# Big Steve and the State of the Universe

## Abstract

**:**

## 1. Reminiscences of Big Steve

Some disagree [16], but I think Big Steve was right about basic physics [17]. I hope he would appreciate the procedure being devised for implementing the resummation whose potential he foresaw [18,19].In generic theories, the N integrals over time in the N-th order perturbation theory will yield correlation functions at time t that grow as ${ln}^{N}\left[a\left(t\right)\right]$. Such a power series in $ln\left[a\right(t\left)\right]$ can easily add up to a time dependence that grows, such as a power of $a\left(t\right)$, or even more dramatically. As everyone knows, the series of powers of the logarithm of energy encountered in various flat-space theories, such as quantum chromodynamics, can be summed by the method of the renormalization group. It will be interesting to see if the power series in $ln\left[a\right(t\left)\right]$ encountered in calculating cosmological correlation functions at time t, though arising here in a very different way, can be summed by similar methods.

He was 87 at the time! I recall thinking how fine it would be, should I chance to reach that age, to remain so active and so passionate about physics (I countI am glad that you and your wife are together again. My wife and I are together, fanatically isolated at home, but both of us getting a lot of work done and staying safe.

**17**books and papers written after he had turned 80 [29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45]). Big Steve was a force of nature; it was a privilege to have known him.

## 2. The True Origin of the $\mathit{i}\mathit{\u03f5}$

## 3. State Wave Functionals in Cosmology

#### 3.1. Cosmological Particle Production

#### 3.2. Time Dependence in Cosmological QFT

#### 3.3. Eliminating the Divergence with the Initial State

#### 3.4. Can We Absorb the Logarithms?

## 4. Conclusions

## Funding

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Weinberg, S. The Quantum Theory of Fields; Cambridge University Press: Cambridge, UK, 1995; Volume 1, p. 35. [Google Scholar]
- Tsamis, N.C.; Woodard, R.P. The Quantum gravitational back reaction on inflation. Ann. Phys.
**1997**, 253, 1–54. [Google Scholar] [CrossRef][Green Version] - Miao, S.P.; Woodard, R.P. Gravitons Enhance Fermions during Inflation. Phys. Rev. D
**2006**, 74, 024021. [Google Scholar] [CrossRef][Green Version] - Glavan, D.; Miao, S.P.; Prokopec, T.; Woodard, R.P. Electrodynamic Effects of Inflationary Gravitons. Class. Quant. Grav.
**2014**, 31, 175002. [Google Scholar] [CrossRef][Green Version] - Wang, C.L.; Woodard, R.P. Excitation of Photons by Inflationary Gravitons. Phys. Rev. D
**2015**, 91, 124054. [Google Scholar] [CrossRef][Green Version] - Glavan, D.; Miao, S.P.; Prokopec, T.; Woodard, R.P. Large logarithms from quantum gravitational corrections to a massless, minimally coupled scalar on de Sitter. JHEP
**2022**, 3, 088. [Google Scholar] [CrossRef] - Tan, L.; Tsamis, N.C.; Woodard, R.P. How Inflationary Gravitons Affect Gravitational Radiation. Philos. Trans. R. Soc. Lond. A
**2022**, 380, 2230. [Google Scholar] [CrossRef] - Tan, L.; Tsamis, N.C.; Woodard, R.P. How Inflationary Gravitons Affect the Force of Gravity. Universe
**2022**, 8, 376. [Google Scholar] [CrossRef] - Garriga, J.; Tanaka, T. Can infrared gravitons screen Lambda? Phys. Rev. D
**2008**, 77, 024021. [Google Scholar] [CrossRef][Green Version] - Tsamis, N.C.; Woodard, R.P. Comment on “Can infrared gravitons screen Lambda?”. Phys. Rev. D
**2008**, 78, 028501. [Google Scholar] [CrossRef][Green Version] - Higuchi, A.; Marolf, D.; Morrison, I.A. de Sitter invariance of the dS graviton vacuum. Class. Quant. Grav.
**2011**, 28, 245012. [Google Scholar] [CrossRef] - Miao, S.P.; Tsamis, N.C.; Woodard, R.P. Gauging away Physics. Class. Quant. Grav.
**2011**, 28, 245013. [Google Scholar] [CrossRef][Green Version] - Miao, S.P.; Prokopec, T.; Woodard, R.P. Deducing Cosmological Observables from the S-matrix. Phys. Rev. D
**2017**, 96, 104029. [Google Scholar] [CrossRef][Green Version] - Katuwal, S.; Woodard, R.P. Gauge independent quantum gravitational corrections to Maxwell’s equation. JHEP
**2020**, 21, 029. [Google Scholar] [CrossRef] - Weinberg, S. Quantum contributions to cosmological correlations. II. Can these corrections become large? Phys. Rev. D
**2006**, 74, 023508. [Google Scholar] [CrossRef][Green Version] - Senatore, L.; Zaldarriaga, M. On Loops in Inflation. JHEP
**2010**, 12, 008. [Google Scholar] [CrossRef][Green Version] - Kahya, E.O.; Onemli, V.K.; Woodard, R.P. The Zeta-Zeta Correlator Is Time Dependent. Phys. Lett. B
**2011**, 694, 101–107. [Google Scholar] [CrossRef][Green Version] - Miao, S.P.; Tsamis, N.C.; Woodard, R.P. Summing inflationary logarithms in nonlinear sigma models. JHEP
**2022**, 3, 069. [Google Scholar] [CrossRef] - Woodard, R.P.; Yesilyurt, B. Unfinished Business in a Nonlinear Sigma Model on de Sitter Background. arXiv
**2023**, arXiv:2302.11528. [Google Scholar] - Weinberg, S. Quantum contributions to cosmological correlations. Phys. Rev. D
**2005**, 72, 043514. [Google Scholar] [CrossRef][Green Version] - Schwinger, J.S. Brownian motion of a quantum oscillator. J. Math. Phys.
**1961**, 2, 407–432. [Google Scholar] [CrossRef] - Mahanthappa, K.T. Multiple production of photons in quantum electrodynamics. Phys. Rev.
**1962**, 126, 329–340. [Google Scholar] [CrossRef] - Bakshi, P.M.; Mahanthappa, K.T. Expectation value formalism in quantum field theory. 1. J. Math. Phys.
**1963**, 4, 1–11. [Google Scholar] [CrossRef] - Bakshi, P.M.; Mahanthappa, K.T. Expectation value formalism in quantum field theory. 2. J. Math. Phys.
**1963**, 4, 12–16. [Google Scholar] [CrossRef] - Keldysh, L.V. Diagram technique for nonequilibrium processes. Zh. Eksp. Teor. Fiz.
**1964**, 47, 1515–1527. [Google Scholar] - Chou, K.C.; Su, Z.B.; Hao, B.L.; Yu, L. Equilibrium and Nonequilibrium Formalisms Made Unified. Phys. Rept.
**1985**, 118, 1–131. [Google Scholar] [CrossRef] - Jordan, R.D. Effective Field Equations for Expectation Values. Phys. Rev. D
**1986**, 33, 444–454. [Google Scholar] [CrossRef] - Calzetta, E.; Hu, B.L. Closed Time Path Functional Formalism in Curved Space-Time: Application to Cosmological Back Reaction Problems. Phys. Rev. D
**1987**, 35, 495. [Google Scholar] [CrossRef] [PubMed] - Weinberg, S. Particle physics, from Rutherford to the LHC. Int. J. Mod. Phys. A
**2013**, 28, 1330055. [Google Scholar] [CrossRef] - Weinberg, S. Tetraquark Mesons in Large N Quantum Chromodynamics. Phys. Rev. Lett.
**2013**, 110, 261601. [Google Scholar] [CrossRef] [PubMed][Green Version] - Weinberg, S. Goldstone Bosons as Fractional Cosmic Neutrinos. Phys. Rev. Lett.
**2013**, 110, 241301. [Google Scholar] [CrossRef] [PubMed][Green Version] - Weinberg, S. Tom Kibble: Breaking ground and breaking symmetries. Int. J. Mod. Phys. A
**2014**, 29, 1430004. [Google Scholar] [CrossRef] - Weinberg, S. Quantum Mechanics Without State Vectors. Phys. Rev. A
**2014**, 90, 042102. [Google Scholar] [CrossRef][Green Version] - Weinberg, S. Effective field theory, past and future. Int. J. Mod. Phys. A
**2016**, 31, 1630007. [Google Scholar] [CrossRef][Green Version] - Weinberg, S. What Happens in a Measurement? Phys. Rev. A
**2016**, 93, 032124. [Google Scholar] [CrossRef][Green Version] - Weinberg, S. Lindblad Decoherence in Atomic Clocks. Phys. Rev. A
**2016**, 94, 042117. [Google Scholar] [CrossRef][Green Version] - Flauger, R.; Weinberg, S. Gravitational Waves in Cold Dark Matter. Phys. Rev. D
**2018**, 97, 123506. [Google Scholar] [CrossRef][Green Version] - Weinberg, S. Essay: Half a Century of the Standard Model. Phys. Rev. Lett.
**2018**, 121, 220001. [Google Scholar] [CrossRef][Green Version] - Weinberg, S. Soft Bremsstrahlung. Phys. Rev. D
**2019**, 99, 076018. [Google Scholar] [CrossRef][Green Version] - Flauger, R.; Weinberg, S. Absorption of Gravitational Waves from Distant Sources. Phys. Rev. D
**2019**, 99, 123030. [Google Scholar] [CrossRef][Green Version] - Weinberg, S. Models of Lepton and Quark Masses. Phys. Rev. D
**2020**, 101, 035020. [Google Scholar] [CrossRef][Green Version] - Bousso, R.; Quevedo, F.; Weinberg, S. Joseph Polchinski: A Biographical Memoir. arXiv
**2023**, arXiv:2002.02371. [Google Scholar] - Weinberg, S. Massless particles in higher dimensions. Phys. Rev. D
**2020**, 102, 095022. [Google Scholar] [CrossRef] - Weinberg, S. On the Development of Effective Field Theory. Eur. Phys. J. H
**2021**, 46, 6. [Google Scholar] [CrossRef] - Weinberg, S. Foundations of Modern Physics; Cambridge University Press: Cambridge, UK, 2021; ISBN 978-1-108-89484-5/978-1-108-84176-4. [Google Scholar] [CrossRef]
- Faddeev, L.D.; Slavnov, A.A. Gauge Fields. Introduction to Quantum Theory. Front. Phys.
**1980**, 50, 1–232. [Google Scholar] [CrossRef] - Schrödinger, E. The Proper Vibrations of the Expanding Universe. Physica
**1939**, 6, 899. [Google Scholar] [CrossRef] - Parker, L. Particle creation in expanding universes. Phys. Rev. Lett.
**1968**, 21, 562–564. [Google Scholar] [CrossRef] - Parker, L. Quantized fields and particle creation in expanding universes. 1. Phys. Rev.
**1969**, 183, 1057–1068. [Google Scholar] [CrossRef] - Parker, L. Quantized fields and particle creation in expanding universes. 2. Phys. Rev. D
**1971**, 3, 346–356, Erratum in Phys. Rev. D**1971**, 3, 2546–2546. [Google Scholar] [CrossRef] - Lifshitz, E. Republication of: On the gravitational stability of the expanding universe. J. Phys.
**1946**, 10, 116. [Google Scholar] [CrossRef] - Starobinsky, A.A. Spectrum of relict gravitational radiation and the early state of the universe. JETP Lett.
**1979**, 30, 682–685. [Google Scholar] - Mukhanov, V.F.; Chibisov, G.V. Quantum Fluctuations and a Nonsingular Universe. JETP Lett.
**1981**, 33, 532–535. [Google Scholar] - Chernikov, N.A.; Tagirov, E.A. Quantum theory of scalar fields in de Sitter space-time. Ann. Inst. H. Poincare Phys. Theor. A
**1968**, 9, 109. [Google Scholar] - Schomblond, C.; Spindel, P. Unicity Conditions of the Scalar Field Propagator Delta(1) (x,y) in de Sitter Universe. Ann. Poincare Phys. Theor.
**1976**, 25, 67–78. [Google Scholar] - Bunch, T.S.; Davies, P.C.W. Quantum Field Theory in de Sitter Space: Renormalization by Point Splitting. Proc. R. Soc. Lond. A
**1978**, 360, 117–134. [Google Scholar] [CrossRef] - Onemli, V.K.; Woodard, R.P. Superacceleration from massless, minimally coupled ϕ
^{4}. Class. Quant. Grav.**2002**, 19, 4607. [Google Scholar] [CrossRef][Green Version] - Onemli, V.K.; Woodard, R.P. Quantum effects can render w < −1 on cosmological scales. Phys. Rev. D
**2004**, 70, 107301. [Google Scholar] [CrossRef][Green Version] - Kahya, E.O.; Onemli, V.K.; Woodard, R.P. A Completely Regular Quantum Stress Tensor with w < −1. Phys. Rev. D
**2010**, 81, 023508. [Google Scholar] [CrossRef][Green Version] - Vilenkin, A.; Ford, L.H. Gravitational Effects upon Cosmological Phase Transitions. Phys. Rev. D
**1982**, 26, 1231. [Google Scholar] [CrossRef] - Linde, A.D. Scalar Field Fluctuations in Expanding Universe and the New Inflationary Universe Scenario. Phys. Lett. B
**1982**, 116, 335–339. [Google Scholar] [CrossRef] - Starobinsky, A.A. Dynamics of Phase Transition in the New Inflationary Universe Scenario and Generation of Perturbations. Phys. Lett. B
**1982**, 117, 175–178. [Google Scholar] [CrossRef] - Tsamis, N.C.; Woodard, R.P. Stochastic quantum gravitational inflation. Nucl. Phys. B
**2005**, 724, 295–328. [Google Scholar] [CrossRef][Green Version] - Starobinsky, A.A. Stochastic de Sitter (Inflationary) Stage in the Early Universe. Lect. Notes Phys.
**1986**, 246, 107–126. [Google Scholar] [CrossRef] - Starobinsky, A.A.; Yokoyama, J. Equilibrium state of a selfinteracting scalar field in the De Sitter background. Phys. Rev. D
**1994**, 50, 6357–6368. [Google Scholar] [CrossRef] [PubMed][Green Version] - Prokopec, T.; Tsamis, N.C.; Woodard, R.P. Stochastic Inflationary Scalar Electrodynamics. Ann. Phys.
**2008**, 323, 1324–1360. [Google Scholar] [CrossRef][Green Version] - Miao, S.P.; Woodard, R.P. Leading log solution for inflationary Yukawa. Phys. Rev. D
**2006**, 74, 044019. [Google Scholar] [CrossRef][Green Version] - Kitamoto, H.; Kitazawa, Y. Non-linear sigma model in de Sitter space. Phys. Rev. D
**2011**, 83, 104043. [Google Scholar] [CrossRef][Green Version] - Kitamoto, H.; Kitazawa, Y. Infra-red effects of Non-linear sigma model in de Sitter space. Phys. Rev. D
**2012**, 85, 044062. [Google Scholar] [CrossRef][Green Version] - Kitamoto, H. Infrared resummation for derivative interactions in de Sitter space. Phys. Rev. D
**2019**, 100, 025020. [Google Scholar] [CrossRef][Green Version] - Park, S.; Prokopec, T.; Woodard, R.P. Quantum Scalar Corrections to the Gravitational Potentials on de Sitter Background. JHEP
**2016**, 1, 074. [Google Scholar] [CrossRef][Green Version] - Miao, S.P.; Woodard, R.P. A Simple Operator Check of the Effective Fermion Mode Function during Inflation. Class. Quant. Grav.
**2008**, 25, 145009. [Google Scholar] [CrossRef][Green Version] - Tsamis, N.C.; Woodard, R.P. A Gravitational Mechanism for Cosmological Screening. Int. J. Mod. Phys. D
**2011**, 20, 2847–2851. [Google Scholar] [CrossRef][Green Version] - Woodard, R.P. The Case for Nonlocal Modifications of Gravity. Universe
**2018**, 4, 88. [Google Scholar] [CrossRef][Green Version]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Woodard, R.P.
Big Steve and the State of the Universe. *Symmetry* **2023**, *15*, 856.
https://doi.org/10.3390/sym15040856

**AMA Style**

Woodard RP.
Big Steve and the State of the Universe. *Symmetry*. 2023; 15(4):856.
https://doi.org/10.3390/sym15040856

**Chicago/Turabian Style**

Woodard, Richard P.
2023. "Big Steve and the State of the Universe" *Symmetry* 15, no. 4: 856.
https://doi.org/10.3390/sym15040856