# The Generalized Distance Spectrum of the Join of Graphs

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. On the Generalized Distance Spectrum of Join of Graphs

**Theorem**

**1.**

**Proof.**

**Corollary**

**1.**

**Proof.**

**Corollary**

**2.**

**Proof.**

**Corollary**

**3.**

**Proof.**

**Theorem**

**2.**

**Proof.**

**Corollary**

**4.**

**Proof.**

## 3. The Generalized Distance Spectrum of the Joined Union

**Theorem**

**3.**

**Proof.**

**Corollary**

**5.**

**Corollary**

**6.**

**Proof.**

**Example**

**1.**

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Barik, S.; Sahoo, G. On the distance spectra of coronas. Linear Multilinear Algebra
**2017**, 65, 1617–1628. [Google Scholar] [CrossRef] - Barik, S.; Pati, S.; Sarma, B.K. The spectrum of the corona of two graphs. SIAM J. Discrete Math.
**2007**, 24, 47–56. [Google Scholar] [CrossRef] - Cardoso, D.M.; de Freitas, M.A.; Martins, E.A.; Robbiano, M. Spectra of graphs obtained by a generalization of the join graph operation. Discrete Math.
**2013**, 313, 733–741. [Google Scholar] [CrossRef] - Neumann, M.; Pati, S. The Laplacian spectra of graphs with a tree structure. Linear Multilinear Algebra
**2009**, 57, 267–291. [Google Scholar] [CrossRef] - Shang, Y. Random lifts of graphs: Network robustness based on the Estrada index. Appl. Math. E-Notes
**2012**, 12, 53–61. [Google Scholar] - Stevanović, D. Large sets of long distance equienergetic graphs. Ars Math. Contemp.
**2009**, 2, 35–40. [Google Scholar] [CrossRef] - Cvetković, D.M.; Doob, M.; Sachs, H. Spectra of Graphs—Theory and Application; Academic Press: New York, NY, USA, 1980. [Google Scholar]
- Aouchiche, M.; Hansen, P. Distance spectra of graphs: A survey. Linear Algebra Appl.
**2014**, 458, 301–386. [Google Scholar] [CrossRef] - Aouchiche, M.; Hansen, P. Two Laplacians for the distance matrix of a graph. Linear Algebra Appl.
**2013**, 439, 21–33. [Google Scholar] [CrossRef] - Cui, S.Y.; He, J.X.; Tian, G.X. The generalized distance matrix. Linear Algebra Appl.
**2019**, 563, 1–23. [Google Scholar] [CrossRef] - Alhevaz, A.; Baghipur, M.; Ganie, H.A.; Shang, Y. Bounds for the generalized distance eigenvalues of a graph. Symmetry
**2019**, 11, 1529. [Google Scholar] [CrossRef] [Green Version] - Alhevaz, A.; Baghipur, M.; Ganie, H.A.; Shang, Y. On the generalized distance energy of graphs. Mathematics
**2020**, 8, 17. [Google Scholar] [CrossRef] [Green Version] - Brouwer, A.E.; Haemers, W.H. Spectra of Graphs; Springer: New York, NY, USA, 2012. [Google Scholar]
- Schwenk, A.J. Computing the characteristic polynomial of a graph. In Graphs Combinatorics; Bary, R., Harary, F., Eds.; Lecture Notes in Mathematics; Springer: Berlin, Germany, 1974; Volume 406, pp. 153–172. [Google Scholar]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Alhevaz, A.; Baghipur, M.; A. Ganie, H.; Shang, Y.
The Generalized Distance Spectrum of the Join of Graphs. *Symmetry* **2020**, *12*, 169.
https://doi.org/10.3390/sym12010169

**AMA Style**

Alhevaz A, Baghipur M, A. Ganie H, Shang Y.
The Generalized Distance Spectrum of the Join of Graphs. *Symmetry*. 2020; 12(1):169.
https://doi.org/10.3390/sym12010169

**Chicago/Turabian Style**

Alhevaz, Abdollah, Maryam Baghipur, Hilal A. Ganie, and Yilun Shang.
2020. "The Generalized Distance Spectrum of the Join of Graphs" *Symmetry* 12, no. 1: 169.
https://doi.org/10.3390/sym12010169