Next Article in Journal
Postface for Applied Designs in Chemical Structures with High Symmetry
Previous Article in Journal
LAO-3D: A Symmetric Lightweight Block Cipher Based on 3D Permutation for Mobile Encryption Application
Previous Article in Special Issue
A New Accelerated Fixed-Point Algorithm for Classification and Convex Minimization Problems in Hilbert Spaces with Directed Graphs
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Some New Generalizations of Reverse Hilbert-Type Inequalities via Supermultiplicative Functions

1
Department of Mathematics, Faculty of Science, Al-Azhar University, Nasr City 11884, Egypt
2
Department of Mathematics, Faculty of Science, Benha University, Benha 13511, Egypt
3
Department of Mathematical Sciences, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
4
Department of Mathematics, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
5
Department of Mathematics, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt
*
Author to whom correspondence should be addressed.
Symmetry 2022, 14(10), 2043; https://doi.org/10.3390/sym14102043
Submission received: 29 July 2022 / Revised: 10 September 2022 / Accepted: 23 September 2022 / Published: 30 September 2022
(This article belongs to the Special Issue Functional Equations and Inequalities 2021)

Abstract

:
Our work in this paper is based on the reverse Hölder-type dynamic inequalities illustrated by El-Deeb in 2018 and the reverse Hilbert-type dynamic inequalities illustrated by Rezk in 2021 and 2022. With the help of Specht’s ratio, the concept of supermultiplicative functions, chain rule, and Jensen’s inequality on time scales, we can establish some comprehensive and generalize a number of classical reverse Hilbert-type inequalities to a general time scale space. In time scale calculus, results are unified and extended. At the same time, the theory of time scale calculus is applied to unify discrete and continuous analysis and to combine them in one comprehensive form. This hybrid theory is also widely applied on symmetrical properties which play an essential role in determining the correct methods to solve inequalities. As a special case of our results when the supermultiplicative function represents the identity map, we obtain some results that have been recently published.

1. Introduction

In [1] (p. 253), Hardy established that
l = 1 r = 1 z r ϝ l r + l π sin π p r = 1 z r p 1 p l = 1 ϝ l δ 1 δ ,
where z r ,   ϝ l 0 with 0 < r = 1 z r p < ,   0 < l = 1 ϝ l δ < and p > 1 ,   p 1 + δ 1 = 1 . The continuous shape (see [2]) of (1) is called Hardy–Hilbert’s inequality and given by
0 0 Z ( ϑ ) ϝ ( y ) ϑ + y d ϑ d y π sin π p 0 Z p ( ϑ ) d ϑ 1 p 0 ϝ δ ( y ) d y 1 δ ,
where p > 1 ,   p 1 + δ 1 = 1 and Z ,   ϝ are measurable nonnegative functions such that 0 < 0 Z p ( ϑ ) d ϑ < and 0 < 0 ϝ δ ( y ) d y < . The constant π sin π p in (1) and (2) sharp. In particular, when p = δ = 2 , the inequality (2) is reduced to the classical Hilbert integral inequality:
0 0 Z ( ϑ ) ϝ ( y ) ϑ + y d ϑ d y π 0 Z 2 ( ϑ ) d ϑ 1 2 0 ϝ 2 ( y ) d y 1 2 .
In [2] (p. 253), the author proved the following extension of Hilber’s double-series (1). Let p , δ > 1 ,   p 1 + δ 1 1 and 0 < γ = 2 ( p 1 + δ 1 ) = p 1 + δ 1 1 . Then,
l = 1 r = 1 z r b l ( r + l ) γ K ( p , δ ) r = 1 z r p 1 p l = 1 b l δ 1 δ ,
The following continuous shape of (3) is also given in [2] (p. 254). Under the same condition with (3), we have
0 0 Z ( ϑ ) ϝ ( y ) ( ϑ + y ) γ d ϑ d y K ( p , δ ) 0 Z p ( ϑ ) d ϑ 1 p 0 ϝ δ ( y ) d y 1 δ ,
where K ( p , δ ) in (3) and (4) depends on p and δ only.
As we all know, the classic Hölder inequality plays a very important and basic role in many areas of pure and applied mathematics. It is also a bridge to help solve problems in depth. In [3], Hölder established that
l = 1 r ζ l y l l = 1 r ζ l μ 1 μ l = 1 r y l β 1 β ,
where ζ l 0 ,   y l 0   ( l = 1 , 2 , . . . , r ) ,   μ β > 0 and μ 1 + β 1 = 1 . The continuous shape of (5) is
z r ϕ ( x ) ϖ ( x ) d x z r ϕ μ ( x ) d x 1 μ z r ϖ β ( x ) d x 1 β ,
where μ ,   β > 1 s.t μ 1 + β 1 = 1 and ϕ ,   ϖ C ( z , r ) , R + .
In [4], the researchers proved that, if ϕ ( x ) and ϖ ( x ) are nonnegative continuous functions on [ z , r ] , then
z r ϕ μ ( x ) d x 1 μ z r ϖ β ( x ) d x 1 β z r S Y ϕ μ ( x ) ϑ ϖ β ( x ) ϕ ( x ) ϖ ( x ) d x ,
with
ϑ = z r ϕ μ ( x ) d x , Y = z r ϖ β ( x ) d x , α > 1 and μ 1 + β 1 = 1 ,
where S ( . ) is the Specht’s ratio function ([5]) and defined by
S ( t ) t 1 / ( t 1 ) e log t 1 / ( t 1 ) , t 1 , S ( 1 ) = 1 .
In [4], the researchers established that, if ψ ,   ϖ C ( z , r ) , R + and q > 0 , then
z r ψ q + 1 ( x ) ϖ q ( x ) d x z r S G ψ q + 1 ( x ) F ϖ q + 1 ( x ) ψ ( x ) d x q + 1 z r ϖ ( x ) d x q ,
where
G = z r ϖ ( x ) d x and F = z r ψ q + 1 ( x ) ϖ q ( x ) d x .
In addition, they established the discrete form of (8) as follows:
i = 1 n z i m + 1 b i m i = 1 n S B z i m + 1 A b i m + 1 z i i = 1 n b i m ,
where B = i = 1 n b i and A = i = 1 n z i m + 1 / b i m .
In [6], the researchers proved that, if 0 < p , δ 1 , and λ i i = 1 k ,   ω j j = 1 r are nonnegative and decreasing sequences of real numberswith k , r N , then
i = 1 k j = 1 r S p , δ , k , r , i , j μ = 1 i λ μ p t = 1 j ψ t δ i j 1 2 p δ k r 1 2 i = 1 k λ i μ = 1 i λ μ p 1 2 k i + 1 1 2 × j = 1 r ψ j t = 1 j ψ t δ 1 2 r j + 1 1 2 ,
where
S p , δ , k , r , i , j = S k μ = 1 i λ μ τ = 1 μ λ τ p 1 2 μ = 1 k k μ + 1 λ μ τ = 1 μ λ τ p 1 2 S r t = 1 j ψ t τ = 1 t ψ τ δ 1 2 t = 1 r r t + 1 ψ t τ = 1 t ψ τ δ 1 2 × S i λ u τ = 1 u λ τ p 1 2 μ = 1 i λ μ τ = 1 μ λ τ p 1 2 S j ψ v τ = 1 v ψ τ δ 1 2 t = 1 j ψ t τ = 1 t ψ τ δ 1 2 ,
S i λ u τ = 1 u λ τ p 1 2 μ = 1 i λ μ τ = 1 μ λ τ p 1 2 = max S i λ 1 τ = 1 1 λ τ p 1 2 μ = 1 i λ μ τ = 1 μ λ τ p 1 2 ; S i λ i τ = 1 i λ τ p 1 2 μ = 1 i λ μ τ = 1 μ λ τ p 1 2 ,
S j ψ v τ = 1 v ψ τ δ 1 2 t = 1 j ψ t τ = 1 t ψ τ δ 1 2 = max S j ψ 1 τ = 1 1 ψ τ δ 1 2 t = 1 j ψ t τ = 1 t ψ τ δ 1 2 ; S j ψ j τ = 1 j ψ τ δ 1 2 t = 1 j ψ t τ = 1 t ψ τ δ 1 2 .
In addition, they proved that
i = 1 k j = 1 r S k , r , i , j ϕ ( Λ i ) ψ ( Ω j ) i j 1 2 i = 1 k ϕ ( P i ) P i 2 1 2 j = 1 r ψ ( W j ) W j 2 1 2 × μ = 1 k p μ ϕ λ μ p μ 2 k μ + 1 1 2 × t = 1 r δ t ψ ω t δ t 2 r t + 1 1 2 ,
where
S k , r , i , j = S μ = 1 k p μ ϕ λ μ p μ 2 k μ + 1 ϕ ( P i ) P i 2 i = 1 k ϕ ( P i ) P i 2 μ = 1 i p μ ϕ λ μ p μ 2 × S t = 1 r δ t ψ ω t δ t 2 r t + 1 ψ ( W j ) W j 2 j = 1 r ψ ( W j ) W j 2 t = 1 j δ t ψ ω t δ t 2 ,
Λ i = μ = 1 i S i p μ ϕ λ μ p μ 2 μ = 1 i p μ ϕ λ μ p μ 2 λ s ,
Ω j = t = 1 j S j δ t ψ ω t δ t 2 t = 1 j δ t ψ ω t δ t 2 ω t ,
P i = μ = 1 i S i p μ ϕ λ μ p μ 2 μ = 1 i p μ ϕ λ μ p μ 2 p s ,
W j = t = 1 j S j δ t ψ ω t δ t 2 t = 1 j δ t ψ ω t δ t 2 δ t ,
and λ i i = 1 k ,   ω j j = 1 r are nonnegative sequences with k ,   r N ,   p i ,   δ j are positive sequences ϕ , ψ are nonnegative, concave and supermultiplicative functions.
In [6], the authors proved that
i = 1 k j = 1 r S k , r , i , j Λ i Ω j i j 1 2 k r 1 2 i = 1 k λ i 2 k i + 1 1 2 j = 1 r ω j 2 r j + 1 1 2 ,
where
S k , r , i , j = S μ = 1 k λ μ 2 k μ + 1 k μ = 1 i λ μ 2 S t = 1 r ω t 2 r t + 1 r t = 1 j ω t 2 ,
Λ i = μ = 1 i S i λ μ 2 μ = 1 i λ μ 2 λ μ and Ω j = t = 1 j S j ω t 2 t = 1 j ω t 2 ω t .
For some generalizations and extensions of reversed inequalities of Hilbert-type and Hölder-type on time scales, see ([7,8,9,10,11,12,13,14]).
The primary objective of this article is to develop some new generalisations of reverse Hilbert-type inequalities via supermultiplicative functions by using reverse Hölder inequalities with Specht’s ratio on T (a time scale T is defined as an arbitrary nonempty closed subset of the real numbers R ).
The structure of the paper is summarised below. Section 2 covers some of the fundamentals of time scale theory as well as several time scale lemmas that will be useful in Section 3, where we prove our findings. As particular examples (when T = N ), our major findings are (10), as demonstrated by Zhao and Cheung [6].

2. Preliminaries

The forward jump operator is defined as
σ ( c ) inf { u T : u > c } .
The set of all such rd-continuous functions is denoted by the space C r d ( T , R ) , and for any function Z : T R , the notation Z σ ( c ) denotes Z ( σ ( c ) ) .
The derivatives of Z Ω and Z / Ω of two differentiable functions Z and Ω are given by
( Z Ω ) Δ = Z Δ Ω + Z σ Ω Δ = Z Ω Δ + Z Δ Ω σ , Z Ω Δ = Z Δ Ω Z Ω Δ Ω Ω σ , Ω Ω σ 0 .
The integration by parts formula on T is
υ 0 υ λ ( x ) Z Δ ( x ) Δ x = λ ( x ) Z ( x ) υ 0 υ υ 0 υ λ Δ ( x ) Z σ ( x ) Δ x .
The time scales chain rule ([10] (Theorem 1.87)) is
( Ω Z ) Δ ( τ ) = Ω Z c Z Δ x , where c x , σ x ,
where Ω : R R is continuously differentiable, and Z : T R is Δ differentiable. More information on time scale calculus can be found at ([10,11]).
Now, we will give some properties of multiplicative and supermultiplicative functions.
Definition 1.
A function L : I R + is multiplicative if
L ϰ ζ = L ϰ L ζ , ϰ , ζ I R .
Definition 2
([15]). A function L : I R + is supermultiplicative if
L ϰ ζ L ϰ L ζ , ϰ , ζ I R .
where L is the identity map (i.e., L ζ = ζ ) and represents the multiplicative function. L is said to be a submultiplicative function if the last inequality has the opposite sign.
Lemma 1.
Let z T ,   λ C r d ( T , R ) be nonnegative and 0 γ 1 . Then,
z σ ( t ) λ ( τ ) Δ τ γ γ z σ ( t ) z σ ( ϑ ) λ ( τ ) Δ τ γ 1 λ ( ϑ ) Δ ϑ .
Proof. 
By using (15) on z ϑ λ ( τ ) Δ τ , we obtain
z ϑ λ ( τ ) Δ τ γ Δ = γ z ζ λ ( τ ) Δ τ γ 1 λ ( ϑ ) , ζ [ ϑ , σ ( ϑ ) ] .
Since ζ σ ( ϑ ) , then we obtain (note 0 γ 1 ) that
z ζ λ ( τ ) Δ τ γ 1 z σ ( ϑ ) λ ( τ ) Δ τ γ 1 .
By substituting (20) into (19), we can observe that
z ϑ λ ( τ ) Δ τ γ Δ γ z σ ( ϑ ) λ ( τ ) Δ τ γ 1 λ ( ϑ ) .
By integrating (21) from z to σ ( t ) , we obtain
z σ ( t ) z ϑ λ ( τ ) Δ τ γ Δ Δ ϑ γ z σ ( t ) z σ ( ϑ ) λ ( τ ) Δ τ γ 1 λ ( ϑ ) Δ ϑ .
i.e.,
z σ ( t ) λ ( τ ) Δ τ γ γ z σ ( t ) z σ ( ϑ ) λ ( τ ) Δ τ γ 1 λ ( ϑ ) Δ ϑ ,
which is (18). □
Lemma 2
(Specht’s ratio [5]).Let c , d be positive numbers, γ > 1 and 1 / γ + 1 / δ = 1 . Then,
S c d c 1 / γ d 1 / δ c γ + d δ ,
where
S ( l ) = l 1 / ( l 1 ) e log l 1 / ( l 1 ) , l 1 , S ( 1 ) = 1 .
Lemma 3
([5]). Let S ( . ) be defined as in Lemma 2. Then, S ( l ) is strictly decreasing for 0 < l < 1 and strictly increasing for l > 1 . In addition, the following equations are true:
S ( 1 ) = 1 and S ( l ) = S 1 l l > 0 .
Lemma 4
([12], when α = 1). Let g , h C [ z , w ] T , R + s.t. g β , h ν be Δ integrable on [ z , w ] T . If μ > 1 and 1 / μ + 1 / ν = 1 , then
z w S Y g μ ( ζ ) X h ν ( ζ ) g ( ζ ) h ( ζ ) Δ ζ z w g μ ( ζ ) Δ ζ 1 μ z w h ν ( ζ ) Δ ζ 1 ν ,
where X = z w g μ ( ζ ) Δ ζ and Y = z w h ν ( ζ ) Δ ζ .
Lemma 5
(Jensen’s inequality). Assume that ζ 0 , ζ T and r 0 , r R . If λ C r d ( [ ζ 0 , ζ ] T , R ) ,   φ C r d ( [ ζ 0 , ζ ] T , ( r 0 , r ) ) and Ψ : ( r 0 , r ) R is continuous and convex, then
Ψ 1 ζ 0 ζ λ ( τ ) Δ τ ζ 0 ζ λ ( τ ) φ ( τ ) Δ τ 1 ζ 0 ζ λ ( τ ) Δ τ ζ 0 ζ λ ( τ ) Ψ ( φ ( τ ) ) Δ τ .
The inequality (23) is reversed when Ψ is continuous and concave.
Lemma 6.
Let z T , λ , ψ be positive and decreasing functions, f , g are positive and nondecreasing functions and 0 p ,   δ 1 . Furthermore, assume that ϕ , φ are positive, increasing, concave and supermultiplicative functions. If β > 1 ,   ν > 1 with 1 / β + 1 / ν = 1 , then
S z σ ( t ) f ν ( ϑ ) Δ ϑ ϕ β λ ( ζ ) z σ ( ζ ) λ ( τ ) Δ τ p 1 f ν ( ζ ) z σ ( t ) ϕ β λ ( ϑ ) z σ ( ϑ ) λ ( τ ) Δ τ p 1 Δ ϑ = max S z σ ( t ) f ν ( ϑ ) Δ ϑ ϕ β λ ( z ) z σ ( z ) λ ( τ ) Δ τ p 1 f ν ( z ) z σ ( t ) ϕ β λ ( ϑ ) z σ ( ϑ ) λ ( τ ) Δ τ p 1 Δ ϑ ; S z σ ( t ) f ν ( ϑ ) Δ ϑ ϕ β λ ( t ) z σ ( t ) λ ( τ ) Δ τ p 1 f ν ( t ) z σ ( t ) ϕ β λ ( ϑ ) z σ ( ϑ ) λ ( τ ) Δ τ p 1 Δ ϑ ,
and
S z σ ( ξ ) g ν ( y ) Δ y φ β ψ ( η ) z σ ( η ) ψ ( τ ) Δ τ δ 1 g ν ( η ) z σ ( ξ ) φ β ψ ( y ) z σ ( y ) ψ ( τ ) Δ τ δ 1 Δ y = max S z σ ( ξ ) g ν ( y ) Δ y φ β ψ ( z ) z σ ( z ) ψ ( τ ) Δ τ δ 1 g ν ( z ) z σ ( ξ ) φ β ψ ( y ) z σ ( y ) ψ ( τ ) Δ τ δ 1 Δ y ; S z σ ( ξ ) g ν ( y ) Δ y φ β ψ ( ξ ) z σ ( ξ ) ψ ( τ ) Δ τ δ 1 g ν ( ξ ) z σ ( ξ ) φ β ψ ( y ) z σ ( y ) ψ ( τ ) Δ τ δ 1 Δ y .
Proof. 
For ϑ y , we have
z σ ( ϑ ) λ ( τ ) Δ τ z σ ( y ) λ ( τ ) Δ τ ,
and then (where 0 p 1 )
z σ ( ϑ ) λ ( τ ) Δ τ p 1 z σ ( y ) λ ( τ ) Δ τ p 1 .
Because λ is decreasing and ϑ y , we can deduce from (26) that
λ ( ϑ ) z σ ( ϑ ) λ ( τ ) Δ τ p 1 λ ( y ) z σ ( y ) λ ( τ ) Δ τ p 1 .
Based on the knowledge β > 1 ,   ϕ is an increasing function and (27), we can conclude that
ϕ β λ ( ϑ ) z σ ( ϑ ) λ ( τ ) Δ τ p 1 ϕ β λ ( y ) z σ ( y ) λ ( τ ) Δ τ p 1 .
Then, we obtain (where ϑ y and f is nondecreasing) that
1 f ν ( ϑ ) ϕ β λ ( ϑ ) z σ ( ϑ ) λ ( τ ) Δ τ p 1 1 f ν ( y ) ϕ β λ ( y ) z σ ( y ) λ ( τ ) Δ τ p 1 ,
thus the function 1 f ν ( ϑ ) ϕ β λ ( ϑ ) z σ ( ϑ ) λ ( τ ) Δ τ p 1 is decreasing. Therefore, we have for z ϑ that
1 f ν ( z ) ϕ β λ ( z ) z σ ( z ) λ ( τ ) Δ τ p 1 1 f ν ( ϑ ) ϕ β λ ( ϑ ) z σ ( ϑ ) λ ( τ ) Δ τ p 1
and then
f ν ( ϑ ) ϕ β λ ( z ) z σ ( z ) λ ( τ ) Δ τ p 1 f ν ( z ) ϕ β λ ( ϑ ) z σ ( ϑ ) λ ( τ ) Δ τ p 1 .
Integrating (28) over ϑ from z to σ ( t ) , we obtain
ϕ β λ ( z ) z σ ( z ) λ ( τ ) Δ τ p 1 z σ ( t ) f ν ( ϑ ) Δ ϑ f ν ( z ) z σ ( t ) ϕ β λ ( ϑ ) z σ ( ϑ ) λ ( τ ) Δ τ p 1 Δ ϑ ,
and then
z σ ( t ) f ν ( ϑ ) Δ ϑ ϕ β λ ( z ) z σ ( z ) λ ( τ ) Δ τ p 1 f ν ( z ) z σ ( t ) ϕ β λ ( ϑ ) z σ ( ϑ ) λ ( τ ) Δ τ p 1 Δ ϑ 1 .
Since the function 1 f ν ( ϑ ) ϕ β λ ( ϑ ) z σ ( ϑ ) λ ( τ ) Δ τ p 1 is decreasing and ϑ t , we obtain
1 f ν ( ϑ ) ϕ β λ ( ϑ ) z σ ( ϑ ) λ ( τ ) Δ τ p 1 1 f ν ( t ) ϕ β λ ( t ) z σ ( t ) λ ( τ ) Δ τ p 1 ,
and then
f ν ( t ) ϕ β λ ( ϑ ) z σ ( ϑ ) λ ( τ ) Δ τ p 1 f ν ( ϑ ) ϕ β λ ( t ) z σ ( t ) λ ( τ ) Δ τ p 1 .
Integrating (30) over ϑ from z to σ ( t ) , we obtain
f ν ( t ) z σ ( t ) ϕ β λ ( ϑ ) z σ ( ϑ ) λ ( τ ) Δ τ p 1 Δ ϑ ϕ β λ ( t ) z σ ( t ) λ ( τ ) Δ τ p 1 z σ ( t ) f ν ( ϑ ) Δ ϑ ,
thus
z σ ( t ) f ν ( ϑ ) Δ ϑ ϕ β λ ( t ) z σ ( t ) λ ( τ ) Δ τ p 1 f ν ( t ) z σ ( t ) ϕ β λ ( ϑ ) z σ ( ϑ ) λ ( τ ) Δ τ p 1 Δ ϑ 1 .
Based on (29) and (31), we can see that
z σ ( t ) f ν ( ϑ ) Δ ϑ ϕ β λ ( z ) z σ ( z ) λ ( τ ) Δ τ p 1 f ν ( z ) z σ ( t ) ϕ β λ ( ϑ ) z σ ( ϑ ) λ ( τ ) Δ τ p 1 Δ ϑ . . . 1 . . . z σ ( t ) f ν ( ϑ ) Δ ϑ ϕ β λ ( t ) z σ ( t ) λ ( τ ) Δ τ p 1 f ν ( t ) z σ ( t ) ϕ β λ ( ϑ ) z σ ( ϑ ) λ ( τ ) Δ τ p 1 Δ ϑ .
Because S ( . ) is decreasing on 0 , 1 and increasing on 1 , , we have that one of
S z σ ( t ) f ν ( ϑ ) Δ ϑ ϕ β λ ( z ) z σ ( z ) λ ( τ ) Δ τ p 1 f ν ( z ) z σ ( t ) ϕ β λ ( ϑ ) z σ ( ϑ ) λ ( τ ) Δ τ p 1 Δ ϑ
and
S z σ ( t ) f ν ( ϑ ) Δ ϑ ϕ β λ ( t ) z σ ( t ) λ ( τ ) Δ τ p 1 f ν ( t ) z σ ( t ) ϕ β λ ( ϑ ) z σ ( ϑ ) λ ( τ ) Δ τ p 1 Δ ϑ
is maximum (where S ( 1 ) = 1 ), and it takes the shape
S z σ ( t ) f ν ( ϑ ) Δ ϑ ϕ β λ ( ζ ) z σ ( ζ ) λ ( τ ) Δ τ p 1 f ν ( ζ ) z σ ( t ) ϕ β λ ( ϑ ) z σ ( ϑ ) λ ( τ ) Δ τ p 1 Δ ϑ = max S z σ ( t ) f ν ( ϑ ) Δ ϑ ϕ β λ ( z ) z σ ( z ) λ ( τ ) Δ τ p 1 f ν ( z ) z σ ( t ) ϕ β λ ( ϑ ) z σ ( ϑ ) λ ( τ ) Δ τ p 1 Δ ϑ
; S z σ ( t ) f ν ( ϑ ) Δ ϑ ϕ β λ ( t ) z σ ( t ) λ ( τ ) Δ τ p 1 f ν ( t ) z σ ( t ) ϕ β λ ( ϑ ) z σ ( ϑ ) λ ( τ ) Δ τ p 1 Δ ϑ ,
and that is (24). In a similar manner, for ψ and 0 δ 1 , we obtain
S z σ ( ξ ) g ν ( y ) Δ y φ β ψ ( η ) z σ ( η ) ψ ( τ ) Δ τ δ 1 g ν ( η ) z σ ( ξ ) φ β ψ ( y ) z σ ( y ) ψ ( τ ) Δ τ δ 1 Δ y = max S z σ ( ξ ) g ν ( y ) Δ y φ β ψ ( z ) z σ ( z ) ψ ( τ ) Δ τ δ 1 g ν ( z ) z σ ( ξ ) φ β ψ ( y ) z σ ( y ) ψ ( τ ) Δ τ δ 1 Δ y ; S z σ ( ξ ) g ν ( y ) Δ y φ β ψ ( ξ ) z σ ( ξ ) ψ ( τ ) Δ τ δ 1 g ν ( ξ ) z σ ( ξ ) φ β ψ ( y ) z σ ( y ) ψ ( τ ) Δ τ δ 1 Δ y ,
which is (25). □
Throughout the article, we will assume that the functions are nonnegative rd-continuous functions on [ z , ) T [ z , ) T .

3. Principal Findings

Theorem 1.
Let z T , 0 p , δ 1 ,   λ , ψ be positive and decreasing functions and ϕ ,  φ are positive, increasing, concave and supermultiplicative functions. If f , g are positive and nondecreasing functions and β > 1 ,   ν > 1 with 1 / β + 1 / ν = 1 , then
z σ ( s ) z σ ( r ) Φ ( t , ξ ) P ( t ) W ( ξ ) × ϕ 1 P ( t ) S z σ ( t ) f ν ( ϑ ) Δ ϑ ϕ β λ ( ζ ) z σ ( ζ ) λ ( τ ) Δ τ p 1 f ν ( ζ ) z σ ( t ) ϕ β λ ( ϑ ) z σ ( ϑ ) λ ( τ ) Δ τ p 1 Δ ϑ × z σ ( t ) λ ( τ ) Δ τ p f ( t ) × φ 1 W ( ξ ) S z σ ( ξ ) g ν ( y ) Δ y φ β ψ ( η ) z σ ( η ) ψ ( τ ) Δ τ δ 1 g ν ( η ) z σ ( ξ ) φ β ψ ( y ) z σ ( y ) ψ ( τ ) Δ τ δ 1 Δ y z σ ( ξ ) ψ ( τ ) Δ τ δ g ( ξ ) Δ t Δ ξ ν C p , δ , r , s , ν z σ ( r ) ϕ β λ ( ϑ ) z σ ( ϑ ) λ ( τ ) Δ τ p 1 σ ( r ) ϑ Δ ϑ 1 β × z σ ( s ) φ β ψ ( y ) z σ ( y ) ψ ( τ ) Δ τ δ 1 σ ( s ) y Δ y 1 β ,
holds for all r , s [ z , ) T , where
Φ ( t , ξ ) = f ( t ) g ( ξ ) z σ ( t ) f ν ( ϑ ) Δ ϑ 1 ν z σ ( ξ ) g ν ( y ) Δ y 1 ν × S z σ ( r ) f ν ( ϑ ) Δ ϑ z σ ( t ) ϕ β λ ( ζ ) z σ ( ζ ) λ ( τ ) Δ τ p 1 f ν ( t ) z σ ( r ) ϕ β λ ( ϑ ) z σ ( ϑ ) λ ( τ ) Δ τ p 1 σ ( r ) ϑ Δ ϑ × S z σ ( s ) g ν ( ϑ ) Δ ϑ z σ ( ξ ) φ β ψ ( η ) z σ ( η ) ψ ( τ ) Δ τ δ 1 g ν ( ξ ) z σ ( s ) φ β ψ ( y ) z σ ( y ) ψ ( τ ) Δ τ δ 1 σ ( s ) y Δ y ,
with
C p , δ , r , s , ν = ϕ p φ ( δ ) ν z σ ( r ) f ν ( ϑ ) Δ ϑ 1 ν z σ ( s ) g ν ( ϑ ) Δ ϑ 1 ν ,
P ( t ) = z σ ( t ) S z σ ( t ) f ν ( ϑ ) Δ ϑ ϕ β λ ( ϑ ) z σ ( ϑ ) λ ( τ ) Δ τ p 1 f ν ( ϑ ) z σ ( t ) ϕ β λ ( ϑ ) z σ ( ϑ ) λ ( τ ) Δ τ p 1 Δ ϑ f ( ϑ ) Δ ϑ ,
W ( ξ ) = z σ ( ξ ) S z σ ( ξ ) g ν ( y ) Δ y φ β ψ ( y ) z σ ( y ) ψ ( τ ) Δ τ δ 1 g ν ( y ) z σ ( ξ ) φ β ψ ( y ) z σ ( y ) ψ ( τ ) Δ τ δ 1 Δ y g ( y ) Δ y ,
such that
S z σ ( t ) f ν ( ϑ ) Δ ϑ ϕ β λ ( ζ ) z σ ( ζ ) λ ( τ ) Δ τ p 1 f ν ( ζ ) z σ ( t ) ϕ β λ ( ϑ ) z σ ( ϑ ) λ ( τ ) Δ τ p 1 Δ ϑ = max S z σ ( t ) f ν ( ϑ ) Δ ϑ ϕ β λ ( z ) z σ ( z ) λ ( τ ) Δ τ p 1 f ν ( z ) z σ ( t ) ϕ β λ ( ϑ ) z σ ( ϑ ) λ ( τ ) Δ τ p 1 Δ ϑ ; S z σ ( t ) f ν ( ϑ ) Δ ϑ ϕ β λ ( t ) z σ ( t ) λ ( τ ) Δ τ p 1 f ν ( t ) z σ ( t ) ϕ β λ ( ϑ ) z σ ( ϑ ) λ ( τ ) Δ τ p 1 Δ ϑ ,
and
S z σ ( ξ ) g ν ( y ) Δ y φ β ψ ( η ) z σ ( η ) ψ ( τ ) Δ τ δ 1 g ν ( η ) z σ ( ξ ) φ β ψ ( y ) z σ ( y ) ψ ( τ ) Δ τ δ 1 Δ y = max S z σ ( ξ ) g ν ( y ) Δ y φ β ψ ( z ) z σ ( z ) ψ ( τ ) Δ τ δ 1 g ν ( z ) z σ ( ξ ) φ β ψ ( y ) z σ ( y ) ψ ( τ ) Δ τ δ 1 Δ y ;
S z σ ( ξ ) g ν ( y ) Δ y φ β ψ ( ξ ) z σ ( ξ ) ψ ( τ ) Δ τ δ 1 g ν ( ξ ) z σ ( ξ ) φ β ψ ( y ) z σ ( y ) ψ ( τ ) Δ τ δ 1 Δ y .
Proof. 
Denote
Λ t , ξ = P ( t ) ϕ S z σ ( t ) f ν ( ϑ ) Δ ϑ ϕ β λ ( ζ ) z σ ( ζ ) λ ( τ ) Δ τ p 1 f ν ( ζ ) z σ ( t ) ϕ β λ ( ϑ ) z σ ( ϑ ) λ ( τ ) Δ τ p 1 Δ ϑ × 1 P ( t ) z σ ( t ) λ ( τ ) Δ τ p f ( t ) × W ( ξ ) φ S z σ ( ξ ) g ν ( y ) Δ y φ β ψ ( η ) z σ ( η ) ψ ( τ ) Δ τ δ 1 g ν ( η ) z σ ( ξ ) φ β ψ ( y ) z σ ( y ) ψ ( τ ) Δ τ δ 1 Δ y × 1 W ( ξ ) z σ ( ξ ) ψ ( τ ) Δ τ δ g ( ξ ) ,
and
Ω t , ξ = P ( t ) ϕ S z σ ( t ) f ν ( ϑ ) Δ ϑ ϕ β λ ( ζ ) z σ ( ζ ) λ ( τ ) Δ τ p 1 f ν ( ζ ) z σ ( t ) ϕ β λ ( ϑ ) z σ ( ϑ ) λ ( τ ) Δ τ p 1 Δ ϑ × 1 P ( t ) z σ ( t ) λ ( τ ) Δ τ p f ( t ) × W ( ξ ) φ S z σ ( ξ ) g ν ( y ) Δ y φ β ψ ( η ) z σ ( η ) ψ ( τ ) Δ τ δ 1 g ν ( η ) z σ ( ξ ) φ β ψ ( y ) z σ ( y ) ψ ( τ ) Δ τ δ 1 Δ y × 1 W ( ξ ) z σ ( ξ ) ψ ( τ ) Δ τ δ g ( ξ ) .
Applying (18) with γ = p gives us
z σ ( t ) λ ( τ ) Δ τ p p z σ ( t ) λ ( ϑ ) z σ ( ϑ ) λ ( τ ) Δ τ p 1 Δ ϑ .
By multiplying the previous inequality by
S z σ ( t ) f ν ( ϑ ) Δ ϑ ϕ β λ ( ζ ) z σ ( ζ ) λ ( τ ) Δ τ p 1 f ν ( ζ ) z σ ( t ) ϕ β λ ( ϑ ) z σ ( ϑ ) λ ( τ ) Δ τ p 1 Δ ϑ f ( t ) ,
we have
S z σ ( t ) f ν ( ϑ ) Δ ϑ ϕ β λ ( ζ ) z σ ( ζ ) λ ( τ ) Δ τ p 1 f ν ( ζ ) z σ ( t ) ϕ β λ ( ϑ ) z σ ( ϑ ) λ ( τ ) Δ τ p 1 Δ ϑ × f ( t ) z σ ( t ) λ ( τ ) Δ τ p p z σ ( t ) S z σ ( t ) f ν ( ϑ ) Δ ϑ ϕ β λ ( ζ ) z σ ( ζ ) λ ( τ ) Δ τ p 1 f ν ( ζ ) z σ ( t ) ϕ β λ ( ϑ ) z σ ( ϑ ) λ ( τ ) Δ τ p 1 Δ ϑ × f ( t ) λ ( ϑ ) z σ ( ϑ ) λ ( τ ) Δ τ p 1 Δ ϑ .
Using the fact that f is nondecreasing and t ϑ , we obtain
S z σ ( t ) f ν ( ϑ ) Δ ϑ ϕ β λ ( ζ ) z σ ( ζ ) λ ( τ ) Δ τ p 1 f ν ( ζ ) z σ ( t ) ϕ β λ ( ϑ ) z σ ( ϑ ) λ ( τ ) Δ τ p 1 Δ ϑ × f ( t ) z σ ( t ) λ ( τ ) Δ τ p p z σ ( t ) S z σ ( t ) f ν ( ϑ ) Δ ϑ ϕ β λ ( ζ ) z σ ( ζ ) λ ( τ ) Δ τ p 1 f ν ( ζ ) z σ ( t ) ϕ β λ ( ϑ ) z σ ( ϑ ) λ ( τ ) Δ τ p 1 Δ ϑ × f ( ϑ ) λ ( ϑ ) z σ ( ϑ ) λ ( τ ) Δ τ p 1 Δ ϑ .
By Lemma 6, inequality (34) is
S z σ ( t ) f ν ( ϑ ) Δ ϑ ϕ β λ ( ζ ) z σ ( ζ ) λ ( τ ) Δ τ p 1 f ν ( ζ ) z σ ( t ) ϕ β λ ( ϑ ) z σ ( ϑ ) λ ( τ ) Δ τ p 1 Δ ϑ × f ( t ) z σ ( t ) λ ( τ ) Δ τ p p z σ ( t ) S z σ ( t ) f ν ( ϑ ) Δ ϑ ϕ β λ ( ϑ ) z σ ( ϑ ) λ ( τ ) Δ τ p 1 f ν ( ϑ ) z σ ( t ) ϕ β λ ( ϑ ) z σ ( ϑ ) λ ( τ ) Δ τ p 1 Δ ϑ × f ( ϑ λ ( ϑ ) z σ ( ϑ ) λ ( τ ) Δ τ p 1 ) Δ ϑ .
Likewise, for the decreasing function ψ , the nondecreasing function g and 0 δ 1 , we obtain
S z σ ( ξ ) g ν ( y ) Δ y φ β ψ ( η ) z σ ( η ) ψ ( τ ) Δ τ δ 1 g ν ( η ) z σ ( ξ ) φ β ψ ( y ) z σ ( y ) ψ ( τ ) Δ τ δ 1 Δ y
× z σ ( ξ ) ψ ( τ ) Δ τ δ g ( ξ ) δ z σ ( ξ ) S z σ ( ξ ) g ν ( y ) Δ y φ β ψ ( y ) z σ ( y ) ψ ( τ ) Δ τ δ 1 g ν ( y ) z σ ( ξ ) φ β ψ ( y ) z σ ( y ) ψ ( τ ) Δ τ δ 1 Δ y × ψ ( y ) z σ ( y ) ψ ( τ ) Δ τ δ 1 g ( y ) Δ y .
From (35), we deduce that
ϕ S z σ ( t ) f ν ( ϑ ) Δ ϑ ϕ β λ ( ζ ) z σ ( ζ ) λ ( τ ) Δ τ p 1 f ν ( ζ ) z σ ( t ) ϕ β λ ( ϑ ) z σ ( ϑ ) λ ( τ ) Δ τ p 1 Δ ϑ × 1 P ( t ) z σ ( t ) λ ( τ ) Δ τ p f ( t ) ϕ p P ( t ) z σ ( t ) S z σ ( t ) f ν ( ϑ ) Δ ϑ ϕ β λ ( ϑ ) z σ ( ϑ ) λ ( τ ) Δ τ p 1 f ν ( ϑ ) z σ ( t ) ϕ β λ ( ϑ ) z σ ( ϑ ) λ ( τ ) Δ τ p 1 Δ ϑ × λ ( ϑ ) z σ ( ϑ ) λ ( τ ) Δ τ p 1 f ( ϑ ) Δ ϑ .
Since ϕ is a positive, increasing and super-multiplicative function, we have
ϕ S z σ ( t ) f ν ( ϑ ) Δ ϑ ϕ β λ ( ζ ) z σ ( ζ ) λ ( τ ) Δ τ p 1 f ν ( ζ ) z σ ( t ) ϕ β λ ( ϑ ) z σ ( ϑ ) λ ( τ ) Δ τ p 1 Δ ϑ × 1 P ( t ) z σ ( t ) λ ( τ ) Δ τ p f ( t ) ϕ p ϕ 1 P ( t ) z σ ( t ) S z σ ( t ) f ν ( ϑ ) Δ ϑ ϕ β λ ( ϑ ) z σ ( ϑ ) λ ( τ ) Δ τ p 1 f ν ( ϑ ) z σ ( t ) ϕ β λ ( ϑ ) z σ ( ϑ ) λ ( τ ) Δ τ p 1 Δ ϑ × λ ( ϑ ) z σ ( ϑ ) λ ( τ ) Δ τ p 1 f ( ϑ ) Δ ϑ .
Then, by using the Jensen inequality on the right-hand side of (37) (where ϕ is a concave function), we obtain
ϕ S z σ ( t ) f ν ( ϑ ) Δ ϑ ϕ β λ ( ζ ) z σ ( ζ ) λ ( τ ) Δ τ p 1 f ν ( ζ ) z σ ( t ) ϕ β λ ( ϑ ) z σ ( ϑ ) λ ( τ ) Δ τ p 1 Δ ϑ × 1 P ( t ) z σ ( t ) λ ( τ ) Δ τ p f ( t )
ϕ p P ( t ) z σ ( t ) S z σ ( t ) f ν ( ϑ ) Δ ϑ ϕ β λ ( ϑ ) z σ ( ϑ ) λ ( τ ) Δ τ p 1 f ν ( ϑ ) z σ ( t ) ϕ β λ ( ϑ ) z σ ( ϑ ) λ ( τ ) Δ τ p 1 Δ ϑ × f ( ϑ ) ϕ λ ( ϑ ) z σ ( ϑ ) λ ( τ ) Δ τ p 1 Δ ϑ .
Analogously, in the case of (36), we can see (where φ is a positive, increasing, concave and supermultiplicative function) that
φ S z σ ( ξ ) g ν ( y ) Δ y φ β ψ ( η ) z σ ( η ) ψ ( τ ) Δ τ δ 1 g ν ( η ) z σ ( ξ ) φ β ψ ( y ) z σ ( y ) ψ ( τ ) Δ τ δ 1 Δ y × 1 W ( ξ ) z σ ( ξ ) ψ ( τ ) Δ τ δ g ( ξ ) φ ( δ ) W ( ξ ) z σ ( ξ ) S z σ ( ξ ) g ν ( y ) Δ y φ β ψ ( y ) z σ ( y ) ψ ( τ ) Δ τ δ 1 g ν ( y ) z σ ( ξ ) φ β ψ ( y ) z σ ( y ) ψ ( τ ) Δ τ δ 1 Δ y × g ( y ) φ ψ ( y ) z σ ( y ) ψ ( τ ) Δ τ δ 1 Δ y .
Multiplying (38) and (39), we obtain
Λ t , ξ ϕ p z σ ( t ) S z σ ( t ) f ν ( ϑ ) Δ ϑ ϕ β λ ( ϑ ) z σ ( ϑ ) λ ( τ ) Δ τ p 1 f ν ( ϑ ) z σ ( t ) ϕ β λ ( ϑ ) z σ ( ϑ ) λ ( τ ) Δ τ p 1 Δ ϑ × f ( ϑ ) ϕ λ ( ϑ ) z σ ( ϑ ) λ ( τ ) Δ τ p 1 Δ ϑ × φ ( δ ) z σ ( ξ ) S z σ ( ξ ) g ν ( y ) Δ y φ β ψ ( y ) z σ ( y ) ψ ( τ ) Δ τ δ 1 g ν ( y ) z σ ( ξ ) φ β ψ ( y ) z σ ( y ) ψ ( τ ) Δ τ δ 1 Δ y × g ( y ) φ ψ ( y ) z σ ( y ) ψ ( τ ) Δ τ δ 1 Δ y .
Applying (22) on the right-hand side of (40), we obtain
Ω t , ξ ϕ p z σ ( t ) f ν ( ϑ ) Δ ϑ 1 ν z σ ( t ) ϕ β λ ( ϑ ) z σ ( ϑ ) λ ( τ ) Δ τ p 1 Δ ϑ 1 β × φ ( δ ) z σ ( ξ ) g ν ( y ) Δ y 1 ν z σ ( ξ ) φ β ψ ( y ) z σ ( y ) ψ ( τ ) Δ τ δ 1 Δ y 1 β .
Multiplying (41) by
Φ ( t , ξ ) = f ( t ) g ( ξ ) z σ ( t ) f ν ( ϑ ) Δ ϑ 1 ν z σ ( ξ ) g ν ( y ) Δ y 1 ν × S z σ ( r ) f ν ( ϑ ) Δ ϑ z σ ( t ) ϕ β λ ( ζ ) z σ ( ζ ) λ ( τ ) Δ τ p 1 f ν ( t ) z σ ( r ) ϕ β λ ( ϑ ) z σ ( ϑ ) λ ( τ ) Δ τ p 1 σ ( r ) ϑ Δ ϑ × S z σ ( s ) g ν ( ϑ ) Δ ϑ z σ ( ξ ) φ β ψ ( η ) z σ ( η ) ψ ( τ ) Δ τ δ 1 g ν ( ξ ) z σ ( s ) φ β ψ ( y ) z σ ( y ) ψ ( τ ) Δ τ δ 1 σ ( s ) y Δ y ,
we have
Φ ( t , ξ ) Ω t , ξ ϕ p φ ( δ ) z σ ( t ) ϕ β λ ( ϑ ) z σ ( ϑ ) λ ( τ ) Δ τ p 1 Δ ϑ 1 β f ( t ) × S z σ ( r ) f ν ( ϑ ) Δ ϑ z σ ( t ) ϕ β λ ( ζ ) z σ ( ζ ) λ ( τ ) Δ τ p 1 f ν ( t ) z σ ( r ) ϕ β λ ( ϑ ) z σ ( ϑ ) λ ( τ ) Δ τ p 1 σ ( r ) ϑ Δ ϑ × z σ ( ξ ) φ β ψ ( y ) z σ ( y ) ψ ( τ ) Δ τ δ 1 Δ y 1 β g ( ξ ) × S z σ ( s ) g ν ( ϑ ) Δ ϑ z σ ( ξ ) φ β ψ ( η ) z σ ( η ) ψ ( τ ) Δ τ δ 1 g ν ( ξ ) z σ ( s ) φ β ψ ( y ) z σ ( y ) ψ ( τ ) Δ τ δ 1 σ ( s ) y Δ y .
Using the integration over t from z to σ ( r ) and the integration over ξ from z to σ ( s ) , respectively, we arrive at
z σ ( s ) z σ ( r ) Φ ( t , ξ ) Ω t , ξ Δ t Δ ξ ϕ p φ ( δ ) z σ ( r ) z σ ( t ) ϕ β λ ( ϑ ) z σ ( ϑ ) λ ( τ ) Δ τ p 1 Δ ϑ 1 β f ( t ) × S z σ ( r ) f ν ( ϑ ) Δ ϑ z σ ( t ) ϕ β λ ( ζ ) z σ ( ζ ) λ ( τ ) Δ τ p 1 f ν ( t ) z σ ( r ) ϕ β λ ( ϑ ) z σ ( ϑ ) λ ( τ ) Δ τ p 1 σ ( r ) ϑ Δ ϑ Δ t × z σ ( s ) z σ ( ξ ) φ β ψ ( y ) z σ ( y ) ψ ( τ ) Δ τ δ 1 Δ y 1 β g ( ξ ) × S z σ ( s ) g ν ( ϑ ) Δ ϑ z σ ( ξ ) φ β ψ ( η ) z σ ( η ) ψ ( τ ) Δ τ δ 1 g ν ( ξ ) z σ ( s ) φ β ψ ( y ) z σ ( y ) ψ ( τ ) Δ τ δ 1 σ ( s ) y Δ y Δ ξ .
Applying Formula (14) on the term
z σ ( r ) ϕ β λ ( ϑ ) z σ ( ϑ ) λ ( τ ) Δ τ p 1 σ ( r ) ϑ Δ ϑ ,
with u ( ϑ ) = σ ( r ) ϑ and v Δ ( ϑ ) = ϕ β λ ( ϑ ) z σ ( ϑ ) λ ( τ ) Δ τ p 1 , we obtain
z σ ( r ) ϕ β λ ( ϑ ) z σ ( ϑ ) λ ( τ ) Δ τ p 1 σ ( r ) ϑ Δ ϑ = σ ( r ) ϑ v ( ϑ ) z σ ( r ) + z σ ( r ) v σ ( ϑ ) Δ ϑ ,
where v ( ϑ ) = z ϑ λ ( θ ) z σ ( θ ) λ ( τ ) Δ τ p 1 β Δ θ and then (where v ( z ) = 0 )
z σ ( r ) ϕ β λ ( ϑ ) z σ ( ϑ ) λ ( τ ) Δ τ p 1 σ ( r ) ϑ Δ ϑ = z σ ( r ) z σ ( ϑ ) ϕ β λ ( θ ) z σ ( θ ) λ ( τ ) Δ τ p 1 Δ θ Δ ϑ .
In a similar vein, we note
z σ ( s ) φ β ψ ( y ) z σ ( y ) ψ ( τ ) Δ τ δ 1 σ ( s ) y Δ y = z σ ( s ) z σ ( y ) φ β ψ ( θ ) z σ ( θ ) ψ ( τ ) Δ τ δ 1 Δ θ Δ y .
Substituting (43) and (44) into (42), we have
z σ ( s ) z σ ( r ) Φ ( t , ξ ) Ω t , ξ Δ t Δ ξ ϕ p φ ( δ ) z σ ( r ) z σ ( t ) ϕ β λ ( ϑ ) z σ ( ϑ ) λ ( τ ) Δ τ p 1 Δ ϑ 1 β f ( t ) × S z σ ( r ) f ν ( ϑ ) Δ ϑ z σ ( t ) ϕ β λ ( ζ ) z σ ( ζ ) λ ( τ ) Δ τ p 1 Δ ζ f ν ( t ) z σ ( r ) z σ ( ϑ ) ϕ β λ ( θ ) z σ ( θ ) λ ( τ ) Δ τ p 1 Δ θ Δ ϑ Δ t × z σ ( s ) z σ ( ξ ) φ β ψ ( y ) z σ ( y ) ψ ( τ ) Δ τ δ 1 Δ y 1 β g ( ξ ) × S z σ ( s ) g ν ( ϑ ) Δ ϑ z σ ( ξ ) φ β ψ ( η ) z σ ( η ) ψ ( τ ) Δ τ δ 1 g ν ( ξ ) z σ ( s ) z σ ( y ) φ β ψ ( θ ) z σ ( θ ) ψ ( τ ) Δ τ δ 1 Δ θ Δ y Δ ξ .
Then, by applying (22) on the previous inequality, using (43) and (44), we obtain
z σ ( s ) z σ ( r ) Φ ( t , ξ ) Ω t , ξ Δ t Δ ξ ϕ p φ ( δ ) z σ ( r ) f ν ( ϑ ) Δ ϑ 1 ν z σ ( s ) g ν ( ϑ ) Δ ϑ 1 ν × z σ ( r ) z σ ( ϑ ) ϕ β λ ( θ ) z σ ( θ ) λ ( τ ) Δ τ p 1 Δ θ Δ ϑ 1 β × z σ ( s ) z σ ( y ) φ β ψ ( θ ) z σ ( θ ) ψ ( τ ) Δ τ δ 1 Δ θ Δ y 1 β = ϕ p φ ( δ ) z σ ( r ) f ν ( ϑ ) Δ ϑ 1 ν z σ ( s ) g ν ( ϑ ) Δ ϑ 1 ν × z σ ( r ) ϕ β λ ( ϑ ) z σ ( ϑ ) λ ( τ ) Δ τ p 1 σ ( r ) ϑ Δ ϑ 1 β × z σ ( s ) φ β ψ ( y ) z σ ( y ) ψ ( τ ) Δ τ δ 1 σ ( s ) y Δ y 1 β ,
and thus we obtain
z σ ( s ) z σ ( r ) Φ ( t , ξ ) P ( t ) W ( ξ ) × ϕ S z σ ( t ) f ν ( ϑ ) Δ ϑ ϕ β λ ( ζ ) z σ ( ζ ) λ ( τ ) Δ τ p 1 f ν ( ζ ) z σ ( t ) ϕ β λ ( ϑ ) z σ ( ϑ ) λ ( τ ) Δ τ p 1 Δ ϑ 1 P ( t ) z σ ( t ) λ ( τ ) Δ τ p f ( t ) × φ S z σ ( ξ ) g ν ( y ) Δ y φ β ψ ( η ) z σ ( η ) ψ ( τ ) Δ τ δ 1 g ν ( η ) z σ ( ξ ) φ β ψ ( y ) z σ ( y ) ψ ( τ ) Δ τ δ 1 Δ y g ( ξ ) W ( ξ ) z σ ( ξ ) ψ ( τ ) Δ τ δ Δ t Δ ξ ν C p , δ , r , s , ν z σ ( r ) ϕ β λ ( ϑ ) z σ ( ϑ ) λ ( τ ) Δ τ p 1 σ ( r ) ϑ Δ ϑ 1 β × z σ ( s ) φ β ψ ( y ) z σ ( y ) ψ ( τ ) Δ τ δ 1 σ ( s ) y Δ y 1 β ,
which is (32). The proof is complete. □
Remark 1.
As a special case of Theorem 1, when T = N , φ ( ϑ ) = ϕ ( ϑ ) = ϑ ,   f ( ϑ ) = g ( ϑ ) = 1 and β = ν = 2 , we can obtain (10) demonstrated in [6].
Remark 2.
As a special case of Theorem 1, when φ ( ϑ ) = ϕ ( ϑ ) = ϑ , and β = ν = 2 , we can obtain the results demonstrated in [8].
Remark 3.
As a special case of Theorem 1, when φ ( ϑ ) = ϕ ( ϑ ) = ϑ , we can obtain the results demonstrated in [16].

4. Conclusions

In this paper, we use reverse Hölder inequalities with Specht’s ratio on time scales to develop the study of reversed Hilbert-type inequalities. This aim holds by a study on some new generalizations of reversed Hilbert-type inequalities via supermultiplicative functions. In the future work, we can generalize dynamic inequalities of this article using a fractional Riemann–Liouville integral on time scale calculus, and we can present some of these dynamic inequalities on quantum calculus. It will be interesting to present dynamic inequalities in two or more dimensions.

Author Contributions

Software and Writing—original draft, H.M.R., G.A. and A.I.S.; Writing—review and editing H.M.R. and M.Z. All authors have read and agreed to the published version of the manuscript.

Funding

Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Acknowledgments

Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2022R45), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Hardy, G.H. Note on a theorem of Hilbert concerning series of positive term. Proc. Lond. Math. Soc. 1925, 23, 45–46. [Google Scholar]
  2. Hardy, G.H.; Littlewood, J.E.; Pólya, G. Inequalities, 2nd ed.; Cambridge University Press: Cambridge, UK, 1934. [Google Scholar]
  3. Hölder, O. Uber einen Mittelwerthssatz. Nachr. Ges. Wiss. Gott. 1889, 38–47. [Google Scholar]
  4. Zhao, C.J.; Cheung, W.S. Hölder’s reverse inequality and its applications. Publ. L’Inst. Math. 2016, 99, 211–216. [Google Scholar] [CrossRef]
  5. Tominaga, M. Specht’s ratio in the Young inequality. Sci. Math. Jpn. 2002, 55, 583–588. [Google Scholar]
  6. Zhao, C.J.; Cheung, W.S. Reverse Hilbert type inequalities. J. Math. Inequalities 2019, 13, 855–866. [Google Scholar] [CrossRef]
  7. Ahmed, A.M.; AlNemer, G.; Zakarya, M.; Rezk, H.M. Some dynamic inequalities of Hilbert’s type. J. Funct. Spaces 2020, 2020, 4976050. [Google Scholar] [CrossRef]
  8. AlNemer, G.; Saied, A.I.; Zakarya, M.; Abd El-Hamid, H.A.; Bazighifan, O.; Rezk, H.M. Some new reverse Hilbert’s inequalities on time scales. Symmetry 2021, 13, 2431. [Google Scholar] [CrossRef]
  9. Al Nemer, G.; Zakarya, M.; El-Hamid, H.A.A.; Agarwal, P.; Rezk, H. Some Dynamic Hilbert-type inequality on time scales. Symmetry 2020, 12, 1410. [Google Scholar]
  10. Bohner, M.; Peterson, A. Dynamic Equations on Time Scales: An Introduction with Applications; Birkhäuser: Boston, NA, USA, 2001. [Google Scholar]
  11. Bohner, M.; Peterson, A. Advances in Dynamic Equations on Time Scales; Birkhäuser: Boston, MA, USA, 2003. [Google Scholar]
  12. El-Deeb, A.A.; Elsennary, H.A.; Cheung, W. Some reverse Hölder inequalities with Specht’s ratio on time scales. J. Nonlinear Sci. Appl. 2018, 11, 444–455. [Google Scholar] [CrossRef]
  13. Saker, S.H.; Mahmoud, R.R.; Peterson, A. Weighted Hardy-type inequalities on time scales with applications. Mediterr. J. Math. 2016, 13, 585–606. [Google Scholar] [CrossRef]
  14. Saker, S.H.; Ahmed, A.M.; Rezk, H.M.; O’Regan, D.; Agarwal, R.P. New Hilbert’s dynamic inequalities on time scales. J Inequalities Appl. 2017, 20, 1017–1039. [Google Scholar] [CrossRef]
  15. Sandor, J. Inequalities for multiplicative arithmetic functions. arXiv 2011, arXiv:1105.0292. [Google Scholar]
  16. Zakarya, M.; Saied, A.I.; AlNemer, G.; Rezk, H.M. A study on some new reverse Hilbert-Type inequalities and its generalizations on time scales. J. Math. 2022, 2022, 6285367. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Rezk, H.M.; Saied, A.I.; AlNemer, G.; Zakarya, M. Some New Generalizations of Reverse Hilbert-Type Inequalities via Supermultiplicative Functions. Symmetry 2022, 14, 2043. https://doi.org/10.3390/sym14102043

AMA Style

Rezk HM, Saied AI, AlNemer G, Zakarya M. Some New Generalizations of Reverse Hilbert-Type Inequalities via Supermultiplicative Functions. Symmetry. 2022; 14(10):2043. https://doi.org/10.3390/sym14102043

Chicago/Turabian Style

Rezk, Haytham M., Ahmed I. Saied, Ghada AlNemer, and Mohammed Zakarya. 2022. "Some New Generalizations of Reverse Hilbert-Type Inequalities via Supermultiplicative Functions" Symmetry 14, no. 10: 2043. https://doi.org/10.3390/sym14102043

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop