Next Article in Journal
Special Issue: Symmetry in Nonequilibrium Statistical Mechanics and Dynamical Systems
Previous Article in Journal
Some Hermite–Hadamard and Hermite–Hadamard–Fejér Type Fractional Inclusions Pertaining to Different Kinds of Generalized Preinvexities
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Fractional Leindler’s Inequalities via Conformable Calculus

1
Department of Mathematical Sciences, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
2
Department of Mathematics, Faculty of Science, Fayoum University, Fayoum 63514, Egypt
3
Kasr Al-Aini ST, Academy of Scientific Research Technology, Cairo 11334, Egypt
4
Department of Mathematics, Faculty of Science, Al-Azhar University, Nasr City 11884, Egypt
5
Department of Mathematics, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
6
Department of Mathematics, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt
*
Authors to whom correspondence should be addressed.
Symmetry 2022, 14(10), 1958; https://doi.org/10.3390/sym14101958
Submission received: 31 July 2022 / Revised: 29 August 2022 / Accepted: 9 September 2022 / Published: 20 September 2022
(This article belongs to the Section Mathematics)

Abstract

:
In this paper, some fractional Leindler and Hardy-type inequalities and their reversed will be proved by using integration by parts and Hölder inequality on conformable fractional calculus. As a special case, some classical integral inequalities will be obtained. Symmetrical properties play an essential role in determining the correct methods to solve inequalities. The new fractional inequalities in special cases yield some recent relevance, which also provide new estimates on inequalities of these type.

1. Introduction

The Hardy discrete inequality is known as
s = 1 1 s i = 1 s f ( i ) n n n 1 n s = 1 f n ( s ) , n > 1 .
where f s is a nonnegative sequence. Leindler, in [1,2], obtains some generalizations of the inequality (1) by using a new weighted function. Specifically, Leindler, in [1], proved the inequalities:
r = 1 μ ( r ) k = 1 r f ( k ) n n n r = 1 μ 1 n ( r ) k = r μ ( k ) n f n ( r ) ,
and
s = 1 μ ( s ) k = s f ( k ) n n n s = 1 μ 1 n ( s ) k = 1 s μ ( k ) n f n ( s ) ,
where n > 1 and μ ( s ) > 0 .
Copson in [3], established discrete new inequalities (see [4]). Particularly, one of them is presented as
s = 1 k = s f ( k ) n n n s = 1 s f ( s ) n , for 0 < n < 1 ,
where { f s } is a nonnegative sequence. Leindler [2] proved the reverse of inequalities (2) and (3). Particularly, he proved that
s = 1 μ ( s ) k = 1 s f ( k ) n n n s = 1 μ 1 n ( s ) k = s μ ( k ) n f n ( s ) ,
and
s = 1 μ ( s ) k = s f ( k ) n n n s = 1 μ 1 n ( s ) k = 1 s μ ( n ) n f n ( s ) ,
where 0 < n 1 .
A fascinating variation of the inequalities of Hardy–Copson, was presented via Leindler [5]. Indeed, Leindler [5] extended the above-mentioned inequalities and demonstrated that if i = s μ ( i ) < , n > 1 and 0 k < 1 , then
s = 1 μ ( s ) ( Ψ ( s ) ) k i = 1 s μ ( i ) f ( i ) n n 1 k n s = 1 μ ( s ) ( Ψ ( s ) ) n k f n ( s ) ,
where Ψ s = i = s μ ( i ) , if 1 < k n , we find
s = 1 μ ( s ) ( Ψ ( s ) ) k i = s μ ( i ) f ( i ) n n k 1 n s = 1 μ ( s ) ( Ψ ( s ) ) n k f n ( s ) .
In recent years, a lot of work has been published for fractional inequalities, the subject has become an active field of research, and several authors were interested in proving inequalities of fractional type by using the Riemann-Liouville and Caputo derivative, see [6,7,8], for more details about fractional-type inequalities.
In [9,10], the authors expanded fractional calculus to conformable calculus and gave a new definition of the derivative with the base properties of the calculus based on the new definition of derivatives and integrals. During the last few years, by using conformable fractional calculus, authors proved some integral inequalities, such as Hardy’s inequality [11], Hermite–Hadamard’s inequality [12,13,14,15,16,17], Opial’s inequality [18,19], Steffensen’s inequality [20], and Chebyshev’s inequality [21]. Additionally, over several decads, many generalizations, extensions and refinements of other types of integral inequalities have been studied we refer the reader to the papers [22,23,24,25,26].
The main question that arises now is: is it possible to prove new α conformable fractional calculus. Therefore, it is natural to look at new fractional inequalities and give an affirmative answer to the above question. In particular, in this paper, we will prove the fractional forms of the Leindler and classical Hardy-type inequalities. The paper is coordinated as: In Section 2, we discuss the preliminaries and basic concepts of conformable fractional calculus, which will be required in proving our main Results. In Section 3, we introduce some fractional Leindler inequalities with their extensions. In Section 4, we demonstrate some reversed fractional Leindler inequalities with their extensions, in addition to sections of Results and Discussion and Conclusions and Future Work.

