Next Article in Journal
Fatigue and Fracture Behaviors of Short Carbon Fiber Reinforced Squeeze Cast AZ91 at 20 °C and 250 °C
Next Article in Special Issue
Crystal Chemistry and Structural Complexity of the Uranyl Molybdate Minerals and Synthetic Compounds
Previous Article in Journal
Numerical/Experimental Study of Process Optimization Conducted on an Al-Cu Alloy Produced by Combined Fields of Applied Pressure and Ultrasonic Vibration
Previous Article in Special Issue
Hydrothermal Synthesis and Crystal Structure of Vesuvianite Compounds, Ca19Al13Si18O71(OH)7 and Sr19Fe12Ge19O72(OH)6
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Geochemical Characteristics of Nephrite from Chuncheon, South Korea: Implications for Geographic Origin Determination of Nephrite from Dolomite-Related Deposits

School of Gemology, China University of Geosciences (Beijing), No. 29 Xueyuan Road, Haidian District, Beijing 100083, China
*
Author to whom correspondence should be addressed.
Crystals 2023, 13(10), 1468; https://doi.org/10.3390/cryst13101468
Submission received: 12 September 2023 / Revised: 30 September 2023 / Accepted: 2 October 2023 / Published: 8 October 2023
(This article belongs to the Special Issue Mineralogical Crystallography (3rd Edition))

Abstract

:
The Chuncheon nephrite deposit in South Korea is one of the major nephrite deposits in the world, but its origin has been rarely studied. This study explores the mineralogical and geochemical characteristics of the Chuncheon nephrite using a polarizing microscope, an electron microprobe, laser ablation, inductively coupled plasma mass spectrometry, and hydrogen–oxygen isotope analyses and compares them with dolomite-related nephrite worldwide. The main mineral of Chuncheon nephrite is tremolite, which has a felted blastic texture, secondary filling texture, and metasomatic pseudomorphic texture that nephrites from other regions do not have. Chuncheon nephrite is dolomite-related; the total content of rare earth elements is generally low, with highly variable positive and negative Eu anomalies and weak positive Ce anomalies; and the light rare earth elements are enriched. The Chuncheon nephrite formed in an anaerobic alkaline environment with a low degree of mineralization, and the hydrothermal fluids are predominantly meteoric water. Nephrite from different regions has different geochemical characteristics as well as different abundances of rare earth element contents. According to the content and range of elements, such as δCe, δEu, ΣREE, (La/Sm)N, and other rare earth elements, dolomite-type nephrite from different origins can be roughly distinguished.

1. Introduction

Nephrite is a mineral aggregate that is mainly composed of tremolite and actinolite, and it has an important position in the world of non-metallic minerals. Nephrite deposits are widely distributed worldwide in several countries, such as Russia [1,2,3], Poland [4,5], Italy [6], Canada [7,8,9,10], Australia [11,12], South Korea [13,14,15,16,17,18,19,20,21,22,23,24,25,26], and China [24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46]. The nephrite deposit is located in the east of Chuncheon, South Korea, and is one of the largest nephrite deposits in the world. Nephrite deposit types can be classified as dolomite- or serpentine-related according to their genesis [10,47]. Dolomite-related nephrite mainly forms in the contact zone between dolomite and magmatic rock. The intrusive rocks of dolomite-related nephrite deposits are acidic magmatic rocks, such as in Russia [1,3], Canada [8,10], and Heilongjiang, China [45]; moderately acidic magmatic rocks, such as in Liaoning, China [7,35,36] and Xingjiang, China [39,40,41]; and basal magmatic rocks, such as in Guangxi, China [27,28,29,46] and Guizhou, China [31,32,33]. The formation of the Chuncheon nephrite deposit is mainly associated with dolomitic marble, but different theories have been proposed for the mineralization mechanisms. Some researchers believe that acidic granites provide necessary materials for the formation of nephrite [15,20,33], while others believe that biotite schist provides necessary materials [19]. The texture [18,22], composition [15,16,20,24], gemological characteristics [18,20,21,22,25], and stable isotopes [14,17] of the Chuncheon nephrite have been previously studied, but the geographic origin characteristics of the Chuncheon nephrite have not been comprehensively studied. Herein, we systematically analyze the geochemical characteristics of the Chuncheon nephrite and compare them with those of the dolomite-related nephrite of other geographic origins. This is conducted to distinguish the geochemistry characteristics of the Chuncheon nephrite and provide evidence of its genesis.

2. Geological Setting

The Yonduri gneiss complex mainly comprises biotite schists, banded biotite gneisses, and muscovite gneisses, which crop out in the mine area immediately below the metasedimentary rocks of the Gubangsan Group that overlies the Yonduri gneiss complex [13]. Augen gneisses and porphyritic orthogneisses are usually found in the contact zone between the biotite schists, and a granitic gneiss of unknown age lies to the east of the mine area. To the south of the biotite schists, the Gubangsan Group, from the north to the south, comprises a lower amphibolite of the Pyeongchonri Formation and the Shiniri Formation and an upper amphibolite of the Gamjeongri Formation (Figure 1).
Both the Yonduri Gneiss Group and the Gubongsan Group are intruded by the mesozoic Chuncheon granite and cut off by the northeast–southwest fault to the west. Furthermore, there is no direct contact between the granite and nephrite deposits. Chuncheon granite is a biotite granite that forms two extensive areas to the northwest and southwest of the mine area; however, immediately to the west of the mine, the granite crops out as an unusual vein-like body [13] (Figure 2).
Based on the Th–U–Pb age dating of monazite, the metamorphic age of the northern part of the Gyeonggi Block (located ~30 km northwest of the Chuncheon nephrite mine) is Triassic (245 ± 3 Ma) [23], when the Nangrim and Gyeonggi blocks collided. The K–Ar dating of the Chuncheon granite also suggests a Late Triassic intrusion age of 210.5 ± 5.0 Ma and a cooling age of 170 Ma below the Early Jurassic age of 300 °C [13]. These age data confirm that the Chuncheon granite formed post-tectonically.
The nephrite belt and surrounding rocks are buried in the order (from bottom to top) of light gneiss, white mafic barite, calcite silicate belt, nephrite belt, chlorite belt, hornblende schist belt, biotite schist belt, and light gneiss (Figure 2). The nephrite occurs as lenses that are generally several meters long and up to 1 m thick. The lithologic contacts and the major schistosity trend are mainly east–west, with dips of 35°–50° toward the south [13,17].

3. Samples and Methods

3.1. Samples

In this study, four representative Chuncheon nephrite samples are collected, namely, KC-1–KC-4, according to their color (Figure 3). KC-1 has a cyan color with a coarse texture; KC-2 has a greenish-white color with a transition from cyan to white; KC-3 has a white color with a more delicate texture and dark dotted inclusions that are locally visible; and the color of KC-4 transitions from yellow-white to dark brown, and the deep yellow-brown graininess is strong.

3.2. Methods

The samples were cut into thin sections (0.03 mm thick) and were later powdered up to 300 mesh in a grinding chamber at the China University of Geosciences (Beijing). The sheets were observed under a polarized microscope (BX5, Olympus, Tokyo, Japan).
An electron probe microanalysis (EPMA) experiment and back-scattered electron observations were conducted in the Electron Probe and Scanning Electron Microscope Laboratory of the Institute of Geology and Geophysics, Chinese Academy of Sciences (CAS; JXA-8100 electron probe, JEOL Ltd., Tokyo, Japan). Ten microzone elements were analyzed, with a beam spot diameter of 5 µm, a beam current of 20 nA, and an accelerating voltage of 15 kV.
A laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) analysis was performed in the Inductively Coupled Ion Mass Spectrometry Laboratory at the Institute of Geology and Geophysics, CAS (Q-ICP-MS model 7500a, Agilent, Santa Clara, CA, USA). The laser wavelength and diameter were 193 nm and 60 µm, respectively, and the erosion frequency was 80 Hz.
The hydrogen–oxygen stable isotope analysis was performed at the Analysis and Testing Research Center of the Beijing Research Institute of Nuclear Industry. The samples were analyzed by the conventional BrF5 method for their oxygen isotope compositions [48]. The precision of the analyses was generally better than ±0.2 per mil. The results are reported as δ18O values relative to V-SMOW. Hydrogen isotope analyses on hydrous minerals were performed after the method of Godfrey with a precision of ±2 per mil [49]. The results are reported as δD values relative to V-SMOW. A MAT-253 mass spectrometer was used to measure the isotope compositions.

4. Results

4.1. Mineralogical Characteristics

The samples mainly comprise tremolite, which exhibits a second-level, blue-green-purple interference color under cross-polarized light (Figure 4a,b). Tremolite has a microscopically fibrous and interwoven appearance, and the texture is mainly a felt-like fibroblastic texture (Figure 4c,d). The long diameter of the grain size is below 0.02 mm, which is an important reason for the fine and moist texture of nephrite.
In the pseudomorphic metasomatic texture of the Chuncheon nephrite (Figure 4e,f), with KC-4 exhibiting the most texture, calcite or dolomite particles are accounted for by tremolite, preserving the morphology and cleavage of the carbonate mineral. This metasomatic replacement texture is widespread in the Chuncheon nephrite samples, indicating that the Chuncheon nephrite underwent only weak recrystallization in the later stages and that the geographic origin of the texture is relatively inhomogeneous [19]. This type of texture is not common in dolomite-related deposits of nephrite of other geographic origins.
In KC-4, the crystal particles are larger and have a rougher texture compared to the other samples. Yellowish-brown iron impurities can be observed in the interstices of microfractures and pseudomorphic grain in the nephrite (Figure 4g); this secondary filling texture indicates different degrees of structural denseness of the Chuncheon nephrite.

4.2. Electron Microprobe Analysis

The average contents of SiO2, MgO, CaO, and FeO in the samples are 58.98, 23.97, 12.47, and 0.34 wt%, respectively (Table 1), which are close to the theoretical values of the tremolite mineral composition (SiO2: 59.169 wt%; MgO: 24.808 wt%; CaO: 13.805 wt%) and exhibit high Mg and Si content and low Fe and Ca content characteristics.
The official International Mineralogical Association (IMA) formulas for tremolite and actinolite are Ca2(Mg5.0-4.5 Fe2+0.0-0.5)Si8O22(OH)2 and Ca2(Mg4.5-2.5 Fe2+0.5-2.5)Si8O22(OH)2, respectively. In these formulas, Mg2+ and Fe2+ can be substituted via complete isomerization. According to the hornblende nomenclature of IMA, the naming decision is based on the occupancy unit texture of Mg2+ and Fe2+ within the region. For tremolite, actinolite, and ferroactinolite, Mg2+/(Mg2+ + Fe2+) = 0.90–1.00, 0.50–0.90, and 0.00–0.50, respectively. The respective cation and Fe2+/Fe3+ coefficients were obtained by calculating the chemical formulas based on the 23 oxygen ions according to the IMA hornblende naming rules.
The calculation of the Mg2+/(Mg2+ + Fe2+) values and Si cation number in the 36 groups of the hornblende minerals shows that all samples belong to tremolite and that all Mg2+/(Mg2+ + Fe2+) values are greater than 0.99, indicating that the tremolite mineral composition has a very low Fe content (0.22–0.55 wt%). Hence, the samples exhibit the characteristics of high Mg content and low Fe content (Table 1).
The average values of FeO in the white nephrite, green-white nephrite, and green nephrite were 0.258, 0.335, and 0.470 wt%, respectively. The FeO content increased as the color deepened, and FeO was associated with the green of the samples. According to the electron microprobe results and mineral chemical formula electrovalent balance, it is calculated that all the Fe in the samples is Fe2+.

4.3. LA-ICP-MS Analysis

Table 2 lists the mass fractions of the trace elements and rare earth elements (REEs) in the nephrite samples. The sample REE and trace elemental contents were normalized using the Boynton chondrite [50] and McDonough primitive mantle element concentrations [51]. Most elements are measured to an accuracy of 0.001, and some elements, such as Cr, Ni, Zn, and Sr, are measured to an accuracy of 0.01.
LA-ICP-MS analysis showed that the samples had low contents of REEs (ΣREE = 1.507–2.731 ppm) and light REEs (LREEs; 1.278–2.373 ppm). The content of heavy REEs (HREEs) was low (0.229–0.400 ppm). The LREE/HREE range was 4.13–9.04, indicating that LREEs are more abundantly present than HREEs. δEu (0.11–3.53) exhibits both positive and negative anomalies, and the degree of anomalies is highly variable. δCe (1.31–1.63) exhibits a weak positive anomaly. LaN/SmN, SmN/HoN, and GdN/LuN are used to indicate the degree of differentiation of the light, medium, and heavy REEs of the samples. The high LaN/SmN values (1.96–48.79) of the Chuncheon nephrite indicate a significantly higher degree of LREE differentiation, the large SmN/HoN differences (0.09–4.00) indicate a large difference in the degree of medium rare earth element differentiation, and the GdN/LuN values (0.10–2.99) indicate a low degree of HREE differentiation.
The different trends in the standardized curves of chondrite (Figure 5a) and primitive mantle (Figure 5b) suggest that the mineralization formation process of the samples may have undergone a multi-stage superposition, indicating that tremolite underwent multiple mineralizations. The samples are enriched with the large ion lithophile elements U, Th, and Rb, and the high field strength elements Nb, Zr, Hf, and Y are generally depleted. Overall, the trace elemental content is very low.
The Ni content of the Chuncheon nephrite samples ranges from 9.1 to 16.7 ppm, with samples KC-3, KC-2, and KC-1 showing a color transition from white to cyan, with the Ni content increasing when the color turns to cyan.

4.4. Hydrogen–Oxygen Isotope Analysis

The δ18O and δD ranges of the samples are respectively −7.2‰ to −2.9‰ and −117‰ to −109‰ (Table 3). Tremolite formation is insensitive to changes in δD values when the temperature ranges from 350 °C to 650 °C [52]. Assuming that tremolite in the samples is formed at a temperature range from 330 °C to 450 °C, the oxygen isotopic composition of the hydrothermal fluids at 330 °C, 390 °C, and 450 °C can be calculated based on the fractionation equation 103lná = 3.95 × 106/T2 − 8.28 × 103/T + 2.38 [53]. The δD composition (Table 3) of the hydrothermal fluids was calculated using the tremolite–water fraction geothermometer proposed by Graham et al. (1984) by setting δD tremolite–water = −21.7% and the temperature range to 330 °C–450 °C. The δ18O and δD isotopic results correspond to δ18O = −6.7‰–−2.4‰ (330 °C), −6.1‰–−1.8‰ (390 °C), and −5.7‰–1.4‰ (450 °C) and to δD = −88‰–−95‰ (330–450 °C) for the fluid isotopic compositions. The δ18O and δD compositions of the Chuncheon nephrite [54] signify that the nephrite-forming fluids are mainly meteoric water (Figure 6).

5. Discussion

The geochemical characteristics of the Chuncheon nephrite were further obtained by comparing its major elements, trace elements, REEs, and hydrogen and oxygen isotopes with those of dolomite-related nephrite of other geographic origins. The other geographic origin nephrites selected herein include Alamas in Xinjiang [39,41], Taksimo in Russia [2], Dahua in Guangxi [28,29,30], Panshi in Jilin [34], Tieli in Heilongjiang [45], Golmud in Qinghai [38], and Luodian in Guizhou [30,31,32,33].

5.1. Comparison of the Characteristics of the Main Elements

The Chuncheon nephrite samples were compared with the dolomite-related nephrite from different geographic origins in terms of the major elements (Table 4). The major element contents of the dolomite-related nephrite from different geographic origins are shown in Table 5.
The CaO content of the Chuncheon nephrite samples is low (11.16–13.05 wt%), and the MgO content in the Chuncheon nephrite is 22.52–25.03 wt%. The CaO and MgO contents of the Chuncheon nephrite and Alamas nephrite partially overlap (Figure 7a). While samples from Golmud, Qinghai; Panshui, Jilin; Dahua, Guangxi; and Tieli, Heilongjiang exhibit high CaO wt% with average CaO values of 13.59, 13.79, 13.80, and 13.88 wt%, respectively, which are generally higher than the theoretical tremolite CaO content (13.8 wt%). The Taksimo sample had the lowest CaO content (11.39–12.25 wt%).
Small amounts of Al can replace Mg and Fe, and small amounts of Na, K, and Mn can replace Ca, Mg, and Fe in the mineral. Moreover, the Al2O3 wt% is negatively related to Na2O + K2O wt%. The increase in the Al and Na–K content indicates a high degree of hornblende metamorphism. The low Al2O3 wt% (0.42–0.89 wt%) and Na2O + K2O wt% (0.04–0.96 wt%) contents of the Chuncheon nephrite samples indicate a low degree of metamorphism. The average content of Na2O + K2O wt% of the Luodian nephrite (0.33 wt%) is higher than that of the other geographic origins, indicating a high degree of metamorphism. The average Al2O3 wt% content of the nephrite from Golmud, Qinghai (0.70 wt%) is higher than that of other geographic origins. The Al2O3 content of all the deposits is less than 0.8 wt%. The Na2O + K2O content in all the deposits except Luodian nephrite is less than 0.3 wt%, indicating a low degree of metamorphism (Figure 7b).
In tremolite minerals, Mg2+ and Fe2+ can be substituted via complete isomorphism, and the MgO and FeO contents of different barite-type chondrites are negatively correlated (Figure 7c). The FeO content of the nephrite from different geographic origins is concentrated in the range of 0–1.34 wt%, and the MgO content is in the range of 21.45–26.23 wt%. The FeO (0.22–0.55 wt%) and MgO (22.52–25.03 wt%) contents of the Chuncheon nephrite are similar to those of nephrite from different geographic origins (Figure 7c). Both the Chuncheon nephrite and dolomite-related nephrite with different geographic origins exhibit high contents of Mg and low contents of Fe. The Taksimo nephrite has the highest MgO content (25.74–26.23 wt%), while the average FeO content of 0.13 wt% is lower than that of the other geographic origins.
The Na2O + K2O + CaO contents of nephrite from different geographic origins are concentrated in the range of 11.60–14.42 wt% (Figure 7d). Chuncheon nephrite has lower Na2O + K2O + CaO% (11.34–13.43 wt%) and higher SiO2% (56.95–61.30 wt%) than nephrite from other geographic origins. The Chuncheon nephrite can be somewhat distinguished from nephrite samples from other geographic origins using Na2O+K2O+CaO% and SiO2% (Figure 7d). The Taksimo nephrite has the lowest Na2O + K2O + CaO% (11.60–12.61 wt%).

5.2. Comparison of Trace Element Characteristics

The Chuncheon nephrite samples were compared with dolomite-related nephrites from different geographic origins in terms of the trace element content (Table 6). The average values of the trace element content of dolomite-related nephrites from different geographic origins are presented in Table 7.
The trace element content of dolomite-related nephrite from different geographic origins is low and exhibits similarity. The Cr content of the Chuncheon nephrite is lower than that of nephrite from different geographic origins. The Dahua nephrite generally has more trace elements, with Ni, Sr, Zr, Nb, Ba, Nd, Ta, and Th being higher than nephrite from other geographic origins.
The Alamas nephrite has the highest Rb and Cr contents among the nephrites of different geographic origins. Cr–Ni–Co content can be used to divide the genetic types of nephrites and is often used to distinguish between dolomite-related and serpentine-related nephrite [12,28,55,56]. Dolomite-related nephrite generally has low Cr, Ni, and Co contents, while the serpentine-related nephrite has high Cr, Ni, and Co contents. The Chuncheon nephrite has low Cr (0.48–1.99 ppm), Ni (9.13–16.69 ppm), and Co (0.065–0.462 ppm) contents. Since the Co content was not measured in the nephrite from some geographic origins, the Cr and Ni contents were used for the graphs. Comparison shows that the Cr and Ni contents of the Chuncheon nephrite are lower than those of dolomite-related nephrites from other geographic origins (Figure 8). The Cr, Ni, and Co contents of the dolomite-related nephrite from different geographic origins are 0–50, 0–40, and 0.80–83.65 ppm.
U/Th can be used as an indicator of redox to judge the paleosedimentary environment; U/Th > 1.25 indicates an anaerobic environment; U/Th between 0.75 and 1.25 indicates a poor oxygen environment; and U/Th < 0.75 denotes an oxygen-rich environment [9]. Most of the nephrite from other geographic origins has a U/Th > 1.25, indicating that it formed in an anaerobic environment, and the U/Th of the Chuncheon nephrite is all >1.25 (1.68–10.06), which also signifies formation in an anaerobic environment. Only the U/Th of the Guangxi Dahua nephrite is generally lower than 0.75 (0.12–0.77), denoting formation in an aerobic environment.
Both Ba and Sr are chemically similar alkaline earth metals that behave differently in different environments. They can be used to assess the pH during mineralization, with Sr/Ba < 1 indicating an acidic mineralizing environment and Sr/Ba > 1 indicating an alkaline mineralizing environment [37]. Sr/Ba (9.81–48.66) > 1 for the Chuncheon nephrite indicates that it formed in an alkaline mineralizing environment. All the nephrites from other geographic origins have Sr/Ba (1.72–53.50) > 1, which also indicates that they formed in an alkaline environment.
The elemental variations in the Rb/Sr ratio indicate the degree of variable segregation crystallization in granitic magmas. The Rb/Sr ratio can be used to characterize the degree of segregation crystallization, alteration, and mineralization; the Rb/Sr values are high when mineralization occurs [57]. The average value of Rb/Sr of the Chuncheon nephrite is 0.11 (0.05–0.16), which is lower than that of Alamas (2.66) and Golmud (0.13).

5.3. Comparison of REE Characteristics

The Chuncheon nephrite samples were compared with the dolomite-related nephrites from other geographic origins in terms of the REE content (Table 8). The average values of the REE contents of dolomite-related nephrites from different geographic origins are presented in Table 9.

5.3.1. Comparison of ΣREE Characteristics

The REE content of hydrothermal fluids in the genesis of nephrite deposits, whether magmatic hydrothermal fluids, metamorphic hydrothermal fluids, or groundwater hydrothermal fluids, is generally low. Therefore, the REE content of nephrite is mainly influenced by the surrounding rocks [37]. The nephrite from different geographic origins is surrounded by marble, and its REE characteristics are similar, with ΣREE content ranging from 2.13 to 44.01 ppm. The ΣREE content of the Chuncheon nephrite is 1.51–2.73 ppm, which is lower than the ΣREE content of nephrite from other geographic origins. Furthermore, the Luodian nephrite has the highest ΣREE content (25.89–91.81 ppm). LREE enrichment is generally observed in all the compared nephrite samples, with LREE/HREE concentrated in the range of 0.22–7.48. LREE enrichment is more intense in the Chuncheon nephrite, with LREE/HREE ranging from 4.13 to 9.04 (Figure 9).

5.3.2. δEu and δCe

The anomalies of elements Eu and Ce (δEu and δCe) can be analyzed for their genetic geographic origins and their geochemical backgrounds (Figure 10). The Chuncheon nephrite δCe (1.31–1.63) has a weak positive anomaly, and δEu (0.11–3.53) widely varies with both positive and negative anomalies. The δEu and δCe values of the Chuncheon nephrite are closest to those of the Alamas nephrite, but the Chuncheon nephrite has positive δEu anomalies while the Alamas nephrite has no positive δEu anomalies. The δEu and δCe values of the Golmud nephrite and Tieli nephrite are close to each other, exhibiting positive δCe anomalies and weak positive and negative δEu anomalies. The δCe anomalies are negative in the Panshi, Dahua, and Luodian, while the δEu anomalies are both positive and negative, and the degree of anomalies is strong.

5.3.3. (La/Sm)N, (Sm/Ho)N, (Gd/Lu)N

The REE content of the nephrite samples from different geographic origins was normalized using the Boynton chondrite [50]. The (La/Sm)N, (Sm/Ho)N, and (Gd/Lu)N values were determined to explore the degree of differentiation among light, medium, and heavy REEs in the samples (Figure 11). All the samples exhibited a more pronounced differentiation of LREEs and a less pronounced differentiation of medium and heavy REEs. The Chuncheon nephrite exhibited a significantly higher degree of LREE differentiation, a greater difference in the degree of medium REE differentiation, and a low degree of HREE differentiation. Particularly, the average (La/Sm)N value of the Chuncheon nephrite (10.17) is significantly higher than that of nephrite from other geographic origins (1.54–3.71).
The REE data in the nephrite samples from different geographic origins are standardized, and an REE/chondrite normalized distribution pattern is constructed (Figure 11). The distribution pattern of the REEs is skewed to the right for all the provenances, and the distribution pattern of REEs for the Chuncheon nephrite is also skewed to the right, indicating that LREEs are more enriched in the dolomite-related nephrite samples. The REE data from different deposits can be used to identify the geographic origins of dolomite-related nephrites (Figure 12).
PrN (0.50–1.08), NdN (0.33–0.93), SmN (0.04–0.84), YbN (0.11–0.44), and DyN (0.004–0.047) of the REEs in the Chuncheon nephrite samples have low values and a small fluctuation range. Figure 13 displays the plots for PrN–SmN, NdN–YbN, NdN–SmN, and NdN–DyN. In the figure, the Chuncheon nephrite samples are clustered together and do not considerably overlap with the nephrite samples of other geographic origins, differentiating Chuncheon nephrites from other dolomite-related nephrites.

5.4. Hydrogen and Oxygen Isotope Characteristics of Nephrites from Different Geographic Origins

The hydrogen–oxygen isotopic compositions of nephrite samples from different geographic origins are shown in Table 10 [5,17,41]. Nephrite samples from Kunlun Mountains (China), Wyoming (USA), Cowell (Australia), Alamas (Xinjiang), and Złoty Stok (Poland) are all dolomite-related nephrite deposits.
The δD values of nephrite of different geographic origins ranged from −124‰ to −56‰ and the δ18O values ranged from −9.9‰ to 10.4‰; both δD and δ18O values are low. The δD values of the Chuncheon nephrite are concentrated between −117‰ and −105‰, and the δ18O values are concentrated between −9.9‰ and −2.9‰. The δD and δ18O values are generally lower than those of dolomite-related nephrite from other geographic origins. Assuming a mineralization temperature of 330 °C, dolomite-related nephrite mineralizing fluids are mainly atmospheric water; Alamas mineralizing fluids are atmospheric water mixed with magmatic water; and Złoty Stok and Cowell, Australia mineralizing fluids are metamorphic water (Figure 14). The δ18O content of Chuncheon nephrite is significantly lower than that of other dolomite-related nephrites, which is highly related to the geological genesis and formation mode of Chuncheon nephrite. Although it has generally been considered that dolomite-related nephrite forms at the contacts between granite/granodiorite and dolomitic marble, Chuncheon nephrite is located at the contact between calc-silicate rocks and amphibole schist and has no direct contact with dolomitic marble or granite. Therefore, it is a special kind of dolomite-related nephrite that was produced by the replacement of the calc-silicate rocks. The very low δ18O content of Chuncheon nephrite is also influenced by calc-silicate rocks. Carbonate within calc-silicate rocks and carbonate within marbles in direct contact with calc-silicate rocks are distinctly lower in oxygen isotope composition [17].

5.5. Discussion of Mineral-Forming Material Sources

Yui and Kwon argued that the Chuncheon nephrite deposit is a product of fluid circulation at the contact between dolomitic barite and hornblende schist [17]. Feng et al. considered the dolomitic marble as the host rock (a Ca and Mg source) and speculated that the high Si content in the hot water solution ultimately stems from the black mica schist connecting the upper part of the biotite schist zone [19]. Park and Noh found that the nephrite samples have Sr and Pb isotopic ratios similar to the Kyeonggi gneiss complex within which the deposit is located, suggesting the important role of crustal circulating water in the genesis of the deposit. The meteoric water supplied Sr and Pb by leaching the rocks surrounding the ore deposits [14].
Metamorphic rocks, as products of early-formed rocks subjected to late metamorphism, often exhibit petrographic characteristics depending on the composition of the original rock (igneous and sedimentary). Although the metamorphism process changes the mineral composition and structural configuration of the original rock, it only slightly changes the main chemical composition of the original rock. Therefore, the petrogeochemical characteristics of metamorphic rocks, to a certain extent, directly reflect certain chemical composition characteristics of the original rock. The Chuncheon nephrite deposit and surrounding rocks are characterized by zonation, from bottom to top as a dolomitic marble zone, a calc-silicate zone, a nephrite zone, a chlorite zone, an amphibole schist zone, a biotite schist zone, and a gneiss zone (Figure 2). The nephrite belt is in direct contact with the calc-silicate zone, chlorite zone, and amphibole schist zone. The biotite schist is rich in biotite minerals, thus exhibiting high Fe content and low Si content characteristics [58,59]. Gneisses are generally characterized by high Si content and low Fe content [42]. The chemical composition of the Chuncheon nephrite exhibits high Mg and Si content and low Fe and Ca content characteristics, which is close to that of gneisses, and the Sr and Pb isotope ratios of the Chuncheon nephrite are similar to those of the Kyeonggi gneiss, where the deposit is located [14]. Although the nephrite belt is not in direct contact with the gneiss belt, the chemical composition proves that gneiss formation is a necessary factor for nephrite formation. The genetic material source of the Chuncheon nephrite may be related to the amphibole schist, biotite schist, and gneissic miscellaneous rocks, but the contribution of the Chuncheon granite to the mineralization cannot be excluded. Further in-depth studies on the genesis of Chuncheon nephrite are required.

6. Conclusions

(1) The Chuncheon nephrite mainly comprises tremolite. The texture is mainly felt-like fibroblastic texture, pseudomorphic metasomatic texture, and secondary filling texture. The pseudomorphic metasomatic texture is a unique texture feature of the Chuncheon nephrite.
(2) The Chuncheon nephrite exhibits high Mg and Si content and low Fe and Ca content characteristics. The high Mg2+/(Mg2+ + Fe2+) values, low Cr–Ni–Co content, and the rightward sloping distribution pattern of REEs indicate that the Chuncheon nephrite is dolomite-related nephrite. Its green color deepens with increasing Fe2+ content. The low Al2O3 and Na2O + K2O contents indicate that the Chuncheon nephrite formed at low temperatures. The U/Th and Sr/Ba ratios indicate that the Chuncheon nephrite formed in an anaerobic alkaline environment. Moreover, the Rb/Sr ratio indicates its low mineralization. The hydrogen and oxygen isotope contents indicate that the Chuncheon nephrite mineralizing fluid was atmospheric water.
(3) Compared to other dolomite-related nephrites, Chuncheon nephrite has lower Na2O + K2O + CaO wt% (11.34–13.43 wt%) and higher SiO2 wt% (56.95–61.30 wt%). Consequently, it can be distinguished from nephrites from other geographic origins using Na2O + K2O + CaO wt% and SiO2 wt% map partitioning. The Cr content of Chuncheon nephrite is lower than that of other dolomite-related nephrites in terms of the trace elements. In terms of REEs, the Chuncheon nephrite LREEs are highly differentiated and higher than those of nephrites from other geographic origins, with lower and less fluctuating values of PrN (0.50–1.08), NdN (0.33–0.93), SmN (0.04–0.84), YbN (0.11–0.44), and DyN (0.004–0.047). The PrN–SmN, NdN–YbN, NdN–SmN, and NdN–DyN cast diagrams were used to distinguish Chuncheon nephrite from other dolomite-related nephrites. In terms of the hydrogen and oxygen isotopes, the δ18O and δD contents of Chuncheon nephrite are lower than those of dolomite-related nephrites from other geographic origins. The in δ18O and δD projection map partitioning was used to distinguish Chuncheon nephrite from dolomite-related nephrites from other geographic origins.

Author Contributions

Data curation, M.L.; writing—original draft preparation, N.L. and Q.P.; supervision, F.B. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Data Availability Statement

No data was used for the research described in the article.

Acknowledgments

We thank the Institute of Geology and Geophysics of the Chinese Academy of Sciences for its help in sample testing.

Conflicts of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

  1. Burtseva, M.; Ripp, G.; Posokhov, V.; Murzintseva, A. Nephrites of East Siberia: Geochemical features and problems of genesis. Russ. Geol. Geophys. 2015, 56, 402–410. [Google Scholar] [CrossRef]
  2. Liu, X.F. Gemological and Mineralogical Study of White Nephrite from Dakeximu Region in Russia. Master’s Thesis, China University of Geosciences (Beijing), Beijing, China, 2010. (In Chinese with English Abstract). [Google Scholar]
  3. Zhang, X.H.; Wu, R.H.; Wang, L.H. Research on Petrologic Character of Nephrite Jade from Baikal Lake Region in Russia. J. Gems Gemol. 2001, 1, 12–17. [Google Scholar]
  4. Gil, G. Petrographic and microprobe study of nephrites from Lower Silesia (SW Poland). Geol. Q. 2013, 57, 3. [Google Scholar] [CrossRef]
  5. Gil, G.; Barnes, J.D.; Boschi, C.; Gunia, P.; Raczyński, P.; Szakmány, G.; Bendő, Z.; Péterdi, B. Nephrite from Złoty Stok (Sudetes, SW Poland): Petrological, geochemical, and isotopic evidence for a dolomite-related origin. Can. Mineral. 2015, 53, 533–556. [Google Scholar] [CrossRef]
  6. Adamo, I.; Bocchio, R. Nephrite jade from Val Malenco, Italy: Review and update. J. Gems Gemol. 2013, 49, 98–106. [Google Scholar] [CrossRef]
  7. Zhang, Z.W.; Xu, Y.C.; Cheng, H.S.; Gan, F.X. Comparison of trace elements analysis of nephrite samples from different deposits by PIXE and ICP-AES. X-ray Spectrom. 2012, 41, 367–370. [Google Scholar] [CrossRef]
  8. Morin, J. The salish nephrite/jade industry: Ground stone celt production in British Columbia, Canada. Lithic Technol. 2016, 41, 39–59. [Google Scholar] [CrossRef]
  9. Jiang, B.H.; Bai, F.; Zhao, J.K. Mineralogical and geochemical characteristics of green nephrite from Kutcho, northern British Columbia, Canada. Lithos 2021, 388, 106030. [Google Scholar] [CrossRef]
  10. Leaming, S.F. Jade in Canada; Department of Energy, Mines and Resources: Ottawa, ON, Canada, 1978; ISBN 0660100614. [Google Scholar]
  11. Tan, T.L.; Ng, L.L.; Lim, L.C. Studies on nephrite and jadeite jades by Fourier transform infrared (FTIR) and Raman spectroscopic techniques. Cosmos 2013, 9, 47–56. [Google Scholar] [CrossRef]
  12. Liu, X.F.; Zhang, H.Q.; Liu, Y.; Zhang, Y.; Li, Z.J.; Zhang, J.H.; Zheng, F. Mineralogical Characteristics and Genesis of Green Nephrite from the World. Rock Miner. Anal. 2018, 37, 479–489, (In Chinese with English Abstract). [Google Scholar]
  13. Noh, J.H.; Yu, J.Y.; Choi, J.B. Genesis of nephrite and associated calc-silicate minerals in Chuncheon area. J. Geol. Soc. Korea 1993, 29, 199–224, (In Korean with English Abstract). [Google Scholar]
  14. Park, K.H.; Noh, J.H. Geochemical Study on the Genesis of Chuncheon Nephrite Deposit. J. Korean Chem. Soc. 2000, 9, 53–69, (In Korean with English Abstract). [Google Scholar]
  15. Pei, X.X. Study on the Chuncheon Nephrite Deposit, Korea-Analysis on the Mineralization and Genesis. Master’s Thesis, China University of Geosciences (Beijing), Beijing, China, 2012. (In Chinese with English Abstract). [Google Scholar]
  16. Pei, X.X.; Qian, Z.J.; Shi, G.H. A mineralogical study of the Chuncheon nephrite, South Korea. Acta Petrol. Mineral. 2011, 90, 89–94, (In Chinese with English Abstract). [Google Scholar]
  17. Yui, T.F.; Kwon, S.T. Origin of a dolomite-related jade deposit at Chuncheon, Korea. Econ. Geol. 2002, 97, 593–601. [Google Scholar] [CrossRef]
  18. Bai, F.; Zhao, K. Gemological and structural characteristics of nephrite from South Korea. Acta Petrol. Mineral. 2011, 30, 83–88. [Google Scholar]
  19. Feng, Y.H.; He, X.M.; Jin, Y.T. A new model for the formation of nephrite deposits: A case study of the Chuncheon nephrite deposit, South Korea. Ore Geol. Rev. 2022, 141, 104655. [Google Scholar]
  20. Hou, H.; Wang, Y.; Liu, X.F. Study of gemological characteristics of Korea nephrite jade. Northwest. Geol. 2010, 43, 147–153, (In Chinese with English Abstract). [Google Scholar]
  21. Kim, S.J.; Lee, D.J.; Chang, S.W. A mineralogical and gemological characterization of the Korean jade from Chuncheon, Korea. J. Petrol. Soc. Korea 1986, 22, 278–288, (In Korean with English Abstract). [Google Scholar]
  22. Zhao, K. Gemological and Mineralogical Study of Nephrite in South Korea. Master’s Thesis, China University of Geosciences (Beijing), Beijing, China, 2010. (In Chinese with English Abstract). [Google Scholar]
  23. Cho, D.L.; Suzuki, K.; Adachi, M.; Chwae, U. A preliminary CHIME age determination of monazite from metamorphic and granitic rocks in the Gyeonggi massif, Korea. J. Earth Planet. Sci. Nagoya Univ. 1996, 43, 49–65. [Google Scholar]
  24. Ling, X.X.; Schmädicke, E.; Wu, R.; Wang, S.; Gose, J. Composition and distinction of white nephrite from Asian deposits. J. Mineral Geochem. 2013, 190, 49–65. [Google Scholar] [CrossRef]
  25. Yang, T.T.; Wang, X.; Huang, B.; Zang, Z.Y.; Wang, J.; Yan, S.H. Origin identification of white nephrite based on terahertz time-domain spectroscopy. Acta Petrol. Mineral. 2020, 39, 314–322, (In Chinese with English Abstract). [Google Scholar]
  26. Luo, Z.; Yang, M.; Shen, A.H. Origin Determination of Dolomite-Related White Nephrite through Iterative-Binary Linear Discriminant Analysis. J. Gems Gemol. 2015, 51, 300–311. [Google Scholar] [CrossRef]
  27. Zhong, Q.; Liao, Z.T.; Qi, L.J.; Zhou, Z.Y. Black Nephrite Jade from Guangxi, Southern China. J. Gems Gemol. 2019, 55, 198–215. [Google Scholar] [CrossRef]
  28. Bai, F.; Du, J.M.; Li, J.J.; Jiang, B.H. Mineralogy, geochemistry, and petrogenesis of green nephrite from Dahua, Guangxi, Southern China. Ore Geol. Rev. 2020, 118, 103362. [Google Scholar] [CrossRef]
  29. Peng, F.; Zhao, Q.H.; Pei, L.; Wang, C.; Yin, Z.W. Study of mineralogical and spectroscopic characteristics of black nephrite from Dahua in Guangxi. Spectrosc. Spect. Anal. 2017, 37, 2237–2241. [Google Scholar]
  30. Jiang, C.; Peng, F.; Wang, W.; Yin, Z. Comparative Study on Spectroscopic Characteristics and Coloration Mechanism of Nephrite From Dahua and Luodian. Spectrosc. Spect. Anal. 2021, 41, 1294–1299. [Google Scholar]
  31. Li, N.; Bai, F.; Xu, L.L.; Che, Y.D. Geochemical characteristics and ore-forming mechanism of Luodian nephrite deposit, Southwest China and comparison with other nephrite deposits in Asia. Ore Geol. Rev. 2023, 160, 105604. [Google Scholar] [CrossRef]
  32. Zhang, Y.D. Study on Geologic-Geochemical Property and Metallogenic Regularity of Nephritic Ore in Luodian County, Guizhou Province. Master’s Thesis, Guizhou University, Guiyang, China, 2015. (In Chinese with English Abstract). [Google Scholar]
  33. Yang, H. A Comparative Study of Three Typical Nephrites—Taking the Examples of Guizhou Luodian Jade, Qinghai Jade and Korean Nephrite. Master’s Thesis, China University of Geosciences (Beijing), Beijing, China, 2019. (In Chinese with English Abstract). [Google Scholar]
  34. Bai, F.; Li, G.M.; Lei, J.; Sun, J.X. Mineralogy, geochemistry, and petrogenesis of nephrite from Panshi, Jilin, Northeast China. Ore Geol. Rev. 2019, 115, 103171. [Google Scholar] [CrossRef]
  35. Zhang, C.; Yu, X.Y.; Jiang, T.L. Mineral association and graphite inclusions in nephrite jade from Liaoning, northeast China: Implications for metamorphic conditions and ore genesis. Geosci. Front. 2019, 10, 425–437. [Google Scholar] [CrossRef]
  36. Wang, S.Q.; Duan, T.Y.; Zheng, Z.Z. Mineralogical and petrological characteristics of Xiuyan nephrite and its minerogenetic model. Acta Petrol. Mineral. 2002, 21, 79–90, (In Chinese with English Abstract). [Google Scholar]
  37. Yu, H.Y.; Jia, Z.Y.; Lei, W. Study on Geochemical Characteristics and Influencing Factors of Rare Earth Elements in Chinese Nephrite. Mod. Min. 2019, 3, 13–17. [Google Scholar] [CrossRef]
  38. Yu, H.Y.; Wang, R.C.; Guo, J.C.; Li, J.G.; Yang, X.W. Study of the minerogenetic mechanism and origin of Qinghai nephrite from Golmud, Qinghai, Northwest China. Sci. China Earth Sci. 2016, 59, 1597–1609. [Google Scholar] [CrossRef]
  39. Liu, Y.; Deng, J.; Shi, G.H.; Lu, T.; He, H.Y.; Ng, Y.N.; Shen, C.H.; Yang, L.; Wang, Q. Chemical zone of nephrite in Alamas, Xinjiang, China. Resour. Geol. 2010, 60, 249–259. [Google Scholar] [CrossRef]
  40. Liu, Y.; Deng, J.; Shi, G.H.; Sun, X.; Yang, L. Geochemistry and petrogenesis of placer nephrite from Hetian, Xinjiang, Northwest China. Ore Geol. Rev. 2011, 41, 122–132. [Google Scholar] [CrossRef]
  41. Liu, Y.; Deng, J.; Shi, G.H.; Yui, T.F.; Zhang, G.; Abuduwayiti, M.; Yang, L.; Sun, X. Geochemistry and petrology of nephrite from Alamas, Xinjiang, NW China. J. Asian Earth Sci. 2011, 42, 440–451. [Google Scholar] [CrossRef]
  42. Liu, S.W.; Lü, Y.J.; Wang, W.; Yang, P.T.; Bai, X.; Feng, Y.G. Petrogenesis of the Neoarcheangranitoid gneisses in northern Hebei Province. Acta Petrol. Sin. 2011, 27, 909–921, (In Chinese with English Abstract). [Google Scholar]
  43. Chen, D.; Pan, M.; Huang, W.; Luo, W.G.; Wang, C.S. The provenance of nephrite in China based on multi-spectral imaging technology and gray-level co-occurrence matrix. Anal. Methods 2018, 10, 4053–4062. [Google Scholar] [CrossRef]
  44. Liu, F.; Yu, X.Y. Classification and mineralogical characteristics of nephrite deposits in China. Miner. Resour. Geol. 2009, 23, 375–380, (In Chinese with English Abstract). [Google Scholar]
  45. Gao, S.J.; Bai, F.; Heide, G. Mineralogy, geochemistry and petrogenesis of nephrite from Tieli, China. Ore Geol. Rev. 2019, 107, 155–171. [Google Scholar] [CrossRef]
  46. Yin, Z.W.; Jiang, C.; Santosh, M.; Chen, Y.M.; Bao, Y.; Chen, Q.L. Nephrite jade from Guangxi Province, China. J. Gems Gemol. 2014, 20, 228–235. [Google Scholar] [CrossRef]
  47. Harlow, G.; Sorensen, S.S. Jade (nephrite and jadeitite) and serpentinite: Metasomatic connections. Int. Geol. Rev. 2005, 47, 113–146. [Google Scholar] [CrossRef]
  48. Clayton, R.N.; Mayeda, T.K. The use of bromine pentafluoride in the extraction of oxygen from oxides and silicates for isotopic analysis. Geochim. Cosmochim. Acta 1963, 27, 43–52. [Google Scholar] [CrossRef]
  49. Godfrey, J.D. The deuterium content of hydrous minerals from the east-central Sierra Nevada and Yosemite National Park. Geochim. Cosmochim. Acta 1962, 26, 1215–1245. [Google Scholar] [CrossRef]
  50. Boynton, W.V. Cosmochemistry of the rare earth elements: Meteorite studies. Dev. Geochem. 1984, 2, 63–114. [Google Scholar] [CrossRef]
  51. McDonough, W.; Sun, S.S.; Ringwood, A.; Jagoutz, E.; Hofmann, A. Potassium, rubidium, and cesium in the Earth and Moon and the evolution of the mantle of the Earth. Geochim. Cosmochim. Acta 1992, 56, 1001–1012. [Google Scholar] [CrossRef]
  52. Graham, C.M.; Harmon, R.S.; Sheppard, S.M. Experimental hydrogen isotope studies: Hydrogen isotope exchange between amphibole and water. Am. Mineral. 1984, 69, 128–138. [Google Scholar]
  53. Zheng, Y.F. Calculation of oxygen isotope fractionation in hydroxyl-bearing silicates. Earth Planet. Sci. Lett. 1993, 120, 247–263. [Google Scholar] [CrossRef]
  54. Zhao, Y.H.; Yang, J.Y.; Wang, H.; Xie, Y.Q.; Li, J.X. Hydrogen and oxygen isotope distribution characteristics of geothermal water. Prog. Geophys. 2017, 32, 2415–2423. [Google Scholar] [CrossRef]
  55. Zhang, Z.W.; Gan, F.X.; Cheng, H.S. PIXE analysis of nephrite minerals from different deposits. Nucl. Instrum. Meth. B 2011, 269, 460–465. [Google Scholar] [CrossRef]
  56. Yu, P.H.; Ma, J.L.; Liao, J.B.; Li, Z.Y.; Di, J. Geochemistry and paleoenvironment significance of Lulehe Formation Xiaganchaigou Formation located in the north area of Qaidam Basin. Arid Land Geogr. 2020, 43, 679–686, (In Chinese with English Abstract). [Google Scholar]
  57. Imeokparia, E.G. Ba/Rb and Rb/Sr ratios as indicators of magmatic fractionation, postmagmatic alteration and mineralization Afu Younger Granite Complex, Northern Nigeria. Geochem. J. 1981, 15, 209–219. [Google Scholar] [CrossRef]
  58. Tang, J.; Zheng, Y.F.; Wu, Y.B.; Zha, X.P.; Zhou, J.B. Zircon U-Pb ages and oxygen isotopes of high-grade metamorphic rocks in the eastern part of the Shandong Peninsula. Acta Petrol. Sin. 2004, 20, 1039–1062, (In Chinese with English Abstract). [Google Scholar]
  59. Wang, Y. Metamorphic and Deformation Characteristics in Northwest Yunnan Province of Nu River Chongshan Group Metamorphic Complex. Master’s Thesis, Guilin University of Technology, Guilin, China, 2018. (In Chinese with English Abstract). [Google Scholar]
Figure 1. Simplified geologic map of the region and location of the Chuncheon nephrite deposit (adapted from Yui and Kwon, 2002) [17].
Figure 1. Simplified geologic map of the region and location of the Chuncheon nephrite deposit (adapted from Yui and Kwon, 2002) [17].
Crystals 13 01468 g001
Figure 2. Schematic cross section of the Chuncheon nephrite deposit (adapted from Yui and Kwon, 2002) [17].
Figure 2. Schematic cross section of the Chuncheon nephrite deposit (adapted from Yui and Kwon, 2002) [17].
Crystals 13 01468 g002
Figure 3. Pictures of hand specimens of nephrite from the Chuncheon deposit.
Figure 3. Pictures of hand specimens of nephrite from the Chuncheon deposit.
Crystals 13 01468 g003
Figure 4. Microtexture of the Chuncheon nephrite. (ad) Tremolite has a felt-like fibroblastic texture. (e,f) early calcite or dolomite particles replaced by late tremolite (based on the pseudomorphic metasomatic texture). (g,h) microfractures in nephrite filled with iron impurities. Tr: tremolite.
Figure 4. Microtexture of the Chuncheon nephrite. (ad) Tremolite has a felt-like fibroblastic texture. (e,f) early calcite or dolomite particles replaced by late tremolite (based on the pseudomorphic metasomatic texture). (g,h) microfractures in nephrite filled with iron impurities. Tr: tremolite.
Crystals 13 01468 g004
Figure 5. (a) Chondrite-normalized REE patterns of selected samples. (b) Primitive mantle-normalized trace element diagrams of selected samples.
Figure 5. (a) Chondrite-normalized REE patterns of selected samples. (b) Primitive mantle-normalized trace element diagrams of selected samples.
Crystals 13 01468 g005
Figure 6. δD and δ18OH2O compositions of the hydrothermal fluids during the formation of the Chuncheon nephrite.
Figure 6. δD and δ18OH2O compositions of the hydrothermal fluids during the formation of the Chuncheon nephrite.
Crystals 13 01468 g006
Figure 7. Comparison of the main elemental characteristics of dolomite-related nephrite from different geographic origins. (a) MgO wt% and CaO wt%; (b) Al2O3 wt% and Na2O + K2O wt%; (c) MgO wt% and FeO wt%; (d) SiO2 wt% and Na2O + K2O + CaO wt%. KC—Chuncheon, Korea; XA—Alamas, Xinjiang [41]; QG—Golmud, Qinghai [38]; JP—Panshi, Jilin [34]; HT—Tieli, Heilongjiang [45]; DH—Dahua, Guangxi [28].
Figure 7. Comparison of the main elemental characteristics of dolomite-related nephrite from different geographic origins. (a) MgO wt% and CaO wt%; (b) Al2O3 wt% and Na2O + K2O wt%; (c) MgO wt% and FeO wt%; (d) SiO2 wt% and Na2O + K2O + CaO wt%. KC—Chuncheon, Korea; XA—Alamas, Xinjiang [41]; QG—Golmud, Qinghai [38]; JP—Panshi, Jilin [34]; HT—Tieli, Heilongjiang [45]; DH—Dahua, Guangxi [28].
Crystals 13 01468 g007
Figure 8. (a) Comparison of the Cr and Ni content of dolomite-related nephrite from different geographic origins. (b) Zoomed-in version of Figure 8a. KC—Chuncheon, Korea; XA—Alamas, Xinjiang [41]; QG—Golmud, Qinghai [38]; JP—Panshi, Jilin [34]; HT—Tieli, Heilongjiang [45]; DH—Dahua, Guangxi [28].
Figure 8. (a) Comparison of the Cr and Ni content of dolomite-related nephrite from different geographic origins. (b) Zoomed-in version of Figure 8a. KC—Chuncheon, Korea; XA—Alamas, Xinjiang [41]; QG—Golmud, Qinghai [38]; JP—Panshi, Jilin [34]; HT—Tieli, Heilongjiang [45]; DH—Dahua, Guangxi [28].
Crystals 13 01468 g008
Figure 9. (a) Comparison of ΣREE and LREE/HREE for nephrite from different geographic origins. (b) The ΣREE and LREE/HREE content of Chuncheon nephrite. KC—Chuncheon, South Korea; XA—Alamas, Xinjiang [41]; QG—Golmud, Qinghai [38]; JP—Panshi, Jilin [34]; HT—Tieli, Heilongjiang [45]; DH—Dahua, Guangxi [28]; LD—Luodian, Guizhou [30,33].
Figure 9. (a) Comparison of ΣREE and LREE/HREE for nephrite from different geographic origins. (b) The ΣREE and LREE/HREE content of Chuncheon nephrite. KC—Chuncheon, South Korea; XA—Alamas, Xinjiang [41]; QG—Golmud, Qinghai [38]; JP—Panshi, Jilin [34]; HT—Tieli, Heilongjiang [45]; DH—Dahua, Guangxi [28]; LD—Luodian, Guizhou [30,33].
Crystals 13 01468 g009
Figure 10. (a) Comparison of δEu and δCe values of nephrite from different geographic origins. (b) The δEu and δCe values of Chuncheon nephrite. KC—Chuncheon, South Korea; XA—Alamas, Xinjiang [41]; QG—Golmud, Qinghai [38]; JP—Panshi, Jilin [34]; HT—Tieli, Heilongjiang [45]; DH—Dahua, Guangxi [28]; LD—Luodian, Guizhou [30,33].
Figure 10. (a) Comparison of δEu and δCe values of nephrite from different geographic origins. (b) The δEu and δCe values of Chuncheon nephrite. KC—Chuncheon, South Korea; XA—Alamas, Xinjiang [41]; QG—Golmud, Qinghai [38]; JP—Panshi, Jilin [34]; HT—Tieli, Heilongjiang [45]; DH—Dahua, Guangxi [28]; LD—Luodian, Guizhou [30,33].
Crystals 13 01468 g010
Figure 11. Comparison of REE characteristics of nephrite from different geographic origins. KC—Chuncheon, South Korea; XA—Alamas, Xinjiang [41]; QG—Golmud, Qinghai [38]; JP—Panshi, Jilin [34]; HT—Tieli, Heilongjiang [45]; DH—Dahua, Guangxi [28]; LD—Luodian, Guizhou [30,33].
Figure 11. Comparison of REE characteristics of nephrite from different geographic origins. KC—Chuncheon, South Korea; XA—Alamas, Xinjiang [41]; QG—Golmud, Qinghai [38]; JP—Panshi, Jilin [34]; HT—Tieli, Heilongjiang [45]; DH—Dahua, Guangxi [28]; LD—Luodian, Guizhou [30,33].
Crystals 13 01468 g011
Figure 12. Identification of nephrite geographic origins using REEs.
Figure 12. Identification of nephrite geographic origins using REEs.
Crystals 13 01468 g012
Figure 13. Comparison of the standardization of REEs of different geographic origins. (a) PrN–SmN; (b) NdN–YbN; (c) NdN–SmN; (d) NdN–DyN. KC—Chuncheon, South Korea; XA—Alamas, Xinjiang [41]; QG—Golmud, Qinghai [38]; JP—Panshi, Jilin [34]; HT—Tieli, Heilongjiang [45]; DH—Dahua, Guangxi [28]; LD—Luodian, Guizhou [30,33].
Figure 13. Comparison of the standardization of REEs of different geographic origins. (a) PrN–SmN; (b) NdN–YbN; (c) NdN–SmN; (d) NdN–DyN. KC—Chuncheon, South Korea; XA—Alamas, Xinjiang [41]; QG—Golmud, Qinghai [38]; JP—Panshi, Jilin [34]; HT—Tieli, Heilongjiang [45]; DH—Dahua, Guangxi [28]; LD—Luodian, Guizhou [30,33].
Crystals 13 01468 g013
Figure 14. Hydrogen and oxygen isotope content characteristics of dolomite-related nephrite from different geographic origins. KC—Chuncheon, Korea; NE—Chuncheon, Korea [17]; CA—Cowell, Australia; WU—Wyoming, USA; TC—Kunlun Mountains, China; ZS—Złoty Stok, Poland; XA—Alamas, Xinjiang.
Figure 14. Hydrogen and oxygen isotope content characteristics of dolomite-related nephrite from different geographic origins. KC—Chuncheon, Korea; NE—Chuncheon, Korea [17]; CA—Cowell, Australia; WU—Wyoming, USA; TC—Kunlun Mountains, China; ZS—Złoty Stok, Poland; XA—Alamas, Xinjiang.
Crystals 13 01468 g014
Table 1. Chemical composition analysis (EMPA) of tremolite in the Chuncheon nephrite (wt%).
Table 1. Chemical composition analysis (EMPA) of tremolite in the Chuncheon nephrite (wt%).
SamplesKC1-1KC1-2KC1-3KC1-4KC1-5KC1-6KC1-7KC1-8KC1-9KC2-1KC2-2KC2-3KC2-4KC2-5KC2-6KC2-7KC2-8KC3-1
Na2O0.0230.0280.0530.0270.0640.1980.0440.0450.0710.1120.1060.040.0290.8620.070.0610.0650.074
Cr2O30.006 0.000 0.000 0.000 0.006 0.000 0.003 0.001 0.000 0.000 0.006 0.006 0.000 0.000 0.000 0.005 0.019 0.000
K2O0.032 0.032 0.032 0.011 0.031 0.070 0.035 0.011 0.082 0.075 0.033 0.026 0.056 0.097 0.026 0.040 0.014 0.087
MgO23.982 24.066 23.970 23.686 23.714 22.518 23.902 24.077 23.425 23.486 23.229 23.371 23.939 23.728 23.518 23.903 23.711 24.371
MnO0.141 0.083 0.083 0.114 0.130 0.133 0.150 0.111 0.165 0.146 0.117 0.146 0.131 0.148 0.110 0.134 0.078 0.145
FeO0.510 0.546 0.482 0.429 0.491 0.426 0.442 0.459 0.446 0.313 0.312 0.328 0.288 0.388 0.414 0.421 0.333 0.216
Al2O30.560 0.581 0.497 0.532 0.604 0.586 0.601 0.612 0.528 0.509 0.666 0.639 0.609 0.605 0.664 0.628 0.660 0.739
NiO0.000 0.055 0.000 0.005 0.041 0.026 0.001 0.000 0.005 0.014 0.015 0.000 0.017 0.000 0.040 0.030 0.000 0.026
CaO13.051 12.976 12.953 12.758 12.813 11.931 12.750 12.173 12.737 12.558 12.204 11.532 12.363 12.472 12.212 12.331 12.316 12.819
SiO258.423 59.025 58.375 57.720 58.779 61.302 59.506 59.336 58.312 58.214 57.087 56.946 59.022 59.204 58.103 59.026 58.151 60.026
TiO20.000 0.000 0.000 0.000 0.000 0.052 0.057 0.004 0.000 0.000 0.030 0.021 0.000 0.000 0.001 0.000 0.000 0.000
Cl0.001 0.009 0.012 0.016 0.010 0.041 0.025 0.032 0.017 0.040 0.005 0.002 0.007 0.184 0.017 0.008 0.017 0.023
Total96.729 97.399 96.454 95.294 96.681 97.274 97.510 96.854 95.784 95.458 93.809 93.057 96.459 97.646 95.171 96.585 95.360 98.521
Mg4.890 4.869 4.899 4.897 4.830 4.521 4.820 4.879 4.830 4.872 4.868 4.925 4.872 4.798 4.855 4.862 4.884 4.862
Fe2+0.029 0.032 0.021 0.016 0.056 0.048 0.050 0.023 0.053 0.028 0.016 0.000 0.028 0.000 0.032 0.034 0.006 0.019
Mg/(Mg + Fe2+)0.990 0.990 1.000 1.000 0.990 0.990 0.990 1.000 0.990 0.990 1.000 1.000 0.990 1.000 0.990 0.990 1.000 1.000
SamplesKC3-2KC3-3KC3-4KC3-5KC3-6KC3-7KC3-8KC3-9KC3-10KC4-1KC4-2KC4-3KC4-4KC4-5KC4-6KC4-7KC4-8KC4-9
Na2O0.0390.0540.0570.0880.0470.0160.0640.060.0920.0150.0720.0680.0690.0670.0140.0410.0590.01
Cr2O30.000 0.000 0.000 0.010 0.000 0.000 0.072 0.000 0.005 0.004 0.000 0.000 0.018 0.000 0.017 0.000 0.000 0.000
K2O0.067 0.047 0.057 0.088 0.097 0.044 0.035 0.028 0.046 0.042 0.053 0.037 0.035 0.051 0.048 0.049 0.037 0.053
MgO24.595 24.642 24.317 23.781 25.030 24.065 24.435 24.689 24.169 23.770 24.085 24.059 23.762 23.946 24.303 24.144 24.073 24.292
MnO0.167 0.107 0.135 0.209 0.084 0.118 0.121 0.131 0.123 0.103 0.072 0.032 0.131 0.120 0.109 0.169 0.150 0.157
FeO0.272 0.256 0.313 0.272 0.231 0.221 0.220 0.236 0.302 0.294 0.290 0.291 0.387 0.510 0.307 0.260 0.232 0.281
Al2O30.759 0.681 0.589 0.890 0.658 0.700 0.631 0.557 0.655 0.468 0.448 0.476 0.417 0.634 0.536 0.483 0.526 0.514
NiO0.005 0.030 0.000 0.000 0.009 0.000 0.022 0.015 0.000 0.000 0.000 0.014 0.017 0.000 0.000 0.000 0.024 0.014
CaO12.592 12.528 12.502 11.160 12.471 12.782 12.461 12.443 12.613 12.534 12.511 12.504 12.437 12.150 12.689 12.750 12.137 12.704
SiO259.311 59.753 59.646 57.839 59.449 59.270 59.657 60.026 59.272 59.430 59.647 59.015 58.584 58.493 59.051 59.843 59.067 59.220
TiO20.028 0.027 0.026 0.033 0.000 0.025 0.019 0.006 0.051 0.008 0.000 0.009 0.000 0.004 0.000 0.028 0.010 0.000
Cl0.028 0.008 0.020 0.000 0.001 0.029 0.000 0.014 0.012 0.008 0.004 0.010 0.007 0.014 0.009 0.001 0.024 0.011
Total97.857 98.131 97.657 94.370 98.077 97.263 97.737 98.202 97.337 96.674 97.181 96.513 95.862 95.986 97.081 97.768 96.334 97.254
Mg4.910 4.943 4.932 4.891 4.934 5.016 4.862 4.908 4.934 4.912 4.824 4.864 4.895 4.873 4.903 4.922 4.851 4.902
Fe2+0.034 0.030 0.029 0.013 0.031 0.025 0.024 0.024 0.026 0.000 0.033 0.033 0.026 0.045 0.000 0.000 0.029 0.010
Mg/(Mg + Fe2+)0.990 0.990 0.990 0.990 0.990 0.990 1.000 0.990 0.990 1.000 0.990 0.990 0.990 0.990 1.000 1.000 0.990 1.000
Table 2. Trace element and REE analyses of the Chuncheon nephrite (ppm).
Table 2. Trace element and REE analyses of the Chuncheon nephrite (ppm).
SamplesKC-1-1KC-1-2KC-1-3KC-2-1KC-2-2KC-2-3KC-3-1KC-3-2KC-3-3KC-4-1KC-4-2KC-4-3
Li0.447 0.472 0.448 0.413 0.348 0.549 0.388 0.366 0.372 0.395 0.424 0.383
Be10.1610.6110.9516.1515.8516.3614.9314.9215.7413.0813.4713.48
Sc0.375 0.334 0.318 0.303 0.247 0.749 0.354 0.390 0.371 0.311 0.365 0.341
Ti25.8629.1327.1610.6910.6712.0919.8621.5323.8828.8130.2830.15
V7.450 7.940 7.490 1.629 1.616 1.624 4.050 4.310 4.420 7.310 7.560 7.460
Cr1.781.511.411.461.990.850.941.490.481.431.281.62
Ni16.1516.6916.3411.5911.8413.89.559.139.579.9710.5110.54
Co0.224 0.236 0.354 0.247 0.224 0.236 0.065 0.091 0.069 0.462 0.399 0.447
Cu0.078 0.048 0.268 0.106 0.043 0.220 0.059 0.014 0.021 0.128 0.030 0.041
Zn35.7836.4435.8722.4522.2123.8629.3729.5330.3725.6726.6927.7
Ga1.120 1.093 1.018 0.902 0.924 0.981 0.951 0.991 1.062 1.126 1.149 1.170
Rb1.141 1.238 1.129 1.471 1.565 2.127 2.590 2.234 2.740 1.215 1.312 1.158
Sr21.1222.8721.5914.0212.5313.9216.4716.4917.2410.2911.3810.9
Y0.407 0.448 0.383 0.314 0.346 0.658 0.584 0.541 0.982 0.421 0.448 0.372
Zr0.549 0.615 0.429 0.322 0.173 2.110 0.503 0.503 0.883 0.429 0.393 0.451
Nb0.120 0.142 0.163 0.072 0.080 0.092 0.067 0.028 0.050 0.104 0.124 0.137
Ba0.500 0.470 0.540 0.487 0.260 0.560 0.550 0.640 0.560 1.000 1.160 1.070
La0.336 0.390 0.343 0.530 0.509 0.516 0.334 0.349 0.357 0.460 0.543 0.473
Ce0.709 0.772 0.752 1.147 1.110 1.170 0.616 0.650 0.645 0.934 0.983 0.931
Pr0.077 0.079 0.065 0.120 0.132 0.127 0.061 0.064 0.066 0.087 0.111 0.108
Nd0.239 0.326 0.287 0.511 0.391 0.493 0.209 0.200 0.263 0.350 0.556 0.516
Sm0.100 0.099 0.036 0.055 0.163 0.027 0.032 0.050 0.009 0.092 0.007 0.084
Eu0.008 0.020 0.013 0.005 0.013 0.040 0.026 0.009 0.018 0.013 0.030 0.002
Gd0.119 0.058 0.137 0.007 0.109 0.082 0.057 0.098 0.024 0.070 0.110 0.020
Tb0.020 0.004 0.020 0.012 0.009 0.016 0.018 0.027 0.014 0.014 0.005 0.027
Dy0.014 0.050 0.117 0.105 0.062 0.060 0.058 0.051 0.062 0.083 0.152 0.037
Ho0.011 0.017 0.011 0.033 0.015 0.028 0.045 0.018 0.036 0.008 0.011 0.013
Er0.0520.0610.0110.0450.0170.0560.0090.0320.0560.0160.0530.070
Tm0.0070.0050.0150.0050.0230.0080.0060.0090.0140.0150.0110.007
Yb0.0240.0290.0410.0460.0920.0810.0320.0380.0430.0900.0500.076
Lu0.0130.0150.0100.0090.0130.0270.0040.0210.0100.0030.0080.011
Hf0.0790.008------------0.005------0.0240.0130.0420.005------0.056
Ta0.0140.007------------0.012------0.003------0.0160.0130.0040.022
Pb0.6300.6350.6570.6910.8870.8540.8610.77214.5500.5070.5280.451
Th0.0910.1070.1140.0230.0340.0170.0530.0760.0470.0970.1140.107
U0.2150.1800.2010.2130.1940.1710.1660.1840.1960.2740.2670.280
LaN1.08 1.26 1.11 1.71 1.64 1.66 1.08 1.13 1.15 1.48 1.75 1.53
CeN0.88 0.96 0.93 1.42 1.37 1.45 0.76 0.80 0.80 1.16 1.22 1.15
PrN0.63 0.65 0.53 0.98 1.08 1.04 0.50 0.52 0.54 0.71 0.91 0.89
NdN0.40 0.54 0.48 0.85 0.65 0.82 0.35 0.33 0.44 0.58 0.93 0.86
SmN0.51 0.51 0.18 0.28 0.84 0.14 0.16 0.26 0.05 0.47 0.04 0.43
EuN0.11 0.27 0.18 0.07 0.18 0.54 0.35 0.12 0.24 0.18 0.41 0.03
GdN0.46 0.22 0.53 0.03 0.42 0.32 0.22 0.38 0.09 0.27 0.42 0.08
TbN0.42 0.08 0.42 0.25 0.19 0.34 0.38 0.57 0.30 0.30 0.11 0.57
DyN0.04 0.16 0.36 0.33 0.19 0.19 0.18 0.16 0.19 0.26 0.47 0.11
HoN0.15 0.24 0.15 0.46 0.21 0.39 0.63 0.25 0.50 0.11 0.15 0.18
ErN0.25 0.29 0.05 0.21 0.08 0.27 0.04 0.15 0.27 0.08 0.25 0.33
TmN0.22 0.15 0.46 0.15 0.71 0.25 0.19 0.28 0.43 0.46 0.34 0.22
YbN0.11 0.14 0.20 0.22 0.44 0.39 0.15 0.18 0.21 0.43 0.24 0.36
LuN0.39 0.45 0.30 0.27 0.39 0.81 0.12 0.63 0.30 0.09 0.24 0.33
ΣREE1.73 1.93 1.86 2.63 2.66 2.73 1.51 1.62 1.62 2.24 2.63 2.38
LREE1.47 1.69 1.50 2.37 2.32 2.37 1.28 1.32 1.36 1.94 2.23 2.11
HREE0.26 0.24 0.36 0.26 0.34 0.36 0.23 0.29 0.26 0.30 0.40 0.26
LREE/HREE5.65 7.05 4.13 9.04 6.82 6.63 5.58 4.50 5.24 6.47 5.58 8.10
δEu0.22 0.74 0.50 0.44 0.28 2.39 1.84 0.39 3.53 0.48 1.77 0.11
δCe1.52 1.44 1.60 1.56 1.56 1.63 1.35 1.36 1.32 1.48 1.31 1.42
LaN/SmN2.11 2.48 5.99 6.06 1.96 12.02 6.57 4.39 24.95 3.15 48.79 3.54
SmN/HoN3.35 2.14 1.21 0.61 4.00 0.36 0.26 1.02 0.09 4.23 0.23 2.38
GdN/LuN1.17 0.50 1.76 0.10 1.07 0.39 1.83 0.60 0.31 2.99 1.76 0.23
Table 3. Results of the hydrogen and oxygen isotope analyses of Chuncheon nephrite.
Table 3. Results of the hydrogen and oxygen isotope analyses of Chuncheon nephrite.
SamplesδDV-SMOW (‰)δ18OV-SMOW (‰)δDH2Oδ18OH2O
330~450 °C330 °C390 °C450 °C
KC-1−117−4.8−95−4.3−3.7−3.3
KC-2−114−4.5−92−4.0−3.4−3.0
KC-3−116−7.2−94−6.7−6.1−5.7
KC-4−109−2.9−88−2.4−1.8−1.4
Table 4. Average values of major element contents of dolomite-related nephrite from different geographic origins (wt%).
Table 4. Average values of major element contents of dolomite-related nephrite from different geographic origins (wt%).
SamplesCaOMgOFeOAl2O3Na2O + K2OSiO2Na2O + K2O + CaO
KC12.47 23.97 0.34 0.60 0.13 58.98 12.60
XA12.92 23.85 0.15 0.43 0.13 58.06 13.05
QG13.59 23.54 1.15 0.70 0.10 58.22 13.69
JP13.79 24.47 0.10 0.23 0.09 58.56 13.88
HT13.88 23.41 0.48 0.13 0.10 57.96 13.98
ER11.9525.870.130.680.2158.1612.17
DH13.823.60.760.390.1558.0513.95
LD12.9925.390.210.190.3357.8213.33
Note: KC—Chuncheon, South Korea; XA—Alamas, Xinjiang [41]; QG—Golmud, Qinghai [38]; JP—Panshi, Jilin [34]; HT—Tieli, Heilongjiang [45]; ER—Taksimo, Russia [2]; DH—Dahua, Guangxi [28]; LD—Luodian, Guizhou [33].
Table 5. Main chemical composition data of the dolomite-related nephrite from different geographic origins (wt%).
Table 5. Main chemical composition data of the dolomite-related nephrite from different geographic origins (wt%).
SampleSiO2Al2O3FeOMgOCaONa2OK2OMgO + FeONa2O + K2ONa2O + K2O + CaO
XA-158.24 0.40 0.01 24.02 13.21 0.04 0.14 24.03 0.18 13.39
XA-258.14 0.39 0.02 23.80 13.37 0.05 0.07 23.82 0.12 13.49
XA-358.20 0.33 0.00 23.70 12.98 0.03 0.04 23.70 0.07 13.05
XA-458.07 0.35 0.02 23.92 12.84 0.00 0.04 23.94 0.04 12.88
XA-558.25 0.42 0.03 24.41 12.79 0.05 0.05 24.44 0.10 12.89
XA-658.34 0.58 0.07 24.21 12.63 0.08 0.10 24.28 0.18 12.81
XA-758.85 0.49 0.04 24.65 12.65 0.03 0.06 24.69 0.09 12.74
XA-858.03 0.60 0.05 24.33 12.44 0.04 0.08 24.38 0.12 12.56
XA-957.31 0.47 0.08 22.86 13.18 0.06 0.10 22.94 0.16 13.34
XA-1057.28 0.52 0.04 23.16 12.74 0.00 0.22 23.20 0.22 12.96
XA-1157.91 0.19 1.34 23.34 13.30 0.12 0.07 24.68 0.19 13.49
QG-157.59 0.61 0.30 23.93 13.99 0.06 0.01 24.23 0.07 14.06
QG-257.78 1.20 0.14 24.05 14.18 0.17 0.07 24.19 0.24 14.42
QG-359.54 0.13 0.09 24.37 13.50 0.06 0.03 24.46 0.09 13.59
QG-459.46 0.12 0.04 24.83 13.92 0.06 0.02 24.87 0.08 14.00
QG-559.40 0.08 0.15 23.90 13.85 0.04 0.02 24.05 0.06 13.91
QG-659.21 0.13 0.17 23.83 13.53 0.06 0.03 24.00 0.09 13.62
QG-758.22 0.89 0.41 23.74 13.67 0.02 0.04 24.15 0.06 13.73
QG-858.81 0.90 0.31 24.50 13.64 0.03 0.01 24.81 0.04 13.68
QG-958.17 1.78 0.40 23.92 14.05 0.17 0.07 24.32 0.24 14.29
QG-1058.64 0.26 0.73 23.79 13.80 0.05 0.03 24.52 0.08 13.88
QG-1156.91 0.96 5.45 21.45 13.30 0.04 0.04 26.90 0.08 13.38
QG-1257.09 0.65 4.48 21.61 13.06 0.07 0.04 26.09 0.11 13.17
QG-1356.37 1.33 3.22 21.72 13.49 0.03 0.03 24.94 0.06 13.55
JP-158.57 0.02 0.15 24.66 13.92 0.04 0.02 24.81 0.06 13.97
JP-257.77 0.24 0.04 24.53 13.97 0.05 0.04 24.58 0.10 14.07
JP-358.99 0.20 0.09 24.17 13.75 0.09 0.03 24.26 0.12 13.87
JP-457.92 0.13 0.09 24.64 13.90 0.02 0.02 24.72 0.05 13.95
JP-558.57 0.43 0.09 23.55 13.96 0.13 0.02 23.65 0.15 14.11
JP-659.19 0.15 0.13 24.64 13.62 0.06 0.02 24.77 0.07 13.69
JP-759.76 0.06 0.04 24.73 13.64 0.02 0.04 24.78 0.06 13.70
JP-859.05 0.06 0.01 24.81 13.40 0.04 0.04 24.82 0.07 13.47
JP-957.23 0.74 0.25 24.49 14.00 0.07 0.04 24.74 0.10 14.11
HT-158.60 0.02 0.46 23.77 14.23 0.09 0.03 24.22 0.12 14.35
HT-257.85 0.08 0.43 23.17 13.59 0.14 0.07 23.60 0.20 13.79
HT-358.70 0.08 0.48 23.25 13.98 0.07 0.04 23.73 0.11 14.09
HT-457.19 0.10 0.42 23.43 14.14 0.01 0.01 23.85 0.02 14.16
HT-557.39 0.12 0.33 23.88 13.67 0.06 0.06 24.21 0.13 13.80
HT-657.37 0.22 0.40 23.34 13.72 0.07 0.02 23.74 0.09 13.81
HT-758.14 0.10 0.54 23.32 13.93 0.07 0.02 23.85 0.09 14.02
HT-857.83 0.11 0.63 23.53 13.73 0.04 0.05 24.17 0.10 13.82
HT-959.18 0.18 0.65 22.95 14.06 0.09 0.03 23.60 0.12 14.18
HT-1058.18 0.06 0.47 23.10 13.97 0.04 0.02 23.57 0.06 14.02
HT-1157.51 0.08 0.44 23.07 13.78 0.10 0.05 23.51 0.15 13.93
HT-1258.22 0.06 0.40 23.36 13.92 0.04 0.02 23.76 0.06 13.97
HT-1358.34 0.18 0.54 23.63 14.01 0.07 0.06 24.17 0.13 14.13
HT-1457.04 0.21 0.44 23.84 13.49 0.07 0.08 24.28 0.15 13.64
HT-1557.62 0.21 0.34 23.64 13.99 0.06 0.02 23.99 0.09 14.07
HT-1658.26 0.31 0.75 23.30 13.92 0.04 0.01 24.05 0.05 13.97
ER-158.30 0.59 0.36 26.23 11.39 0.21 0.00 26.59 0.21 11.60
ER-258.03 0.56 0.00 25.87 11.85 0.13 0.00 25.87 0.13 11.98
ER-358.49 0.65 0.19 25.83 11.86 0.06 0.08 26.02 0.14 12.00
ER-458.43 0.74 0.08 25.76 12.18 0.03 0.10 25.84 0.13 12.31
ER-558.08 0.79 0.00 25.74 12.25 0.23 0.13 25.74 0.36 12.61
ER-657.73 0.97 0.09 25.82 11.93 0.24 0.10 25.91 0.34 12.27
ER-758.05 0.47 0.19 25.83 12.22 0.19 0.00 26.02 0.19 12.41
DH-158.30 0.32 0.76 23.26 13.87 0.05 0.02 24.03 0.07 13.94
DH-258.57 0.36 0.79 23.53 14.08 0.05 0.04 24.32 0.10 14.18
DH-358.10 0.65 0.80 23.28 13.46 0.08 0.13 24.07 0.21 13.67
DH-458.14 0.46 0.88 23.26 13.17 0.05 0.08 24.14 0.13 13.30
DH-557.35 0.36 0.95 22.83 14.07 0.13 0.07 23.77 0.20 14.27
DH-658.92 0.36 0.82 22.87 14.11 0.05 0.07 23.69 0.12 14.23
DH-758.26 0.31 0.53 24.08 13.67 0.05 0.07 24.62 0.12 13.79
DH-857.47 0.33 0.90 23.56 13.94 0.12 0.04 24.46 0.16 14.10
DH-957.89 0.41 0.91 25.15 13.67 0.11 0.06 26.06 0.17 13.84
DH-1058.27 0.40 0.63 23.86 14.15 0.12 0.05 24.48 0.16 14.31
DH-1157.33 0.28 0.36 23.96 13.63 0.16 0.08 24.32 0.23 13.87
LD-157.55 0.27 0.40 25.28 13.82 0.23 0.00 25.68 0.23 14.05
LD-257.39 0.29 0.25 24.92 13.83 0.28 0.03 25.17 0.31 14.14
LD-357.11 0.29 0.28 25.00 13.86 0.24 0.00 25.28 0.24 14.10
LD-457.53 0.11 0.19 25.48 13.64 0.21 0.01 25.67 0.22 13.86
LD-556.69 0.26 0.41 24.70 13.87 0.24 0.00 25.11 0.24 14.11
LD-657.60 0.34 0.24 24.95 13.41 0.20 0.05 25.19 0.25 13.66
LD-758.60 0.17 0.14 25.62 12.05 0.41 0.00 25.76 0.41 12.46
LD-858.65 0.13 0.10 25.91 12.20 0.34 0.00 26.01 0.34 12.54
LD-957.63 0.05 0.13 25.31 12.99 0.29 0.11 25.44 0.40 13.39
LD-1058.64 0.08 0.12 25.96 12.19 0.34 0.10 26.08 0.44 12.63
LD-1158.29 0.06 0.13 25.82 12.06 0.33 0.06 25.95 0.39 12.45
LD-1258.18 0.17 0.09 25.67 12.01 0.39 0.14 25.76 0.53 12.54
Note: XA—Alamas, Xinjiang [41]; QG—Golmud, Qinghai [38]; JP—Panshi, Jilin [34]; HT—Tieli, Heilongjiang [45]; ER—Taksimo, Russia [2]; DH—Dahua, Guangxi [28]; LD—Luodian, Guizhou [33].
Table 6. Trace elements of dolomite-related nephrites from different geographic origins (ppm).
Table 6. Trace elements of dolomite-related nephrites from different geographic origins (ppm).
SampleCrNiCoRbSrZrNbBaHfTaThU
XA-113.02 0.05 ------38.42 8.36 2.96 0.74 14.34 0.08 0.06 0.22 0.64
XA-227.72 1.27 ------46.29 7.91 4.77 0.27 17.44 0.14 0.06 0.30 1.05
XA-345.53 2.41 ------21.29 4.87 10.29 0.54 19.96 0.31 0.09 0.10 0.12
XA-425.84 3.95 ------0.62 43.07 0.37 1.81 1.09 0.01 0.13 0.08 1.32
XA-58.95 0.95 ------1.59 3.75 0.34 2.02 0.90 0.01 0.11 0.05 0.60
XA-633.72 0.49 ------105.14 11.71 3.14 1.55 13.21 0.07 0.07 0.36 1.44
XA-711.00 0.25 ------4.43 5.88 0.48 1.95 1.31 0.02 0.06 0.07 1.11
XA-8123.72 2.98 ------26.27 12.83 0.92 1.74 4.20 0.03 0.08 0.23 0.09
XA-9178.70 3.40 ------24.99 9.01 1.89 0.27 5.47 0.05 0.05 0.12 0.99
XA-1092.77 1.15 ------3.02 9.47 1.83 1.26 2.93 0.05 0.08 0.13 1.15
XA-1155.38 0.34 ------3.62 7.26 1.49 0.99 2.15 0.04 0.08 0.12 0.76
XA-12151.05 2.26 ------9.32 7.55 3.45 7.65 1.72 0.11 0.30 0.58 2.09
XA-AVG63.95 1.63 ------23.75 10.97 2.66 1.73 7.06 0.08 0.10 0.20 0.95
QG-139.73 34.55 2.40 1.54 10.26 20.06 1.41 18.41 0.76 0.66 1.39 2.00
QG-234.89 37.44 2.60 1.29 9.32 20.75 0.96 17.63 0.71 0.69 0.79 2.13
QG-315.57 9.69 0.82 2.40 13.23 6.53 0.58 10.50 0.12 0.03 0.22 0.28
QG-419.85 10.85 0.85 1.39 19.44 6.93 0.51 15.63 0.13 0.03 0.20 0.42
QG-520.73 10.06 0.89 1.41 13.33 7.93 0.32 11.25 0.15 0.02 0.17 0.37
QG-614.29 38.81 24.68 4.96 10.85 17.06 0.82 8.30 0.29 0.04 0.13 0.14
QG-715.76 20.36 8.83 1.50 10.06 17.83 1.31 7.17 0.31 0.06 0.09 0.09
QG-818.54 21.89 7.94 2.43 9.55 17.55 1.05 6.87 0.30 0.05 0.20 0.23
QG-916.40 4.05 0.80 0.34 9.56 1.19 0.22 5.20 0.02 0.01 0.04 0.75
QG-109.99 3.68 0.72 0.62 10.06 1.25 0.21 6.48 0.02 0.01 0.09 0.54
QG-114.05 7.84 1.30 0.64 8.76 1.26 0.22 5.39 0.02 0.01 0.01 0.50
QG-1219.41 11.00 9.80 0.82 10.84 0.66 0.48 4.08 0.01 0.02 0.07 0.44
QG-1314.07 11.77 8.30 1.20 12.56 0.69 0.50 3.22 0.01 0.02 0.04 0.43
QG-1420.52 3.84 1.66 0.54 10.09 1.44 0.52 4.63 0.02 0.02 0.04 0.25
QG-155.16 3.24 1.69 0.68 8.01 1.43 0.54 2.52 0.02 0.02 0.00 0.25
QG-AVG17.93 15.27 4.89 1.45 11.06 8.17 0.64 8.49 0.19 0.11 0.23 0.59
JP-14.96 18.60 ------0.19 6.11 0.70 ------0.04 0.13 ------0.04 0.02
JP-23.16 11.45 ------0.19 40.28 0.61 0.02 0.44 0.08 ------------0.05
JP-332.93 18.78 ------0.81 16.90 2.12 0.04 0.50 0.06 0.01 0.05 1.13
JP-46.44 12.84 ------0.18 7.76 2.63 0.09 0.44 ------0.01 0.02 0.16
JP-54.13 11.62 ------0.08 5.34 0.48 0.06 0.17 0.07 ------0.03 0.32
JP-612.00 5.82 ------0.92 25.73 0.29 0.05 0.91 0.04 0.01 0.02 0.14
JP-79.00 13.96 ------0.05 6.24 2.85 0.07 0.52 0.14 0.02 0.04 0.08
JP-813.31 25.10 ------0.09 12.85 1.17 n.d.n.d.0.02 ------0.06 0.53
JP-92.83 20.01 ------0.13 13.61 0.21 n.d.0.23 n.d.------0.02 0.24
JP-109.49 24.43 ------0.05 13.19 1.28 0.06 0.24 n.d.------0.10 0.59
JP-AVG9.83 16.26 ------0.27 14.80 1.23 0.05 0.39 0.07 0.01 0.04 0.33
HT-133.93 4.42 ------0.19 23.36 0.45 0.05 0.85 0.01 0.00 0.10 0.71
HT-225.50 1.41 ------0.29 36.37 0.99 0.02 0.56 0.02 0.00 0.12 0.63
HT-335.28 3.17 ------0.11 24.48 0.61 0.09 0.58 0.01 0.00 0.04 0.20
HT-421.18 3.86 ------0.29 20.89 2.47 0.19 1.92 0.07 0.01 0.16 0.36
HT-529.84 1.85 ------0.52 48.86 0.59 0.08 1.09 0.02 0.01 0.16 0.89
HT-628.19 2.35 ------0.34 99.71 0.00 0.03 1.57 0.02 0.01 0.10 0.80
HT-722.97 4.30 ------0.57 49.32 0.39 0.11 1.33 0.03 0.01 0.08 0.60
HT-836.66 2.98 ------0.48 45.50 0.39 0.12 2.03 0.00 0.01 0.11 0.66
HT-98.06 1.38 ------0.21 79.48 0.00 0.10 1.25 0.00 0.00 0.15 1.03
HT-1010.32 1.84 ------0.14 29.14 1.20 0.03 0.59 0.02 0.00 0.08 0.47
HT-1155.35 0.86 ------0.42 30.24 0.00 0.16 2.16 0.02 0.01 0.10 0.53
HT-1227.69 1.06 ------0.39 45.44 0.00 0.11 5.26 0.03 0.00 0.04 0.41
HT-AVG27.91 2.46 ------0.33 44.40 0.59 0.09 1.60 0.02 0.01 0.10 0.61
DH-144.74 1692.83 83.65 2.03 167.32 40.78 8.59 147.41 0.44 0.22 0.18 0.14
DH-262.80 917.13 46.25 1.99 201.43 126.08 9.17 113.17 3.70 0.41 3.13 0.59
DH-331.58 1354.53 66.28 1.06 164.32 63.43 5.52 111.25 1.06 0.24 0.29 0.00
DH-459.44 648.16 31.94 1.10 79.85 81.71 2.75 16.68 2.00 0.22 0.88 0.11
DH-558.46 823.01 42.40 1.98 99.72 155.37 3.50 31.16 4.99 0.24 2.47 0.39
DH-AVG51.40 1087.13 54.10 1.63 142.53 93.47 5.91 83.93 2.44 0.27 1.39 0.24
Note: XA—Alamas, Xinjiang [41]; QG—Golmud, Qinghai [38]; JP—Panshi, Jilin [34]; HT—Tieli, Heilongjiang [45]; DH—Dahua, Guangxi [28]; AVG—the average value of trace elements.
Table 7. Comparison of the average values of the trace element characteristics of dolomite-related nephrites from different geographic origins.
Table 7. Comparison of the average values of the trace element characteristics of dolomite-related nephrites from different geographic origins.
SamplesRb/SrU/ThSr/Ba
KC0.11 4.03 29.13
XA2.66 6.95 5.50
QG0.13 7.92 1.72
JP0.02 8.69 53.50
HT0.01 6.30 37.42
DH0.01 0.25 2.48
Note: KC—Chuncheon, South Korea; XA—Alamas, Xinjiang [41]; QG—Golmud, Qinghai [38]; JP—Panshi, Jilin [34]; HT—Tieli, Heilongjiang [45]; DH—Dahua, Guangxi [28].
Table 8. REEs of dolomite-related nephrites from different geographic origins (ppm).
Table 8. REEs of dolomite-related nephrites from different geographic origins (ppm).
SampleLaCePrNdSmEuGdTbDyHoErTmYbLuΣREELREEHREELREE/HREE
XA-10.59 1.47 0.19 0.92 0.29 0.02 0.33 0.06 0.47 0.11 0.34 0.05 0.35 0.06 5.25 3.48 1.77 1.97
XA-20.58 1.09 0.17 0.77 0.21 0.02 0.25 0.05 0.36 0.08 0.23 0.04 0.23 0.04 4.12 2.84 1.28 2.22
XA-32.85 6.00 0.75 2.82 0.60 0.07 0.51 0.08 0.56 0.12 0.34 0.05 0.35 0.05 15.15 13.09 2.06 6.35
XA-40.38 0.55 0.06 0.25 0.10 0.01 0.18 0.05 0.46 0.13 0.42 0.07 0.42 0.06 3.14 1.35 1.79 0.75
XA-50.90 2.50 0.38 1.85 0.62 0.03 0.74 0.16 1.26 0.31 0.96 0.16 1.10 0.17 11.14 6.28 4.86 1.29
XA-61.47 2.68 0.37 1.41 0.37 0.01 0.38 0.07 0.51 0.12 0.34 0.05 0.31 0.05 8.14 6.31 1.83 3.45
XA-70.20 0.39 0.06 0.34 0.17 0.01 0.30 0.07 0.54 0.12 0.32 0.04 0.26 0.04 2.86 1.17 1.69 0.69
XA-826.40 38.72 3.44 10.45 1.36 0.28 1.35 0.17 1.01 0.21 0.63 0.09 0.61 0.10 84.82 80.65 4.17 19.34
XA-90.45 0.94 0.12 0.55 0.18 0.02 0.28 0.06 0.53 0.13 0.38 0.05 0.29 0.04 4.02 2.26 1.76 1.28
XA-100.25 0.67 0.12 0.71 0.32 0.04 0.46 0.09 0.69 0.16 0.47 0.07 0.37 0.05 4.47 2.11 2.36 0.89
XA-110.17 0.44 0.08 0.44 0.22 0.03 0.35 0.08 0.57 0.13 0.37 0.05 0.31 0.04 3.28 1.38 1.90 0.73
XA-1213.57 19.90 1.64 4.36 0.66 0.02 0.73 0.11 0.75 0.18 0.54 0.09 0.72 0.10 43.37 40.15 3.22 12.47
XA-AVG3.98 6.28 0.62 2.07 0.43 0.05 0.49 0.09 0.64 0.15 0.45 0.07 0.44 0.07 15.81 13.42 2.39 4.29
QG-13.37 6.61 0.56 2.16 0.52 0.13 0.55 0.12 0.75 0.14 0.38 0.07 0.44 0.06 15.86 13.42 2.51 5.35
QG-22.54 5.62 0.54 1.48 0.43 0.11 0.46 0.10 0.66 0.13 0.31 0.06 0.39 0.05 12.88 10.09 2.17 4.65
QG-30.45 1.48 0.14 0.59 0.12 0.02 0.12 0.02 0.11 0.02 0.06 0.01 0.06 0.01 3.21 2.50 0.40 6.25
QG-40.72 1.74 0.14 0.57 0.13 0.02 0.11 0.02 0.12 0.02 0.06 0.01 0.08 0.01 3.75 3.12 0.45 6.93
QG-50.57 1.44 0.11 0.48 0.11 0.03 0.10 0.02 0.11 0.02 0.06 0.01 0.07 0.01 3.14 2.54 0.40 6.35
QG-60.16 0.75 0.05 0.18 0.05 0.01 0.08 0.02 0.16 0.04 0.21 0.05 0.48 0.09 2.33 0.81 1.13 0.72
QG-70.11 0.63 0.02 0.09 0.03 0.01 0.04 0.01 0.07 0.02 0.07 0.02 0.12 0.02 1.26 0.39 0.36 1.08
QG-80.05 0.43 0.02 0.10 0.02 0.01 0.06 0.02 0.12 0.03 0.10 0.03 0.20 0.03 1.22 0.29 0.58 0.50
QG-90.14 0.36 0.02 0.10 0.02 0.01 0.02 0.00 0.02 0.00 0.02 0.00 0.01 0.00 0.72 0.53 0.09 5.89
QG-100.13 0.37 0.02 0.10 0.03 0.01 0.03 0.00 0.03 0.01 0.02 0.00 0.02 0.00 0.77 0.53 0.11 4.82
QG-110.17 0.43 0.05 0.17 0.04 0.01 0.03 0.01 0.03 0.01 0.01 0.00 0.02 0.00 0.98 0.82 0.11 7.45
QG-120.11 0.19 0.03 0.13 0.03 0.00 0.02 0.00 0.03 0.01 0.02 0.00 0.01 0.00 0.58 0.49 0.09 5.44
QG-130.15 0.29 0.04 0.17 0.04 0.01 0.04 0.01 0.04 0.01 0.02 0.00 0.03 0.00 0.85 0.69 0.15 4.60
QG-140.06 0.08 0.01 0.06 0.02 0.00 0.02 0.00 0.02 0.00 0.01 0.00 0.01 0.00 0.29 0.23 0.07 3.29
QG-150.08 0.11 0.01 0.05 0.02 0.00 0.02 0.00 0.02 0.01 0.01 0.00 0.02 0.00 0.35 0.27 0.09 3.00
QG-AVG0.59 1.37 0.12 0.43 0.11 0.03 0.11 0.02 0.15 0.03 0.09 0.02 0.13 0.02 3.21 2.45 0.58 4.42
JP-10.31 0.33 0.13 0.90 0.43 0.12 0.36 0.14 0.63 0.16 0.25 0.04 0.07 0.03 3.90 2.23 1.67 1.33
JP-20.84 0.70 0.19 1.03 0.54 0.04 0.31 0.08 0.45 0.13 0.24 0.04 0.19 0.03 4.82 3.34 1.48 2.26
JP-30.64 0.58 0.19 1.10 0.30 0.03 0.28 0.13 0.71 0.20 0.50 0.06 0.36 0.05 5.12 2.83 2.29 1.24
JP-40.30 0.17 0.06 0.41 0.18 0.01 0.06 0.05 0.15 0.02 0.22 0.00 0.15 0.04 1.83 1.13 0.70 1.62
JP-50.33 0.28 0.12 0.88 0.39 0.10 0.14 0.06 0.09 0.05 0.22 0.05 0.22 0.03 2.95 2.09 0.86 2.44
JP-61.20 0.61 0.17 0.47 0.14 0.06 0.18 0.03 0.27 0.05 0.13 0.03 0.33 0.03 3.70 2.65 1.05 2.53
JP-70.34 0.40 0.15 0.87 0.05 0.07 0.05 0.07 0.21 0.04 0.24 0.06 0.09 0.04 2.68 1.87 0.80 2.33
JP-80.37 0.60 0.14 0.50 0.33 0.08 0.19 0.04 0.23 0.08 0.13 0.04 0.08 0.03 2.85 2.02 0.83 2.44
JP-90.40 0.64 0.19 0.82 0.23 0.01 0.25 0.05 0.45 0.11 0.34 0.05 0.28 0.01 3.81 2.29 1.53 1.50
JP-100.49 0.63 0.15 0.65 0.16 0.13 0.21 0.05 0.37 0.08 0.21 0.05 0.43 0.04 3.66 2.21 1.45 1.52
JP-AVG0.52 0.49 0.15 0.76 0.28 0.06 0.20 0.07 0.36 0.09 0.25 0.04 0.22 0.03 3.53 2.27 1.27 1.92
HT-10.52 1.52 0.17 0.88 0.13 0.05 0.07 0.01 0.17 0.02 0.09 0.01 0.04 0.01 3.70 3.26 0.44 7.48
HT-20.32 1.22 0.12 0.59 0.13 0.04 0.19 0.03 0.13 0.03 0.06 0.01 0.08 0.01 2.95 2.42 0.53 4.56
HT-30.34 1.53 0.22 0.83 0.20 0.08 0.21 0.03 0.18 0.03 0.10 0.01 0.07 0.00 3.85 3.21 0.64 5.00
HT-40.58 1.57 0.23 0.79 0.26 0.04 0.22 0.04 0.19 0.03 0.10 0.02 0.09 0.02 4.18 3.47 0.71 4.86
HT-50.44 1.56 0.15 0.80 0.22 0.04 0.00 0.04 0.06 0.02 0.14 0.02 0.14 0.01 3.66 3.22 0.44 7.30
HT-60.27 1.06 0.10 0.90 0.16 0.07 0.14 0.06 0.27 0.05 0.09 0.02 0.06 0.02 3.27 2.56 0.72 3.57
HT-70.47 2.29 0.26 0.51 0.17 0.09 0.32 0.02 0.23 0.06 0.19 0.03 0.12 0.01 4.77 3.79 0.99 3.84
HT-80.45 1.34 0.13 0.58 0.19 0.07 0.14 0.03 0.16 0.05 0.13 0.00 0.07 0.01 3.34 2.75 0.59 4.67
HT-90.67 1.84 0.25 0.81 0.16 0.05 0.18 0.02 0.17 0.03 0.11 0.01 0.07 0.01 4.38 3.78 0.60 6.34
HT-100.30 1.14 0.17 0.66 0.14 0.04 0.07 0.02 0.15 0.02 0.08 0.01 0.06 0.01 2.86 2.44 0.42 5.84
HT-110.80 2.28 0.36 1.57 0.42 0.05 0.50 0.06 0.36 0.06 0.21 0.02 0.09 0.02 6.81 5.47 1.34 4.09
HT-121.17 3.65 0.51 2.15 0.62 0.12 0.59 0.10 0.74 0.15 0.51 0.05 0.43 0.04 10.84 8.23 2.61 3.15
HT-AVG0.53 1.75 0.22 0.92 0.23 0.06 0.22 0.04 0.23 0.05 0.15 0.02 0.11 0.02 4.55 3.72 0.84 5.06
DH-10.62 1.20 0.16 0.57 0.04 0.01 0.16 0.02 0.13 0.03 0.05 0.01 0.03 0.00 4.05 2.60 0.43 0.18
DH-23.52 1.18 0.53 2.49 0.43 0.13 0.51 0.07 0.43 0.11 0.25 0.02 0.15 0.03 3.99 8.28 1.57 0.22
DH-33.70 1.19 0.54 2.27 0.57 0.11 0.34 0.08 0.53 0.08 0.30 0.03 0.27 0.04 3.04 8.38 1.67 6.11
DH-40.48 0.86 0.12 0.47 0.11 0.09 0.17 0.04 0.35 0.12 0.33 0.05 0.33 0.05 9.87 2.13 1.44 5.24
DH-50.86 0.43 0.18 1.33 0.34 0.06 0.58 0.12 0.48 0.15 0.32 0.04 0.20 0.00 10.04 3.20 1.89 5.06
DH-60.38 0.21 0.08 0.39 0.20 0.01 0.24 0.06 0.41 0.13 0.46 0.05 0.23 0.03 3.57 1.27 1.61 1.49
DH-70.28 0.40 0.05 0.13 0.12 0.02 0.11 0.00 0.06 0.01 0.03 0.01 0.06 0.00 5.10 1.00 0.28 1.69
DH-AVG1.41 0.78 0.24 1.09 0.26 0.06 0.30 0.06 0.34 0.09 0.25 0.03 0.18 0.02 5.67 3.84 1.27 2.86
LD-18.48 8.44 1.66 6.74 1.73 0.49 1.71 0.33 2.59 0.47 1.05 0.14 0.92 0.13 34.88 27.54 7.34 5.28
LD-27.32 3.84 1.40 5.71 1.14 0.25 1.46 0.21 1.53 0.36 1.24 0.17 1.11 0.15 25.89 19.66 6.23 4.48
LD-36.61 3.58 1.50 7.64 1.37 0.34 1.78 0.27 1.56 0.28 0.62 0.09 0.49 0.08 26.21 21.04 5.17 6.92
LD-46.31 6.81 1.74 6.21 1.24 1.19 1.24 0.22 1.38 0.27 0.84 0.15 0.93 0.14 41.28 23.50 5.16 4.55
LD-512.03 17.23 3.19 11.82 2.52 2.18 2.45 0.47 3.26 0.69 2.17 0.41 2.51 0.39 91.81 48.96 12.34 3.97
LD-AVG8.15 7.98 1.90 7.62 1.60 0.89 1.73 0.30 2.06 0.41 1.18 0.19 1.19 0.18 44.01 28.14 7.25 5.04
Note: XA—Alamas, Xinjiang [41]; QG—Golmud, Qinghai [38]; JP—Panshi, Jilin [34]; HT—Tieli, Heilongjiang [45]; DH—Dahua, Guangxi [28]; LD—Luodian, Guizhou [30,33]; AVG—the average value of REEs.
Table 9. Average values of REEs in dolomite-related nephrites of different geographic origins.
Table 9. Average values of REEs in dolomite-related nephrites of different geographic origins.
SamplesΣREELREEHREELREE/HREEδEuδCe(La/Sm)N(Sm/Ho)N(Gd/Lu)N
KC2.13 1.83 0.30 6.23 1.06 1.46 10.17 1.66 1.06
XA15.81 13.42 2.39 4.29 0.25 1.46 3.35 1.00 0.96
QG3.21 2.45 0.58 4.42 0.74 2.19 2.78 1.26 0.90
JP3.53 2.27 1.27 1.92 1.16 0.73 1.77 1.36 0.90
HT4.55 3.72 0.84 5.06 0.99 2.38 1.54 2.01 2.56
DH5.67 3.84 1.27 2.86 0.71 0.71 3.71 1.53 1.18
LD44.01 28.14 7.25 5.04 1.53 0.66 3.27 1.48 1.54
Note: KC—Chuncheon, South Korea; XA—Alamas, Xinjiang [41]; QG—Golmud, Qinghai [38]; JP—Panshi, Jilin [34]; HT—Tieli, Heilongjiang [45]; DH—Dahua, Guangxi [28]; LD—Luodian, Guizhou [30,33].
Table 10. Hydrogen and oxygen isotopes of dolomite-related nephrites from different geographic origins.
Table 10. Hydrogen and oxygen isotopes of dolomite-related nephrites from different geographic origins.
SampleδDδ18OSampleδDδ18OSampleδDδ18O
KC-1−117−4.8 NE-9−109−9.2 XA-2−833.2
KC-2−114−4.5 CA-1−573.4 XA-3−936.1
KC-3−116−7.2 WU-1−56 1.5 XA-4−89 4.6
KC-4−109 −2.9 TC-1−1082.3 XA-5−853.5
NE-1−108 −8.7 TC-2−1100.5 XA-6−853.6
NE-2−114 −8.4 TC-3−1240.6 XA-7−94 6.2
NE-3−105 −9.9 ZS-1−7610.2 XA-8−904.1
NE-4−107 −9.0 ZS-2−76 8.3 XA-9−853.6
NE-5−108 −8.2 ZS-3−7710.4 XA-10−914.9
NE-6−112 −8.6 ZS-4−7410.2 XA-11−90 4.8
NE-7−109−8.9 XA-1−86 3.8 XA-12−863.8
NE-8−110 −9.3
Note: KC—Chuncheon, Korea; NE—Chuncheon, Korea [17]; CA—Cowell, Australia; WU—Wyoming, USA; TC—Kunlun Mountains, China; ZS—Złoty Stok, Poland; XA—Alamas, Xinjiang.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Li, N.; Bai, F.; Peng, Q.; Liu, M. Geochemical Characteristics of Nephrite from Chuncheon, South Korea: Implications for Geographic Origin Determination of Nephrite from Dolomite-Related Deposits. Crystals 2023, 13, 1468. https://doi.org/10.3390/cryst13101468

AMA Style

Li N, Bai F, Peng Q, Liu M. Geochemical Characteristics of Nephrite from Chuncheon, South Korea: Implications for Geographic Origin Determination of Nephrite from Dolomite-Related Deposits. Crystals. 2023; 13(10):1468. https://doi.org/10.3390/cryst13101468

Chicago/Turabian Style

Li, Nan, Feng Bai, Qi Peng, and Mengsong Liu. 2023. "Geochemical Characteristics of Nephrite from Chuncheon, South Korea: Implications for Geographic Origin Determination of Nephrite from Dolomite-Related Deposits" Crystals 13, no. 10: 1468. https://doi.org/10.3390/cryst13101468

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop