37, 19–31. [Google Scholar] [CrossRef]
  2. Molodtsov, D.; Leonov, V.; Kovkov, D.V. Soft sets technique and its application. Nechetkie Sist. Myagkie Vychisleniya 2006, 1, 8–39. [Google Scholar]
  3. Shabir, M.; Naz, M. On bipolar soft sets. arXiv 2013, arXiv:1303.1344. [Google Scholar]
  4. Naz, M.; Shabir, M. On bipolar fuzzy soft sets, their algebraic structures and applications. J. Intell. Fuzzy Syst. 2014, 26, 1645–1656. [Google Scholar] [CrossRef]
  5. Dubois, D.; Prade, H. An introduction to bipolar representations of information and preference. Int. J. Intell. Sys. 2008, 23, 866–877. [Google Scholar] [CrossRef]
  6. Shabir, M.; Bakhtawar, A. Bipolar soft connected, bipolar soft disconnected and bipolar soft compact spaces. Songklanakari J. Sci. Technol. 2017, 39, 359–371. [Google Scholar]
  7. Fadel, A.; Dzul-Kifli, S.C. Bipolar soft topological spaces. Eur. J. Pure Appl. Math. 2020, 13, 227–245. [Google Scholar] [CrossRef]
  8. Öztürk, T.Y. On bipolar soft topological spaces. J. New Theory 2018, 20, 64–75. [Google Scholar]
  9. Öztürk, T.Y. On bipolar soft points. TWMS J. App. Eng. Math. 2020, 10, 877–885. [Google Scholar]
  10. Dizman, T.S.; Öztürk, T.Y. Fuzzy bipolar soft topological spaces. TWMS J. App. Eng. Math. 2021, 11, 151–159. [Google Scholar]
  11. Abdullah, S.; Aslam, M.; Ullah, K. Bipolar fuzzy soft sets and its applications in decision making problem. J. Intell. Fuzzy Syst. 2014, 27, 729–742. [Google Scholar] [CrossRef]
  12. Al-Shami, T.M. Bipolar soft sets: Relations between them and ordinary points and their applications. Complexity 2021, 2021, 6621854. [Google Scholar] [CrossRef]
  13. Karaaslan, F.; Karataş, S. A new approach to bipolar soft sets and its applications. Discret. Math. Algorithms Appl. 2015, 7, 1550054. [Google Scholar] [CrossRef]
  14. Karaaslan, F.; Ullah, A.; Ahmad, I. Normal bipolar soft subgroups. Fuzzy Inf. Eng. 2021, 13, 79–98. [Google Scholar] [CrossRef]
  15. Mahmood, T. A novel approach towards bipolar soft sets and their applications. J. Math. 2020, 2020, 4690808. [Google Scholar] [CrossRef]
  16. Wang, J.Y.; Wang, Y.P.; Liu, L. Hesitant bipolar-valued fuzzy soft sets and their application in decision making. Complexity 2020, 2020, 6496030. [Google Scholar] [CrossRef]
  17. Rehman, U.U.; Mahmood, T. Picture fuzzy N-soft sets and their applications in decision-making problems. Fuzzy Inf. Eng. 2021, 13, 335–367. [Google Scholar] [CrossRef]
  18. Hussain, S. Binary soft connected spaces and an application of binary soft sets in decision making problem. Fuzzy Inf. Eng. 2019, 11, 506–521. [Google Scholar] [CrossRef]
  19. Sathiyaseelan, N.; Vijayabalaji, S.; Alcantud, J.C.R. Symmetric matrices on inverse soft expert sets and their applications. Symmetry 2023, 15, 313. [Google Scholar] [CrossRef]
  20. Musa, S.Y.; Asaad, B.A. Bipolar hypersoft sets. Mathematics 2021, 9, 1826. [Google Scholar] [CrossRef]
  21. Musa, S.Y.; Asaad, B.A. Topological structures via bipolar hypersoft sets. J. Math. 2022, 2022, 2896053. [Google Scholar] [CrossRef]
  22. Saleh, H.Y.; Asaad, B.A.; Mohammed, R.A. Bipolar soft generalized topological structures and their application in decision making. Eur. J. Pure Appl. Math. 2022, 15, 646–671. [Google Scholar] [CrossRef]
  23. Saleh, H.Y.; Asaad, B.A.; Mohammed, R. A Bipolar soft limit points in bipolar soft generalized topological spaces. Math. Stat. 2022, 10, 1264–1274. [Google Scholar] [CrossRef]
  24. Açıkgöz, A.; Taş, N. Binary soft set theory. Eur. J. Pure Appl. Math. 2016, 9, 452–463. [Google Scholar]
  25. Benchalli, S.S.; Patil, P.G.; Dodamani, A.S.; Pradeepkumar, J. On binary soft topological spaces. In. J. Appl. Math. 2017, 30, 437–453. [Google Scholar]
  26. Orhan, D.; Naime, D. Binary bipolar soft sets. Bol. Soc. Parana. MatemáTica 2023, 41, 1–12. [Google Scholar]
  27. Fatimah, F.; Rosadi, D.; Hakim, R.; Alcantud, J.C.R. N-soft sets and their decision making algorithms. Soft Comput. 2018, 22, 3829–3842. [Google Scholar] [CrossRef]
  28. Alcantud, J.C.R. The semantics of N-soft sets, their applications, and a coda about three-way decision. Inf. Sci. 2022, 606, 837–852. [Google Scholar] [CrossRef]
  29. Kamacı, H. Introduction to N-soft algebraic structures. Turk. J. Math. 2020, 44, 2356–2379. [Google Scholar] [CrossRef]
  30. Musa, S.Y.; Mohammed, R.A.; Asaad, B.A. N-hypersoft sets: An innovative extension of hypersoft sets and their applications. Symmetry 2023, 15, 1795. [Google Scholar] [CrossRef]
  31. Shabir, M.; Fatima, J. N-bipolar soft sets and their application in decision making. Res. Sq. 2021, 1–24. [Google Scholar] [CrossRef]
  32. Akram, M.; Adeel, A.; Alcantud, J.C.R. Fuzzy N-soft sets: A novel model with applications. J. Intell. Fuzzy Syst. 2018, 35, 4757–4771. [Google Scholar] [CrossRef]
  33. Akram, M.; Adeel, A.; Alcantud, J.C.R. Group decision-making methods based on hesitant N-soft sets. Expert Syst. Appl. 2019, 115, 95–105. [Google Scholar] [CrossRef]
  34. Mahmood, T.; Rehman, U.U.; Ahmmad, J. Complex picture fuzzy N-soft sets and their decision-making algorithm. Soft Comput. 2021, 25, 13657–13678. [Google Scholar] [CrossRef]
  35. Mahmood, T.; Rehman, U.U.; Jaleel, A.; Ahmmad, J.; Chinram, R. Bipolar Complex Fuzzy Soft Sets and Their Applications in Decision-Making. Mathematics 2022, 10, 1048. [Google Scholar] [CrossRef]
  36. Ahmmad, J.; Mahmood, T. Picture fuzzy soft prioritized aggregation operators and their applications in medical diagnosis. Symmetry 2023, 15, 861. [Google Scholar] [CrossRef]
  37. Yolcu, A. Bipolar Spherical Fuzzy Soft Topology with Applications to Multi-Criteria Group Decision-Making in Buildings Risk Assessment. Symmetry 2022, 14, 2362. [Google Scholar] [CrossRef]
  38. Ali, G.; Alolaiyan, H.; Pamučar, D.; Asif, M.; Lateef, N. A Novel MADM Framework under q-Rung Orthopair Fuzzy Bipolar Soft Sets. Symmetry 2021, 9, 2163. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Saleh, H.Y.; Salih, A.A.; Asaad, B.A.; Mohammed, R.A. Binary Bipolar Soft Points and Topology on Binary Bipolar Soft Sets with Their Symmetric Properties. Symmetry 2024, 16, 23. https://doi.org/10.3390/sym16010023

AMA Style

Saleh HY, Salih AA, Asaad BA, Mohammed RA. Binary Bipolar Soft Points and Topology on Binary Bipolar Soft Sets with Their Symmetric Properties. Symmetry. 2024; 16(1):23. https://doi.org/10.3390/sym16010023

Chicago/Turabian Style

Saleh, Hind Y., Areen A. Salih, Baravan A. Asaad, and Ramadhan A. Mohammed. 2024. "Binary Bipolar Soft Points and Topology on Binary Bipolar Soft Sets with Their Symmetric Properties" Symmetry 16, no. 1: 23. https://doi.org/10.3390/sym16010023

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop