Next Article in Journal
Generalized Cyclic p-Contractions and p-Contraction Pairs Some Properties of Asymptotic Regularity Best Proximity Points, Fixed Points
Next Article in Special Issue
Global Existence to Cauchy Problem for 1D Magnetohydrodynamics Equations
Previous Article in Journal
Analytical Inverse Analysis Methodological Approach for Thermo-Physical Parameters Estimation of Multilayered Medium Terrain with Homogenized Sampled Measurements
Previous Article in Special Issue
Oscillation Results of Third-Order Differential Equations with Symmetrical Distributed Arguments
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Double Conformable Sumudu Transform

by
Abdallah Al-Rab’a
1,
Sharifa Al-Sharif
1 and
Mohammad Al-Khaleel
1,2,*
1
Department of Mathematics, Yarmouk University, Irbid 21163, Jordan
2
Department of Mathematics, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
*
Author to whom correspondence should be addressed.
Symmetry 2022, 14(11), 2249; https://doi.org/10.3390/sym14112249
Submission received: 29 August 2022 / Revised: 10 October 2022 / Accepted: 13 October 2022 / Published: 26 October 2022

Abstract

:
In this paper, we introduce a new approach to solving fractional initial and boundary value problems involving a heat equation, a wave equation, and a telegraph equation by modifying the double Sumudu transform of the fractional type. We discuss a modified double conformable Sumudu transform together with the conditions for its existence. In addition, we prove some more properties of the fractional-type Sumudu transform, including convolution and other properties, which are well known for their use in solving various symmetric and asymmetric problems in applied sciences and engineering.

1. Introduction

Fractional differential equations appear widely in various applied sciences and engineering applications in order to improve the quality of modeling and better describe real-world problems, which include economic, physical, electrical, and biological applications, among many others. One can refer, for instance, to [1] and the references therein, where a good review of the applications of fractional differential equations in economics was given, and to [2] for applications in the circuit domain, in which a time-fractional RC circuit model was considered. Still, a similar fractional mathematical model can be used to better model other types of circuits, such as RLCG circuits, as in [3].
Importantly, an exciting advancement in theoretical physics and nonlinear sciences will be the development of methods for finding the exact solutions of nonlinear partial differential equations that include equations of the fractional type. Such solutions play an important role in the nonlinear sciences, which can lead to further applications.
Regarding fractional definitions, in [4], a new fractional definition that was called the conformable fractional derivative was introduced and was defined as follows: For a given function ψ : [ 0 , ) R , the conformable fractional derivative of order ϑ is given by
D ϑ ψ ( x ) = lim ε 0 ψ ( x + ε x 1 ϑ ) ψ ( x ) ε , ϑ 0 , 1 .
This definition is very easy to use when calculating derivatives and solving fractional differential equations compared with other fractional definitions, such as the definitions of Liouville–Riemann and Caputo fractional derivatives. Moreover, one of its most interesting advantages is that it can be easily used to generalize many integral transforms, such as Laplace and Sumudu transforms. Various modifications of the original definition were proposed by many researchers; see, for instance, [5] and the references therein.
Recently, several powerful methods have been developed to obtain the exact solutions for conformable fractional partial differential equations, such as the reliable methods in [6,7], the single and double Laplace transform methods in [8,9,10], and the double Shehu transform in [11].
Interestingly, in [9], Özkan et al. introduced a definition of the conformable fractional double Laplace transform and some of its properties, which were used to solve some conformable fractional partial differential equations and will be important in what follows here in this work. These were defined as follows: For a given function ψ : [ 0 , ) × [ 0 , ) R , the conformable fractional double Laplace transform of order ϑ 1 , ϑ 1 0 , 1 is given as
L t ϑ 1 L x ϑ 2 ψ x , t p , s = Ψ p , s = 0 0 e p x ϑ 2 ϑ 2 s t ϑ 1 ϑ 1 ψ x , t d ϑ 1 t d ϑ 2 x .
Over the years, transform methods, including the Sumudu transform, have been proven to be efficient methods for solving many symmetric and asymmetric real-life problems in applied sciences and engineering. In [12], the authors presented a single Sumudu transform, and in [13], a conformable double Sumudu transform was presented in order to solve partial differential equations of the conformable fractional type. The authors of [14] used the double Sumudu transform in order to obtain solutions of a space–time telegraph equation. In [15], with the use of a double Sumudu transform, Mohamed et al. presented numerical solutions to the conformable fractional coupled Burger’s equation.
In this paper, we modify the definition of the double Sumudu transform and prove some more of its properties, including its convolution properties, which have not been proven in the literature. In addition, we prove its existence under some certain conditions. Moreover, we use this modification to give exact solutions of some important conformable fractional differential equations, including the heat equation, the wave equation, and the telegraph equation. Our modification is based on the use of the conformable fractional integral defined by Khalil et al. [4], which is different from what one can find in the literature.

2. Double Conformable Sumudu Transform

In this section, we introduce the double conformable Sumudu transform and some of its properties that can be used later in order to solve some conformable fractional differential equations.
Definition 1.
A function ψ of two variables is said to be conformable and exponentially order-bounded if ψ x , t M e k 1 x ϑ 2 ϑ 2 + k 2 t ϑ 1 ϑ 1 , where M , k 1 , k 2 > 0 and 0 < ϑ 1 , ϑ 2 1 , for all sufficiently large x and t.
Definition 2.
Let ψ : 0 , × 0 , R be a piecewise continuous function of conformable and exponentially order-bounded 1 k 1 + 1 k 2 , k 1 , k 2 > 0 . Then, the double conformable Sumudu transform of ψ is defined as:
S ϑ 1 t S ϑ 2 x ψ x , t λ 1 , λ 2 = 1 λ 1 λ 2 0 0 e x ϑ 2 λ 1 ϑ 2 t ϑ 1 λ 2 ϑ 1 ψ x , t d ϑ 1 t d ϑ 2 x ,
where λ 1 , λ 2 C , ϑ 1 , ϑ 2 0 , 1 , and d ϑ 1 t = t ϑ 1 1 d t , d ϑ 2 x = x ϑ 2 1 d x .
Theorem 1.
If ψ is piecewise continuous on 0 , × 0 , and conformable and exponentially order-bounded for 1 k 1 + 1 k 2 , k 1 , k 2 > 0 , then the double conformable Sumudu transform S ϑ 1 t S ϑ 2 x ψ x , t λ 1 , λ 2 exists for e 1 λ 1 + 1 λ 2 > 1 k 1 + 1 k 2 and converges absolutely.
Proof. 
Since ψ is conformable and exponentially order-bounded for 1 k 1 + 1 k 2 , k 1 , k 2 > 0 , then x 0 , t 0 , M 1 , k 1 , k 2 > 0 such that
ψ x , t M 1 e x ϑ 2 k 1 ϑ 2 + t ϑ 1 k 2 ϑ 1 , x x 0 , t t 0 .
In addition, ψ is piecewise continuous on 0 , x 0 × 0 , t 0 , i.e.,
ψ x , t M 2 , x , t 0 , x 0 × 0 , t 0 .
Since e x ϑ 2 k 1 ϑ 2 + t ϑ 1 k 2 ϑ 1 has a positive minimum on 0 , × 0 , , we can choose a sufficiently large value of M such that
ψ x , t M e x ϑ 2 k 1 ϑ 2 + t ϑ 1 k 2 ϑ 1 , x 0 , t 0 .
Therefore, if 1 λ 1 = 1 a 1 + 1 a 2 i and 1 λ 2 = 1 b 1 + 1 b 2 i , then
0 γ 0 τ e x ϑ 2 λ 1 ϑ 2 t ϑ 1 λ 2 ϑ 1 ψ x , t d ϑ 1 t d ϑ 2 x 0 γ 0 τ e x ϑ 2 λ 1 ϑ 2 t ϑ 1 λ 2 ϑ 1 M e x ϑ 2 k 1 ϑ 2 + t ϑ 1 k 2 ϑ 1 t ϑ 1 1 x ϑ 2 1 d t d x = 0 γ 0 τ e 1 a 1 + 1 a 2 i x ϑ 2 ϑ 2 + 1 b 1 + 1 b 2 i t ϑ 1 ϑ 1 M e x ϑ 2 k 1 ϑ 2 + t ϑ 1 k 2 ϑ 1 t ϑ 1 1 x ϑ 2 1 d t d x = 0 γ 0 τ e 1 k 1 1 a 1 x ϑ 2 ϑ 2 e 1 k 2 1 b 1 t ϑ 1 ϑ 1 e i a 2 x ϑ 2 ϑ 2 e i b 2 t ϑ 1 ϑ 1 M t ϑ 1 1 x ϑ 2 1 d t d x = M 0 γ e 1 k 1 1 a 1 x ϑ 2 ϑ 2 e i a 2 x ϑ 2 ϑ 2 x ϑ 2 1 d x 0 τ e 1 k 2 1 b 1 t ϑ 1 ϑ 1 e i b 2 t ϑ 1 ϑ 1 t ϑ 1 1 d t = M 0 γ ϑ 2 ϑ 2 e 1 k 1 1 a 1 h e i a 2 h d h 0 τ ϑ 1 ϑ 1 e 1 k 2 1 b 1 l e i b 2 l d l ( by letting h = x ϑ 2 ϑ 2 , l = t ϑ 1 ϑ 1 ) = M 0 γ ϑ 2 ϑ 2 e 1 k 1 1 a 1 h d h 0 τ ϑ 1 ϑ 1 e 1 k 2 1 b 1 l d l = M e 1 k 1 1 a 1 h 1 k 1 1 a 1 0 γ ϑ 2 ϑ 2 e 1 k 2 1 b 1 l 1 k 2 1 b 1 0 τ ϑ 1 ϑ 1 = M e 1 k 1 1 a 1 γ ϑ 2 ϑ 2 1 k 1 1 a 1 1 1 k 1 1 a 1 e 1 k 2 1 b 1 τ ϑ 1 ϑ 1 1 k 2 1 b 1 1 1 k 2 1 b 1 .
Now, as γ , τ , and e 1 λ 1 + 1 λ 2 = 1 a 1 + 1 b 1 > 1 k 1 + 1 k 2 , we have
0 γ 0 τ e x ϑ 2 λ 1 ϑ 2 t ϑ 1 λ 2 ϑ 1 ψ x , t d ϑ 1 t d ϑ 2 x M 1 1 k 1 1 a 1 1 1 k 2 1 b 1 .
Definition 3.
(Single conformable Sumudu transform of a function with two variables.)
Let ψ : 0 , × 0 , R be a piecewise continuous function of conformable and exponentially order-bounded 1 k 1 + 1 k 2 , k 1 , k 2 > 0 . Then:
(1) The conformable Sumudu transform with respect to x of ψ x , t is defined by
S ϑ 2 x ψ x , t λ 1 = 1 λ 1 0 e x ϑ 2 λ 1 ϑ 2 ψ x , t d ϑ 2 x ,
where λ 1 C , ϑ 2 0 , 1 and d ϑ 2 x = x ϑ 2 1 d x .
(2) The conformable Sumudu transform with respect to t of ψ x , t is defined by
S ϑ 1 t ψ x , t λ 2 = 1 λ 2 0 e t ϑ 1 λ 2 ϑ 1 ψ x , t d ϑ 1 t ,
where λ 2 C , ϑ 1 0 , 1 , and d ϑ 1 t = t ϑ 1 1 d t .
Note that if the order transformation of ψ x , t can be changed [16], then
1 λ 1 λ 2 0 0 e x ϑ 2 λ 1 ϑ 2 t ϑ 1 λ 2 ϑ 1 ψ x , t d ϑ 1 t d ϑ 2 x = 1 λ 2 λ 1 0 0 e t ϑ 1 λ 2 ϑ 1 x ϑ 2 λ 1 ϑ 2 ψ x , t d ϑ 2 x d ϑ 1 t .
So,
S ϑ 1 t S ϑ 2 x ψ x , t λ 1 , λ 2 = S ϑ 2 x S ϑ 1 t ψ x , t λ 1 , λ 2 .
Theorem 2. 
Let ψ x , t , ϕ x , t be two functions that have the double conformable Sumudu transform. Then,
(1)
S ϑ 1 t S ϑ 2 x a ψ x , t + b ϕ x , t λ 1 , λ 2 = a S ϑ 1 t S ϑ 2 x ψ x , t λ 1 , λ 2 + b S ϑ 1 t S ϑ 2 x ϕ x , t λ 1 , λ 2 .
(2)
S ϑ 1 t S ϑ 2 x e x ϑ 2 ϑ 2 c 1 t ϑ 1 ϑ 1 c 2 ψ x , t λ 1 , λ 2 = c 1 c 2 c 1 + λ 1 c 2 + λ 2 S ϑ 1 t S ϑ 2 x ψ x , t λ 1 c 1 λ 1 + c 1 , λ 2 c 2 λ 2 + c 2 .
(3)
S ϑ 1 t S ϑ 2 x ψ γ x , μ t λ 1 , λ 2 = S ϑ 1 t S ϑ 2 x ψ x , t λ 1 γ ϑ 2 , λ 2 μ ϑ 1 .
Proof. 
Let ψ x , t , ϕ x , t be two functions that have the double conformable Sumudu transform. Then, we have:
For point (1):
S ϑ 1 t S ϑ 2 x a ψ x , t + b ϕ x , t λ 1 , λ 2 = 1 λ 1 λ 2 0 0 e x ϑ 2 λ 1 ϑ 2 t ϑ 1 λ 2 ϑ 1 a ψ x , t + b ϕ x , t d ϑ 1 t d ϑ 2 x = a 1 λ 2 λ 1 0 0 e t ϑ 1 λ 2 ϑ 1 x ϑ 2 λ 1 ϑ 2 ψ x , t d ϑ 2 x d ϑ 1 t + b 1 λ 2 λ 1 0 0 e t ϑ 1 λ 2 ϑ 1 x ϑ 2 λ 1 ϑ 2 ϕ x , t d ϑ 2 x d ϑ 1 t = a S ϑ 1 t S ϑ 2 x ψ x , t λ 1 , λ 2 + b S ϑ 1 t S ϑ 2 x ϕ x , t λ 1 , λ 2 .
For point (2):
S ϑ 1 t S ϑ 2 x e x ϑ 2 ϑ 2 c 1 t ϑ 1 ϑ 1 c 2 ψ x , t λ 1 , λ 2 = 1 λ 1 λ 2 0 0 e x ϑ 2 λ 1 ϑ 2 t ϑ 1 λ 2 ϑ 1 e x ϑ 2 ϑ 2 c 1 t ϑ 1 ϑ 1 c 2 ψ x , t d ϑ 1 t d ϑ 2 x = 1 λ 1 λ 2 0 0 e 1 λ 1 + 1 c 1 x ϑ 2 ϑ 2 1 λ 2 + 1 c 2 t ϑ 1 ϑ 1 ψ x , t d ϑ 1 t d ϑ 2 x = 1 λ 1 λ 2 0 0 e λ 1 + c 1 λ 1 c 1 x ϑ 2 ϑ 2 λ 2 + c 2 λ 2 c 2 t ϑ 1 ϑ 1 ψ x , t d ϑ 1 t d ϑ 2 x = c 1 c 2 c 1 + λ 1 c 2 + λ 2 1 c 1 c 2 c 1 + λ 1 c 2 + λ 2 1 λ 1 λ 2 0 0 e λ 1 + c 1 λ 1 c 1 x ϑ 2 ϑ 2 λ 2 + c 2 λ 2 c 2 t ϑ 1 ϑ 1 ψ x , t d ϑ 1 t d ϑ 2 x = c 1 c 2 c 1 + λ 1 c 2 + λ 2 1 λ 1 c 1 c 1 + λ 1 λ 2 c 2 c 2 + λ 2 0 0 e λ 1 + c 1 λ 1 c 1 x ϑ 2 ϑ 2 λ 2 + c 2 λ 2 c 2 t ϑ 1 ϑ 1 ψ x , t d ϑ 1 t d ϑ 2 x = c 1 c 2 c 1 + λ 1 c 2 + λ 2 S ϑ 1 t S ϑ 2 x ψ x , t λ 1 c 1 λ 1 + c 1 , λ 2 c 2 λ 2 + c 2 .
Finally, we have, for point (3):
S ϑ 1 t S ϑ 2 x ψ γ x , μ t λ 1 , λ 2 = 1 λ 1 λ 2 0 0 e x ϑ 2 λ 1 ϑ 2 t ϑ 1 λ 2 ϑ 1 ψ γ x , μ t d ϑ 1 t d ϑ 2 x = 1 λ 1 0 e x ϑ 2 λ 1 ϑ 2 1 λ 2 0 e t ϑ 1 λ 2 ϑ 1 ψ γ x , μ t d ϑ 1 t d ϑ 2 x = 1 λ 1 0 e x ϑ 2 λ 1 ϑ 2 1 λ 2 μ ϑ 1 0 e ζ 2 ϑ 1 λ 2 ϑ 1 μ ϑ 1 ψ γ x , ζ 2 d ϑ 1 ζ 2 d ϑ 2 x ( by letting ζ 2 = μ t ) = 1 λ 1 γ ϑ 2 0 e ζ 1 ϑ 2 λ 1 ϑ 2 γ ϑ 2 1 λ 2 μ ϑ 1 0 e ζ 2 ϑ 1 λ 2 ϑ 1 μ ϑ 1 ψ ζ 1 , ζ 2 d ϑ 1 ζ 2 d ϑ 2 ζ 1 ( by letting ζ 1 = γ x ) = 1 λ 1 γ ϑ 2 λ 2 μ ϑ 1 0 0 e ζ 1 ϑ 2 λ 1 ϑ 2 γ ϑ 2 ζ 2 ϑ 1 λ 2 ϑ 1 μ ϑ 1 ψ ζ 1 , ζ 2 d ϑ 1 ζ 2 d ϑ 2 ζ 1 = 1 λ 1 γ ϑ 2 λ 2 μ ϑ 1 0 0 e x ϑ 2 λ 1 ϑ 2 γ ϑ 2 t ϑ 1 λ 2 ϑ 1 μ ϑ 1 ψ x , t d ϑ 1 t d ϑ 2 x ( since ζ 1 , ζ 2 , x , t are dummy variables ) = S ϑ 1 t S ϑ 2 x ψ x , t λ 1 γ ϑ 2 , λ 2 μ ϑ 1 ,
and hence, the proof is complete. □
The following theorem gives some important relations, including a relation between the double Laplace transform defined in [9] and the double Sumudu transform.
Theorem 3. 
Let ψ : 0 , × 0 , R be a given function and ϑ 1 , ϑ 2 0 , 1 . Then,
(1) 
S ϑ 1 t S ϑ 2 x ψ x , t λ 1 , λ 2 = 1 λ 1 λ 2 L t ϑ 1 L x ϑ 2 ψ x , t 1 λ 1 , 1 λ 2 , where
L t ϑ 1 L x ϑ 2 ψ x , t p , s = 0 0 e p x ϑ 2 ϑ 2 s t ϑ 1 ϑ 1 ψ x , t d ϑ 1 t d ϑ 2 x .
(2) 
S ϑ 1 t S ϑ 2 x ψ x , t λ 1 , λ 2 = S t S x ψ ϑ 2 x 1 ϑ 2 , ϑ 1 t 1 ϑ 1 λ 1 , λ 2 .
(3) 
1 m + n S ϑ 1 t S ϑ 2 x x m ϑ 2 ϑ 2 m t n ϑ 1 ϑ 1 n ψ x , t λ 1 , λ 2 = 1 λ 1 λ 2 m + n λ 1 m λ 2 n λ 1 λ 2 S ϑ 1 t S ϑ 2 x ψ x , t λ 1 , λ 2 .
Proof. 
Let ψ be a given function and let ϑ 1 , ϑ 2 0 , 1 . Then, we have:
For point (1):
S ϑ 1 t S ϑ 2 x ψ x , t λ 1 , λ 2 = 1 λ 1 λ 2 0 0 e x ϑ 2 λ 1 ϑ 2 t ϑ 1 λ 2 ϑ 1 ψ x , t d ϑ 1 t d ϑ 2 x = 1 λ 1 λ 2 L t ϑ 1 L x ϑ 2 ψ x , t 1 λ 1 , 1 λ 2 .
For point (2):
S ϑ 1 t S ϑ 2 x ψ x , t λ 1 , λ 2 = 1 λ 1 λ 2 0 0 e x ϑ 2 λ 1 ϑ 2 t ϑ 1 λ 2 ϑ 1 ψ x , t d ϑ 1 t d ϑ 2 x .
By letting l = t ϑ 1 ϑ 1 , h = x ϑ 2 ϑ 2 , we have
1 λ 1 λ 2 0 0 e x ϑ 2 λ 1 ϑ 2 t ϑ 1 λ 2 ϑ 1 ψ x , t d ϑ 1 t d ϑ 2 x = 1 λ 1 λ 2 0 0 e h λ 1 l λ 2 ψ ϑ 2 h 1 ϑ 2 , ϑ 1 l 1 ϑ 1 d l d h .
Since t , x , l , h are dummy variables, we have
1 λ 1 λ 2 0 0 e h λ 1 l λ 2 ψ ϑ 2 h 1 ϑ 2 , ϑ 1 l 1 ϑ 1 d l d h = 1 λ 1 λ 2 0 0 e x λ 1 t λ 2 ψ ϑ 2 x 1 ϑ 2 , ϑ 1 t 1 ϑ 1 d t d x = S t S x ψ ϑ 2 x 1 ϑ 2 , ϑ 1 t 1 ϑ 1 λ 1 , λ 2 .
For point (3), (by Theorem 2.1 in [9]):
1 m + n S ϑ 1 t S ϑ 2 x x m ϑ 2 ϑ 2 m t n ϑ 1 ϑ 1 n ψ x , t λ 1 , λ 2 = 1 λ 1 λ 2 1 m + n L t ϑ 1 L x ϑ 2 x m ϑ 2 ϑ 2 m t n ϑ 1 ϑ 1 n ψ x , t 1 λ 1 , 1 λ 2 ( by ( 1 ) ) = 1 λ 1 λ 2 m + n λ 1 m λ 2 n L t ϑ 1 L x ϑ 2 ψ x , t 1 λ 1 , 1 λ 2 = 1 λ 1 λ 2 m + n λ 1 m λ 2 n λ 1 λ 2 S ϑ 1 t S ϑ 2 x ψ x , t λ 1 , λ 2 ( by ( 1 ) ) ,
and hence, the proof is complete. □
Theorem 4. 
The Sumudu transform S ϑ 1 t S ϑ 2 x ψ x , t λ 1 , λ 2 is as follows for some functions:
1. 
S ϑ 1 t S ϑ 2 x c λ 1 , λ 2 = c , where c is constant.
2. 
S ϑ 1 t S ϑ 2 x e a x ϑ 2 ϑ 2 + b t ϑ 1 ϑ 1 λ 1 , λ 2 = 1 1 a λ 1 1 b λ 2 .
3. 
S ϑ 1 t S ϑ 2 x sin a t ϑ 1 ϑ 1 λ 1 , λ 2 = a λ 2 1 + a 2 λ 2 2 .
4. 
S ϑ 1 t S ϑ 2 x cos a t ϑ 1 ϑ 1 λ 1 , λ 2 = 1 1 + a 2 λ 1 2 .
5. 
S ϑ 1 t S ϑ 2 x 1 e a t ϑ 1 ϑ 1 λ 1 , λ 2 = a λ 2 1 a λ 2 .
6. 
S ϑ 1 t S ϑ 2 x 1 e a x ϑ 2 ϑ 2 λ 1 , λ 2 = a λ 1 1 a λ 1 .
7. 
S ϑ 1 t S ϑ 2 x 1 e a t ϑ 1 ϑ 1 cos b x ϑ 2 ϑ 2 λ 1 , λ 2 = a λ 2 1 + b 2 λ 1 2 1 a λ 2 .
Proof. 
We will prove 2 and 7. The other cases are similar.
For 2 . , we have
S ϑ 1 t S ϑ 2 x e a x ϑ 2 ϑ 2 + b t ϑ 1 ϑ 1 λ 1 , λ 2 = 1 λ 1 λ 2 0 0 e x ϑ 2 λ 1 ϑ 2 t ϑ 1 λ 2 ϑ 1 e a x ϑ 2 ϑ 2 + b t ϑ 1 ϑ 1 d ϑ 1 t d ϑ 2 x = 1 λ 1 0 e x ϑ 2 λ 1 ϑ 2 e a x ϑ 2 ϑ 2 d ϑ 2 x 1 λ 2 0 e t ϑ 1 λ 2 ϑ 1 e b t ϑ 1 ϑ 1 d ϑ 1 t = S ϑ 2 x e a x ϑ 2 ϑ 2 λ 1 S ϑ 1 t e b t ϑ 1 ϑ 1 λ 2 = 1 1 a λ 1 1 1 b λ 2 = 1 1 a λ 1 1 b λ 2 .
For 7 . , we have
S ϑ 1 t S ϑ 2 x 1 e a t ϑ 1 ϑ 1 cos b x ϑ 2 ϑ 2 λ 1 , λ 2 = 1 λ 1 λ 2 0 0 e x ϑ 2 λ 1 ϑ 2 t ϑ 1 λ 2 ϑ 1 1 e a t ϑ 1 ϑ 1 cos b x ϑ 2 ϑ 2 d ϑ 1 t d ϑ 2 x = 1 λ 1 0 e x ϑ 2 λ 1 ϑ 2 cos b x ϑ 2 ϑ 2 d ϑ 2 x 1 λ 2 0 e t ϑ 1 λ 2 ϑ 1 1 e a t ϑ 1 ϑ 1 d ϑ 1 t = S ϑ 2 x cos b x ϑ 2 ϑ 2 λ 1 S ϑ 1 t 1 e a t ϑ 1 ϑ 1 λ 2 = 1 1 + b 2 λ 1 2 · a λ 2 1 a λ 2 = a λ 2 1 + b 2 λ 1 2 1 a λ 2 .
Theorem 5.
Let ψ x , t and ϕ x , t have a double Sumudu transform. Then,
S ϑ 1 t S ϑ 2 x ψ ϕ x , t λ 1 , λ 2 = λ 1 λ 2 S ϑ 1 t S ϑ 2 x ψ x , t λ 1 , λ 2 S ϑ 1 t S ϑ 2 x ϕ x , t λ 1 , λ 2 ,
where
ψ ϕ x , t = 0 x 0 t ψ ζ , η ϕ x ζ , t η d ζ d η .
Proof. 
Using Theorem 3 (part (2)) and Theorem 3.1 in [17], we have
S ϑ 1 t S ϑ 2 x ψ ϕ x , t λ 1 , λ 2 = S t S x ψ ϕ ϑ 2 x 1 ϑ 2 , ϑ 1 t 1 ϑ 1 λ 1 , λ 2 = λ 1 λ 2 S t S x ψ ϑ 2 x 1 ϑ 2 , ϑ 1 t 1 ϑ 1 λ 1 , λ 2 S t S x ϕ ϑ 2 x 1 ϑ 2 , ϑ 1 t 1 ϑ 1 λ 1 , λ 2 = λ 1 λ 2 S ϑ 1 t S ϑ 2 x ψ x , t λ 1 , λ 2 S ϑ 1 t S ϑ 2 x ϕ x , t λ 1 , λ 2 .
Theorem 6.
The double conformable Sumudu transforms of the ϑ 1 -th- and ϑ 2 -th-order fractional partial derivatives are given by:
S ϑ 1 t S ϑ 2 x D x ϑ 2 ψ x , t λ 1 , λ 2 = 1 λ 1 S ϑ 1 t S ϑ 2 x ψ x , t λ 1 , λ 2 1 λ 1 S ϑ 1 t ψ 0 , t 0 , λ 2 , S ϑ 1 t S ϑ 2 x D t ϑ 1 ψ x , t λ 1 , λ 2 = 1 λ 2 S ϑ 1 t S ϑ 2 x ψ x , t λ 1 , λ 2 1 λ 2 S ϑ 2 x ψ x , 0 λ 1 , 0 ,
where D x ϑ 2 ψ x , t and D t ϑ 1 ψ x , t are ϑ 2 -th- and ϑ 1 -th-order fractional partial derivatives, respectively.
Proof. 
Using Theorem 2.5 in [12], Lemma 2.1 in [9], and Theorem 3, we have
S ϑ 1 t S ϑ 2 x D x ϑ 2 ψ x , t λ 1 , λ 2 = 1 λ 1 λ 2 L t ϑ 1 L x ϑ 2 D x ϑ 2 ψ x , t 1 λ 1 , 1 λ 2 = 1 λ 1 λ 2 1 λ 1 L t ϑ 1 L x ϑ 2 ψ x , t 1 λ 1 , 1 λ 2 L t ϑ 1 ψ 0 , t 0 , 1 λ 2 = 1 λ 1 1 λ 1 λ 2 L t ϑ 1 L x ϑ 2 ψ x , t 1 λ 1 , 1 λ 2 1 λ 1 λ 2 L t ϑ 1 ψ 0 , t 0 , 1 λ 2 = 1 λ 1 1 λ 1 λ 2 L t ϑ 1 L x ϑ 2 ψ x , t 1 λ 1 , 1 λ 2 1 λ 1 1 λ 2 L t ϑ 1 ψ 0 , t 0 , 1 λ 2 = 1 λ 1 S ϑ 1 t S ϑ 2 x ψ x , t λ 1 , λ 2 1 λ 1 S ϑ 1 t ψ 0 , t 0 , λ 2 .
In addition,
S ϑ 1 t S ϑ 2 x D t ϑ 1 ψ x , t λ 1 , λ 2 = 1 λ 1 λ 2 L t ϑ 1 L x ϑ 2 D t ϑ 1 ψ x , t 1 λ 1 , 1 λ 2 = 1 λ 1 λ 2 1 λ 2 L t ϑ 1 L x ϑ 2 ψ x , t 1 λ 1 , 1 λ 2 L x ϑ 2 ψ x , 0 1 λ 1 , 0 = 1 λ 2 1 λ 1 λ 2 L t ϑ 1 L x ϑ 2 ψ x , t 1 λ 1 , 1 λ 2 1 λ 2 1 λ 1 L x ϑ 2 ψ x , 0 1 λ 1 , 0 = 1 λ 2 S ϑ 1 t S ϑ 2 x ψ x , t λ 1 , λ 2 1 λ 2 S ϑ 2 x ψ x , 0 λ 1 , 0 .
Theorem 7.
Let ϑ 1 , ϑ 2 0 , 1 and m , n N such that ψ C k R + × R + , k = max m , n . Let the conformable Sumudu transforms of the functions ψ x , t , D x i ϑ 2 ψ x , t , D t j ϑ 1 ψ x , t , i = 1 , , m , j = 1 , , n exist. Then,
S ϑ 1 t S ϑ 2 x D x m ϑ 2 ψ x , t λ 1 , λ 2 = 1 λ 1 m S ϑ 1 t S ϑ 2 x ψ x , t λ 1 , λ 2 1 λ 1 m S ϑ 1 t ψ 0 , t 0 , λ 2 i = 1 m 1 1 λ 1 m i S ϑ 1 t D x i ϑ 2 ψ 0 , t 0 , λ 2 , S ϑ 1 t S ϑ 2 x D t n ϑ 1 ψ x , t λ 1 , λ 2 = 1 λ 2 n S ϑ 1 t S ϑ 2 x ψ x , t λ 1 , λ 2 1 λ 2 n S ϑ 2 x ψ x , 0 λ 1 , 0 j = 1 n 1 1 λ 2 n j S ϑ 2 x D t j ϑ 1 ψ x , 0 λ 1 , 0 .
Proof. 
Using Theorem 2.5 in [12], Theorem 2.2 in [9], and Theorem 3, we have
S ϑ 1 t S ϑ 2 x D x m ϑ 2 ψ x , t λ 1 , λ 2 = 1 λ 1 λ 2 L t ϑ 1 L x ϑ 2 D x m ϑ 2 ψ x , t 1 λ 1 , 1 λ 2 = 1 λ 1 λ 2 1 λ 1 m L t ϑ 1 L x ϑ 2 ψ x , t 1 λ 1 , 1 λ 2 1 λ 1 m 1 L t ϑ 1 ψ 0 , t 0 , 1 λ 2 i = 1 m 1 1 λ 1 m i 1 L t ϑ 1 D x i ϑ 2 ψ 0 , t 0 , 1 λ 2 = 1 λ 1 m 1 λ 1 λ 2 L t ϑ 1 L x ϑ 2 ψ x , t 1 λ 1 , 1 λ 2 1 λ 1 m 1 λ 2 L t ϑ 1 ψ 0 , t 0 , 1 λ 2 i = 1 m 1 1 λ 1 m i 1 λ 2 L t ϑ 1 D x i ϑ 2 ψ 0 , t 0 , 1 λ 2 = 1 λ 1 m S ϑ 1 t S ϑ 2 x ψ x , t λ 1 , λ 2 1 λ 1 m S ϑ 1 t ψ 0 , t 0 , λ 2 i = 1 m 1 1 λ 1 m i S ϑ 1 t D x i ϑ 2 ψ 0 , t 0 , λ 2 .
In addition,
S ϑ 1 t S ϑ 2 x D t n ϑ 1 ψ x , t λ 1 , λ 2 = 1 λ 1 λ 2 L t ϑ 1 L x ϑ 2 D t n ϑ 1 ψ x , t 1 λ 1 , 1 λ 2 = 1 λ 1 λ 2 1 λ 2 n L t ϑ 1 L x ϑ 2 ψ x , t 1 λ 1 , 1 λ 2 1 λ 2 n 1 L x ϑ 2 ψ x , 0 1 λ 1 , 0 j = 1 n 1 1 λ 2 n 1 j L x ϑ 2 D t j ϑ 1 ψ x , 0 1 λ 1 , 0 = 1 λ 2 n 1 λ 1 λ 2 L t ϑ 1 L x ϑ 2 ψ x , t 1 λ 1 , 1 λ 2 1 λ 2 n 1 λ 1 L x ϑ 2 ψ x , 0 1 λ 1 , 0 j = 1 n 1 1 λ 2 n j 1 λ 1 L x ϑ 2 D t j ϑ 1 ψ x , 0 1 λ 1 , 0 = 1 λ 2 n S ϑ 1 t S ϑ 2 x ψ x , t λ 1 , λ 2 1 λ 2 n S ϑ 2 x ψ x , 0 λ 1 , 0 j = 1 n 1 1 λ 2 n j S ϑ 2 x D t j ϑ 1 ψ x , 0 λ 1 , 0 .

3. Solution of Some Conformable Partial Differential Equations

In this section, we apply the double conformable fractional Sumudu transform to solve the following homogeneous and non-homogeneous fractional heat equations, the homogenous fractional wave equation, and the non-homogenous fractional telegraph equation.
Problem 1.
Consider the following homogeneous fractional heat equation:
D t ϑ 1 ψ x , t = D x 2 ϑ 2 ψ x , t ,
where
ψ 0 , t = e t ϑ 1 ϑ 1 , ψ x , 0 = e x ϑ 2 ϑ 2 , D x ϑ 2 ψ 0 , t = e t ϑ 1 ϑ 1 ,
ϑ 1 , ϑ 2 0 , 1 , x , t > 0 , and D x ϑ 2 and D t ϑ 1 denote the ϑ 2 -th- and ϑ 1 -th-order fractional partial conformable fractional derivative of ψ x , t .
Solution 1.
By applying the conformable Sumudu transform, we have
S ϑ 1 t S ϑ 2 x D t ϑ 1 ψ x , t λ 1 , λ 2 = S ϑ 1 t S ϑ 2 x D x 2 ϑ 2 ψ x , t λ 1 , λ 2 , 1 λ 2 S ϑ 1 t S ϑ 2 x ψ x , t λ 1 , λ 2 1 λ 2 S ϑ 2 x ψ x , 0 λ 1 , 0 = 1 λ 1 2 S ϑ 1 t S ϑ 2 x ψ x , t λ 1 , λ 2 1 λ 1 2 S ϑ 1 t ψ 0 , t 0 , λ 2 1 λ 1 S ϑ 1 t D x ϑ 2 ψ 0 , t 0 , λ 2 , 1 λ 2 1 λ 1 2 S ϑ 1 t S ϑ 2 x ψ x , t λ 1 , λ 2 = 1 λ 2 S ϑ 2 x ψ x , 0 λ 1 , 0 1 λ 1 2 S ϑ 1 t ψ 0 , t 0 , λ 2 1 λ 1 S ϑ 1 t D x ϑ 2 ψ 0 , t 0 , λ 2 , λ 1 2 λ 2 λ 2 λ 1 2 S ϑ 1 t S ϑ 2 x ψ x , t λ 1 , λ 2 = 1 λ 2 S ϑ 2 x e x ϑ 2 ϑ 2 λ 1 , 0 1 λ 1 2 S ϑ 1 t e t ϑ 1 ϑ 1 0 , λ 2 1 λ 1 S ϑ 1 t e t ϑ 1 ϑ 1 , λ 1 2 λ 2 λ 2 λ 1 2 S ϑ 1 t S ϑ 2 x ψ x , t λ 1 , λ 2 = 1 λ 2 1 1 λ 1 1 λ 1 2 1 1 λ 2 1 λ 1 1 1 λ 2 , S ϑ 1 t S ϑ 2 x ψ x , t λ 1 , λ 2 = λ 1 2 λ 1 2 λ 2 1 + λ 1 λ 2 λ 1 λ 2 λ 2 λ 1 λ 2 λ 1 2 λ 1 2 λ 2 · λ 2 λ 1 2 λ 1 2 λ 2 , S ϑ 1 t S ϑ 2 x ψ x , t λ 1 , λ 2 = λ 1 2 λ 1 2 λ 2 λ 2 + λ 1 λ 2 + λ 1 2 λ 2 λ 2 λ 1 2 1 λ 1 1 λ 2 · λ 2 λ 1 2 λ 1 2 λ 2 , S ϑ 1 t S ϑ 2 x ψ x , t λ 1 , λ 2 = 1 1 λ 1 1 λ 2 , ψ x , t = e x ϑ 2 ϑ 2 + t ϑ 1 ϑ 1 ,
which is the exact solution of our homogeneous fractional heat equation.
Problem 2.
Consider the following non-homogeneous fractional heat equation:
D t ϑ 1 ψ x , t = D x 2 ϑ 2 ψ x , t + cos x ϑ 2 ϑ 2 ,
where
ψ 0 , t = 1 e t ϑ 1 ϑ 1 , ψ x , 0 = 0 , D x ϑ 2 ψ 0 , t = 0 ,
ϑ 1 , ϑ 2 0 , 1 , x , t > 0 , and D x ϑ 2 and D t ϑ 1 denote the ϑ 2 -th- and ϑ 1 -th-order fractional partial conformable fractional derivative of ψ x , t .
Solution 2.
By applying the conformable Sumudu transform, we have
S ϑ 1 t S ϑ 2 x D t ϑ 1 ψ x , t λ 1 , λ 2 = S ϑ 1 t S ϑ 2 x D x 2 ϑ 2 ψ x , t λ 1 , λ 2 + S ϑ 1 t S ϑ 2 x cos x ϑ 2 ϑ 2 λ 1 , λ 2 , 1 λ 2 S ϑ 1 t S ϑ 2 x ψ x , t λ 1 , λ 2 1 λ 2 S ϑ 2 x ψ x , 0 λ 1 , 0 = 1 λ 1 2 S ϑ 1 t S ϑ 2 x ψ x , t λ 1 , λ 2 1 λ 1 2 S ϑ 1 t ψ 0 , t 0 , λ 2 1 λ 1 S ϑ 1 t D x ϑ 2 ψ 0 , t 0 , λ 2 + S ϑ 1 t S ϑ 2 x cos x ϑ 2 ϑ 2 λ 1 , λ 2 , 1 λ 2 1 λ 1 2 S ϑ 1 t S ϑ 2 x ψ x , t λ 1 , λ 2 = 1 λ 2 S ϑ 2 x 0 λ 1 , 0 1 λ 1 2 S ϑ 1 t 1 e t ϑ 1 ϑ 1 0 , λ 2 1 λ 1 S ϑ 1 t 0 0 , λ 2 + 1 1 + λ 1 2 , λ 1 2 λ 2 λ 2 λ 1 2 S ϑ 1 t S ϑ 2 x ψ x , t λ 1 , λ 2 = 1 λ 1 2 λ 2 1 + λ 2 + 1 1 + λ 1 2 , S ϑ 1 t S ϑ 2 x ψ x , t λ 1 , λ 2 = λ 2 λ 1 2 1 + λ 2 + 1 1 + λ 1 2 · λ 2 λ 1 2 λ 1 2 λ 2 , S ϑ 1 t S ϑ 2 x ψ x , t λ 1 , λ 2 = λ 2 λ 1 2 λ 1 2 + λ 1 2 λ 2 1 + λ 1 2 , S ϑ 1 t S ϑ 2 x ψ x , t λ 1 , λ 2 = λ 2 1 + λ 2 1 + λ 1 2 , ψ x , t = 1 e t ϑ 1 ϑ 1 cos x ϑ 2 ϑ 2 ,
which is the exact solution of our non-homogeneous fractional heat equation.
Problem 3.
Consider the following homogeneous fractional wave equation:
D t 2 ϑ 1 ψ x , t = D x 2 ϑ 2 ψ x , t ,
where
ψ x , 0 = e x ϑ 2 ϑ 2 , ψ 0 , t = e t ϑ 1 ϑ 1 , D x ϑ 2 ψ 0 , t = e t ϑ 1 ϑ 1 , D t ϑ 1 ψ x , 0 = e x ϑ 2 ϑ 2 ,
ϑ 1 , ϑ 2 0 , 1 , x , t > 0 , and D x ϑ 2 and D t ϑ 1 denote the ϑ 2 -th- and ϑ 1 -th-order fractional partial conformable fractional derivative of ψ x , t .
Solution 3.
By applying the conformable Sumudu transform, we have
S ϑ 1 t S ϑ 2 x D t 2 ϑ 1 ψ x , t λ 1 , λ 2 = S ϑ 1 t S ϑ 2 x D x 2 ϑ 2 ψ x , t λ 1 , λ 2 , 1 λ 2 2 S ϑ 1 t S ϑ 2 x ψ x , t λ 1 , λ 2 1 λ 2 2 S ϑ 2 x ψ x , 0 λ 1 , 0 1 λ 2 S ϑ 2 x D t ϑ 1 ψ x , 0 λ 1 , 0 = 1 λ 1 2 S ϑ 1 t S ϑ 2 x ψ x , t λ 1 , λ 2 1 λ 1 2 S ϑ 1 t ψ 0 , t 0 , λ 2 1 λ 1 S ϑ 1 t D x ϑ 2 ψ 0 , t 0 , λ 2 , 1 λ 2 2 1 λ 1 2 S ϑ 1 t S ϑ 2 x ψ x , t λ 1 , λ 2 = 1 λ 2 2 S ϑ 2 x e x ϑ 2 ϑ 2 λ 1 , 0 + 1 λ 2 S ϑ 2 x e x ϑ 2 ϑ 2 λ 1 , 0 1 λ 1 2 S ϑ 1 t S ϑ 2 x e t ϑ 1 ϑ 1 λ 1 , λ 2 1 λ 1 S ϑ 1 t e t ϑ 1 ϑ 1 0 , λ 2 , λ 1 2 λ 2 2 λ 1 2 λ 2 2 S ϑ 1 t S ϑ 2 x ψ x , t λ 1 , λ 2 = 1 λ 2 2 1 1 λ 1 + 1 λ 2 1 1 λ 1 1 λ 1 2 1 1 λ 2 1 λ 1 1 1 λ 2 , S ϑ 1 t S ϑ 2 x ψ x , t λ 1 , λ 2 = 1 + λ 2 λ 2 2 1 λ 1 1 + λ 1 λ 1 2 1 λ 2 · λ 1 2 λ 2 2 λ 1 2 λ 2 2 , S ϑ 1 t S ϑ 2 x ψ x , t λ 1 , λ 2 = λ 1 2 λ 2 2 λ 1 2 λ 2 2 + λ 2 2 λ 1 2 λ 1 2 λ 2 2 1 λ 1 1 λ 2 · λ 1 2 λ 2 2 λ 1 2 λ 2 2 , S ϑ 1 t S ϑ 2 x ψ x , t λ 1 , λ 2 = λ 1 2 λ 2 2 λ 1 2 λ 2 2 1 λ 1 1 λ 2 · λ 1 2 λ 2 2 λ 1 2 λ 2 2 , S ϑ 1 t S ϑ 2 x ψ x , t λ 1 , λ 2 = 1 1 λ 1 1 λ 2 , ψ x , t = e x ϑ 2 ϑ 2 + t ϑ 1 ϑ 1 ,
which is the exact solution of our homogeneous fractional wave equation.
Problem 4.
Consider the following non-homogeneous fractional telegraph equation:
D t 2 ϑ 1 ψ x , t + D x 2 ϑ 2 ψ x , t D t ϑ 1 ψ x , t ψ x , t = 2 e x ϑ 2 ϑ 2 + t ϑ 1 ϑ 1 ,
where
ψ 0 , t = e t ϑ 1 ϑ 1 , ψ x , 0 = e x ϑ 2 ϑ 2 , D x ϑ 2 ψ 0 , t = e t ϑ 1 ϑ 1 , D t ϑ 1 ψ x , 0 = e x ϑ 2 ϑ 2 ,
ϑ 1 , ϑ 2 0 , 1 , x , t > 0 , and D x ϑ 2 and D t ϑ 1 denote the ϑ 2 -th- and ϑ 1 -th-order fractional partial conformable fractional derivative of ψ x , t .
Solution 4.
By applying the conformable Sumudu transform, we have
S ϑ 1 t S ϑ 2 x 2 e x ϑ 2 ϑ 2 + t ϑ 1 ϑ 1 λ 1 , λ 2 = S ϑ 1 t S ϑ 2 x D t 2 ϑ 1 ψ x , t λ 1 , λ 2 + S ϑ 1 t S ϑ 2 x D x 2 ϑ 2 ψ x , t λ 1 , λ 2 S ϑ 1 t S ϑ 2 x D t ϑ 1 ψ x , t λ 1 , λ 2 S ϑ 1 t S ϑ 2 x ψ x , t λ 1 , λ 2 , 2 1 λ 1 1 λ 2 = 1 λ 1 2 S ϑ 1 t S ϑ 2 x ψ x , t λ 1 , λ 2 + 1 λ 1 2 S ϑ 1 t ψ 0 , t 0 , λ 2 + 1 λ 1 S ϑ 1 t D x ϑ 2 ψ 0 , t 0 , λ 2 + 1 λ 2 2 S ϑ 1 t S ϑ 2 x ψ x , t λ 1 , λ 2 1 λ 2 2 S ϑ 2 x ψ x , 0 λ 1 , 0 1 λ 2 S ϑ 2 x D t ϑ 1 ψ x , 0 λ 1 , 0 1 λ 2 S ϑ 1 t S ϑ 2 x ψ x , t λ 1 , λ 2 + 1 λ 2 S ϑ 2 x ψ x , 0 λ 1 , 0 S ϑ 1 t S ϑ 2 x ψ x , t λ 1 , λ 2 , 2 1 λ 1 1 λ 2 = 1 λ 1 2 + 1 λ 2 2 1 λ 2 1 S ϑ 1 t S ϑ 2 x ψ x , t λ 1 , λ 2 + 1 λ 1 2 S ϑ 1 t e t ϑ 1 ϑ 1 0 , λ 2 + 1 λ 1 S ϑ 1 t e t ϑ 1 ϑ 1 0 , λ 2 1 λ 2 2 S ϑ 2 x e x ϑ 2 ϑ 2 λ 1 , 0 1 λ 2 S ϑ 2 x e x ϑ 2 ϑ 2 λ 1 , 0 + 1 λ 2 S ϑ 2 x e x ϑ 2 ϑ 2 λ 1 , 0 , 2 1 λ 1 1 λ 2 = λ 2 2 + λ 1 2 λ 1 2 λ 2 λ 1 2 λ 2 2 λ 1 2 λ 2 2 S ϑ 1 t S ϑ 2 x ψ x , t λ 1 , λ 2 + 1 λ 1 2 1 λ 2 + 1 λ 1 1 λ 2 1 λ 2 2 1 λ 1 , 2 1 λ 1 1 λ 2 = λ 2 2 + λ 1 2 λ 1 2 λ 2 λ 1 2 λ 2 2 λ 1 2 λ 2 2 S ϑ 1 t S ϑ 2 x ψ x , t λ 1 , λ 2 + λ 1 2 λ 2 2 + λ 1 2 λ 2 λ 1 2 + λ 2 2 λ 1 2 λ 2 2 1 λ 1 1 λ 2 , S ϑ 1 t S ϑ 2 x ψ x , t λ 1 , λ 2 = 2 1 λ 1 1 λ 2 λ 1 2 λ 2 2 + λ 1 2 λ 2 λ 1 2 + λ 2 2 λ 1 2 λ 2 2 1 λ 1 1 λ 2 · λ 1 2 λ 2 2 λ 2 2 + λ 1 2 λ 1 2 λ 2 λ 1 2 λ 2 2 , S ϑ 1 t S ϑ 2 x ψ x , t λ 1 , λ 2 = 2 λ 1 2 λ 2 2 + λ 1 2 λ 2 2 λ 1 2 λ 2 + λ 1 2 λ 2 2 λ 1 2 λ 2 2 1 λ 1 1 λ 2 · λ 1 2 λ 2 2 λ 2 2 + λ 1 2 λ 1 2 λ 2 λ 1 2 λ 2 2 , S ϑ 1 t S ϑ 2 x ψ x , t λ 1 , λ 2 = λ 2 2 + λ 1 2 λ 1 2 λ 2 λ 1 2 λ 2 2 1 λ 1 1 λ 2 · 1 λ 2 2 + λ 1 2 λ 1 2 λ 2 λ 1 2 λ 2 2 , S ϑ 1 t S ϑ 2 x ψ x , t λ 1 , λ 2 = 1 1 λ 1 1 λ 2 , ψ x , t = e x ϑ 2 ϑ 2 + t ϑ 1 ϑ 1 ,
which is the exact solution of our non-homogeneous fractional telegraph equation.

4. Conclusions

The conformable fractional integral defined by Khalil et al. [4] was used to modify the double conformable Sumudu transform. Moreover, with the use of the conformable double Laplace transform defined in [9], some more properties of the transform, including its convolution properties, in addition to the existence of the transform for functions satisfying certain exponential conditions, were proved. Finally, exact solutions of some important partial differential equations of the conformable fractional type—namely, the heat equation, the wave equation, and the telegraph equation—were given.

Author Contributions

Conceptualization, S.A.-S.; Formal analysis, A.A.-R., S.A.-S. and M.A.-K.; Funding acquisition, M.A.-K.; Methodology, A.A.-R., S.A.-S. and M.A.-K.; Supervision, S.A.-S.; Writing—original draft, A.A.-R. and S.A.-S.; Writing—review and editing, S.A.-S. and M.A.-K. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Acknowledgments

The authors extend their appreciation to the Mathematics Department at Khalifa University for supporting this work.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Johansyah, M.; Supriatna, A.; Rusyaman, E.; Saputra, J. Application of fractional differential equation in economic growth model: A systematic review approach. Aims Math. 2021, 6, 10266–10280. [Google Scholar] [CrossRef]
  2. Wu, S.-L.; Al-Khaleel, M. Convergence analysis of the Neumann–Neumann waveform relaxation method for time-fractional RC circuits. Simul. Model. Pract. Theory 2016, 64, 43–56. [Google Scholar] [CrossRef]
  3. Al-Khaleel, M.; Wu, S.-L. Optimized waveform relaxation solution of RLCG transmission line type circuits. In Proceedings of the 2013 9th International Conference on Innovations in Information Technology, Al Ain, United Arab Emirates, 17–19 March 2013; pp. 136–140. [Google Scholar]
  4. Khalil, R.; Horani, M.A.; Yousef, A.; Sababheh, M. A new definition of fractional derivative. J. Comput. Appl. Math. 2014, 264, 65–70. [Google Scholar] [CrossRef]
  5. Al-Sharif, S.; Malkawi, A. Modification of conformable fractional derivative with classical properties. Ital. J. Pure Appl. Math. 2020, 44, 30–39. [Google Scholar]
  6. Korkmaz, A.; Hosseini, K. Exact solutions of a nonlinear conformable time-fractional parabolic equation with exponential nonlinearity using reliable methods. Opt. Quantum Electron. 2017, 49, 278. [Google Scholar] [CrossRef]
  7. Korkmaz, A. On the wave solutions of conformable fractional evolution equations. Commun. Fac. Sci. Univ. Ank. Ser. A1 2018, 67, 68–79. [Google Scholar]
  8. Hashemi, M. Invariant subspaces admitted by fractional differential equations with conformable derivatives. Chaos Solitons Fractals 2018, 107, 161–169. [Google Scholar] [CrossRef]
  9. Özkan, O.; Kurt, A. On conformable double Laplace transform. Opt. Quant. Electron. 2018, 50, 103. [Google Scholar] [CrossRef]
  10. Alfaqeih, S.; Kayijuka, I. Solving System of Conformable Fractional Differential Equations by Conformable Double Laplace Decomposition Method. J. Part. Diff. Eq. 2020, 33, 275–290. [Google Scholar]
  11. Alfaqeih, S.; Misirli, E. On double Shehu transform and its properties with applications. Int. J. Anal. Appl. 2020, 18, 381–395. [Google Scholar]
  12. Al-Zhour, Z.; Alrawajeh, F.; Al-Mutairi, N.; Alkhasawneh, R. New results on the conformable fractional Sumudu transform: Theories and applications. Int. J. Anal. Appl. 2019, 17, 1019–1033. [Google Scholar]
  13. Alfaqeih, S.; Bakicierler, G.; Misirli, E. Conformable Double Sumudu Transform with Applications. J. Appl. Comput. Mech. 2021, 7, 578–586. [Google Scholar]
  14. Hamza, A.; Mohamed, M.; Elmohmoud, E.A.; Magzoub, M. Conformable Sumudu Transform of Space-Time Fractional Telegraph Equation. Abstr. Appl. Anal. 2021, 2021, 6682994. [Google Scholar] [CrossRef]
  15. Mohamed, M.; Hamza, A.; Sedeeg, A. Conformable double Sumudu transformations an efficient approximation solutions to the fractional coupled Burger’s equation. Ain Shams Eng. J. 2022, in press. [Google Scholar] [CrossRef]
  16. Love, E. Changing the order of integration. J. Australian Math. Soc. 1970, 11, 421–432. [Google Scholar] [CrossRef] [Green Version]
  17. Kilicman, A.; Eltayeb, H.; Atan, K.A.M. A note on the comparison between Laplace and Sumudu transforms. Iran. Math. 2011, 37, 131–141. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Al-Rab’a, A.; Al-Sharif, S.; Al-Khaleel, M. Double Conformable Sumudu Transform. Symmetry 2022, 14, 2249. https://doi.org/10.3390/sym14112249

AMA Style

Al-Rab’a A, Al-Sharif S, Al-Khaleel M. Double Conformable Sumudu Transform. Symmetry. 2022; 14(11):2249. https://doi.org/10.3390/sym14112249

Chicago/Turabian Style

Al-Rab’a, Abdallah, Sharifa Al-Sharif, and Mohammad Al-Khaleel. 2022. "Double Conformable Sumudu Transform" Symmetry 14, no. 11: 2249. https://doi.org/10.3390/sym14112249

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop