# Generation of Julia and Mandelbrot Sets via Fixed Points

^{1}

^{2}

^{3}

^{4}

^{*}

## Abstract

**:**

## 1. Introduction

**Definition**

**1**

**.**The set of points in $\mathbb{C}$ whose orbits do not converge to a point at infinity is known as filled Julia set, ${K}_{T}$, that is,

**Theorem**

**1**

**.**If T is a complex polynomial, then ${J}_{T}$ is the closure of the repelling periodic points of T.

**Definition**

**2**

**.**Let T be any complex polynomial of degree $n\ge 2$. A Mandelbrot set M is the set consisting of all parameters r for which the Julia set, ${J}_{{Q}_{r}}$, is connected, that is,

**Theorem**

**2**

**.**For ${Q}_{r}\left(x\right)={x}^{2}+r$, $x,r\in \mathbb{C}$, if there exists $i\ge 0$ such that

## 2. Main Results

#### 2.1. Escape Criterion for Quadratic Complex Polynomials in a Picard Ishikawa Type Orbit

**Theorem**

**3.**

**Proof.**

**Corollary**

**1.**

#### 2.2. Escape Criterion for Cubic Complex Polynomials in a Picard Ishikawa Type Orbit

**Theorem**

**4.**

**Proof.**

**Corollary**

**2.**

#### 2.3. Escape Criterion for General Complex Polynomials in a Picard Ishikawa Type Orbit

**Theorem**

**5.**

**Proof.**

**Corollary**

**3.**

**Theorem**

**6.**

**Proof.**

## 3. Visualization of Fractals

#### 3.1. Generation of Julia sets

Algorithm 1: Generation of Julia Set. |

- For Figure 1, we consider the polynomial $T\left(x\right)={x}^{2}+(-0.5+0.7i)x+(-0.01+0.18i)$ and $A=[-2.5,2.5]\times [-2.1,2.1]$. It is easy to see that T has one attracting fixed point, $p=-0.1427+0.1019i$. Observe that for $\alpha =0.2$, $\beta =0.097$ and $\alpha =0.11$,$\beta =0.18$ we obtain different images due to color variation caused by parameters. It is interesting to note that for $\alpha =1$, $\beta =1$ and $\alpha ={10}^{-10}$, $\beta ={10}^{-10}$ we have similar shapes but there is clear variation of colors.
- For Figure 2, we consider the polynomial $T\left(x\right)={x}^{3}+(-0.275+0.5i)x+(-0.559+0.35i)$ and $A=[-1.5,1.5]\times [-1.8,1.8]$. The polynomial T has attracting fixed point $p\sim -0.6434+0.2687i$ in A. Note that the cubic Julia sets for $\alpha =0.08$ and $\beta =0.09$ have more color variation as compared to the Julia sets for $\alpha =0.1$, and $\beta =0.2$. Again, for $\alpha =1$, $\beta =1$ and $\alpha ={10}^{-10}$, $\beta ={10}^{-10}$ the shapes are same but there is variability in colors.
- For Figure 3, we input $T\left(x\right)={x}^{7}+(0.23+1.2i)x+(0.5+0.7i)$ and $A={[-1.3,1.3]}^{2}$. The attracting fixed point of the polynomial is $p\sim -0.2391+0.5835i$. We can see that for $\alpha =0.01$ and $\beta =0.08$ the shape is spread and stretched while the shape is dense and neatly packed for $\alpha =0.1$ and $\beta =0.05$. Note the variation of colors in figures (C) and (D) as well.

#### 3.2. Generation of Mandelbrot Sets

Algorithm 2: Generation of Mandelbrot set. |

## 4. Conclusions

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Barnsley, M. Fractals Everywhere, 2nd ed.; Academic Press: San Diego, CA, USA, 1993. [Google Scholar]
- Hundertmark-Zauôkovù, A. On the convergence of fixed point iterations for the moving geometry in a fluid-structure interaction problem. J. Differ. Equ.
**2019**, 267, 7002–7046. [Google Scholar] [CrossRef] - Rahmani, M.; Koutsopoulos, H.N.; Jenelius, E. Travel time estimation from sparse floating car data with consistent path inference: A fixed point approach. Transp. Res. Part C Emerg. Technol.
**2017**, 85, 628–643. [Google Scholar] [CrossRef] - Strogatz, S.H. Nonlinear Dynamics and Chaos With Applications to Physics, Biology, Chemistry, and Engineering, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Julia, G. Memoire sur l’iteration des functions rationnelles. J. Math. Pures Appl.
**1918**, 8, 737–747. [Google Scholar] - Devaney, R.L. A First Course in Chaotic Dynamical Systems: Theory and Experiment, 2nd ed.; Addison-Wesley: Boston, MA, USA, 1992. [Google Scholar]
- Falconer, K. Fractal Geometry: Mathematical Foundations and Applications, 2nd ed.; John Wiley & Sons: Chichester, UK, 2004. [Google Scholar]
- Frame, M.; Robertson, J. A generalized Mandelbrot set and the role of critical points. Comput. Graph.
**1992**, 16, 35–40. [Google Scholar] [CrossRef] - Brouwer, L.E.J. Über Abbildungen von Mannigfaltigkeiten. Math. Ann.
**1912**, 71, 97–115. [Google Scholar] [CrossRef][Green Version] - Mandelbrot, B.B. The Fractal Geometry of Nature; W.H. Freeman: New York, NY, USA, 1983; Volume 2. [Google Scholar]
- Debnath, L. A brief historical introduction to fractals and fractal geometry. Int. J. Math. Educ. Sci. Technol.
**2006**, 37, 29–50. [Google Scholar] [CrossRef] - Lakhtakia, A.; Varadan, W.; Messier, R.; Varadan, V.K. On the symmetries of the Julia sets for the process z
^{p}+ c. J. Phys. A Math. Gen.**1987**, 20, 3533–3535. [Google Scholar] [CrossRef] - Negi, A.; Rani, M. Midgets of superior Mandelbrot set. Chaos Solitons Fract.
**2008**, 36, 237–245. [Google Scholar] [CrossRef] - Negi, A.; Rani, M. A new approach to dynamic noise on superior Mandelbrot set. Chaos Solitons Fract.
**2008**, 36, 1089–1096. [Google Scholar] [CrossRef] - Rochon, D. A generalized Mandelbrot set for bicomplex numbers. Fractals
**2000**, 8, 355–368. [Google Scholar] [CrossRef] - Wang, X.; Sun, Y. The general quaternionic M-J sets on the mapping z ← z
^{α}+ c(α ∈ ℕ). Comput. Math. Appl.**2007**, 53, 1718–1732. [Google Scholar] [CrossRef][Green Version] - Rani, M. Theoretical Framework for Fractal Models under Two-Step Feedback Process. Ph.D. Thesis, Kumaun University, Nainital, India, 2016. [Google Scholar]
- Rani, M.; Kumar, V. Superior Julia set. Res. Math. Educ.
**2004**, 8, 261–277. [Google Scholar] - Rani, M.; Kumar, V. Superior Mandelbrot set. Res. Math. Educ.
**2004**, 8, 279–291. [Google Scholar] - Rani, M.; Chauhan, Y.S.; Negi, A. Non linear dynamics of Ishikawa iteration. Int. J. Comput. Appl.
**2010**, 7, 43–49. [Google Scholar] [CrossRef] - Chauhan, Y.S.; Rana, R.; Negi, A. New Julia sets of Ishikawa iterates. Int. J. Comput. Appl.
**2010**, 7, 34–42. [Google Scholar] [CrossRef] - Chauhan, Y.S.; Rana, R.; Negi, A. Complex dynamics of Ishikawa iterates for non integer values. Int. J. Comput. Appl.
**2010**, 9, 9–16. [Google Scholar] [CrossRef] - Ashish; Rani, M.; Chugh, R. Julia sets and Mandelbrot sets in Noor orbit. Appl. Math. Comput.
**2014**, 228, 615–631. [Google Scholar] - Kang, S.M.; Rafiq, A.; Latif, A.; Shahid, A.A.; Ali, F. Fractals through modified iteration scheme. Filomat
**2016**, 30, 3033–3046. [Google Scholar] [CrossRef][Green Version] - Kang, S.M.; Rafiq, A.; Latif, A.; Shahid, A.A.; Kwun, Y.C. Tricorns and multicorns of S-iteration scheme. J. Funct. Spaces
**2015**, 2015, 417167. [Google Scholar] - Kumari, M.; Ashish, R.C. New Julia and Mandelbrot sets for a new faster iterative process. Int. J. Pure Appl. Math.
**2016**, 107, 161–177. [Google Scholar] [CrossRef][Green Version] - Kang, S.M.; Nazeer, W.; Tanveer, M.; Shahid, A.A. New fixed point results for fractal generation in Jungck Noor orbit with s-convexity. J. Funct. Spaces
**2015**, 2015, 963016. [Google Scholar] [CrossRef][Green Version] - Kang, S.M.; Rafiq, A.; Tanveer, M.; Ali, F.; Kwun, Y.C. Julia and Mandelbrot sets in modified Jungck three-step orbit. Wulfenia J.
**2015**, 22, 167–185. [Google Scholar] - Kwun, Y.C.; Tanveer, M.; Nazeer, W.; Abbas, M.; Kang, S.M. Fractal generation in modified Jungck-S orbit. IEEE Access
**2019**, 7, 35060–35071. [Google Scholar] [CrossRef] - Proakis, J.G.; Manolakis, D.G. Digital Signal Processing: Principles, Algorithms and Applications, 4th ed.; Pearson: Bengaluru, India, 2007. [Google Scholar]
- Mishra, M.K.; Ojha, D.B.; Sharma, D. Fixed point results in tricorn and multicorns of Ishikawa iteration and s-convexity. IJEST
**2011**, 2, 157–160. [Google Scholar] - Cho, S.Y.; Shahid, A.A.; Nazeer, W.; Kang, S.M. Fixed point results for fractal generation in noor orbit and s-convexity. SpringerPlus
**2016**, 5, 1843. [Google Scholar] [CrossRef] [PubMed][Green Version] - Nazeer, W.; Kang, S.M.; Tanveer, M.; Shahid, A.A. Fixed point results in the generation of Julia and Mandelbrot sets. J. Inequal. Appl.
**2015**, 2015, 298. [Google Scholar] [CrossRef][Green Version] - Piri, H.; Daraby, B.; Rahrovi, S.; Ghasemi, M. Approximating fixed points of generalized α-nonexpansive mappings Banach spaces by new faster iteration process. Numer. Algorithms
**2018**, 81, 1129–1148. [Google Scholar] [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Abbas, M.; Iqbal, H.; De la Sen, M.
Generation of Julia and Mandelbrot Sets via Fixed Points. *Symmetry* **2020**, *12*, 86.
https://doi.org/10.3390/sym12010086

**AMA Style**

Abbas M, Iqbal H, De la Sen M.
Generation of Julia and Mandelbrot Sets via Fixed Points. *Symmetry*. 2020; 12(1):86.
https://doi.org/10.3390/sym12010086

**Chicago/Turabian Style**

Abbas, Mujahid, Hira Iqbal, and Manuel De la Sen.
2020. "Generation of Julia and Mandelbrot Sets via Fixed Points" *Symmetry* 12, no. 1: 86.
https://doi.org/10.3390/sym12010086