2. Preliminaries and Basic Concepts

In this part, we show the basics of conformable fractional integral and derivative of order α ( 0 , 1 ] , that will be used in this paper (see [9,10]).
Definition 1.
The conformable fractional derivative of order α of g : [ 0 , ) R , is defined by
D α g ( x ) = lim ϵ 0 g ( x + ϵ x 1 α ) g ( x ) ϵ ,
x > 0 , 0 < α 1 , and D α g ( 0 ) = lim x 0 + D α g ( x ) .
Assume α ( 0 , 1 ] , and g , h be α -differentiable at x, then
D α ( g h ) = g D α h + h D α g ,
further if h ( x ) 0 , then
D α g h = h D α g g D α h h 2 .
Remark 1.
For a differentiable function g , then
D α g ( x ) = x 1 α d g ( x ) d x .
Definition 2.
The conformable fractional integral of order α of g : [ 0 , ) R , is defined by
I α g ( x ) = 0 x g ( s ) d α s = 0 x s α 1 g ( s ) d s ,
x > 0 and α ( 0 , 1 ] .
Lemma 1
(Integration by parts formula). Suppose the two functions u , v : [ 0 , ) R are α-differentiable and α ( 0 , 1 ] , then for any d > 0 ,
0 d u ( t ) D α v ( t ) d α t = u ( t ) v ( t ) 0 d 0 d v ( t ) D α u ( t ) d α t .
Lemma 2
(Hölder inequality). Let g , h : [ 0 , ) R and 0 < α 1 .Then for any d > 0 ,
0 d g ( t ) h ( t ) d α t 0 d g ( t ) n d α t 1 n 0 d h ( t ) m d α t 1 m ,
at 1 / n + 1 / m = 1 (where existing the integrals).
The Hardy conformable fractional operator is defined as
H f ( x ) = 0 x f ( t ) d α t ,
and its dual
H * f ( x ) = x f ( t ) d α t .
Through our paper, we consider that the given integrals exist (are finite, i.e., convergent).

3. Fractional Leindler-Type Inequalities

Here, we will prove some fractional Leindler-type inequalities and their extensions for α -differentiable functions and obtain the classical ones at α = 1 .
Theorem 1.
If n > 1 and Ω ( y ) : = y θ ( t ) d α t , then
0 θ ( y ) H n f ( y ) d α y n n 0 θ 1 n ( y ) Ψ n ( y ) f n ( y ) d α y .
Proof. 
Using the integration by parts Formula (12) on 0 θ ( y ) H n f ( y ) d α y , with
u ( y ) = H n f ( y ) , and v ( y ) = Ψ ( y ) ,
we find that
0 θ ( y ) H n f ( y ) d α y = H n f ( y ) Ψ ( y ) 0 + n 0 y 1 α H n 1 f ( y ) ( y ) H f ( y ) Ψ ( y ) d α y , = n 0 y 1 α H n 1 f ( y ) ( y ) H f ( y ) Ψ ( y ) d α y ,
where
H f ( ) < , H f ( 0 ) = 0 , Ψ ( ) = 0 and Ψ ( 0 ) < .
From (14), we obtain:
H f ( y ) = y α 1 f ( y ) .
Substituting into (17), we have
0 θ ( y ) H n f ( y ) d α y = n 0 f ( y ) Ψ ( y ) θ ( y ) n 1 n θ ( y ) n 1 n H n 1 f ( y ) d α y .
Using Hölder inequality (13) over the right part of (18) by indices n / ( n 1 ) and n, then
0 θ ( y ) H n f ( y ) d α y n 0 f ( y ) Ψ ( y ) θ ( y ) n 1 n n d α y 1 / n 0 θ ( y ) n 1 n H n 1 f ( y ) n n 1 d α y n 1 n ,
thus
0 θ ( y ) H n f ( y ) d α y n 0 f ( y ) Ψ ( y ) n θ n 1 ( y ) d α y 1 / n 0 θ ( y ) H n f ( y ) d α y 1 1 / n ,
as
0 θ ( y ) H n f ( y ) d α y 1 1 / n > 0 ,
then
0 θ ( y ) y n f ( y ) d α y 1 n n 0 f ( y ) Ψ ( y ) n θ n 1 ( y ) d α y 1 / n .
This leads to
0 θ ( y ) H n f ( y ) d α y n n 0 θ 1 n ( y ) Ψ n ( y ) f n ( y ) d α y ,
which is the wanted inequality (16).  □
Remark 2.
If α = 1 , in Theorem 1, we obtain the inequality:
0 θ ( y ) 0 y f ( t ) d t n d y n n 0 θ 1 n ( y ) y θ ( t ) d t n f n ( y ) d y .
Remark 3.
If θ ( y ) = 1 / y n , in Theorem 1, we obtain the inequality:
0 1 y 0 y f ( t ) d α t n d α y n n α n 0 y α 1 f ( y ) n d α y .
which is the α-fractional Hardy inequality.
Remark 4.
As a result, if α = 1 in (20), we obtain the classical Hardy inequality:
0 1 y 0 y f ( t ) d t n d y n n 1 n 0 f n ( y ) d y .
Theorem 2.
If Φ ( y ) : = 0 y θ ( t ) d α t and n > 1 , we find that
0 θ ( y ) H * n f ( y ) d α y n n 0 θ 1 n ( y ) Φ n ( y ) f n ( y ) d α y .
Proof. 
Using the integration by parts Formula (12) on 0 θ ( y ) y * n f ( y ) d α y , with
u ( y ) = H * n f ( y ) and v ( y ) = Φ ( y ) ,
we have
0 θ ( y ) H * n f ( y ) d α y = H * n f ( y ) Φ ( y ) 0 n 0 y 1 α H * n 1 f ( y ) H * f ( y ) Φ ( y ) d α y , = n 0 y 1 α H * n 1 f ( y ) H * f ( y ) Φ ( y ) d α y ,
where
H * f ( ) = 0 , H * f ( 0 ) < , Φ ( ) < and Φ ( 0 ) = 0 .
From (15), we obtain
H * f ( y ) = y α 1 f ( y ) .
Substituting into (23), we have
0 θ ( y ) H * n f ( y ) d α y = n 0 f ( y ) Φ ( y ) θ ( y ) n 1 n θ ( y ) n 1 n H * n 1 f ( y ) d α y .
Using the Hölder inequality (13) over the right part of (24) by indices n / ( n 1 ) and n, we find that
0 θ ( y ) H * n f ( y ) d α y n 0 f ( y ) Φ ( y ) θ ( y ) n 1 n n d α y 1 / n × 0 θ ( y ) n 1 n H * n 1 f ( y ) n n 1 d α y n 1 n .
Then,
0 θ ( y ) H * n f ( y ) d α y 1 n n 0 f ( y ) Φ ( y ) n θ n 1 ( y ) d α y 1 / n ,
thus
0 θ ( y ) H * n f ( y ) d α y n n 0 θ 1 n ( y ) Φ n ( y ) f n ( y ) d α y ,
which is the wanted inequality (22).  □
Remark 5.
If α = 1 , in Theorem 2, we achieve the inequality:
0 θ ( y ) y f ( t ) d t n d y n n 0 θ 1 n ( y ) 0 y θ ( t ) d t n f n ( y ) d y .
Remark 6.
If θ ( y ) = 1 , in Theorem 2, we arrive at the inequality:
0 y f ( t ) d α t n d α y n α n 0 y α f ( y ) n d α y ,
which is the α-fractional Hardy inequality.
Remark 7.
As a result, if α = 1 , in (26), we obtain the Hardy inequality:
0 y f ( t ) d t n d y n n 0 y f ( y ) n d y .
Theorem 3.
If n 1 and 0 k < 1 , then
0 θ ( y ) Ψ k ( y ) Λ n ( y ) d α y n 1 k n 0 θ ( y ) Ψ k n ( y ) f n ( y ) d α y ,
where
Ψ ( y ) : = y θ ( t ) d α t and Λ ( y ) : = 0 y θ ( t ) f ( t ) d α t .
Proof. 
Employing the formula of integration by parts (12) on 0 θ ( y ) Ψ k ( y ) Λ n ( y ) d α y , with
u ( y ) = Λ n ( y ) and v ( y ) = Ψ 1 k ( y ) 1 k ,
also
D α u ( y ) = n y 1 α Λ n 1 ( y ) Λ ( y ) and D α v ( y ) = θ ( y ) Ψ k ( y ) ,
thus
0 θ ( y ) Ψ k ( y ) Λ n ( y ) d α y = Λ n ( y ) Ψ 1 k ( y ) 1 k 0 + 0 n y 1 α Λ n 1 ( y ) Λ ( y ) Ψ 1 k ( y ) 1 k d α y .
From
Λ ( y ) = y α 1 θ ( y ) f ( y ) , Λ ( ) < , Λ ( 0 ) = 0 , Ψ ( ) = 0 and Ψ ( 0 ) < ,
we get
0 θ ( y ) Ψ k ( y ) Λ n ( y ) d α y = n 1 k 0 y 1 α Λ n 1 ( y ) y α 1 θ ( y ) f ( y ) Ψ 1 k ( y ) d α y ,
hence
0 θ ( y ) Ψ k ( y ) Λ n ( y ) d α y = n 1 k 0 θ ( y ) Ψ 1 k ( y ) f ( y ) θ ( y ) Ψ k ( y ) n 1 n θ ( y ) Ψ k ( y ) n 1 n Λ n 1 ( y ) d α y .
Using the Hölder inequality (13) over the right part of (29) by indices n / n 1 and n, we find that
0 θ ( y ) Ψ k ( y ) Λ n ( y ) d α y , n 1 k 0 θ ( y ) Ψ 1 k ( y ) f ( y ) θ ( y ) Ψ k ( y ) n 1 n n d α y 1 n × 0 θ ( y ) Ψ k ( y ) n 1 n Λ n 1 ( y ) n n 1 d α y n 1 n , = n 1 k 0 θ ( y ) Ψ n k ( y ) f n ( y ) d α y 1 n 0 θ ( y ) Ψ k ( y ) Λ n ( y ) d α y n 1 n .
So, we have
0 θ ( y ) Ψ k ( y ) Λ n ( y ) d α y 1 n n 1 k 0 θ ( y ) Ψ n k ( y ) f n ( y ) d α y 1 n ,
hence
0 θ ( y ) Ψ k ( y ) Λ n ( y ) d α y n 1 k n 0 θ ( y ) Ψ n k ( y ) f n ( y ) d α y ,
which is the wanted inequality (28).  □
Remark 8.
If α = 1 , in Theorem 3, we obtain:
0 θ ( y ) Ψ k ( y ) 0 y θ ( t ) f ( t ) d t n d y n 1 k n 0 θ ( y ) Ψ k n ( y ) f n ( y ) d y ,
where Ψ ( y ) = y θ ( t ) d t , 0 k < 1 and n > 1 .
Theorem 4.
If n > k 1 and 1 < k n , then
0 θ ( y ) Ψ k ( y ) Φ n ( y ) d α y n k 1 n 0 θ ( y ) Ψ k n ( y ) f n ( y ) d α y ,
where
Ψ ( y ) : = y θ ( t ) d α t and Φ ( y ) : = y θ ( t ) f ( t ) d α t .
Proof. 
Employing the formula of integration by parts (12) on 0 θ ( y ) Ψ k ( y ) Φ n ( y ) d α y , with
u ( y ) = Φ n ( y ) and v ( y ) = Ψ 1 k ( y ) 1 k ,
also
D α u ( y ) = n y 1 α Φ n 1 ( y ) Φ ( y ) and D α v ( y ) = θ ( y ) Ψ k ( y ) ,
we have
0 θ ( y ) Ψ k ( y ) Φ n ( y ) d α y = Φ n ( y ) Ψ 1 k ( y ) 1 k 0 + 0 n y 1 α Φ n 1 ( y ) Φ ( y ) Ψ 1 k ( y ) 1 k d α y .
By using
Φ ( ) = 0 , Φ ( 0 ) < , Ψ ( ) = 0 , Ψ ( 0 ) < , Φ ( y ) = y α 1 θ ( y ) f ( y ) and k > 1 ,
and noting
lim y Ψ 1 k n ( y ) Φ ( y ) = lim y y t α 1 θ ( t ) f ( t ) d t Ψ ( y ) k 1 n , = lim y y α 1 θ ( y ) f ( y ) k 1 n Ψ ( y ) k 1 n 1 y α 1 θ ( y ) , = lim y n Ψ ( y ) 1 k 1 n f ( y ) k 1 = 0 ,
we find,
0 θ ( y ) Ψ k ( y ) Φ n ( y ) d α y n k 1 0 y 1 α Φ n 1 ( y ) y α 1 θ ( y ) f ( y ) Ψ 1 k ( y ) d α y ,
then
0 θ ( y ) Ψ k ( y ) Φ n ( y ) d α y n k 1 0 θ ( y ) Ψ 1 k ( y ) f ( y ) θ ( y ) Ψ k ( y ) n 1 n θ ( y ) Ψ k ( y ) n 1 n Φ n 1 ( y ) d α y .
Using Hölder inequality (13) over the right part of (32) by indices n / ( n 1 ) and n, then
0 θ ( y ) Ψ k ( y ) Φ n ( y ) d α y , n k 1 0 θ ( y ) Ψ 1 k ( y ) f ( y ) θ ( y ) Ψ k ( y ) n 1 n n d α y 1 n × 0 θ ( y ) Ψ k ( y ) n 1 n Φ n 1 ( y ) n n 1 d α y n 1 n , = n k 1 0 θ ( y ) Ψ n k ( y ) f n ( y ) d α y 1 n 0 θ ( y ) Ψ k ( y ) Φ n ( y ) d α y n 1 n .
Therefore, we have
0 θ ( y ) Ψ k ( y ) Φ n ( y ) d α y 1 n n k 1 0 θ ( y ) Ψ n k ( y ) f n ( y ) d α y 1 n ,
and hence
0 θ ( y ) Ψ k ( y ) Φ n ( y ) d α y n k 1 n 0 θ ( y ) Ψ n k ( y ) f n ( y ) d α y ,
which is the wanted inequality (31).  □
Remark 9.
From Theorem 4, we find that if y α 1 θ ( y ) f ( y ) and y α 1 θ ( y ) are continuous on [ 0 , ) exchanged either by:
(i)
y α 1 θ ( y ) f ( y ) , y α 1 θ ( y ) is continuous on ( 0 , ) and lim y Ψ ( y ) 1 k 1 n f ( y ) = 0 ;
(ii)
lim y Ψ 1 k ( y ) Φ n ( y ) = 0 ;
then (31) is also true.
Remark 10.
If α = 1 , in Theorem 4, we find:
0 θ ( y ) Ψ k ( y ) y θ ( t ) f ( t ) d t n d y n k 1 n 0 θ ( y ) Ψ k n ( y ) f n ( y ) d y ,
where 1 < k n and Ψ ( y ) = y θ ( t ) d t .

4. Reversed Fractional Leindler Inequalities

In this section, we will deduce some reversed fractional inequalities and some fractional extensions.
Theorem 5.
If Ψ ( y ) : = y θ ( t ) d α t and 0 < n 1 , then
0 θ ( y ) H n f ( y ) d α y n n 0 θ 1 n ( y ) Ψ n ( y ) f n ( y ) d α y .
Proof. 
Using the integration by parts Formula (12) on 0 θ ( y ) y n f ( y ) d α y , with
u ( y ) = H n f ( y ) and v ( y ) = Ψ ( y ) ,
and we obtain
0 θ ( y ) H n f ( y ) d α y = H n f ( y ) Ψ ( y ) 0 + 0 n y 1 α H n 1 f ( y ) H f ( y ) Ψ ( y ) d α y .
By using
H f ( ) < , H f ( 0 ) = 0 , Ψ ( ) = 0 and Ψ ( 0 ) < ,
and from (14), we get
H f ( y ) = y α 1 f ( y ) ,
so, we obtain
0 θ ( y ) H n f ( y ) d α y = n 0 y 1 α H n 1 f ( y ) y α 1 f ( y ) Ψ ( y ) d α y ,
then
0 θ ( y ) H n f ( y ) d α y = n 0 Ψ n ( y ) f n ( y ) H n 1 n f ( y ) 1 n d α y ,
which can be reformed in the shape
0 θ ( y ) H n f ( y ) d α y n = n n 0 Ψ n ( y ) f n ( y ) H n 1 n f ( y ) 1 n d α y n .
Using Hölder’s inequality
0 g ( y ) h ( y ) d α y 0 g a ( y ) d α y 1 a 0 h b ( y ) d α y 1 b ,
with a = 1 / n , b = 1 / 1 n ,
g ( y ) = Ψ n ( y ) f n ( y ) H n 1 n f ( y ) and h ( y ) = θ 1 n ( y ) H n ( 1 n ) f ( y ) ,
we get
0 g 1 n ( y ) d α y n = 0 Ψ n ( y ) f n ( y ) H n 1 n f ( y ) 1 n d α y n , 0 g ( y ) h ( y ) d α y 0 h 1 1 n ( y ) d α y 1 n = 0 Ψ n ( y ) f n ( y ) H n 1 n f ( y ) θ 1 n ( y ) H n ( 1 n ) f ( y ) d α y × 0 θ 1 n ( y ) H n ( 1 n ) f ( y ) 1 1 n d α y n 1 ,
then
0 Ψ n ( y ) f n ( y ) H n 1 n f ( y ) 1 n d α y n 0 Ψ n ( y ) f n ( y ) θ 1 n ( y ) d α y
× 0 θ ( y ) H n f ( y ) d α y n 1 .
Substituting (36) into (35), we obtain
0 θ ( y ) H n f ( y ) d α y n n n 0 Ψ n ( y ) f n ( y ) θ 1 n ( y ) d α y 0 θ ( y ) H n f ( y ) d α y 1 n .
Thus
0 θ ( y ) H n f ( y ) d α y n n 0 θ 1 n ( y ) Ψ n ( y ) f n ( y ) d α y ,
which is the wanted inequality (34).  □
Remark 11.
If α = 1 , in Theorem 5, we get the inequality:
0 θ ( y ) 0 y f ( t ) d t n d y n n 0 θ 1 n ( y ) y θ ( t ) d t n f n ( y ) d y .
Remark 12.
If θ ( y ) = 1 / y n and n > α , in Theorem 5, we get the inequality:
0 0 y f ( t ) d α t y n d α y n n α n 0 y α 1 f ( y ) n d α y ,
which is the fractional reversed Hardy inequality.
Remark 13.
If α = 1 in (39), we get the reversed Hardy inequality:
0 0 y f ( t ) d t y n d y n n 1 n 0 f n ( y ) d y .
Theorem 6.
If 0 < n 1 and Φ ( y ) : = 0 y θ ( t ) d α t , then
0 θ ( y ) H * n f ( y ) d α y n n 0 θ 1 n ( y ) Φ n ( y ) f n ( y ) d α y .
Proof. 
Employing the formula of integration by parts (12) on 0 θ ( y ) y * n f ( y ) d α y , with
u ( y ) = H * n f ( y ) and v ( y ) = Φ ( y ) ,
we obtain
0 θ ( y ) y * n f ( y ) d α y = H * n f ( y ) Φ ( y ) 0 0 n y 1 α H * n 1 f ( y ) H * f ( y ) Φ ( y ) d α y .
Since
H * f ( ) = 0 , H * f ( 0 ) < , Φ ( ) < and Φ ( 0 ) = 0 ,
and from (15), we find that
H * f ( y ) = y α 1 f ( y ) ,
so
0 θ ( y ) H * n f ( y ) d α y = n 0 y 1 α H * n 1 f ( y ) y α 1 f ( y ) Φ ( y ) d α y ,
then
0 θ ( y ) H * n f ( y ) d α y = n 0 Φ n ( y ) f n ( y ) H * n ( 1 n ) f ( y ) 1 n d α y ,
which can be reformed in the shape
0 θ ( y ) H * n f ( y ) d α y n = n n 0 Φ n ( y ) f n ( y ) H * n ( 1 n ) f ( y ) 1 n d α y n .
Similar to the proof of Theorem 5, we obtain
0 θ ( y ) H * n f ( y ) d α y n n 0 θ 1 n ( y ) Φ n ( y ) f n ( y ) d α y ,
which is the wanted inequality (41).  □
Remark 14.
If α = 1 , in Theorem 6, we find:
0 θ ( y ) y f ( t ) d t n d y n n 0 θ 1 n ( y ) 0 y θ ( t ) d t n f n ( y ) d y .
Remark 15.
If θ ( y ) = 1 and n α , in Theorem 6, we find:
0 y f ( t ) d α t n d α y n α n 0 y α f ( y ) n d α y ,
since n / α n > 1 , then
0 y f ( t ) d α t n d α y 0 y α f ( y ) n d α y ,
which is the fractional reversed Hardy inequality.
Remark 16.
If α = 1 in (44), we have the reversed Hardy inequality:
0 y f ( t ) d t n d y 0 y f ( y ) n d y .
Theorem 7.
If k 0 < n < 1 , then
0 θ ( y ) Ψ k ( y ) Ω n ( y ) d α y n 1 k n 0 θ ( y ) Ψ k n ( y ) f n ( y ) d α y ,
where
Ψ ( y ) : = y θ ( t ) d α t and Ω ( y ) : = 0 y θ ( t ) f ( t ) d α t .
Proof. 
Employing the formula of integration by parts (12) on 0 θ ( y ) Ψ k ( y ) Ω n ( y ) d α y , with
u ( y ) = Ω n ( y ) Ψ k ( y ) and v ( y ) = Ψ ( y ) ,
where
D α u ( y ) = y 1 α n Ω n 1 ( y ) Ω ( y ) Ψ k ( y ) k Ω n ( y ) Ψ k 1 ( y ) Ψ ( y ) ,
then
0 θ ( y ) Ψ k ( y ) Ω n ( y ) d α y = Ψ 1 k ( y ) Ω n ( y ) 0 + 0 y 1 α n Ω n 1 ( y ) Ω ( y ) Ψ k ( y ) - - k Ω n ( y ) Ψ k 1 ( y ) Ψ ( y ) Ψ ( y ) d α y .
Since
Ω ( y ) = y α 1 θ ( y ) f ( y ) , Ψ ( y ) = y α 1 θ ( y ) , Ω ( ) < , Ω ( 0 ) = 0 , Ψ ( 0 ) < and Ψ ( ) = 0 .
We find that
0 θ ( y ) Ψ k ( y ) Ω n ( y ) d α y = n 0 θ ( y ) f ( y ) Ψ 1 k ( y ) Ω n 1 ( y ) d α y + k 0 Ω n ( y ) θ ( y ) Ψ k ( y ) d α y .
Then
0 θ ( y ) Ψ k ( y ) Ω n ( y ) d α y = n 1 k 0 θ ( y ) f ( y ) Ω 1 k ( y ) Ω n 1 ( y ) d α y ,
which can be reformed in the shape
0 θ ( y ) Ψ k ( y ) Ω n ( y ) d α y n = n 1 k n 0 θ ( y ) f ( y ) n Ψ n ( k 1 ) ( y ) Ω n ( 1 n ) ( y ) 1 n d α y n .
Using Hölder’s inequality
0 g ( y ) h ( y ) d α y 0 g a ( y ) d α y 1 a 0 h b ( y ) d α y 1 b ,
with a = 1 / n and b = 1 / 1 n where
g ( y ) = θ ( y ) f ( y ) n Ψ n ( k 1 ) ( y ) Ω n ( 1 n ) ( y ) and h ( y ) = θ ( y ) Ψ k ( y ) 1 n Ω n ( 1 n ) ( y ) ,
we have
0 g 1 n ( y ) d α y n = 0 θ ( y ) f ( y ) n Ψ n ( k 1 ) ( y ) Ω n ( 1 n ) ( y ) 1 n d α y n , 0 g ( y ) h ( y ) d α y 0 h 1 1 n ( y ) d α y 1 n = 0 θ ( y ) f ( y ) n Ψ n ( k 1 ) ( y ) Ω n ( 1 n ) ( y ) θ ( y ) Ψ k ( y ) 1 n Ω n ( 1 n ) ( y ) d α y × 0 θ ( y ) Ψ k ( y ) 1 n Ω n ( 1 n ) ( y ) 1 1 n d α y n 1 ,
thus
0 θ ( y ) f ( y ) n Ψ n ( k 1 ) ( y ) Ω n ( 1 n ) ( y ) 1 n d α y n 0 θ ( y ) f n ( y ) Ψ k n ( y ) d α y × 0 θ ( y ) Ψ k ( y ) Ω n ( y ) d α y n 1 ,
then
0 θ ( y ) Ψ k ( y ) Ω n ( y ) d α y n n 1 k n 0 θ ( y ) f n ( y ) Ψ k n ( y ) d α y × 0 θ ( y ) Ψ k ( y ) Ω n ( y ) d α y n 1 .
Hence,
0 θ ( y ) Ψ k ( y ) Ω n ( y ) d α y n 1 k n 0 θ ( y ) f n ( y ) Ψ k n ( y ) d α y ,
which the wanted inequality (46).  □
Remark 17.
If α = 1 , in Theorem 7, we obtain:
0 θ ( y ) Ψ k ( y ) 0 y θ ( t ) f ( t ) d t n d y n 1 k n 0 θ ( y ) Ψ k n ( y ) f n ( y ) d y ,
where Ψ ( y ) = y θ ( t ) d t and k 0 < n < 1 .
Theorem 8.
If n < k 1 and 0 < n < 1 < k , then
0 θ ( y ) Ψ k ( y ) Φ n ( y ) d α y n k 1 n 0 θ ( y ) Ψ k n ( y ) f n ( y ) d α y ,
where
Ψ ( y ) : = y θ ( t ) d α t and Φ ( y ) : = y θ ( t ) f ( t ) d α t .
Proof. 
Employing the formula of integration by parts (12) on 0 θ ( y ) Ψ k ( y ) Φ n ( y ) d α y , with
u ( y ) = Φ n ( y ) and v ( y ) = Ψ 1 k ( y ) 1 k ,
then
D α u ( y ) = n y 1 α Φ n 1 ( y ) Φ ( y ) and D α v ( y ) = θ ( y ) Ψ k ( y ) .
We find that
0 θ ( y ) Ψ k ( y ) Φ n ( y ) d α y = Φ n ( y ) Ψ 1 k ( y ) 1 k 0 + 0 n y 1 α Φ n 1 ( y ) Φ ( y ) Ψ 1 k ( y ) 1 k d α y .
Since
Φ ( y ) = y α 1 θ ( y ) f ( y ) , Φ ( ) = 0 , Φ ( 0 ) < , Ψ ( ) = 0 , Ψ ( 0 ) < and k > 1 ,
and noting that
lim y Ψ ( y ) Φ n 1 k ( y ) = lim y y t α 1 θ ( t ) d t Φ ( y ) n k 1 = lim y y α 1 θ ( y ) n k 1 Φ ( y ) n k 1 1 y α 1 θ ( y ) f ( y ) = lim y k 1 Φ ( y ) 1 n k 1 n f ( y ) = 0 .
We find that
0 θ ( y ) Ψ k ( y ) Φ n ( y ) d α y n k 1 0 y 1 α Φ n 1 ( y ) y α 1 θ ( y ) f ( y ) Ψ 1 k ( y ) d α y .
Then
0 θ ( y ) Ψ k ( y ) Φ n ( y ) d α y n k 1 0 θ ( y ) f ( y ) Ψ 1 k ( y ) Φ n 1 ( y ) d α y ,
which can be reformed in the shape
0 θ ( y ) Ψ k ( y ) Φ n ( y ) d α y n = n k 1 n 0 θ ( y ) f ( y ) n Ψ n ( k 1 ) ( y ) Φ n ( 1 n ) ( y ) 1 n d α y n .
Using Hölder’s inequality
0 g ( y ) h ( y ) d α y 0 g a ( y ) d α y 1 a 0 h b ( y ) d α y 1 b
with a = 1 / n , b = 1 / 1 n ,
g ( y ) = θ ( y ) f ( y ) n Ψ n ( k 1 ) ( y ) Φ n ( 1 n ) ( y ) and h ( y ) = θ ( y ) Ψ k ( y ) 1 n Φ n ( 1 n ) ( y ) ,
then
0 g 1 n ( y ) d α y n = 0 θ ( y ) f ( y ) n Ψ n ( k 1 ) ( y ) Φ n ( 1 n ) ( y ) 1 n d α y n , 0 g ( y ) h ( y ) d α y 0 h 1 1 n ( y ) d α y 1 n , = 0 θ ( y ) f ( y ) n Ψ n ( k 1 ) ( y ) Φ n ( 1 n ) ( y ) θ ( y ) Ψ k ( y ) 1 n Φ n ( 1 n ) ( y ) d α y × 0 θ ( y ) Ψ k ( y ) 1 n Φ n ( 1 n ) ( y ) 1 1 n d α y n 1 .
This lead to
0 θ ( y ) f ( y ) n Ψ n ( k 1 ) ( y ) Φ n ( 1 n ) ( y ) 1 n d α y n 0 θ ( y ) f n ( y ) Ψ k n ( y ) d α y × 0 θ ( y ) Ψ k ( y ) Φ n ( y ) d α y n 1 ,
since, we have
0 θ ( y ) Ψ k ( y ) Φ n ( y ) d α y n = n k 1 n 0 θ ( y ) f ( y ) n Ψ n ( k 1 ) ( y ) Φ n ( 1 n ) ( y ) 1 n d α y n .
Since
0 θ ( y ) Ψ k ( y ) Φ n ( y ) d α y n n k 1 n 0 θ ( y ) f n ( y ) Ψ k n ( y ) d α y × 0 θ ( y ) Ψ k ( y ) Φ n ( y ) d α y n 1 .
Hence
0 θ ( y ) Ψ k ( y ) Φ n ( y ) d α y n k 1 n 0 θ ( y ) f n ( y ) Ψ k n ( y ) d α y ,
which is the desired inequality (48).  □
Remark 18.
In Theorem 8, we get that if y α 1 θ ( y ) f ( y ) and y α 1 θ ( y ) is continuous on [ 0 , ) replaced either by:
(i)
y α 1 θ ( y ) f ( y ) , y α 1 θ ( y ) is continuous on ( 0 , ) and lim y Φ ( y ) 1 n k 1 f ( y ) = 0 ; or
(ii)
lim y Ψ 1 k ( y ) Φ n ( y ) = 0 ;
then (48) is also true.
Remark 19.
If α = 1 , in Theorem 8, we obtain the inequality:
0 θ ( y ) Ψ k ( y ) y θ ( t ) f ( t ) d t n d y n k 1 n 0 θ ( y ) Ψ k n ( y ) f n ( y ) d y ,
where Ψ ( y ) = y θ ( t ) d t and 0 < n < 1 < k .

5. Results and Discussion

It is great to take a look at the obtained number of new Leindler and Hardy-type inequalities by the utilization of the conformable factional calculus. We generalize a number of those inequalities to a general fractional form, and also get the α -fractional Hardy inequality:
0 1 y 0 y f ( t ) d α t n d α y n n α n 0 y α 1 f ( y ) n d α y ,
as a result, if α = 1 we obtain the classical Hardy inequality:
0 1 y 0 y f ( t ) d t n d y n n 1 n 0 f n ( y ) d y .
Furthermore, we also get the inequality:
0 y f ( t ) d α t n d α y n α n 0 y α f ( y ) n d α y ,
which is the α -fractional Hardy inequality, and as a result, if α = 1 , we get the Hardy inequality:
0 y f ( t ) d t n d y n n 0 y f ( y ) n d y .
In addition to this, we also extend our reversed inequalities to the fractional shape.

6. Conclusions and Future Work

In this study, we established certain fractional inequalities of Leindler’s type by employing the conformable fractional calculus. The technique is based on the applications of well-known inequalities and new tools from conformable fractional calculus. The results established in this paper give some contribution in the field of fractional calculus and fractional inequalities of Leindler’ type. From these results, some work directions remain open, for example:
  • Extending these results to other types of integral fractional operators, which contains as particular cases many of those reported in the literature.
  • Obtain new results for other well-known inequalities, such as Opial, Hilbert, Copson, among others.

Author Contributions

Software, G.A., M.R.K., H.M.R. and A.A.E.-D.; Writing—review & editing, H.M.R. and M.Z. All authors have read and agreed to the published version of the manuscript.

Funding

Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2022R45), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Acknowledgments

Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2022R45), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Leindler, L. Generalization of inequalities of Hardy and Littlewood. Acta Sci. Math. 1970, 31, 279–285. [Google Scholar]
  2. Leindler, L. Further sharpining of inequalities of Hardy and Littlewood. Acta Sci. Math. 1990, 54, 285–289. [Google Scholar]
  3. Copson, E.T. Note on series of positive terms. J. Lond. Math. Soc. 1928, 3, 49–51. [Google Scholar] [CrossRef]
  4. Hardy, G.H.; Littlewood, J.E.; Polya, G. Inequalities, 2nd ed.; Cambridge University Press: Cambridge, UK, 1952. [Google Scholar]
  5. Leindler, L. Some inequalities pertaining to Bennett’s results. Acta Sci. Math. 1993, 58, 261–279. [Google Scholar]
  6. Bogdan, K.; Dyda, B. The best constant in a fractional Hardy inequality. Math. Nach. 2011, 284, 629–638. [Google Scholar] [CrossRef]
  7. Jleli, M.; Samet, B. Lyapunov-type inequalities for a fractional differential equation with mixed boundary conditions. Math. Ineq. Appl. 2015, 18, 443–451. [Google Scholar] [CrossRef]
  8. Yildiz, C.; Ozdemir, M.E.; Onelan, H.K. Fractional integral inequalities for different functions. New Trends Math. Sci. 2015, 3, 110–117. [Google Scholar]
  9. Khalil, R.; Al Horani, M.; Yousef, A.; Sababheh, M. A new definition of fractional derivative. J. Comp. Appl. Math. 2014, 264, 65–70. [Google Scholar] [CrossRef]
  10. Abdeljawad, T. On conformable fractional calculus. J. Comp. Appl. Math. 2015, 279, 57–66. [Google Scholar] [CrossRef]
  11. Saker, S.H.; O’Regan, D.; Kenawy, M.R.; Agarwal, R.P. Fractional Hardy Type Inequalities via Conformable Calculus. Mem. Differ. Equ. Math. Phys. 2018, 73, 131–140. [Google Scholar]
  12. Ahmad, H.; Tariq, M.; Sahoo, S.K.; Baili, J.; Cesarano, C. New estimations of Hermite–Hadamard type integral inequalities for special functions. Fractal Fract. 2021, 5, 144. [Google Scholar] [CrossRef]
  13. Khan, M.A.; Ali, T.; Dragomir, S.S.; Sarikaya, M.Z. Hermite-Hadamard type inequalities for conformable fractional integrals. Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. 2018, 112, 1033–1048. [Google Scholar] [CrossRef]
  14. Adil Khan, M.; Chu, Y.M.; Kashuri, A.; Liko, R.; Ali, G. Conformable fractional integrals versions of Hermite-Hadamard inequalities and their generalizations. J. Funct. Spaces 2018, 2018, 6928130. [Google Scholar] [CrossRef]
  15. Set, E.; Gözpınar, A.; Ekinci, A. Hermite-Hadamard type inequalities via conformable fractional integrals. Acta Math. Univ. Comen. 2017, 86, 309–320. [Google Scholar] [CrossRef]
  16. Tariq, M.; Sahoo, S.K.; Ahmad, H.; Sitthiwirattham, T.; Soontharanon, J. Several integral inequalities of Hermite–Hadamard type related to k-fractional conformable integral operators. Symmetry 2021, 13, 1880. [Google Scholar] [CrossRef]
  17. Bohner, M.; Kashuri, A.; Mohammed, P.; Valdes, J.E.N. Hermite-Hadamard-type Inequalities for Conformable Integrals. Hacet. J. Math. Stat. 2022, 51, 775–786. [Google Scholar] [CrossRef]
  18. Sarikaya, M.Z.; Budak, H. New inequalities of Opial type for conformable fractional integrals. Turk. J. Math. 2017, 41, 1164–1173. [Google Scholar] [CrossRef]
  19. Sarikaya, M.Z.; Budak, H. Opial type inequalities for conformable fractional integrals. RGMIA Res. Rep. Collect. 2016, 19, 93. [Google Scholar]
  20. Sarikaya, M.Z.; Yaldiz, H.; Budak, H. Steffensen’s integral inequality for conformable fractional integrals. Int. J. Anal. Appl. 2017, 15, 23–30. [Google Scholar]
  21. Akkurt, A.; Yildirim, M.E.; Yildirim, H. On some integral inequalities for conformable fractional integrals. RGMIA Res. Rep. Collect. 2016, 19, 107. [Google Scholar]
  22. Naifar, O.; Rebiai, G.; Makhlouf, A.B.; Hammami, M.A.; Guezane-Lakoud, A. Stability analysis of conformable fractional-order nonlinear systems depending on a parameter. J. Appl. Anal. 2020, 26, 287–296. [Google Scholar] [CrossRef]
  23. Ben Makhlouf, A.; Naifar, O.; Hammami, M.A.; Wu, B.W. FTS and FTB of conformable fractional order linear systems. Math. Probl. Eng. 2018, 2018, 2572986. [Google Scholar] [CrossRef]
  24. Martin-Reyes, F.J.; Sawyer, E. Weighted inequalities for Riemann-Liouville fractional integrals of order one and greater. Proc. Am. Math. Soc. 1989, 106, 727–733. [Google Scholar] [CrossRef]
  25. Khatun, M.A.; Arefin, M.A.; Uddin, M.H.; Inc, M.; Akbar, M.A. An analytical approach to the solution of fractional-coupled modified equal width and fractional-coupled Burgers equations. J. Ocean. Eng. Sci. 2022. [Google Scholar] [CrossRef]
  26. Aljahdaly, N.H.; Shah, R.; Naeem, M.; Arefin, M.A. A Comparative Analysis of Fractional Space-Time Advection-Dispersion Equation via Semi-Analytical Methods. J. Funct. Spaces 2022, 2022, 4856002. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

AlNemer, G.; Kenawy, M.R.; Rezk, H.M.; El-Deeb, A.A.; Zakarya, M. Fractional Leindler’s Inequalities via Conformable Calculus. Symmetry 2022, 14, 1958. https://doi.org/10.3390/sym14101958

AMA Style

AlNemer G, Kenawy MR, Rezk HM, El-Deeb AA, Zakarya M. Fractional Leindler’s Inequalities via Conformable Calculus. Symmetry. 2022; 14(10):1958. https://doi.org/10.3390/sym14101958

Chicago/Turabian Style

AlNemer, Ghada, Mohammed R. Kenawy, Haytham M. Rezk, Ahmed A. El-Deeb, and Mohammed Zakarya. 2022. "Fractional Leindler’s Inequalities via Conformable Calculus" Symmetry 14, no. 10: 1958. https://doi.org/10.3390/sym14101958

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop